
AN ABSTRACT OF THE DISSERTATION OF 
 
 
 

Todd A. Schroeder for the degree of                                                                                                     
Doctor of Philosophy in Forest Science  
presented 
on December 6, 2006. 
Title:  Understanding Changes in Forest Cover and Carbon Storage in Early 
Successional Forests of the Pacific Northwest Using USDA Forest Service FIA  
and Multi-temporal Landsat Data. 

 

Abstract approved:  

 

 

Warren B. Cohen 

 

To effectively study dynamic processes like forest succession over long time 

periods one must effectively integrate data collected at many different times, 

locations and spatial scales.  The purpose of this research is to integrate forest 

inventory data collected by the USDA Forest Service’s Forest Inventory and 

Analysis (FIA) Program with multi-temporal satellite data to better understand 

early successional forest regrowth patterns and carbon storage in western Oregon 

forests.  To detect and characterize continuous changes in early forest succession 

however, optical satellite images must first be transformed to a common 

radiometric scale to minimize sun, sensor, view-angle and atmospheric differences 

among images.  We present a comparison of five atmospheric correction methods 



used to calibrate a nearly continuous, 20-year Landsat TM/ETM+ image data set 

(19-images) over western Oregon (path 46 row 29).  We found that an automated 

ordination algorithm called multivariate alteration detection (MAD) (Canty et al., 

2004), which statistically locates invariant pixels between a subject and a reference 

image yielded the most consistent common scale among images.  Using the cross-

normalized image-series we modeled percent tree cover measurements derived by 

ground survey and airphoto interpretation to the greater landscape.  Developing a 

series of forest regrowth classes we identified a wide range of successional 

regrowth pathways 18 years after clearcut harvesting.  We observed the propensity 

for faster regrowth on north facing aspects, shallow slopes and at low elevations.  

Finally, we utilized two sets of forest inventory data to evaluate a Landsat based 

curve-fitting model for predicting live forest carbon.  At the pixel level, the model 

tended to over-predict carbon and performed better (i.e., higher correlation, lower 

RMSE) in the Coast Range ecoregion, likely the result of faster, less variable 

growth patterns.  At the landscape scale, we found that the flux of forest carbon 

predicted by the curve-fit model was in absolute terms, well within the standard 

error of the inventory estimates.   In the process of evaluating the curve-fit model, 

we discovered a new method for detecting subtle (i.e., forest to non-forest) land-use 

shifts with Landsat data.  Identifying these types of land-use shifts is critically 

important to developing a more accurate comprehensive carbon budget from 

forests.  We were also able to identify several potential improvements to estimating 

live forest carbon with the curve-fitting approach.   
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Understanding Changes in Forest Cover and Carbon Storage in Early Successional 
Forests of the Pacific Northwest Using USDA Forest Service FIA  

and Multi-temporal Landsat Data 

 
Chapter 1 Introduction 

 The forested landscape of western Oregon is comprised of highly complex 

matrix of early successional, late seral, and old-growth forest conditions.  Each 

forest condition type has the potential to impact ecological processes, such as 

nutrient and water cycling, carbon storage potential, wildlife habitat, and trophic 

interactions.  Although knowing a forest stands current state of succession is useful, 

a clearer understanding of the impact forest change has on the aforementioned 

ecological processes can be achieved with a more dynamic characterization of the 

successional process.   

 Studying forest succession with the growing legacy of temporal data 

available from satellite sensors like Landsat (1972–present) offers a unique 

opportunity to analyze continuous forest successional changes over a thirty-two 

year period (Cohen and Goward, 2004).  A key component to using satellite 

imagery to estimate forest change is successful integration with ground inventory 

data.  In the United States, the USDA Forest Service’s Forest Inventory and 

Analysis (FIA) Program has been using a three-phase, double sample design to 

collect field measurements of forest attributes for more than 50 years (Frayer and 

Furnival, 1999).  The purpose of this research is to integrate forest inventory and 

multi-temporal satellite data to better understand early successional forest regrowth 

patterns and carbon storage in western Oregon forests.   
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To detect and characterize continuous changes in early forest succession 

however, optical satellite images must first be transformed to a common 

radiometric scale which minimize sun, sensor, view-angle and atmospheric 

differences among images.  In Chapter 2 we present a comparison of five 

atmospheric correction methods (2 relative, 3 absolute) used to calibrate a nearly 

continuous 20 year Landsat TM/ETM+ image data set (19 images) covering 

western Oregon (path 46 row 29) to like surface reflectance values (Schroeder et 

al., 2006).  The findings of this work are important for two reasons.  Thorough 

radiometric cross-normalization allows for: 1.)  accurate characterization of 

continuous forest change with satellite imagery and 2.)  robust integration with 

ground measured forest inventory data.    

 Previous studies have established that forest regrowth after disturbance in 

western Oregon is highly variable both in terms of revegetation rate (Nesje, 1996; 

Tappeiner et al., 1997; and Yang et al., 2005) and delay (i.e., time to reach 5% 

canopy cover).  While these studies provide convincing evidence that successional 

variability in western Oregon is real, their use of ground survey (Tappeiner et al., 

1997) and airphoto interpretation (Yang et al., 2005) has limited the number of 

forest stands available to statistically analyze potential causes of the phenomena.  

In Chapter 3 we overcome these limitations by scaling percent tree cover 

measurements derived by ground survey and airphoto interpretation to the greater 

landscape using 19 cross-normalized Landsat images (1984–2004).  Developing a 

series of forest regrowth trajectory classes (little to no regrowth, slow regrowth, 
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moderate regrowth and fast regrowth) we observed a wide range of successional 

regrowth pathways 18 years after clearcut harvesting.  Using classification and 

regression tree (CART) statistical modeling we attempted to predict the developed 

forest regrowth classes with a suite of climatic and topographic variables.     

 In Chapter 3 we developed a better understanding of where and why 

successional variability is occurring on the landscape in western Oregon, thus the 

final stage of this research was to ascertain a greater understanding of the 

uncertainty surrounding spatial predictions of aboveground carbon storage made 

with optical satellite imagery.  In Chapter 4 we utilize two sets of FIA forest 

inventory data to evaluate a Landsat based curve-fitting approach to estimating live 

forest carbon.  We conducted a quantitative assessment of model performance and 

found that although the curve-fit model had a tendency to over-predict carbon, the 

flux (or change between inventory periods) estimates were well within the standard 

error of the inventory estimates.  In the process of evaluating the curve-fit model, 

we discovered a new method for detecting subtle (i.e., forest to non-forest) land-use 

shifts which are common along the foothills of the Willamette Valley.  Identifying 

these types of land-use shifts is critically important to developing a more accurate 

comprehensive carbon budget from forests.  We were also able to identify several 

potential improvements to estimating live forest carbon with the curve-fitting 

approach.   
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ABSTRACT 

Detecting and characterizing continuous changes in early forest succession using 

multi-temporal satellite imagery requires atmospheric correction procedures that 

are both operationally reliable, and that result in comparable units (e.g., surface 

reflectance).  This paper presents a comparison of five atmospheric correction 

methods (2 relative, 3 absolute) used to calibrate a nearly continuous 20 year 

Landsat TM/ETM+ image data set (19 images) covering western Oregon (path/row 

46/29) to like surface reflectance values.  In theory, absolute correction of 

individual images in a time series should effectively minimize atmospheric effects 

resulting in a series of images that appears more similar in spectral response than 

the same set of uncorrected images.  Contradicting this theory, evidence is 

presented that demonstrates how linear atmospheric correction algorithms such as 

Second Simulation of the Satellite Signal in the Solar Spectrum (6S), Modified 

Dense Dark Vegetation (MDDV), and Dark Object Subtraction (DOS) actually 

make images in a time series somewhat less spectrally similar to one another.  

Since the development of meaningful spectral reflectance trajectories is more 

dependant on consistent measurement of surface reflectance rather than on accurate 

estimation of true surface reflectance, relative normalization is also tested.  The 

relative methods are variants of an approach referred to as absolute-normalization, 

which matches images in a time series to an atmospherically corrected reference 

image using pseudo-invariant features and reduced major axis (RMA) regression.  

An advantage of absolute-normalization is that all images in the time series are 
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converted to units of estimated surface reflectance while simultaneously being 

corrected for atmospheric effects.  Of the two relative methods used for absolute-

normalization, the first employed an automated ordination algorithm called 

multivariate alteration detection (MAD) to statistically locate invariant pixels 

between each subject and reference image, while the second used analyst selected 

pseudo-invariant features (PIF) common to the entire image set.  Overall, relative 

normalization employed in the absolute-normalization context produced the most 

consistent temporal reflectance response, with the automated MAD algorithm 

performing equally as well as the handpicked PIFs.  Although both relative 

methods performed nearly equally in terms of observed error, several reasons 

emerged for preferring the MAD algorithm.  The paper concludes by demonstrating 

how time series normalization improves (i.e., reduces scatter in) spectral 

reflectance trajectory models used for characterizing patterns in early forest 

succession.       
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1.  INTRODUCTION 

 Landsat has been providing a nearly continuous record of global land 

surface change since 1972.  This record represents one of the most consistent 

available archives of recent earth history information, and its use has facilitated 

understanding of earth surface processes across spatial and temporal scales and 

disciplines (Cohen and Goward, 2004).   

In forestry, Landsat imagery has been important in characterizing and 

mapping frequency and extent of forest fire (Miller and Yool, 2002; and van 

Wagtendonk et al., 2004), stand replacing disturbance (Cohen et al., 1998; Cohen et 

al., 2002; and Sader et al., 2003), partial harvest (Franklin et al., 2000; Nilson et al., 

2001, and Healey et al., 2006), successional stage (Hall et al., 1991; and Mausel et 

al., 1993) and vegetation regrowth (Foody et al., 1996; Viedma et al., 1997; and 

Sabol et al., 2002).  Studies focusing on the highly dynamic process of forest 

succession have generally relied on forest age class information extracted from 

single image dates to make inferences about successional stage attributes (Fiorella 

and Ripple, 1993; Peterson and Nilson, 1993; and Jakubauskas, 1996).  The 

difficulty with this approach is that the relationship between forest age and spectral 

data can be highly variable, especially for young (< 20 year) stands with low 

canopy cover (Horler and Ahern, 1986).  The reasons for this variability are many, 

but can include differences in site quality and location, site preparation, planting 

practices (density and spacing), and species composition.  Perhaps even more 

important is that forest age is not directly remotely sensible in any given date of 
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imagery, as are forest structure and composition, both of which are physically 

related to forest succession (Cohen et al., 1995).   

An alternative use of Landsat for characterizing forest succession is 

examination of a multi-temporal image series.  For any forest stand that has been 

disturbed since 1972 one could theoretically observe the recovery trajectory, and 

therefore know both its age and how its structural and compositional attributes have 

changed.  However, as described by Song and Woodcock (2003), factors such as 

phenology, topography, and illumination and viewing geometry can contribute to 

variability in multi-temporal spectral responses that may have little to do with 

forest succession.  In any multi-temporal analysis where the spectral signal is not 

sufficiently strong to minimize the effects of these complicating factors, 

radiometric calibration is essential to differentiate real change from noise.  With 

adequate calibration it may be possible to examine temporal trajectories of Landsat 

data for a more dynamic characterization of forest succession.                           

The objective of this paper is to compare the effectiveness of absolute and 

relative radiometric calibration procedures with the ultimate goal of producing 

normalized temporal reflectance trajectories of forests that are recovering from 

stand replacing disturbance.  In the strict sense, full absolute calibration involves 

both atmospheric correction and application of coefficients for sensor and related 

parameters to derive estimates of surface reflectance.  In this study, however, we 

are also interested in examining results of the intermediate step in which calibration 

parameters are applied, but atmospheric effects are not removed; i.e., at-satellite 
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reflectance.  For clarity, we refer to this as partial correction.  Relative calibration 

(commonly referred to as normalization) involves image-to-image radiometric 

matching, where any number of techniques can be employed to select pseudo-

invariant features (PIFs) (Schott et al, 1988), which are subsequently used to 

empirically calibrate images in a time series.  Depending on the application, 

relative normalization need not include corrections for atmospheric and sensor 

related parameters and thus derivation of physical units such as reflectance.  

However, when physical surface units are desirable, it is essential that at least one 

image receive full absolute calibration, and then other images can be relatively 

normalized to it.  This combined calibration-normalization approach may have 

certain advantages over use of absolute procedures alone.   

The main questions addressed in this paper include: 1)  How do absolute 

and combined absolute-relative calibrations compare when used to produce Landsat 

temporal reflectance trajectories for coniferous forest stands recovering from 

disturbance in western Oregon?  We compare partial with several full calibration 

methods and (as suggested in Question 2) two relative methods.  2) Are automated 

relative calibration procedures based on statistical ordination as effective as those 

based on analyst selected PIFs?  The process of selecting PIFs, if done by the 

analyst, can be time consuming, particularly if more than two image dates are 

examined.  Thus, an automated procedure could have great merit.  The ordination 

procedure we use is called multivariate alteration detection (MAD).  3) How does 

temporal calibration/normalization affect the spectral manifestation of forest 
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succession?  As the ultimate purpose of a larger study is to characterize temporal 

spectral trajectories in relation to forest succession, it is important to determine how 

the different calibration methods compare in those terms.   

 

2.  METHODS 

2.1.  Data and Study Area 

 The remote sensing dataset used in this study consists of 16 Landsat 5 TM 

and 3 Landsat 7 ETM+ images (WRS-2 path 46 row 29) from western Oregon 

ranging between 1984 and 2004 (Table 2-1).  All images were resampled to a 30 m 

resolution and co-registered using an automated tie-point program (Kennedy and 

Cohen, 2003) to the 1987 image, which had been orthorectified by the United 

States Geological Survey.  All images were co-registered to the UTM coordinate 

system (zone 10) with a root mean square error of less than 0.5 pixels per image.   

 The study area encompasses nearly the full elevation (Figure 2-1) and 

climatic gradients present in western Oregon.  The area also includes a diverse 

distribution of existing land ownership categories (Cohen et al., 2002), and 

therefore represents the disturbance and recovery patterns present in the region.     

  

2.2.  Calibration and Normalization 

 In this study we compared the effect of absolute calibration (both full and 

partial, as described earlier) and combined calibration-normalization on temporal 

reflectance trajectories of recovering conifer forests.  Calibration was a multi-step 
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process.  For the final step, atmospheric correction, several different methods were 

used and compared. 

 

2.2.1.  Calibration  

Calibration was a several step process that involved the use of standard 

equations to convert 8-bit satellite-quantized calibrated digital numbers (DN) to at-

satellite reflectance.  Landsat 5 images were first converted to at-satellite radiance 

using Eq. (1),  

 

    BGDNLsat += )*(                                  (1) 

 

where satL  is band specific at-satellite radiance (W m-2 sr-1 µm-1), DN  is satellite 

quantized calibrated digital number, B is band specific bias in DN, and G is band-

specific gain (m2 sr µm W-1).  The impact of sensor degradation on the gain 

parameter was accounted for using data published by Thome et al. (1997) and 

Teillet et al. (2001), while revised gain parameters published by Chander and 

Markham (2003) were used for images acquired and processed after May 5, 2003.  

The biases reported by Markham and Barker (1986) were used for all images.   

Landsat 7 images were converted to at-satellite radiance using Eq. (2),  

                     (2)  
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where satLMAX  is band-specific spectral radiance scaled toDNMAX (W m-2 sr-1 

µm-1), satLMIN  is band-specific spectral radiance scaled toDNMIN (W m-2 sr-1 

µm-1), DNMAX is maximum quantized calibrated digital number (255), 

andDNMIN  is minimum-quantized calibrated digital number (0 for LPGS data, 1 

for NLAPS data).  Equation (2) accounts for gain state (i.e. high/low setting) and 

published LMIN/LMAX values (Landsat 7 Science Data Users Handbook).   

After conversion to at-satellite radiance, each image was converted to at-

satellite reflectance (assuming a uniform Lambertian surface under cloudless 

conditions) using Eq. (3),   

 

 

 

where ρ is estimated surface reflectance, pL is path radiance (W m-2 sr-1 µm-1), vT  

is atmospheric transmittance from the target toward the sensor, 0E  is the 

exoatmospheric solar constant (W m-2 µm-1), zT  is atmospheric transmittance in the 

illumination direction, Θ  is solar zenith angle, and downE  is downwelling diffuse 

irradiance (W m-2 µm-1).  By definition, at-satellite reflectance does not remove 

atmospheric effects, thus zT and vT equal 1.0, and downE  and pL  equal zero.    

 

2.2.2.  Atmospheric Correction 

))cos((

)(

0 downzv

psat

ETET

LL
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−

=
π

ρ  (3) 
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In the previous steps, all imagery was partially calibrated.  For full 

calibration, at-satellite reflectance was converted to surface reflectance using three 

different methods for deriving values of zT ,  vT , downE  and pL in Eq. 3.  These 

methods included dark object subtraction (DOS), modified dense dark vegetation 

(MDDV), and second simulation of the satellite signal in the solar spectrum (6S).  

These methods range in complexity from a simple image-based correction 

procedure (DOS) to a detailed, theoretical model based on radiative transfer code 

(6S).   

  

2.2.2.1.  Dark Object Subtraction (DOS) 

 The DOS method assumes that within a satellite image there exist features 

that have near-zero percent reflectance (i.e., water, dense forest, shadow), such that 

the signal recorded by the sensor from those features is solely a result of 

atmospheric scattering (path radiance), which must be removed (Chavez Jr., 1996).  

Path radiance, pL , was estimated using Eq. 4,    

 

   

 

where darkDN  is the darkest DN value in each spectral band with at least one 

thousand pixels (Teillet and Fedosejevs, 1995).  The DOS method calculated here 

is referred to in Song et al. (2001) as DOS3, which estimates Tv as )cos(/ vre Θ−τ  and Tz 

as )cos(/ zre Θ−τ assuming a Rayleigh atmosphere with no aerosols and one percent 

 (4) [ ] π/)cos(01.0 0 vdownzdarkp TETEBDNGL +Θ−+∗=
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)00013.00113.01(008569.0 424 −−− ++= λλλτ r

surface reflectance for the dark object.   Optical thickness for Rayleigh scattering 

( rτ ) (Kaufman, 1989) was estimated by,  

 

                                                                                       

 

where λ  is wavelength in µm.  downE for a Rayleigh atmosphere was estimated as 

zero aerosol optical depth at 550 nm using the 6S radiative transfer code (Vermote 

et al., 1997).  DOS3 was selected for use in this study in lieu of other DOS methods 

based on its ability to create a consistent common scale as evaluated by change 

detection and classification accuracy for part of the Landsat scene under 

investigation (Song et al., 2001).     

 

2.2.2.2. Modified Dense Dark Vegetation (MDDV) 

 This approach is based on the dense dark vegetation (DDV) method (Liang 

et al, 1997), which assumes that areas of dense, dark vegetation are present in the 

satellite image in which to use as dark objects for Landsat bands 1 (blue) and 3 

(red).   Since longer spectral wavelengths are less affected by atmospheric 

scattering, Landsat band 7 at-satellite reflectance is assumed equal to its surface 

reflectance.  As in Liang et al. (1997), dark areas were spatially defined for each 

image where band 7 reflectance was 05.0≤  and NDVI was > 0.1.  The identified 

dark areas were used to estimate band 1 and band 3 surface reflectance based on the 

following relationships with band 7 surface reflectance (Kaufman et al., 1997), 

 (5) 



 15 

 

                                                      (6) 

 

where the subscripts ofρ  are Landsat band numbers.  pL  for each image was 

estimated as the difference between the at-satellite reflectance in bands 1 and 3 and 

the estimated surface reflectance from Eq. (6).  This approach was first used with a 

“smart moving window” (Liang et al., 1997) to atmospherically correct individual 

pixels, and was subsequently modified by Song et al. (2001) to a “fixed” window 

approach for band-wise correction as applied here.  The presented MDDV approach 

derives an appropriate aerosol optical depth by iteratively running 6S radiative 

transfer code until the output surface reflectance matches the predicted surface 

reflectance from Eq. (6).  Matching aerosol optical depths were then used in 6S to 

atmospherically correct the subsequent bands of each image.   

 

2.2.2.3.  Second Simulation of the Satellite Signal in the Solar Spectrum (6S)  

 The 6S general radiative transfer code (Vermote et al., 1997) was used to 

estimate surface reflectance using aerosol optical depth (AOD) data collected at the 

AERONET site located at the HJ Andrews Experimental Forest in Blue River, 

Oregon (Figure 2-2).  Estimates of aerosol optical depth were acquired at 500 and 

670 nm for the day and time closest to satellite overpass for the 1994 through 2004 

images (except 2002, no data).  To estimate the aerosol optical depth at 550 nm 

required as input to 6S the relationship baλτ λ =  was used, where λτ is aerosol 

4/71 ρρ = 2/73 ρρ =
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optical depth at wavelength  λ (nanometers), and a and b are empirical parameters 

(Liang et al., 1997).  The estimated aerosol optical depth at 550 nm (Table 2-2) was 

used along with the 6S midlatitude summer atmosphere and continental aerosol 

model to derive surface reflectance for each image.  As optical depth data were 

only available for 1994 – 2001 and 2003 – 2004, only images from these years 

could be calibrated with 6S.   

 

2.2.3.  Relative Normalization 

 For relative normalization, one fully calibrated image (1994) was chosen as 

the reference to which all others were adjusted, using two separate approaches: 

analyst selection of PIFs and statistical ordination (MAD).  This image was 

selected because of its high radiometric quality and its central location in the time 

series.  Because we used a fully calibrated reference image (6S version) for these 

procedures, we refer to them as two variants of a calibration-normalization 

approach.      

       

2.2.3.1.  Pseudo-invariant Feature (PIF) 

 Using the criteria for selecting normalization targets suggested by Eckhardt 

et al. (1990), the image time series was thoroughly inspected to derive a total of 63 

PIFs (the same 33 dark and 30 bright features in each image) for relative 

normalization.  The bright (dune, urban, rock) and dark (water, forest, lava) 

features were hand-selected to be evenly distributed around the image (Figure 2-2), 
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and to encompass the full range of spectral brightness values (bright, medium, 

dark) found.  Normalization was accomplished on a band-by-band basis using these 

“training” PIFs with reduced major axis (RMA) regression (Cohen et al., 2003; 

Canty et al., 2004).  An independent set of PIFs (n = 26) to be used for testing the 

results of calibration and normalization were also selected (Figure 2-2).   

 

2.2.3.2.  Multivariate Alteration Detection (MAD)     

 Selecting PIFs by hand, as previously described, is a time-consuming task, 

particularly when the time series consists of several images.  An attractive and less 

subjective alternative for selecting PIFs is to use statistical methods to locate them 

automatically. One such method, multivariate alteration detection (MAD) (Nielsen 

et al., 1998; Canty et al., 2004) uses traditional canonical correlation analysis 

(CCA) (Hotelling, 1936) to find linear combinations between two groups of 

variables (i.e. the spectral bands of subject and reference images) ordered by 

correlation, or similarity between pairs.  Differences between such ordered pairs are 

called MAD variates and these are invariant to affine transformations (including 

linear scaling).  This implies that linear atmospheric and instrumental effects will 

not influence the change/no-change probabilities of the pixels derived from the 

method.  In fact, the sum of squares of the standardized MAD components (the 

MAD components divided by their standard deviations) is approximately chi-

square distributed, enabling no-change thresholds to be set easily.  The MAD 

transformation was used here to locate invariant pixels (chi-square threshold 0.99) 
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between each image in the time series and the 1994 6S corrected reference.  The 

selected invariant pixels were subsequently used to normalize each image band-by-

band to the reference scene using RMA regression.   

 

2.3.  Error Analysis  

 The absolute (full and partial) and relative atmospheric correction methods 

tested here all use linear adjustments to convert raw image DNs to units of 

estimated surface reflectance (or top of atmosphere reflectance in the case of partial 

correction).  Thus, each image in the time series (except 6S, applied only to images 

with available in situ atmospheric data) was converted to estimated surface 

reflectance using the look up table (LUT) approach described by Song et al. (2001).   

After applying atmospheric corrections to the image time series, a 3x3 

window was placed over each test PIF (26 in number) and the mean spectral 

reflectance value for each band of corrected imagery (5 methods x 18 images x 6 

spectral bands + 9 6S corrected images x 6 spectral bands = 594 in all) was 

extracted and compared to the mean PIF spectral reflectance values of the reference 

image.  The difference between corrected PIF reflectance and the reference PIF 

reflectance is reported as the root mean square error (RMSE).  Thus, all relatively 

normalized images where compared to the 6S corrected 1994 reference image, 

whereas the absolutely calibrated images were compared to the 1994 reference 

image corrected with each corresponding calibration method (e.g. DOS3 corrected 

images were compared to the DOS3 1994 reference).  To assess robustness of 
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calibrating an image time-series, RMSE was calculated by image (across spectral 

bands), by Landsat band (across images), and overall by calibration/normalization 

method (across images and spectral bands).  A typical RMSE for detailed absolute 

calibration of Landsat imagery has been previously reported at 0.02 (Moran et al., 

1992), therefore 0.02 will serve here as a benchmark for establishing successful 

calibration/normalization.   

 

2.4.  Spectral Reflectance Trajectories  

The development of meaningful spectral reflectance trajectories is not 

solely dependent on the accurate calculation of true surface reflectance, but more 

on a consistent measurement of surface reflectance among images, which has 

previously been referred to as “common scale” (Song et al., 2001).  The 

consistency of common scale is based here on the difference in spectral response 

among the corrected images, relative to the respective reference image over the set 

of test PIFs. The calibration or normalization method found to have the least 

amount of spectral difference (lowest RMSE) among test PIFs will be used to 

derive the spectral reflectance trajectories of recovering conifer forests.  If two 

methods have similarly low RMSEs, the method best lending itself to operational 

use will be selected for spectral trajectory development.     

Forest stands undergoing stand-replacing disturbance between 1986 and 

1987 were visually identified using a multi-temporal RGB color composite of 

spectral band 5.  To evaluate the effect of image calibration/normalization on the 
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spectral manifestation of forest succession, twelve forest stands were hand-selected 

for spectral reflectance trajectory development.  Of the twelve forest stands selected 

(Figure 2-2), six were located in the Coast Range (CR) and six in the Western 

Cascades (WC).  Stand mean reflectance values were extracted from the 

normalized and partially corrected image time series and fit with quadratic 

polynomial curves.  These quadratic polynomial curves, or spectral reflectance 

trajectories were developed for all six Landsat spectral bands, as well as for the 

tasseled cap transformation (brightness, greenness, wetness) and the normalized 

vegetation index (NDVI).  Standard error (RMSE) and variance explained (R2) 

were calculated for each quadratic polynomial model, then averaged across the 

twelve forest stands to determine whether the trajectory models were improved (i.e. 

lower RMSE) by image calibration/normalization.           

 

3.  RESULTS       

3.1.  Image Calibration/Normalization  

3.1.1.   RMSE by Image     

 To evaluate the consistency of common scale at the image level, RMSE was 

calculated for each image (across spectral bands) by calibration/normalization 

method (Figure 2-3).  Examining RMSE for the partially calibrated images (Figure 

2-3a) reveals the surprisingly consistent spectral response of the image time series 

even with no atmospheric corrections applied.  The consistent nature of the 

partially corrected time series is expressed by seven of the eighteen images (1984, 
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1986, 1989, 1992, 1997, 2000 and 2004) having less than 0.02 RMSE, with seven 

others (1993, 1996, 1998, 1999, 2001, 2002, and 2003) falling just slightly above 

the 0.02 benchmark.  Only four images (1987, 1988, 1991, and 1995) were 

considered appreciably different than the reference image, with RMSEs nearly 

equal to or greater than 0.03.  

 Only nine of the eighteen images in the time series were calibrated with all 

three absolute calibration methods (Figure 2-3b), thus reducing the number of 

observations to assess improvements to the common scale of the full time series.  

Of these nine images, DOS3 had the lowest RMSE in six of the images, compared 

to three for 6S. The MDDV method yielded the highest RMSE of all the absolute 

calibration methods in six of these nine images.  In order to determine whether 

common scale was improved by absolute calibration, the partially corrected image 

time series was used as a standard for comparison.  Of the nine images that were 

corrected by all three absolute methods, only four (1998, 1999, 2000, and 2001) 

had lower RMSEs than their partially corrected counterparts.  Of the four images 

with improved common scale resulting from absolute calibration, two were 

corrected with DOS3 and two with 6S.  Thus, the least complex DOS3 method 

proved to be the most effective absolute calibration method.  It yielded the lowest 

RMSE in six of the nine images corrected with all three absolute methods, and 

slightly lowered RMSE from that which was observed in the partially corrected 

images.  Even so, the common scale of the image time series was not consistently 

improved by any of the absolute calibration methods. 
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 On the other hand, the image time series normalized with the two relative 

methods appears consistently improved in terms of common scale (Figure 2-3c).  

All eighteen images had at least one relative normalization method yield an RMSE 

of 0.02 or less.  Compared to the partially corrected time series, fifteen of the 

images had lower RMSEs after relative normalization.  Overall, it appears that the 

improved common scale was achieved nearly equally by both the PIF and MAD 

methods.  Though differences in RMSE were slight between the two methods, PIF 

did have lower RMSEs for eleven of the eighteen images in the full time series.                     

  

3.1.2.  RMSE by Landsat Band 

The consistency of the image time series was also evaluated based on 

RMSE by Landsat band (across images) (Figure 2-4).  Shorter wavelength spectral 

bands like Landsat bands 1 and 2 are commonly impacted by Rayleigh scattering.  

Although scattering is likely, bands 1 and 2 do not seem significantly impacted 

here as both have low (< 0.02) partially corrected RMSEs.  On the other hand, band 

3 has the highest partially corrected RMSE, which is likely attributed to 

atmospheric scattering.  Longer spectral regions like Landsat bands 4, 5 and 7 are 

typically influenced by atmospheric absorption, which is likely contributing to the 

elevated (> 0.02) partially corrected RMSEs observed for these spectral bands. 

If the errors detailed above are truly a result of atmospheric scattering and 

absorption, then it stands to reason that absolute calibration would likely account 

for some of these effects, serving to lower RMSE from that observed in the 
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partially corrected images.  Quite the opposite is observed however, with all of the 

absolute methods yielding an increase in RMSE in four (1, 2, 4, and 5) of the six 

spectral bands.  In fact, all of the absolute methods failed to lower RMSE to < 0.02.  

DOS3 and 6S yielded similar RMSEs in four (1 – 4) of the six spectral bands; two 

(3 and 4) of which were nearly equal to the error observed in partial correction.  On 

the other hand, MDDV yielded the highest RMSEs of all the methods tested in five 

(1, 2, 3, 4, and 5) of the six spectral bands.  Overall, absolute calibration did not 

improve the consistency of common scale from that observed in the partially 

corrected images.    

Relative normalization on the other hand significantly improved the image 

time series from the spectral perspective.  Both of the relative methods lowered 

RMSE from that observed in partial correction.  In fact, after relative normalization 

five of six spectral bands had at least one relative method lower RMSE to < 0.02.  

In terms of lowering RMSE from partial correction, band 4 seemed least improved 

by relative normalization whereas band 3 the most.  Both of the relative methods 

performed nearly equally in all six spectral bands.      

 

3.1.3.   RMSE by Atmospheric Correction Method  

 To assess overall effectiveness RMSE was calculated by each atmospheric 

correction method (across all images and spectral bands) (Figure 2-5).  Similar to 

observations by image and by Landsat band, none of the absolute calibration 

methods reduced the RMSE below that observed in the partially corrected data.  
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The MDDV method produced the greatest overall error, with the DOS3 and 6S 

methods resulting in slight increases in the error observed in the partially corrected 

images.  The relative methods were equally effective, reducing the error observed 

in the partially corrected images by nearly 25%.  The PIF method produced a 

slightly lower overall RMSE than MAD.    

 

3.2.  Spectral Reflectance Trajectories 

Although the PIF method yielded slightly less error than MAD, there was very 

little difference between the two methods in terms of improving the common scale 

of the image time series.  Given the similarity of the two methods, the MAD 

calibration-normalization approach is preferred here for several reasons (see 

discussion) including its utility to operational use. As a result, spectral reflectance 

trajectories were developed using the MAD normalized and partially corrected 

image time series.  The parameters (R2 and RMSE) of the quadratic polynomial 

models used to form the spectral reflectance trajectories were averaged across the 

twelve hand-selected forest stands and are presented in Table 2-3.   

The results indicate that on average, MAD spectral reflectance trajectories 

have less residual scatter (lower mean RMSE across stands) than trajectories 

created with the uncalibrated time series.  Although MAD band 1 and 2 trajectories 

yield the lowest post-correction errors, they explain a relatively low percentage of 

variance as expressed by R2 .  On the other hand, NDVI spectral reflectance 

trajectories explain a high percentage of variation found in the temporal data, yet 
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yield high prediction errors.  Ideally, models capturing a high percentage of 

variation combined with low prediction error would produce the best spectral 

reflectance trajectories.  In this regard, trajectories created with MAD normalized 

band 7 and the tasseled cap wetness seem promising for characterizing the dynamic 

process of forest succession.     

 

4.  DISCUSSION 

4.1.  Image Calibration/Normalization 

 The results indicate that the absolute calibration methods tested here were 

ineffective at correcting satellite images to a consistent common scale, a finding 

similarly reported by Song et al. (2001) for a portion of the same Landsat scene.  

The more complex methods (MDDV and 6S) attempt to estimate aerosol optical 

depth, which generally rely on various simplifying assumptions.  These 

assumptions have been previously reported as ineffective for improving change 

detection and classification accuracies (Song et al., 2001) and have not served to 

improve the common scale of the image time series presented here.  Given the 

relatively stable common scale observed in the partially corrected data, it is not 

surprising that complex theoretical adjustments reduced the spectral consistency of 

the image time series.  While simple corrections like DOS3 generally worked the 

best, none of the absolute methods produced a common scale more consistent than 

observed in the partially corrected images.    
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 The MDDV method was the least effective absolute calibration method, and 

as reported in other studies, tends to significantly over-estimate aerosol optical 

depth (Table 2-2).  This over-estimation resulted in a disproportionate amount of 

dark features (water and mature forest) being converted to near zero values in 

bands 1 and 3, yielding over-corrected water and forest spectral signatures.  Based 

on observations in this study it is likely that the criteria for defining dark areas 

(band 7 reflectance 05.0≤  and NDVI > 0.1) is too liberal.  More stringent criteria 

for defining dark areas may improve the performance of this method, especially in 

highly vegetated scenes.  Furthermore, the partially corrected data also suggests 

that band 7 may be impacted by atmospheric absorption, perhaps invalidating the 

MDDV assumption that band 7 apparent reflectance equals band 7 surface 

reflectance.     

Although the most complex method, 6S was slightly less effective than the 

much simpler DOS3 method at creating a consistent common scale.  The AOD data 

used in 6S were collected at the Western Cascade AERONET site, located at the HJ 

Andrews Experimental Forest.  Since Landsat scene 46/29 lies adjacent to the 

Pacific Ocean and covers portions of two mountain ranges it is likely, given the 

highly variable nature of aerosol loadings, that AOD estimates recorded in the 

western Cascades may differ significantly from those observed elsewhere in the 

scene.  Since accurate AOD data is often difficult to obtain, improving image-based 

estimates from methods like MDDV warrant further investigation.  Determining the 
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success of 6S as an absolute correction method was further limited by the lack of 

AOD data for the full image time series.         

 Whether analyzed by image, by Landsat band, or by 

calibration/normalization method, relative normalization produced the most 

consistent common scale for the image time series.  This finding is similar to 

Olsson (1995), who reported that relative normalization was to be preferred to 

absolute calibration for accurate detection of localized changes in boreal forests.  

Although the PIF method had a slightly lower overall RMSE, there are several 

reasons for preferring MAD.   

 First, MAD is easier and more time efficient to implement than PIF.  

Although hand-selecting invariant features has been successfully employed in other 

studies, it is a time consuming process that is often subject to analyst interpretation, 

and potentially limited by scene location.  The MAD method however, has been 

automated to statistically locate invariant pixels in a small subset or clip (Figure 2-

2) taken from the subject and reference images.  Tests (not presented) show that the 

performance of normalization can vary depending on the quality and quantity of 

invariant pixels selected from different image clips.  Selecting clips that contain 

large, highly stable (i.e. low variance) bright features like sand dunes and stable 

dark features like water and mature forest should be preferred.  Although mature 

forest is likely to change spectrally from year to year due to phenological 

differences, it seems capturing this natural variability in the normalization model 

will facilitate separation of real forest change from noise. A simple test can be 



 28 

conducted to locate several suitable image clips per Landsat scene for future 

implementation of MAD.  In addition, the MAD program is currently being 

modified to integrate invariant pixels selected from multiple image clips into one 

normalization model.   

 The second advantage to using MAD is that areas of significant change (i.e. 

disturbance, cloud cover) occurring between the subject and reference images do 

not need to be accounted for prior to selecting invariant pixels.  Other methods for 

statistically selecting invariant pixels, such as ordination by principal components 

analysis (PCA) have been previously suggested (Du et al., 2002).  While this 

method has produced favorable results, it typically requires more processing time 

as PCA is not invariant to linear scaling of input data.  Hence, significant areas of 

change between the subject and reference image (i.e. clouds) must be masked out 

prior to statistical ordination.  PCA can also be significantly weighted by a single 

image in the time series that has high variance.  Since the basis for MAD is CCA, 

pixels that significantly change between the subject and reference image do not 

need to be masked out prior to ordination, offering additional time savings when 

correcting multiple images.     

 Although atmospheric correction is not required before running MAD, it 

may be useful to have all the images in the time series normalized to units of 

surface reflectance.  Thus, the third advantage to using MAD is that since it is 

invariant to linear scaling, all images in a time series can be corrected for 

atmospheric effects while simultaneously being converted to units of reflectance.  
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This is best achieved by using the calibration-normalization approach suggested 

here, where the selected reference scene is first converted to estimated surface 

reflectance using one of the absolute calibration methods, and then all other images 

are normalized to it.  It is important to note that linear transformations such as 

sensor gain/bias adjustments and absolute calibration are not necessary prior to 

running MAD.  The same consistency of common scale will be achieved with 

MAD whether or not images are first calibrated, offering additional savings in 

processing time depending on user needs.  

 

   4.2.  Spectral Reflectance Trajectories 

 The objective of radiometric calibration is not primarily to improve the 

percentage of variance explained (R2) by a spectral reflectance trajectory, but rather 

to reduce the noise associated with multi-date data, thus lowering residual scatter 

(RMSE).  Our results indicate that for all spectral bands and indices evaluated, 

MAD normalized spectral reflectance trajectories had less residual scatter than 

trajectories created with the partially corrected images.  Although normalization 

effectively reduced residual scatter, two factors contributed to a less than expected 

magnitude of improvement.  First, images acquired in western Oregon during the 

summer months already have a high degree of spectral consistency due to 

seasonally dry conditions.  Second, calibration/normalization error is obtained here 

by comparing atmospherically corrected images to images subjected to partial 

correction (e.g. sun and view angle effects), likely reducing the magnitude of 
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improvement derived from a comparison against uncorrected images (e.g. DN).  

We are currently using MAD to normalize images acquired in more spectrally 

diverse forest types (i.e. eastern deciduous) to assess the level of improvement 

normalization can make to those types of spectral reflectance trajectories. 

 Now that we have determined that calibration-normalization with MAD 

effectively improves the development of spectral reflectance trajectories, our focus 

turns to using the spectral reflectance trajectories to analyze spatial patterns of 

forest succession.  Our observations indicate that spectral reflectance trajectories 

developed with MAD normalized band 7 and tasseled cap wetness seem promising 

for characterizing continuous attributes of forest succession.  It should be noted 

however, that spectral reflectance trajectories are built here on single variables, 

while models of successional recovery after disturbance will likely include multiple 

variables.  

 

5.  CONCLUSION 

 An effective and efficient method for atmospherically correcting an image 

time series for characterization of forest successional patterns, referred to as 

calibration-normalization, was presented.  This method relatively normalizes all 

images in a time series to an absolutely calibrated reference image.  The benefits of 

this approach are the reliance on the more dependable relative normalization 

process to yield an improved temporal common scale, while subsequently 

converting all images in a time series to units of surface reflectance.  The results 
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demonstrated how converting images in a time series to reflectance using absolute 

calibration alone tends to decrease the consistency of common scale compared to 

that observed in the partially corrected images.   

Overall, the MDDV method was the least effective absolute method, 

possibly resulting from the overly lenient spatial definition of dark areas.  Although 

the most complex method, the 6S radiative transfer code performed slightly worse 

than the much simpler DOS3 method, with possible shortcomings attributed to the 

extrapolation of point sampled AOD data to the full Landsat scene.  The image 

based DOS3 method did the best job of all the absolute calibration methods at 

correcting the image time series, supporting the assertion that simpler atmospheric 

correction methods may be preferred when consistency of common scale is more 

important than accurate estimation of surface reflectance (Song et al., 2001).   

The best normalization results, in terms of RMSE, were achieved nearly 

equally by both relative methods, with correction based on analyst selected PIFs 

generating only a slightly more accurate common scale than relative correction 

based on invariant pixels statistically selected by the MAD algorithm.  Although 

the PIF method generated slightly lower overall errors, several reasons emerged for 

preferring the MAD based approach to invariant feature selection.  These reasons 

include ease and time efficiency of implementation, invariance to linear scaling 

effects, and the simultaneous correction of atmospheric effects during the 

conversion to reflectance.  While previously shown to work well in arid 

environments (Canty et al., 2004), the MAD algorithm has been shown here to 
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generate a temporally consistent, spectrally diverse range of invariant pixels for 

successful normalization of a highly forested Landsat time series.   

To assess the impact of image normalization on the characterization of 

recovering conifer forests, spectral reflectance trajectories were developed for 

twelve hand-selected forest stands undergoing stand replacing disturbance.  For all 

spectral bands and indices evaluated, MAD normalized spectral reflectance 

trajectories had less residual scatter (lower RMSE) than trajectories created with 

partially corrected images.     
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Figure 2-1.  Landsat 46/29 study area (adapted from Cohen et al.,2001). 
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Figure 2-2.  Spatial location of hand selected training and testing pseudo-invariant 
features.. 
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Figure 2-3.  RMSE by image (calculated across spectral bands) for a. partial 
correction b. absolute corrections and c. relative corrections.  
 
 
 
 
 
 
 
 
 
 



 40 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-4.  RMSE by Landsat band (across images).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5.  RMSE by calibration/normalization method (across images and 
spectral bands).  
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TABLES 

 
 
 
 
 
 
 Table 2-1.  Landsat time-series used in this study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 

Sensor Date 
TM 8/26/1986 
TM 7/12/1987 
TM 8/31/1988 
TM 9/3/1989 
TM 7/7/1991 
TM 8/10/1992 
TM 8/29/1993 
TM 7/31/1994 
TM 8/19/1995 
TM 8/21/1996 
TM 7/23/1997 
TM 8/11/1998 
TM 8/16/2000 
TM 8/25/2003 
TM 7/26/2004 

ETM+ 8/22/1999 
ETM+ 7/26/2001 
ETM+ 7/29/2002 
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Table 2-2.  Aerosol optical depth (AOD) obtained from HJ Andrews Aeronet site 
and AOD estimated by the modified dense dark vegetation (MDDV) absolute 
calibration method.    
 
 
 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Image MDDV AOD AERONET AOD 
1984 0.240 - 
1986 0.230 - 
1987 0.380 - 
1988 0.370 - 
1989 0.110 - 
1991 0.400 - 
1992 0.140 - 
1993 0.090 - 
1994 0.150 0.015 
1995 0.290 0.010 
1996 0.400 0.036 
1997 0.110 0.028 
1998 0.100 0.008 
1999 0.110 0.032 
2000 0.130 0.048 
2001 0.090 0.029 
2002 0.090 - 
2003 0.130 0.093 
2004 0.070 0.030 
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Table 2-3.  R-square and RMSE of quadratic polynomial models averaged across 
twelve forest stands recovering from stand replacing disturbance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

    R2 RMSE  
    Mean Mean 

Band 1 Partial 0.62 0.0107 
  MAD 0.51 0.0057 

Band 2 Partial 0.63 0.0088 
  MAD 0.56 0.0054 

Band 3 Partial 0.77 0.0141 
  MAD 0.72 0.0105 

Band 4 Partial 0.54 0.0379 
  MAD 0.84 0.0255 

Band 5 Partial 0.82 0.0217 
  MAD 0.77 0.0208 

Band 7 Partial 0.90 0.0124 
  MAD 0.91 0.0109 

Brightness Partial 0.36 0.0390 
  MAD 0.31 0.0254 

Greeness Partial 0.84 0.0226 
  MAD 0.91 0.0181 

Wetness Partial 0.92 0.0138 
  MAD 0.93 0.0133 

NDVI  Partial 0.92 0.0426 
  MAD 0.90 0.0410 
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ABSTRACT 

The rate at which forest vegetation re-establishes dominance after clearcut 

harvesting can impact many ecological processes, such as erosion/sedimentation, 

nutrient and water cycling, carbon storage potential, wildlife habitat, and trophic 

interactions.  Although knowing a forest stand’s current state of succession is 

useful, a clearer understanding of the impact forest harvesting has on the 

aforementioned ecological processes can be achieved with a more dynamic 

characterization of the successional process.  To more fully model the continuous 

nature of forest regrowth following clearcut harvesting we extrapolated percent tree 

cover data collected by the U.S. Forest Service Pacific Northwest Forest Inventory 

and Analysis program to a cross-normalized Landsat time-series using a date-

invariant regression modeling approach.  Using three periods of mapped clearcuts 

we extracted and classified the extrapolated percent tree cover data into four 

regrowth classes (little to no, slow, moderate and fast).  These forest regrowth 

classes were used to develop frequency distributions describing the landscape 

patterns of post-harvest forest recovery for two ecological provinces in western 

Oregon. The patterns of forest regrowth observed over the three clearcut periods 

indicated a much higher percentage of fast regrowth in the Coastal Range Province 

and a much higher percentage of little to no regrowth in the Western Cascade 

Province.  For both ecological provinces we observed the propensity for faster 

regrowth on north facing aspects, shallow slopes and at low elevations.  The forest 

regrowth classes and the frequency distributions indicated that a wide range of 
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successional stages could be found in both ecological provinces 18 years after 

clearcutting.  The extension of forest regrowth trajectories to the spectral space of 

Landsat provided an opportunity to use CART statistical analysis to more fully 

investigate the climatic and topographic drivers influencing the rate of post-harvest 

forest regrowth.  Based on the Kappa statistic, predictions from both CART models 

were in “fair” to “moderate” agreement with the test samples.  Both classification 

trees yielded ecologically interpretable insights into the environmental attributes 

influencing forest regrowth rates after clearcutting.  In both ecological provinces, 

elevation followed by potential relative radiation (PRR) explained the largest 

amount of variation in forest regrowth rates.  To gauge the effectiveness of 

predicting more generalized post-harvest forest regrowth rates we combined the 

four forest regrowth classes into two general “fast” and “slow” categories.  Based 

on the Tau statistic, the CART models correctly classified 12% (CRP) and 26% 

(WCP) more combined test samples than classification of the four regrowth classes.    
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1.  INTRODUCTION 

 There is growing evidence suggesting considerable variability in the rate at 

which trees re-establish dominance following stand-replacing harvest disturbance 

in the temperate forests of the Pacific Northwest.  This variability in forest 

regrowth has been observed even among stands with similar abiotic conditions and 

management prescriptions (Nesje 1996; Tappeiner et al., 1997; Sabol et al., 2002; 

Yang et al., 2005; and O’Connell et al., unpublished).  Re-establishment of forest 

vegetation after harvest is important because it can influence many ecological 

processes, such as erosion/sedimentation, nutrient and water cycling, carbon 

storage potential, wildlife habitat, trophic interactions, and because of the economic 

value of conifer trees in the region.  

 Variability in the timing of tree re-establishment is one of the most widely 

studied phenomenons in forest ecology (Franklin et al., 2002).  In western Oregon, 

ground surveys (e.g., Tappeiner et al., 1997) and interpretation of high-resolution 

aerial photographs (Nesje 1996; and Yang et al., 2005) have been previously 

utilized to study tree re-establishment, both of which are time consuming and 

expensive. Ground surveys are critical in understanding the role of local site factors 

controlling tree re-establishment, however the number of stands analyzed is often 

fewer than required to statistically validate relationships between the abiotic and 

biotic factors influencing forest regrowth.  Studies based on the interpretation of 

high-resolution aerial photographs are useful in that they help establish the spatial 

and temporal extent over which regrowth variability is occurring, but they do not 
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readily permit explicit spatial modeling of the phenomenon (Nesje, 1996; and Yang 

et al., 2005).  We seek to overcome these limitations by scaling estimates derived 

by ground survey and airphoto interpretation to the greater landscape using Landsat 

data.  This synergistic approach should effectively increase the number of stands 

available for statistical modeling, thus offering an opportunity to advance our 

understanding of the geographically referenced environmental attributes 

influencing rates of forest regrowth following clearcutting in western Oregon.   

The use of satellite imagery to characterize forest successional processes 

has mainly focused on estimating forest age from single image dates to make 

inferences about successional stage condition at one point in time (Fiorella and 

Ripple, 1993; Peterson and Nilson, 1993; Jakubauskas, 1996; Cohen et al., 2001; 

and Song et al., 2007).  The difficulty with this approach is that the relationship 

between forest age and spectral data can be highly variable, especially for young (< 

20–year) stands with low canopy cover (Horler and Ahern, 1986).  A more limited 

number of studies have taken advantage of multiple images to study the dynamic 

process of forest succession (Hall et al., 1991; Foody et al, 1996; and Lucas et al., 

2002), but have utilized relatively simple techniques such as post-classification 

comparison to estimate forest change.  Although simple to execute, post-

classification comparison relies on differencing two or more independently 

produced image classifications.  Thus, its effectiveness at estimating forest change 

is hindered by the fact that errors inherent to each individual classification combine 
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multiplicatively as they are overlaid for comparison, resulting in a final change 

product that contains more error than any of the original classification-based inputs.         

An alternative use of satellite imagery for characterizing forest successional 

processes is through the examination of a multi-temporal image series.  A multi- 

image time-series constructed from the Landsat suite of optical sensors could (at 

present) theoretically consist of 35 images (1972–2006) per scene, which could be 

used in a continuous fashion to create “regrowth trajectories” for any forested stand 

disturbed since 1972.  Although in some areas geographic and climatic factors may 

limit the availability of suitable images required to create useful trajectories of 

forest regrowth, it is likely the number of images needed to sufficiently capture the 

landscape disturbance/recovery signal will be fewer than conceptualized in this 

theoretical example.  As forest stands in the Pacific Northwest commonly enter the 

stem exclusion phase (i.e., closed canopy condition) of successional development 

within the first 20 years after clearcutting (Franklin et al., 2002) we base our 

analysis of post-harvest early forest successional patterns on 16 Landsat TM and 3 

Landsat ETM+ images covering 18 years.  This rapid rate of tree regrowth after 

disturbance eliminates the need to lengthen the time span of our image series back 

to the Multi-Spectral Scanner (MSS) system.  In addition, the improved 30 m 

resolution of the post-MSS images better matches the resolution of our ground 

referenced tree cover data.    

We define “trajectory” as a series of states through which a system proceeds 

over time.  Trajectories (or change-curves) are comprised of a series of 
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mathematical or statistical models fit to repeatedly measured observations, which 

are used to characterize or quantify various pathways of vegetation response to 

disturbance.  The shape of vegetation regrowth trajectories has long been 

recognized by field ecologists as a practical means of describing plant community 

responses to various disturbance types (Armesto and Pickett, 1986; Halpern and 

Franklin, 1990; and del Moral and Bliss, 1993), as differences in trajectory shape 

infer differences in the controlling mechanisms of vegetation change.  Additionally, 

the trajectory concept forms the basis of many empirical functions commonly used 

by foresters to predict theoretical plant growth (Richards, 1959) and stand-level 

growth based on site-index (Hegler, 1968).  

Although the use of repeated observations collected by satellite remote 

sensing platforms such as Landsat seem particularly well suited to analyzing 

continuous trends in vegetation via trajectory analysis, only a few examples can be 

found in the literature (Viedma et al., 1997; and Joyce and Olsson, 1999).  One 

example is presented by Lawrence and Ripple (1999) who derive vegetation change 

trajectories with estimates of percent green vegetation cover predicted 

independently from 8 Landsat TM images (covering 15 years).  These change 

trajectories were used to describe and quantify various regrowth pathways 

following the 1980 volcanic eruption of Mt. St. Helens in southwestern 

Washington.   

Ultimately the success of the trajectory approach in capturing real 

vegetation change hinges on the successful radiometric calibration of the multi-
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temporal image series.  Given this importance, we favor the use of a radiometric 

calibration method which was specifically designed to operationally minimize 

residual scatter (i.e., lower RMSE) in early forest regrowth trajectories in western 

Oregon.  The method, referred to as “absolute-normalization” (Schroeder et al., 

2006), uses statistically selected pseudo-invariant features (see Canty et al., 2004) 

to relatively normalize an image time-series to an atmospherically corrected 

reference image (corrected with 6S, Vermote et al., 1997).  All images in the multi-

temporal Landsat series presented here were normalized to a common radiometric 

scale (across all images < 0.025 RMSE), while simultaneously correcting for 

atmospheric and sun/sensor view-angle effects.     

Once the images comprising a multi-temporal image series share a common 

radiometric scale, meaningful regrowth trajectories can be constructed directly 

from spectral reflectance values, from fraction images derived via spectral mixture 

analysis (Smith et al., 1990) (e.g., green vegetation, non-photosynthetic vegetation, 

soil and shade images) or with biophysical estimates predicted from reflectance 

(e.g., percent tree cover).  In this paper we base our forest regrowth trajectories on a 

date-invariant relationship developed between Landsat spectral data and ground 

measured tree cover data collected by the U.S. Forest Service Pacific Northwest 

(PNW) Forest Inventory and Analysis (FIA) program.  Although date-invariant 

regression can be thought of as a form of post classification comparison, the use of 

a detailed radiometric calibration procedure, continuous versus class based 

estimates and derivation of change information from multiple image trajectories 
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improves on the traditional application of the method.  For more details on the date-

invariant regression approach, referred to as “state model differencing” see Healey 

et al. (2006). 

We aim to address the following three objectives.   First, we seek to 

corroborate the existence of divergent forest regrowth pathways among harvested 

stands previously identified in western Oregon via airphoto interpretation (Nesje, 

1996; and Yang et al., 2005).  Second, we compare landscape scale early 

successional forest regrowth patterns between the two primary forested provinces 

in the study area (i.e., the moist, warm Coast Range Province and the drier and 

colder Western Cascade Province).  Finally, we use commonly available physical 

proxies (e.g., aspect, slope, elevation) and plant relevant (e.g., potential relative 

radiation, temperature, precipitation) explanatory variables to predict early 

successional forest regrowth patterns in both provinces. 

 

2.  METHODS 

2.1.  Study Area 

 The study area is comprised of Landsat WRS-2 path 46 row 29, which 

covers approximately 185 km² of western Oregon (Figure 3-1).  The two main 

forested provinces in the study area are described by Franklin and Dyrness (1988) 

as the Coast Range Province (CRP) and the Western Cascade Province (WCP). The 

CRP is characterized in the far west by a Sitka spruce zone a few kilometers wide 

lying directly adjacent to the Oregon coast.  The rest of the CRP and the majority of 
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the WCP are dominated by conifers common to the Douglas-fir/western hemlock 

zone, although hardwood species such as red alder, vine maple, big leaf maple, and 

Pacific dogwood can dominate moist riparian areas and dry valley margins.   

 In Douglas-fir forests two principal seral groups typically comprise post-

disturbance vegetation communities, residuals (members of the original forest 

community) and invaders (non-forest species that colonize after the disturbance 

event) (Halpern and Franklin, 1990).  Halpern (1989, Table 1) describes six forest 

understory communities common to Douglas-fir forests.  In addition to conifer 

trees, early seral communities in this region can often be dominated by several 

grass, herb, shrub (e.g., ceanothus, oceanspray, salal, vine maple, Oregon grape, 

hazel and sword fern) and non-conifer tree species (bitter cherry, Pacific madrone, 

and chinkapin).  The extent to which of these life forms dominates after disturbance 

is likely a function of disturbance intensity, initial seed abundance, site condition, 

stochastic processes (e.g., climate, seed dispersal), and forest management 

activities.  Regardless of life form dominance, a complex mixture of several species 

is likely to occur until canopy closure is fully achieved.                

 Overall, the climate of the Pacific Northwest is typified by warm, dry 

summers and mild, wet winters.  The study area encompasses a wide range of 

elevations, yielding strong physical and climatic gradients.  Based on annual 

averages, the CRP typically receives more precipitation (3000 mm vs. 2300 mm) 

and is warmer in the winter (5° C vs.  -5° C) and cooler in the summer (16° C vs. 

23° C) than the WCP.  These climatic differences, in concert with differences in 
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elevation (CRP: 450–750 m vs. WCP: 450–3000 m) and geologic parent materials 

yield a wide array of growing conditions.  The study area also includes a diverse 

distribution of existing land ownership categories (Cohen et al., 2002), and 

therefore represents the disturbance and recovery patterns present in the region.   

 

2.2.  Data 

2.2.1.  Multi-temporal Image Series 

 Our characterization of forest regrowth patterns in western Oregon focuses 

on the analysis of a multi-temporal image series consisting of 19 summer (e.g., July 

– September), near anniversary Landsat TM and ETM+ images (WRS-2, path 46 

row 29) (Table 3-1).  A detailed description of the image selection criteria, as well 

as the geometric and radiometric corrections applied to the multi-temporal image 

series can be found in Schroeder et al. (2006).  In all, the images comprising the 

multi-temporal image series were atmospherically corrected and normalized to 

within 0.025 RMSE of the selected reference image (1994) using the absolute-

normalization approach detailed above.  For this study the 2005 image was added 

to the multi-temporal image series using the same geometric and radiometric 

processing protocols described in Schroeder et al. (2006). 

 

2.2.2.  Tree Cover 

 Three independently collected (1 ground based, 2 photo-interpretation 

based) tree cover (measured as percent) data sets were utilized in this study.  The 
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ground measured tree cover data set was recorded by line transect method (see pgs. 

155 – 162, USDA Forest Service, 1995) during the 1995 periodic forest inventory 

of western Oregon conducted by the U.S. Forest Service PNW-FIA program.  The 

2.1 ha FIA plots are coded from 1 to 5 based on the number of different land cover 

conditions (e.g., forest, water, non-forest) observed on each of the five measured 

subplots.  Thus, a plot labeled 1 (referred to as single condition) would have only 1 

dominant land cover condition, whereas a plot labeled 5 would have a different 

observed land cover condition at each measured subplot.  To avoid spectral mixing 

with unwanted non-forest and water condition classes, we elected to use only the 

tree cover data collected on the single condition, forested plots (n = 202) falling 

within the Landsat 46/29 study area.  Although this approach required discarding 

some potentially useable data, our ultimate goal was to minimize the impact of 

sample heterogeneity on the date-invariant tree cover regression model.     

 The two airphoto based tree cover data sets, which were used to validate the 

date-invariant tree cover regression model, were collected by two separate photo-

interpreters.  Both interpreters estimated percent tree cover over a fixed sample of 

plots repeatedly over time using an assortment of high-resolution aerial 

photographs (see Table 3-2 for photo scales and formats).  Because we used a date-

invariant approach to model tree cover, we elected to use photo-interpreted 

estimates of tree cover recorded for a given plot, at different points in time, as 

separate validation samples.  Due to the timing of photointerpretation, 

quantification of interpreter to interpreter bias was not possible.       
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 Interpreter 1 photo-interpreted percent tree cover over 125 of the same 2.1 

ha single condition, forested FIA plots that make up the ground based tree cover 

data set.  Several of these plots were re-interpreted at a second point in time, 

yielding 162 tree cover validation samples (Table 3-2).  Interpreter 2 estimated 

percent tree cover over 153, 1 ha sample plots (see Yang et al., 2005), which 

including remeasurement yielded 249 tree cover validation samples (see Table 3-2).  

Overall, the two photo-interpreted tree cover data sets combined to yield a total of 

411 tree cover validation samples, spanning 11 years.  It is important to note that 

interpreter 1’s photo-interpreted estimates of tree cover were taken solely from 

plots falling on private forest lands, whereas interpreter 2’s were only from national 

forest lands.  Thus, by combining the two data sets we not only maximized the size 

and temporal span of our validation sample, but also accounted for any potential 

differences in tree cover based on land ownership.   

 

2.2.3.  Explanatory Variables 

 We are interested in spatially predicting patterns of forest regrowth, thus we 

compiled 12 geographically referenced explanatory variables (3 physical proxy, 9 

plant relevant) for use in Classification and Regression Tree (CART) statistical 

analysis.  The physical proxy variables include transformed aspect (index 0–2) 

(Beers et al., 1966), slope (%) and elevation (meters), all derived from a 30 m DEM 

of the study area.  Since slope, aspect and elevation are merely correlated with the 
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moisture and temperature gradients plants commonly respond to, we refer to them 

as “physical proxies”.   

 On the other hand, recent advances in the spatial representation of direct 

resource gradients such as moisture, temperature and soils allowed us to use several 

“plant relevant” variables in our analysis.  These variables include, potential 

relative radiation (PRR) (Pierce et al., 2005), which is a unit less index at 30 m 

resolution used to approximate the “potential” incident radiation received by a 

given surface location during a set window of time (applied here using a 12 month 

growing season).  Here the range of PRR is 985 (e.g., deep, north facing canyon) to 

21959 (e.g., open, slightly southern facing hill slope).  The highest value (21959) 

represents the location with the highest probability of receiving incident radiation 

in the absence of clouds.  In addition to PRR, we also use PRISM temperature 

(Parameter-elevation Regressions on Independent Slopes Model, Daly et al., 1994, 

http://www.prismclimate.org) – July maximum and January minimum (1 km 

resolution) in °C,  and five CONUS (Conterminous United States) soil layers 

(Miller and White, 1998, http://www.soilinfo.psu.edu/index.cgi) estimated at a 1 

km resolution (sand (%), silt (%), clay (%), soil depth (cm), and field capacity 

(kg)).   

 

2.3.  Date-invariant Regression Modeling 

 In this study we based our forest regrowth trajectories on estimates of 

percent tree cover derived from Landsat spectral reflectance data.  This was 
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accomplished by first developing an initial regression model between the ground 

measured percent tree cover data collected by PNW-FIA and the 1995 Landsat 

spectral reflectance data.  To obtain reflectance data for each of the 202 single-

condition, forested FIA plots we took the mean of a 22 pixel mask, (Figure 3-2) 

which was developed to mimic the size and shape of the FIA ground plot (for 

details on FIA ground plots see pages 17 – 38 in USDA Forest Service, 1995).  As 

FIA plot coordinates are collected on the southern portion of each plot (i.e., subplot 

1), we matched each plot coordinate to the southern portion of our 22-pixel mask 

(gray shaded pixel in Figure 3-2).  Other studies which have extracted Landsat 

spectral reflectance data for use with FIA data have used similar techniques 

(Ohmann and Gregory, 2002).     

 We then employed a standard correlation procedure where the extracted 

means of the spectral variables (Landsat bands 1-5, and 7), and subsequently 

derived vegetation indices [Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1973), Normalized Difference Moisture Index (NDMI) (Hardisky et 

al., 1983; and Jin and Sader, 2005) and Tasseled Cap (Crist and Cicone, 1984)] 

were evaluated via scatter plot to determine their relationship with tree cover and to 

explore the need for transformation.  This evaluation revealed the need to linearize 

the Landsat bands using a common square root transformation.   

 Stepwise multiple regression was then used to identify a preferred (i.e., high 

R2, low RMSE) model.  Several models were evaluated, however we determined 

that a three variable model containing Landsat bands 1, 3 and 7 best captured the 
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variation in the ground measured tree cover data (see discussion).  To ensure that 

the variance observed in our observations was adequately preserved in our 

predictions we preferred the use of reduced major axis regression (RMA) (Cohen et 

al., 2003).  As in Cohen et al. (2003), we used canonical correlation analysis (CCA) 

to derive a linear combination of the Landsat bands identified above for use in X on 

Y RMA regression.                  

 This initial RMA regression model was applied individually to the 

remaining 18 “absolutely-normalized” Landsat images, which yielded a total of 19 

tree cover images.  This date-invariant regression approach (Healey et al., 2006) 

assumes that an effective radiometric calibration procedure has resulted in a 

common radiometric scale among all images, resulting in an date-invariant 

relationship between spectral reflectance and the biophysical variable of interest.  

To test the validity of this assumption, we conducted a leave-one out cross-

validation of the initial RMA regression model (n = 202), as well as a temporal 

accuracy assessment covering 11 different tree cover images using the two airphoto 

based tree cover data sets (Table 3-2).  The date-invariant tree cover estimates 

falling below 0% and above 100% were rescaled to fall between 0 and 100% to 

match the scale of the airphoto data.  Mean tree cover was calculated for each of 

the 2.1 ha (interpreter 1) and 1 ha plots (interpreter 2) using each plots coincident 

tree cover image.  The mean plot tree cover estimates (predicted) were then 

compared with the photo-interpreted tree cover estimates (observed) via linear 

regression.  As we are primarily interested in knowing the accuracy of the percent 
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tree cover predictions across all images (i.e., those with validation data), we opted 

to combine all 411 validation samples into one global validation model.        

 

2.4.  Stand Disturbance Maps   

 We are interested in using a trajectory based approach to analyze patterns of 

forest regrowth following clearcut harvesting.  Consequently, we mapped three sets 

of clearcut harvests which we later use as spatial masks to extract pixel level tree 

cover estimates from our 19 tree cover images derived via date-invariant regression 

modeling.  We decided on analyzing forest regrowth using three periods of 

clearcuts for two reasons.  First, regrowth patterns are likely to vary from year to 

year in complex ways, so by including stands clearcut at different times we hoped 

to capture a broader range of regrowth variability in our analysis.  Second, clearcut 

harvests tend to occur on relatively small (e.g., < 10 ha), scattered blocks over the 

landscape, so by developing regrowth trajectories over clearcuts occurring in 

different years we effectively increase the number of stands, as well as the spatial 

area available for statistical analysis.  

  The three sets of clearcuts occurring between 1986 – 1987, 1987 – 1988, 

and 1988 – 1989 (hereafter referred to as periods 1 – 3) were mapped 

independently using RGB color composite analyses (Coppin et al., 2004) of 

Landsat band 5 and a minimum distance to means supervised classifier (Lillesand 

and Kiefer, 2004).  As in Cohen et al. (1998), each stand disturbance map was first 

smoothed using a 7x7 majority filter to rid of unwanted noise (i.e., single pixels 
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classified as clearcuts).  We then used the ERDAS Imagine clump function to 

identify and group contiguous groups of clearcut pixels, and finally used the 

ERDAS Imagine sieve function to eliminate all clearcuts less than 2 ha in size.  The 

three stand disturbance maps were then hand-edited using several of the high 

resolution aerial photographs from Table 3-2 as reference.  Areas classified as 

forest change but were determined not to be clearcuts were removed to ensure a 

high level of overall quality.  Although we did not explicitly evaluate the accuracy 

of the stand disturbance maps, similar methods for mapping clearcut harvests 

occurring in Oregon west of the Cascade crest have achieved upwards of 90% 

accuracy (Cohen et al., 2002).         

 

2.5.  Forest Regrowth Class Trajectories 

 To spatially derive forest regrowth trajectories for the clearcuts identified 

from the supervised classification we first stacked the geographically referenced 

tree cover images derived via date-invariant regression modeling into 3 multi-

temporal image stacks, one for each period of mapped clearcuts.  The first tree 

cover image in each multi-temporal stack corresponds to the first growing season 

after each period’s mapped harvest disturbances.  For period 1, the multi-temporal 

stack contained a total of 17 tree cover images, the first tree cover image 

corresponding to 1988.  For subsequent periods the multi-temporal tree cover 

stacks contained 16 and 15 tree cover images respectively.  The stand disturbance 
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maps were then used to mask (i.e., isolate) the pixel level tree cover values from 

each period’s respective tree cover stack.     

 The extracted time-series of pixel level tree cover estimates were then 

grouped into 20 individual “regrowth” classes using the ISODATA clustering 

algorithm in ERDAS Imagine.  To facilitate clustering, each period’s multi-

temporal tree cover stack was clustered separately as each had a different number 

of tree cover images.  Using the statistical measure of transformed divergence 

(Jensen, 1996) the spectral separability of the 20 “regrowth” classes was evaluated.  

In general, separability analysis is used in image classification to determine the 

extent to which clustered class-mean values overlap each other in spectral space.  

Here separability analysis revealed the need to combine several of the “regrowth” 

classes as they were not spectrally unique.  This process resulted in the creation of 

5 statistically discrete forest regrowth classes per period.  The four main classes 

were visually assigned labels based on observed rates of percent tree cover 

increase, which included little to no regrowth, slow regrowth, moderate regrowth, 

and fast regrowth.  The fifth class, labeled mixed regrowth, was interpreted to 

contain a highly variable mixture of partially harvested areas, prescribed burns and 

shadows.  These areas commonly have a dark spectral appearance, resulting in a 

false signal of high initial tree cover immediately following clearcutting.  Thus, 

given its highly variable nature, as well as its limited spatial extent, we exclude the 

mixed regrowth class from the remainder of the analysis.     
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2.6.  Forest Regrowth Spatial Pattern Analysis   

 To corroborate the presence of divergent pathways of forest regrowth in 

western Oregon we summarized the pixel level frequency distribution of the four 

main forest regrowth classes identified from ISODATA clustering according to 

area disturbed by clearcut harvest and by topographic position.  These distributions 

were used as a means of describing the landscape scale, forest regrowth signal for 

both the CRP and WCP.  To make meaningful comparisons of forest regrowth 

between the two ecological provinces we attempted to normalize the differences in 

harvest area between the CRP and WCP by basing our frequency distributions on 

the “percent of clearcut area” metric, which we calculated using Eq. 1, 

 

                          % of Clearcut Area = 100×÷TACHPTAFRC  

 

where, TAFRC  is the total area of each forest regrowth class, TACHP is the total 

area clearcut per harvest period.  With three periods of clearcuts available for 

analysis, we were able to use this metric to characterize the landscape scale forest 

regrowth patterns occurring in each ecological province.  To gain further inference 

into the patterns of forest regrowth associated with the geographically referenced 

environmental attributes we also summarized the patterns of forest regrowth in the 

CRP and WCP according to three relevant topographic variables (i.e., aspect, slope, 

elevation).  For ease of display, the topographic variables were binned into class 

groupings (e.g., aspect 1° – 33° labeled as N–NE class).   For each topographic 

 (1) 
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class grouping, the distribution of each forest regrowth class was based on “percent 

of clearcut area” as above, except the mean value observed over all three periods is 

reported (error bars are across period standard deviations).            

 

2.7.  Classification and Regression Tree Modeling 

 To formulate a better understanding of the environmental attributes 

influencing forest regrowth following clearcut harvesting in western Oregon we 

attempted to predict forest regrowth rates for both the CRP and WCP using the 

aforementioned explanatory variables and CART statistical modeling.  We select 

CART as it is flexible, non-parametric, and robust to complex non-linear 

relationships (Friedl and Brodley, 1997) and has been previously used to examine 

changes in vegetation (Lawrence and Ripple, 2000; and Lutz and Halpern, 2006).  

Since CART modeling is typically data intensive, we decided to combine the three 

periods of regrowth classes into one spatial layer to maximize the available land 

area from which to draw our statistical sample.  In an attempt to keep training data 

equal among regrowth classes (Lawrence and Wright, 2001) we used a stratified 

random design (separately for the CRP and WCP) to select approximately 300 

pixels per regrowth class (4 classes) to be used as training samples.  An additional 

≈300 samples per regrowth class were selected (separately for the CRP and WCP) 

for the purpose of testing the predictive power of the developed CART models.  

Overall, a total of 2,375 (1,186 testing, 1,189 training) samples were derived for the 

CRP and 2,371 (1,183 testing, 1,188) for the WCP. For each sample location, the 
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explanatory variables were extracted on a per pixel basis for use in statistical 

modeling.  

 Using the tree modeling tools in S-plus we developed CART models for 

both the CRP and WCP.  In S-plus, terminal nodes are created either when the total 

number of observations at the node is less than 10 or the deviance at the node is 

less than 1% of the total deviance for the entire tree (Venables and Ripley, 1997).  

Since CART models tend to over-fit the data, it is crucial that they be pruned back 

to some degree to avoid over-fitting, but not to a point that affects the robustness of 

the model.  To determine an appropriate size for our tree models we elected to use a 

cross validation procedure (Venables and Ripley, 1997; and Lawrence and Wright, 

2001) where each set of training samples is divided into ten equal parts.  Trees are 

fit iteratively for nine of the ten trees, with the tenth being used as validation.  After 

all the trees have been fit, the minimum average deviance suggests a suitable 

number of nodes for the final tree.  Although an analyst may opt to use a smaller 

size tree than suggested by cross validation, we found the suggested tree sizes to be 

acceptable for both the CRP and WCP models.  The final tree models contained 10 

(CRP) and 6 (WCP) terminal nodes and were plotted so that branch size was 

roughly proportional to the deviance explained by each node.   

 To assess the accuracy of both CART models we used the test samples to 

compute standard confusion matrices with overall, producers, and users accuracies, 

as well as Kappa (Congalton, 1991), and Tau (Ma and Redmond, 1995) statistics.  

In addition, the accuracy of both CART models was evaluated using an aggregated 
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approach, where the four regrowth classes were combined to represent “fast” (i.e., 

combine fast and moderate regrowth classes) and “slow” (i.e., combine little to no 

and slow regrowth classes) forest regrowth conditions.       

 

3.  RESULTS   

3.1.  Initial Tree Cover Model 

 Model parameters for the initial tree cover regression model developed 

using the 202 single condition, forested FIA ground measured field plots and the 

linear combination of spectral variables (bands 1, 3 and 7) from the 1995 Landsat 

TM image are found in Table 3-3.  Using a leave one out cross-validation 

procedure (Cohen et al., 2003) we found the RMA regression model to be highly 

significant both in terms of variance explained (R2 = 0.77) and predicted error 

(RMSE = 14.15).  The predicted (from cross-validation) versus observed tree cover 

is presented in Figure 3-3.  The selection of RMA regression ensured that nearly all 

the original variation found in our observations was preserved in our tree cover 

predictions (variance ratio = 1.00).  The near zero bias (0.03) indicated that overall 

there is no over- or under-prediction of tree cover in our initial model.         

 

3.2.  Date-invariant Regression 

 The temporal accuracy of our date-invariant regression approach was 

assessed using the two airphoto based tree cover data sets which contained 

coincident measurements with 11 of the 19 tree cover images (Table 3-2).  Using 
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411 airphoto based validation samples we incorporated data from all 11 tree cover 

images into one global validation model (Table 3-3 for regression model 

parameters).  The scatter plot of predicted (from date-invariant regression) versus 

observed (airphoto interpreted) tree cover is presented in Figure 3-4.  Overall, we 

found good agreement between the airphoto interpreted measures of percent tree 

cover and those derived via our date-invariant regression modeling approach.  Both 

the amount of explained variance (R² = 0.68) as well as the predicted error (RMSE 

= 16.09) were found to be similar to those observed in the initial tree cover model.  

The selection of RMA regression ensured that nearly all the variation found in our 

validation plots was preserved in our tree cover predictions (variance ratio = 1.00).   

Furthermore, the near zero bias observed in the global validation model indicates 

that there is no bias in the relationship between date-invariant regression and 

airphoto based tree cover.    

 

3.3.  Forest Regrowth Class Trajectories 

 Each period’s mapped clearcuts were spatially clustered into statistically 

meaningful forest regrowth classes (i.e., little to no, slow, moderate, fast) using 

ISODATA clustering.  The mean values of each period’s forest regrowth classes 

were fit with third-order polynomial curves, resulting in 3 fitted curves per forest 

regrowth class (Figure 3-5).  These curves, or “mean forest regrowth trajectories” 

were visually compared for each regrowth class and were found nearly 

indistinguishable across harvest periods.  As a result, we determined that each 
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period’s forest regrowth classes could be used interchangeably in the CART 

analysis. 

 

3.4.  Forest Regrowth Patterns 

 For the CRP and WCP we used “percent of clearcut area” to summarize 

forest regrowth at the landscape scale for each clearcut harvest period (Figure 3-6).  

The consistent patterns of forest regrowth observed over the three clearcut periods 

indicate a much higher percentage of fast regrowth in the CRP as opposed to a 

much higher percentage of little to no regrowth in the WCP.   

 Frequency distributions of forest regrowth were also derived for three 

topographic variables of interest (aspect, slope, and elevation).  Forest regrowth by 

aspect class is presented in Figure 3-7.  For both the CRP and WCP the highest 

percentage of fast regrowth occurred on north facing aspects (i.e., N–NE, NE, NW, 

and N–NW), with nearly twice as much fast regrowth being observed on the 

northern aspects of the CRP then on the WCP.  On the other hand, both ecological 

provinces saw the percentage of little to no and slow forest regrowth classes 

increase on southern facing aspects (SE, S–SE, S–SW, SW).  Although this general 

trend was observed for south facing aspects in both ecological provinces, the WCP 

was found to have more than triple the amount of little to no and slow regrowth on 

southern aspects than the CRP.     

 Forest regrowth by percent slope class is presented in Figure 3-8.  For both 

ecological provinces, as slope class increased past 10–19% the amount of fast 
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regrowth tended to decrease.  For the WCP, this observed decrease in fast regrowth 

was more pronounced than for the CRP and was also accompanied by a noticeable 

increase in the amount of little to no and slow forest regrowth.  Other than the 

observed decrease in fast regrowth with increasing slope, the remaining forest 

regrowth distributions in the CRP were found to be relatively stable across slope 

classes.   

 Forest regrowth by elevation class is presented in Figure 3-9.  For both 

ecological provinces, the percentage of fast regrowth noticeably decreased as 

elevation increased.  This pattern seemed more pronounced for the WCP as clearcut 

harvesting occurred over a much higher elevation range.  Although fast regrowth 

decreased with elevation in the CRP, at no time did the percentage of little to no 

regrowth exceed fast regrowth.  On the other hand, little to no regrowth 

significantly exceeded fast regrowth in the WCP at all elevations above 762 m.    

 

3.5.  CART Models    

 Using the 12 explanatory variables we constructed CART classification 

models to predict the forest regrowth classes of the CRP and WCP ecological 

provinces.  Six of the explanatory variables (elevation, PRR, percent slope, PRISM 

average annual precipitation, CONUS soil silt, and PRISM July average maximum 

temperature) were used to construct the final CRP CART model (Figure 3-10), 

which yielded 10 terminal nodes or classification decision rules.  Branch length of 

the tree indicated that elevation explained the largest percentage of variation in 
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CRP forest regrowth classes, followed by PRR and percent slope.  In the CRP, fast 

forest regrowth was generally predicted to occur on low elevation sites (< 338 m) 

and on high elevation sites (> 338 m) with relatively low radiation exposure (PRR 

< 14262).  Little to no forest regrowth was predicted only on high elevation (> 338 

m) sites having both high radiation exposure (PRR > 17934) and steep topography 

(slope % > 32).  A variety of other combinations of the 6 explanatory variables 

resulted in predictions of the moderate and slow forest regrowth classes.   

 The overall accuracy of the CRP CART model was 46% (Table 3-4).  

According to Landis and Koch (1977) a Kappa of 27% suggests “fair agreement” 

between the predicted regrowth classes and test samples.  The Tau statistic 

indicates that 27% more pixels were classified correctly than would be expected by 

random assignment.  Ranging from 17 to 79%, the individual class accuracies 

(Table 3-4) suggested that the maximum and minimum regrowth classes (i.e., little 

to no and fast) were predicted with greater accuracy than the classes falling in 

between (i.e., slow and moderate).  

 Four of the explanatory variables (elevation, PRR, PRISM July maximum 

temperature, and PRISM January minimum temperature) were used to construct the 

final WCP CART model (Figure 3-11), which yielded 6 terminal nodes or 

classification decision rules.  Branch length of the tree indicated that elevation and 

PRR explained the largest percentage of variation in the WCP forest regrowth 

classes.  In the WCP, fast forest regrowth was generally predicted to occur on low 

elevation (< 805 m) sites having moderate to high radiation exposure (PRR < 
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18924) and warm winter minimum temperatures (January min. temp > 0° C).  Little 

to no forest regrowth was predicted to occur on high elevation sites (> 1,014 m) 

and on moderately high elevation sites (> 805 m and < 1,014 m) with low summer 

maximum temperatures (July max. temp < 24° C).  A variety of other combinations 

of the 6 explanatory variables resulted in predictions of the moderate and slow 

forest regrowth classes.   

 The overall accuracy of the WCP CART model was 47% (Table 3-4).  A 

Kappa of 29% suggests “fair agreement” between the predicted regrowth classes 

and the test samples (Landis and Koch, 1977).  The Tau statistic indicates that 30% 

more pixels were classified correctly than would be expected by random 

assignment.  Ranging from 29 to 68%, the individual class accuracies (Table 3-4) 

suggested that the maximum and minimum regrowth classes (i.e., little to no and 

fast) were predicted with greater accuracy than the classes falling in between (i.e., 

slow and moderate).  

 Since the maximum and minimum regrowth classes (i.e., little to no and 

fast) showed greater predictive potential, we reassessed the accuracy of the CART 

models using an “aggregated” approach.  This was accomplished by combing the 

fast and moderate regrowth classes to represent “fast” forest regrowth and the little 

to no and slow regrowth classes to represent “slow” forest regrowth.  Using the 

aggregated approach the CRP model yielded an overall accuracy of 70% (Table 3-

5).  Landis and Koch (1977) suggest that a Kappa of 39% represents “fair 

agreement” between the predicted regrowth classes and the test samples.  The Tau 
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statistic indicates that 40% more pixels were classified correctly than would be 

expected by random assignment.   The WCP model improved to an overall 

accuracy of 78% (Table 3-5).  A Kappa of 56% is interpreted by Landis and Koch 

(1977) as a “moderate agreement” between the predicted regrowth classes and the 

test samples.  The Tau statistic indicates that 56% more pixels were classified 

correctly than would be expected by random assignment.  As expected, both the 

CRP and WCP overall accuracies improved with the implementation of the 

aggregated approach.  The Tau statistics indicate that when the CART decision 

rules are used to predict the aggregated “fast” and “slow” forest regrowth classes 

the resulting classifications yield 12% (CRP) and 26% (WCP) more correctly 

classified pixels than classification of the four regrowth classes.                

 

4.  DISCUSSION 

4.1.  Date-invariant Regression 

 Using date-invariant regression to create meaningful forest regrowth 

trajectories relies heavily on a thorough radiometric calibration of the multi-

temporal image series and the creation of a significant initial regression model of 

the biophysical variable of interest.  Although a larger sample of airphoto based 

tree cover data was available, we opted to develop our initial regression model 

(Table 3-3, Figure 3-3) with the field measured tree cover data collected by the 

U.S. Forest Service PNW-FIA program.  This decision was based on the fact that 

photointerpreted percent tree cover often contains significant interpreter bias, which 
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if extrapolated forward via date-invariant regression could jeopardize the creation 

of meaningful forest regrowth trajectories.  This bias is readily apparent in our 

airphoto validation of the initial tree cover model shown in Figure 3-3, where 

Interpreter 1 (filled circles) had a tendency to under predict and Interpreter 2 (open 

circles) over predict percent tree cover, especially in the 20 to 80% tree cover 

range.  Had both interpreters shared the same directional bias the validation of our 

initial tree cover model might have been less satisfying.  As it stands, our validation 

model serves as an illustration of why field measured biophysical variables are 

critically important to the accurate modeling of vegetation with remotely sensed 

imagery.  In addition, use of spectral bands 1 (visible blue, responds to forest type 

and serves as a measure of overall “brightness”), 3 (visible red, responds to 

chlorophyll absorption in vegetation) and 7 (short-wave infrared, responds to 

vegetation shadowing and moisture) in our initial tree cover model demonstrates 

the utility of multi-wavelength sensors like Landsat at resolving useful spectral 

information directly pertaining to forested systems (Cohen and Goward, 2004).      

 Given the wide variation of life forms likely present after clearcutting it is 

likely that some of the error in our initial tree cover model resulted from the use of 

total tree cover.  Utilizing separate hardwood and softwood tree cover categories 

could possibly improve both the fit of the initial tree cover regression model, as 

well as the detail with which the compositional changes associated with post-

harvest forest succession could be successfully resolved with an image time-series.  

Other potential improvements include the use of image transformation methods 
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such as spectral mixture analysis (Smith et al., 1990), which separates and 

quantifies sub-pixel scene components such as green foliage, tree bark, and shadow 

to estimate fractional vegetation cover.  Trajectories constructed of fractional 

images from SMA may help to more fully resolve the complex mixtures of species 

(deciduous vs. conifer) and vegetation cover (low vs. high) typically found in early 

successional forests of the Pacific Northwest (Sabol et al., 2002).              

 Although analysis with multi-temporal image series can be time consuming, 

one major advantage to their use is that variations from atmospheric effects and 

vegetation phenology, which can seriously impact change estimates based on year 

to year image differences are minimized as the overall estimate of change is based 

on the fitted trajectory curve (or curve class in this case).  In this sense, year to year 

variations are viewed as residuals around each classes fitted trajectory.  While 

residuals resulting from atmospheric effects and vegetation phenology are viewed 

as “error” in terms of the trajectory model, the overall pattern of regrowth is not 

assumed to be effected unless the curve fit is unusually low.  The lowest R² of all 

four of our forest regrowth class trajectories was .93, indicating minimal year to 

year impacts from residual error at the class level.  At the pixel level, we found a 

high level of agreement (R² = .96, RMSE = 6.05) between average pixel tree cover 

estimates (selected randomly across all images) and tree cover predicted from the 

forest regrowth curves (n = 240).  The standard deviations of the average pixel tree 

cover estimates fell within the average across period standard deviations of our 

forest regrowth trajectories (Figure 3-5), indicating that phenology effects did not 
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prevent the forest regrowth curves from capturing the response of the original pixel 

values.              

 In general, our date-invariant regression approach improves on similar 

change detection techniques such as post-classification comparison (Coppin et al., 

2004) which rely on simple image differencing of two or more independently 

produced classifications to estimate forest change.  Here we derive a more 

meaningful characterization of continuous forest change after clearcut harvest by 

employing a robust radiometric calibration procedure specifically designed to 

reduce the residual scatter in forest regrowth spectral trajectories (Schroeder et al., 

2006) and by basing our estimates of forest change on continuous trajectories of 

percent tree cover.  Although here we binned the continuous tree cover trajectories 

into forest regrowth change classes, the trajectory approach also lends itself to more 

detailed quantification of forest regrowth information through parameterization of 

the fitted mean trajectory curves (Figure 3-5) (Lawrence and Ripple, 1999; and 

Yang et al., 2005).       

    

4.2.  Patterns of Forest Regrowth after Clearcut Harvesting   

 It was presumed that forest succession was initiated in our study by stand-

replacing disturbance from clearcut harvesting, after which vegetation communities 

are thought to shift from ephemeral herbaceous life forms to taller perennial shrubs 

and finally trees (Franklin et al., 2002).  These stages of successional development 

which are common to western Oregon have been previously classified with percent 
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tree cover trajectories from repeated airphoto interpretation (Yang et al., 2005), 

where shrub and herb dominance lasts until roughly 30% tree cover is achieved, at 

which time semi-closed conditions persist until canopy closure (≥ 70% tree cover).  

Upon inspection, the endpoints of our forest regrowth class trajectories (Figure 3-5) 

derived by date-invariant regression seem to coincide well with these previously 

defined successional stage classes (e.g., little to no forest regrowth class 

corresponds to open and shrub/herb successional stages; slow forest regrowth class 

corresponds to the end of shrub/herb successional stage; moderate forest regrowth 

corresponds to semi-closed forest successional stage; and fast forest regrowth class 

corresponds to closed canopy forest successional stage).  The similarity with which 

patterns of continuous forest succession can be classified with airphoto and satellite 

based tree cover trajectories suggests that our date-invariant regression approach 

has successfully extended the forest regrowth trajectory concept to the spectral 

space of Landsat.   

 In terms of forest succession, our forest regrowth classes derived by date-

invariant regression indicated that a wide range of successional stages could be 

found in both the CRP and WCP 18 years after clearcut harvesting.  The large 

difference in tree cover regrowth rates between the little to no (Figure 3-5a) and 

fast forest regrowth (Figure 3-5d) classes substantiates previous findings that rates 

of vegetation recovery after disturbance in western Oregon can be highly variable 

(Halpern, 1988; Myster and Pickett, 1994, Nesje, 1996; and Lutz and Halpern, 

2006).  Because our forest regrowth classes were explicitly defined in Landsat 
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spectral space, we were able to summarize the landscape patterns of forest regrowth 

after clearcut harvesting at the pixel scale using frequency distributions (Figures 3-

6 – 3-9) based on the “percent of clearcut area” metric (i.e., area of each forest 

regrowth class ÷ total area clearcut per harvest period).    

 Examination of the forest regrowth class distributions in Figure 6 indicate 

that 18 years after clearcut harvest a much higher proportion of disturbed forest 

land returned to semi-closed and closed canopy conditions in the CRP (≈70%) than 

in the WCP (≈50%).  Conversely, a much higher proportion of disturbed land 

persisted in open or semi-closed condition in the WCP (≈34%) than in the CRP 

(≈10%).  Similar distributional patterns of forest regrowth have been previously 

observed for the CRP and WCP (Yang et al., 2005), and are further substantiated 

here based on the high degree of distributional consistency observed across three 

periods of forest clearcuts (Figure 3-6).   

 As our forest regrowth trajectories were derived in Landsat spectral space, 

we could further examine the landscape distribution of forest regrowth in relation 

to several topographic variables thought to influence vegetation growth rates.  

These distributions revealed several ecologically interpretable patterns in forest 

regrowth after clearcut harvesting, such as a decrease in fast and increase in slow 

forest regrowth on southerly aspects (Figure 3-7), on steeper slopes (Figure 3-8) 

and at higher elevations (Figure 3-9).  In general, the rate of forest regrowth seemed 

most effected by elevation (i.e., as elevation increased rate of forest regrowth 

tended to get slower) and least affected by steepness of slope (i.e., forest regrowth 



 78 

classes were distributed somewhat evenly across slope classes).  It is possible that 

spectral variation associated with sun-angle effects could be contributing to the 

detection of slower regrowth on southern aspects (e.g., more sun on southern 

exposures will brighten the spectral signal, resulting in the prediction of less tree 

cover).  Using only the FIA plot data (n = 54) we found no statistical difference at 

the 95% confidence level (ANOVA, F = 1.15, p = 0.30) between mean tree cover 

of young stands (< 20 yrs of age) located on northern and southern aspects.  Given 

the small sample size, we draw the conclusion that more work is needed to fully 

understand the effect of sun-angle on the characterization of forest regrowth rates 

with optical satellite imagery.     

  Overall, both the forest regrowth class trajectories (Figure 3-5) and the 

frequency distributions of the forest regrowth classes (Figures 3-6 – 3-9) indicated 

that forest regrowth rates after clearcut harvesting in western Oregon varied both 

within and across ecological provinces.  At the landscape scale we attributed some 

of the across province variability in forest regrowth rates to climatic and vegetative 

differences between the CRP and WCP.  With a longer and more favorable 

growing season (i.e., more annual rainfall and deep, rich soils) the CRP was found 

to have a larger proportion of fast forest regrowth than observed in the WCP, which 

is much drier and warmer during the summer growing season (Franklin and 

Dyrness, 1988).  We also observed elevation as a potential limiting factor to forest 

regrowth (Figure 3-9), which could explain in part the propensity for little to no and 

slow forest regrowth in the more mountainous WCP.  Within-province differences 
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in forest regrowth after clearcut harvest are likely the result of local site conditions, 

as well as forest management practices.   

 

4.3.  Predicting Rates of Post-harvest Forest Regrowth with CART  

 The extension of forest regrowth trajectories to the spectral space of 

Landsat provided the opportunity to more fully investigate the climatic and 

topographic attributes influencing the rate of forest regrowth following clearcut 

harvesting in western Oregon.  Although the overall accuracies of the CART 

models were not high in terms of correctly classified test samples (Tables 3-4 and 

3-5), the resulting classification decision rules provided interesting insights into the 

geographically referenced environmental attributes influencing forest succession in 

both ecological provinces.  The CRP CART model (Figure 3-10) had more decision 

pathways or terminal nodes (10) than the WCP CART model (6) (Figure 3-11), 

indicating that more favorable growing conditions common to the CRP could 

possibly result in more complex interactions among plant relevant and physical 

proxy variables influencing post-harvest forest regrowth.  Another possibility is 

that more subtle environmental gradients influencing forest regrowth may not be 

detectable with simple dichotomous models like CART.  As both physical proxy 

(aspect, slope and elevation) and plant relevant (precipitation, temperature, soil silt, 

radiation) explanatory variables were input into the CART models, the relative 

importance of each type of predictor could be implied based on model inclusion, 

whereas the relative importance of each selected predictor could be assessed 
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according to the amount of variance explained (i.e., branch length in Figures 3-10 – 

3-11).       

 The importance of plant relevant predictor variables is apparent as 5 of the 7 

predictor variables selected for use in both CART models are known to directly  

influence forest growth (PRR radiation, PRISM average annual precipitation, 

PRISM July maximum temperature, PRISM January minimum temperature, and 

CONUS soil silt).  Of the explanatory variables selected, three (elevation, PRR, 

PRISM July maximum temperature) were used in both the CRP and WCP models.  

Elevation was found to explain the largest percentage of variation in both forest 

regrowth models.  Although elevation is not known to directly influence forest 

regrowth, it has been shown to influence air and soil temperatures, length of 

growing season, amount of damage from wind and snow, and amount of moisture 

from orographic precipitation (Nesje, 1996).  PRR explained the next largest 

amount of variation in both CART models, indicating that radiation variables such 

as PRR which integrate annual changes in solar orientation and shading effects 

from local topography are likely more effective at capturing landscape radiation 

patterns than commonly used physical proxies (i.e., slope and aspect) (Lookingbill 

and Urban, 2005; and Pierce et al., 2005 ).  Interestingly the interaction between 

elevation and radiation has been previously found to be a limiting factor to post-

harvest forest successional rates in western Oregon (Cleary et al., 1978).  Summer 

temperature was also used by both CART models, indicating that even at relatively 

coarse spatial resolutions (1 km) useful climatic patterns can still be resolved.   
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 Since both CART models yielded only “fair agreement” (as measured by 

Kappa; Landis and Koch, 1977) between the predicted forest regrowth classes and 

the test samples we combined the four forest regrowth classes into two general 

“fast” and “slow” categories to gauge the statistical effectiveness of predicting 

more generalized post-harvest forest regrowth rates.  Based on the Tau statistic, the 

CART models correctly classified a higher percentage of test samples than 

classification of the four forest regrowth classes, suggesting that more general 

regrowth classes may be more predictable at the landscape scale.   

 

5.  CONCLUSION 

 The rate at which forest vegetation re-establishes dominance after clearcut 

harvesting can impact many ecological processes.  Although knowing a forest 

stand’s current state of succession is useful, a more robust characterization can be 

achieved with the use of continuous trajectories developed with time-series data.  A 

useful methodology was presented which uses a Landsat image time-series to more 

fully understand the spatial extent, as well as the environmental attributes 

influencing post-harvest forest regrowth rates in western Oregon forests.     

 Our methodology required that the Landsat image time-series be 

transformed to a more meaningful biophysical measure (i.e., percent tree cover).  

This was accomplished through date-invariant regression, which is the 

extrapolation of an initial regression model developed between a single Landsat 

image and ground measured data to a series of cross-normalized images.  Here we 
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extrapolated an initial percent tree cover model to 19 images which had been 

previously calibrated to a common radiometric scale using the “absolute-

normalization” approach of Schroeder et al. (2006).  The accuracy of the resulting 

tree cover estimates were successfully evaluated across time using two sets of 

photointerpreted tree cover data.  Three periods of clearcut harvests were mapped 

and used to extract tree cover estimates, which were subsequently classified into 

four main rate classes (little to no, slow, moderate and fast).  These forest regrowth 

rate classes were then used to develop frequency distributions describing the 

landscape patterns of forest regrowth in western Oregon.  

 The patterns of forest regrowth observed over the three clearcut periods 

indicated a much higher percentage of fast regrowth in the CRP and a much higher 

percentage of little to no regrowth in the WCP.  For both ecological provinces we 

observed the propensity for faster regrowth on north facing aspects, shallow slopes 

and at low elevations.  Overall, the forest regrowth classes and the frequency 

distributions indicated that a wide range of successional stages could be found in 

both the CRP and WCP 18 years after clearcut harvesting.  This wide range in 

successional stage classes corroborates previous findings that rates of forest 

regrowth after disturbance in western Oregon can be highly variable (Halpern, 

1988; Myster and Pickett, 1994, Nesje, 1996; and Lutz and Halpern, 2006).  The 

development of forest regrowth trajectories using spectral data from Landsat 

provided an opportunity to use CART statistical analysis to more fully investigate 
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the climatic and topographic attributes influencing post-harvest forest regrowth 

rates in western Oregon.   

 Both CART models provided ecologically interpretable insights into the 

environmental attributes influencing forest regrowth rates in both ecological 

provinces.  Elevation followed by relative radiation expressed by PRR explained 

the largest amount of variation in forest regrowth, substantiating previous findings 

that elevation and radiation interact to influence local site factors limiting post-

harvest successional rates (Cleary et al., 1978).  We observed only “fair agreement” 

(as measured by Kappa; Landis and Koch, 1977) between predicted forest regrowth 

classes and the test samples, however when combined into two general “fast” and 

“slow” categories the CART models correctly classified 12% (CRP) and 26% 

(WCP) percent more test samples than classification of the four regrowth classes.  

Overall, the CART models yielded ecologically interpretable results regarding the 

environmental attributes (both physical proxy and plant relevant) influencing 

landscape scale early forest successional patterns in western Oregon.   
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Figure 3-1.  Landsat WRS-2, path 46 row 29 study area showing Coast Range 
(CRP) and Western Cascade (WCP) ecological provinces in western Oregon, 
U.S.A.     
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Figure 3-2.  Mask used to extract mean Landsat spectral data over FIA plots. Gray 
shading indicates the anchor pixel matched to each plot coordinate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3-3.  Predicted (from cross-validation) versus observed percent tree cover 
from initial RMA regression model (n = 202).  Solid line is 1:1.  
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Figure 3-4.  Predicted (from date-invariant regression) versus observed percent tree 
cover from airphoto interpretation data. Filled circles represent interpreter 1 
(n=162), open circles interpreter 2 (n = 249).  Solid line is 1:1.  
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Figure 3-5.  Mean forest regrowth trajectories for a. little to no, b. slow, c. 
moderate, and d. fast regrowth classes.  Solid lines are fitted 3rd order polynomial 
curves; dashed lines are the average across period standard deviations.    
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Figure 3-6.  Landscape scale forest regrowth patterns based on the percentage of 
clearcut area (i.e., area of each forest regrowth class÷  total area clearcut per 
harvest period).  Clearcuts were mapped between 1986 – 1987 (period 1), 1987 – 
1988 (period 2), and 1988 – 1989 (period 3).   
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Figure 3-7.  Patterns of forest regrowth according to aspect class.  Top panel is 
CRP, bottom panel is WCP.  Error bars represent across period standard deviations.      
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Figure 3-8.  Patterns of forest regrowth according to slope class.  Top panel is CRP, 
bottom panel is WCP.  Error bars represent across period standard deviations.      
 
 
 
 
 
 
 



 97 

0

10

20

30

40

50

60

70

80

0-152 153-
304

305-
457

458-
609

610-
761

762-
914

915-
1066

1067-
1218

1219-
1371

1372-
1524

1525-
1828

Elevation Class (m)

%
 o

f C
le

a
rc

ut
 A

re
a

Little  to  No  Regro wth

Slo w Regro wth

Mo dera te Regro wth

Fas t Regro wth

0

10

20

30

40

50

60

70

80

0-152 153-
304

305-
457

458-
609

610-
761

762-
914

915-
1066

1067-
1218

1219-
1371

1372-
1524

1525-
1828

Elevation Class (m)

%
 o

f C
le

a
rc

ut
 A

re
a

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-9.  Patterns of forest regrowth according to elevation class.  Top panel is 
CRP, bottom panel is WCP.  Error bars represent across period standard deviations.      
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Figure 3-10.  CART classification tree model for the CRP.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 3-11.  CART classification tree model for the WCP.   
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TABLES 
 
 
Table 3-1.  Landsat path 46 row 29 multi-temporal image series. 
 
 
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3-2.  Airphoto based percent tree cover validation data set.  BW stands for 
Black and White.   
 

Year of Photo Interpreter Scale Format n 

1987-1988 2 1 : 40 000 BW 81 

1989 2 1 : 12 000 True Color 33 

1990-1992 2 1 : 12 000 True Color 18 

1993-1995 2 1 : 12 000 True Color 26 

1997-1998 2 1 : 12 000 True Color 91 

1994 1 1 : 24 000  True Color 125 

2000 2 1 : 40 000  BW 37 

Total        411 
 
 
 
 

Sensor Date 
TM 8/26/1986 
TM 7/12/1987 
TM 8/31/1988 
TM 9/3/1989 
TM 7/7/1991 
TM 8/10/1992 
TM 8/29/1993 
TM 7/31/1994 
TM 8/19/1995 
TM 8/21/1996 
TM 7/23/1997 
TM 8/11/1998 
TM 8/16/2000 
TM 8/25/2003 
TM 7/26/2004 
TM 7/29/2005 

ETM+ 8/22/1999 
ETM+ 7/26/2001 
ETM+ 7/29/2002 
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Table 3-3.  Regression parameters for the initial percent tree cover and airphoto 
validation models. 
 

 
 
 
  
 
 
 
 
 
 
Table 3-4.  Classification error matrices for the CRP and WCP CART models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Model n Slope Intercept Mean Bias R² RMSE 

Initial RMA  202 1.14 -9.66 70.97 0.03 0.77 14.15 
Airphoto 

Validation 411 0.94 3.66 69.38 0.00 0.68 16.09 

CRP Little to No Slow Moderate Fast Producers  Users  
Little to No 150 40 57 34 58% 53% 

Slow 70 50 101 82 37% 17% 
Moderate 30 30 100 138 34% 34% 

Fast 10 15 40 242 49% 79% 
WCP Little to No Slow Moderate Fast Producers  Users  

Little to No 189 57 29 3 49% 68% 
Slow 136 93 60 15 38% 31% 

Moderate 51 66 88 101 35% 29% 
Fast 8 31 71 190 61% 63% 

  CRP WCP         
Overall  45.58% 47.14%         
Kappa 27.00% 29.00%         
Tau 27.44% 29.51%         
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Table 3-5.  Aggregated classification error matrices for the CRP and WCP CART 
models. 
 

CRP Slow  Fast Producers  Users  
Slow 310 274 78% 53% 
Fast 85 520 65% 86% 
WCP Slow Fast Producers  Users  
Slow 475 107 75% 82% 
Fast 156 450 81% 74% 

  CRP WCP     
Overall 69.81% 77.86%     
Kappa 39.25% 55.78%     
Tau 39.60% 55.72%     
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ABSTRACT 

No matter the cause, global climate change has prompted an accelerated use 

of spatially explicit models to study carbon exchange over the terrestrial system.  

Regardless of modeling strategy it is important that estimates of total carbon flux 

from terrestrial sources account not only for live carbon stocks, but also for other 

major component pools such as soils, woody detritus and forest products.  

Although an integrated approach is required to fully understand the flux of carbon 

to and from forests, estimates of the living mass are critical for initializing 

component pools in regional scale models and to form baselines from which to 

estimate loss from cultivation.  Optical satellite imagery has been used to estimate 

aboveground biomass, however these methods have generally proved ineffective at 

providing useful estimates for high biomass forests of the Pacific Northwest.  Thus, 

we present an alternative modeling strategy which takes advantage of Landsat’s 

temporal and spectral characteristics to predict live forest carbon through 

integration of age and site index maps and a set of locally calibrated Chapman-

Richards curves.  As this curve-fitting approach has been previously used in 

conjunction with a multi-component model to estimate total carbon flux for western 

Oregon, we sought a robust evaluation of its ability to estimate live forest carbon at 

multiple scales.  Predictions from the curve-fit model were evaluated at the local 

(pixel level) and landscape (total carbon and carbon flux) scales for two forested 

ecoregions (Coast Range Province – CRP and Western Cascade Province – WCP) 

using two periods of FIA field inventory data.  At the pixel level, the curve-fit 
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model performed better (i.e., higher correlation, lower RMSE) in the CRP than the 

WCP, likely the result of faster, less variable growth patterns common to the CRP.  

Model predictions for both ecoregions were observed to have large positive bias 

statistics, resulting in over-prediction of low to mid-range carbon values and under-

prediction of high end carbon values.  At the landscape scale, the curve-fit model 

also over-predicted total study area forest carbon for both inventory periods.  

Although this over-estimation was significant (average of 138.32 Tg per inventory 

period) in absolute terms, the flux (i.e., difference between inventory periods) 

estimated by the curve-fit model was found to be well within the standard error of 

the inventory estimates.  Inventory data is generally considered one of the more 

reliable means from which to estimate carbon balances over large areas, although 

for this to be true the sample plots must capture the spatial and temporal changes in 

land-use patterns occurring on the landscape.  To gauge the sense to which the 

inventory plots captured the forest condition in our study area we compared 

frequency histograms and stand age chronosequences of Landsat wetness derived 

for the full study area and for the inventory plots.  The study area and inventory 

based frequency histograms had the same general shape and magnitude of wetness, 

however the map based stand age chronosequence detected a subtle shift in land-

use which was not captured by the inventory sample. Although optical satellite 

imagery is limited in its ability to directly estimate forest carbon, we found 

Landsat’s temporal (e.g., age maps) and spectral (e.g., wetness chronosequences) 
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characteristics to be useful inputs to a curve based model which was found to 

estimate carbon flux from forests within the standard error of inventory estimates.   
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1. INTRODUCTION 

 As the global climate continues to warm (Keeling, 2004) and countries 

around the world are tasked with estimating and reporting changes in terrestrial 

carbon stocks (e.g., Kyoto protocol) new and innovative techniques must be 

developed to accurately estimate forest carbon over vast spatial areas.  Developing 

reliable estimates of terrestrial carbon flux is a difficult task as all the major 

terrestrial carbon pools exhibit considerable variability across space and time 

(Solomon et al., 1993).  Terrestrial carbon fluxes cannot be measured directly, thus 

at regional and global scales we must rely on estimates derived from models which 

can be process (Landsberg and Waring, 1997; and Turner et al., 2004) or 

accounting based (Wallin et al., 1996, Cairns et al., 2000).  Regardless of modeling 

strategy it is important that estimates of total carbon flux from terrestrial sources 

account not only for live carbon stocks, but also for other major component pools 

such as soils, woody detritus and forest products (Cohen et al., 1996).  Accurately 

estimating the mass of living material however is critical as it is often used to 

initialize component pools in regional scale carbon models (Kimball et al., 2000) 

such as autotrophic respiration and post-disturbance detrital residues (Turner et al., 

2004).  Optical satellite imagery has been used to directly estimate amount and 

temporal variability in aboveground biomass (Dong et al., 2003), however these 

methods are mostly sensitive to green foliage and show an asymptotic relationship 

with biomass. Thus we seek an alternative method of using optical imagery to 

estimate live carbon stocks which overcomes these limitations.               
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A key to accurately estimating live forest carbon is to account for the spatial 

effects of anthropogenic disturbance, land-use change and site productivity, which 

can vary considerably by ecoregion or forest type.  Moderate resolution satellite 

data like Landsat are particularly effective at tracking changes in land cover 

associated with harvest disturbances and land-use change (Cohen et al., 2002) and 

have recently been used to effectively characterize rates of early successional 

regrowth after clearcutting in western Oregon (Schroeder et al., in press).  As forest 

growth extends beyond the stem exclusion phase of secondary succession however, 

the spectral signal recorded by optical sensors such as Landsat shows an asymptotic 

relationship to biomass (Turner et al., 2004), preventing further growth 

characterization and limiting direct modeling of biomass for mature forests (Lu, 

2005; and Labrecque et al., 2006).  Although Landsat is generally less effective at 

predicting biomass above 50 to 80 megagrams (Mg) per hectare (ha) (Dong et al., 

2003), its spatial, spectral and temporal characteristics permit derivation of a 

variety of other useful products which can be utilized to help predict live forest 

carbon.      

The growing legacy of temporal data available from Landsat (1972 – 

present) can be used in a “change-detection” context to accurately detect forest 

disturbances (Cohen et al., 1998; Hayes and Sader, 2001), especially in systems 

where disturbances are frequently the result of clearcut harvesting.  If one takes 

advantage of the full historical legacy of Landsat (Cohen and Goward, 2004), a 

variety of disturbance mapping techniques (Cohen et al., 1998; Healey et al., 2006; 
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and Kennedy et al., in press) can be used to separate undisturbed forests from 

secondary forests.  Once separated, an accurate age can be assigned to younger 

secondary forest stands which have been disturbed during the Landsat record (≈ 30-

years).  When these secondary forest age maps are combined with maps of initial 

vegetation age (from Landsat) and site productivity (e.g., site index) a modeling 

strategy can be employed to estimate live forest carbon (including foliage, 

branches, boles, and coarse roots) at the pixel scale through the use of theoretical 

growth curves like the Chapman-Richards function (Richards, 1959).   

Site index curves and associated yield tables have long been used by 

foresters to predict the productive capacity of forests (Hegler, 1968).  Curves are 

also an effective way of diagramming temporal patterns of forest productivity 

especially as they relate to carbon sequestration at various spatial scales (Harmon, 

2001).  Since long term patterns of forest productivity in the Pacific Northwest are 

generally well understood (Janisch and Harmon, 2002) we can reasonably construct 

a predictive model using a meta-modeling approach (Law and Kelton, 1991).  This 

involves using a detailed stand-level model to parameterize a simpler set of 

functions which can more easily be applied to a broader landscape.  The approach 

(referred to here as curve-fit), while simple in nature is extremely useful in that 

curves, once calibrated, can easily be incorporated into comprehensive models 

which track carbon through a variety of pools and pathways.  In addition, curves 

offer the potential to be applied in a less computationally intensive manner as some 
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process driven models and offer potential to estimate more reasonably the upper 

bounds of carbon storage in mature forests than direct modeling with Landsat data.   

This curve-fitting approach to estimating live carbon storage has been 

previously utilized within the framework of a comprehensive model for estimating 

total carbon flux from temperate coniferous forests of the Pacific Northwestern 

United States referred to as Landcarb (Cohen et al., 1996; Wallin et al., 1996; and 

Wallin et al., in press).  A multi-component model, Landcarb spatially tracks 

exchanges of carbon between the living, detrital and forest products pools for each 

25 x 25 meter Landsat pixel, allowing spatial variation resulting from natural and 

anthropogenic factors to be accounted for over time.  Although live carbon 

estimates from the curve-fit approach have been shown to accurately reflect county 

level harvest statistics from the Oregon Department of Forestry (ODF) (Wallin et 

al., in press), a potentially more valuable evaluation of model performance could 

result from comparison with field measured data.  Our aim is to utilize field 

inventory data collected and compiled by the U.S. Forest Service’s Forest 

Inventory and Analysis (FIA) program to evaluate maps of live carbon produced by 

the curve-fit model for portions of two forested ecoregions in western Oregon.    

FIA has been using a three-phase, double sample design to collect field 

measurements of forest attributes in the United States since 1928 (Birdsey and 

Schreuder, 1992).  In general the FIA inventory follows a two-phase stratification 

process (Bechtold and Patterson, 2005), where in the first phase a grid of sample 

points is classified using aerial photo interpretation or forest/non-forest maps 
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generated from Landsat imagery.  A random or systematic sample of these grid 

points is then selected for field measurement based on state specific criteria derived 

from phase one interpretation of forest type, volume class or structural 

characteristics.  The grid points (or plots) selected are then field sampled by a 

trained field crew and marked for remeasurement in future inventories.  Currently 

the FIA program implements an annual sampling scheme (referred to as annual 

inventory) where approximately 10% of field plots (for western states) are 

systematically measured and reported each year.  Previously plots were measured 

non-systematically and reported approximately every 10 to 15 years (referred to as 

periodic inventory).   

Despite changes to the FIA inventory protocol over time, two characteristics 

of FIA data make them particularly well suited to evaluate the live carbon maps 

produced by the curve-fit model.  First, tree level data measured for each plot can 

be consistently converted to units of biomass (then to carbon) using national scale 

allometric equations (Jenkins et al., 2003).  Plot level carbon estimates derived 

from FIA data can be directly compared with mapped based pixel level predictions 

using scatter plots and regression diagnostics to better understand how well the 

curve-fit approach performs at a local scale.  As data are available from multiple 

inventories (i.e., annual and periodic), these plot to pixel relationships can be 

evaluated for performance and consistency over time for each of the forested 

ecoregions.  Second, as the FIA inventory is statistically designed to estimate 

merchantable bole volume over large areas, plot level estimates of biomass can be 
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expanded to calculate total live carbon and carbon flux (i.e., difference between 

inventory estimates), which can be compared to the curve-fit approaches map based 

estimates for the study area.  This two tiered approach to validation allows for 

robust characterization of both local and landscape scale estimates of carbon 

dynamics in the region.   

Inventory data like those collected by FIA is generally considered one of 

the most robust ways of estimating carbon dynamics in relation to land-use change 

and interannual variation in climate.  For this to be true however, it necessary that 

the sample of plots be carefully laid out in order to capture the full range of forested 

conditions and land-use patterns found in the study area.  Satellite sensors like 

Landsat offer both a synoptic view of the landscape, as well as the spectral capacity 

to characterize forests in terms of structure and cover using vegetation indices such 

as the Tasseled Cap (Crist and Cicone, 1984).  As Landsat wetness has been found 

to be an important indicator of maturity and structure in closed canopy forests and 

is relatively insensitive to cosine of the incidence angle (Cohen and Spies, 1992; 

and Cohen et al., 1995) we use it here in two ways.  First, we evaluate the degree to 

which the FIA sample plots capture the variability of forest cover in terms of the 

spectral wetness observed in the study area.  Second, substituting space for time, 

we develop two chronosequences of wetness by stand age class (from the stand age 

maps and from FIA field estimated stand age) to determine if subtle land-use shifts 

which may impact the carbon balance are captured by the FIA sample and by the 

stand age maps.   
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Overall we aim to address the following two objectives.  First, to evaluate 

predictions of live forest carbon produced by the curve-fit model for image dates 

corresponding to two FIA field inventories (1995 image for periodic, 2004 image 

for annual).  The predictions of live forest carbon (including foliage, branch, bark, 

bole, and coarse roots) are evaluated using inventory data at the local (i.e., pixel 

level) and landscape (study area totals and flux) scales.  At the local scale, we 

evaluate pixel level estimates of forest carbon from the curve-fit model using 

inventory data collected for two forested ecoregions with known differences in 

productivity.  At the landscape scale, total forest carbon and carbon flux is 

estimated with field plots from each inventory and the estimates are compared to 

the curve-fit models map based estimates.  Second, Landsat tasseled cap wetness 

(calculated from the 1995 and 2004 images) is used to investigate the degree to 

which the FIA plot samples capture the spectral variation in forest conditions found 

in the study area.  This is accomplished by comparing frequency histograms of 

study area versus inventory plot wetness and by analyzing patterns of forest growth 

from chronosequences of wetness based on stand age derived from map based and 

field measured sources.                   

 

2. METHODS 

2.1. Study Area 

 The study area is comprised of a 2,140,557 ha forest area determined by a 

1988 vegetation map of western Oregon (Cohen et al., 2001).  The study area 
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(Figure 4-1) covers portions of two major forested ecological provinces, which are 

described by Franklin and Dyrness (1988) as the Coast Range Province (CRP) and 

the Western Cascade Province (WCP). The CRP is characterized in the far west by 

a Sitka spruce zone a few kilometers wide lying directly adjacent to the Oregon 

coast.  The rest of the CRP and the majority of the WCP are dominated by conifers 

common to the Douglas-fir/western hemlock zone, although hardwood species such 

as red alder, vine maple, big leaf maple, and Pacific dogwood can dominate moist 

riparian areas and dry valley margins.  The climate of the Pacific Northwest is 

typified by warm, dry summers and mild, wet winters.  The study area 

encompasses a wide range of elevations, yielding strong physical and climatic 

gradients.  Climatic differences, in concert with differences in elevation and 

geology yield a wide array of growing conditions within the study area.  The 

prevailing winds and rugged topography generally yield warmer, wetter conditions 

in the CRP and colder and drier conditions in the WCP.  The combination of these 

geographic characteristics in concert with impacts from forest management have 

led to previous findings that following clearcut harvesting, the CRP typically 

supports faster forest regrowth than the WCP (Yang et al., 2005; and Schroeder et 

al., in press).       

 

2.2. Data 

2.2.1. Forest Inventory Data 
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 There are several differences between the periodic (data collected between 

1993 – 1997) and annual (data collected between 2000 – 2005) FIA inventories, 

mostly resulting from the switch in 2000 to an “enhanced” inventory design that 

now collects data on a systematic sample (≈ 10%) of plots within each western state 

each year.  Other differences include plot layout configuration changes (shape and 

size), number of measured subplots (periodic = 5, annual = 4), and variable vs. 

fixed radius subplots.  In addition, during the periodic inventory FIA only collected 

plot data on private forest lands in the western U.S., as apposed to the current 

annual inventory which now collects data on both private and public forest lands.  

To compensate for this difference we make use of data collected on public lands by 

the U.S. Forest Service Region 6 (R6) and Bureau of Land Management (BLM).  

Data collected by all three land management agencies were compiled by the Pacific 

Northwest FIA program into an Integrated Database (IDB) which uses common 

formats, definitions, measurement units, column names and table structures 

(Hiserote and Waddell, 2004).  We refer to this data set as IDB periodic and the 

annual data set collected solely by FIA as FIA annual.   

 In both the inventories plots are coded based on the number of different 

land cover conditions (e.g., forest, non-forest, water) observed on each measured 

subplot.  Thus, a plot labeled as 1 (i.e., single condition) would have only 1 

dominant land cover condition, whereas a plot labeled as 3 (i.e., multiple condition) 

would have a different land cover condition on at least 3 of the measured subplots.  

To minimize spectral heterogeneity it is not uncommon that only single condition, 
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forested plots are used in studies where plot data are used to directly model forest 

attributes with remotely sensed imagery (Schroeder et al., in press).  Others have 

used an approach where all condition classes of forested plots are used and a 

screening process (either visual or statistical) is used to discard plots that are 

assessed as obvious outliers (Ohmann and Gregory, 2003).  FIA plot coordinates 

are not publicly available, however even when known coordinate locations are used 

(as in this study) errors in plot coordinate locations and image registration can 

combine to yield unmeaningful statistical relationships.   

 

2.2.2. Stand Age Maps  

 Spatial representation of stand age is required as input to the curve-fit 

carbon model.  The process of deriving stand age maps for our western Oregon 

study area is adapted from the procedure described by Wallin et al. (1996) for use 

within the Landcarb modeling framework.  Briefly the process combines a 

vegetation age map of western Oregon (Cohen et al., 2001) with a stand 

disturbance map of timber harvests and wildfires originally produced by Cohen et 

al. (2002) through 1995; updated with similar change detection techniques through 

2002 by Mouer et al., (2005) and through 2004 by Lennartz (2005).   

  Image classification based on continuous variables (i.e., percent cover) was 

used to develop the 1988 vegetation map of western Oregon, which included seven 

classes: open (< 30% green vegetation cover (GVC)), semi-open (30 – 70 % GVC), 

broadleaf (>70% broadleaf cover (BC)), mixed (>70% GVC, <70% BC and < 70% 
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conifer cover (CC)), young conifer (>70% CC, < 80 years), mature conifer (>70% 

CC, 80-200 years) and old-growth conifer (>70% CC, > 200 years).  Stand age was 

only considered for three broad categories (young, mature and old-growth age) 

when assessing map accuracy, which was reported as 82% overall (Cohen et al., 

2001).   

 Approximated “structural” age classes were assigned to the seven 

vegetation classes from the 1988 map, these include: open (1-10 years), semi-open 

(11-20 years), broadleaf/mixed (21-30 years), young (31-80 years), mature (80-200 

years) and old-growth (>200 years).  For modeling purposes, we assumed the 

median age was the current stand age in the 1988 vegetation map (old-growth was 

assigned an age of 225).   The stand disturbance map was then used to mask out all 

stands of known disturbance (fire and timber harvest) occurring between 1972 and 

2004 (in roughly 5 (±2) year intervals).  We assumed that all disturbances occurred 

during the median year of each mapped disturbance interval.  For example, when 

creating the 2004 age map all areas of known disturbance were masked from the 

1998 vegetation map.  If a pixel was labeled as disturbed between 1984 and 1988 

its age was estimated as 2004 minus median disturbance age, or 2004 – 1986 = 18 

years of age.  For all unmasked areas (i.e., undisturbed since 1988), the age from 

the 1988 vegetation map was added up 16 years to 2004.  So if a pixel was labeled 

as open in 1988, its age was estimated as median age in 1988 (i.e., 5) plus 16 years 

(2004 – 1988 = 16), which yields an age of 21 years.  This procedure was used to 

“spin-up” an estimated stand age map for both the 1995 and 2004 image dates.  
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2.2.3. Site Index  

 To account for variability in forest growth due to climate and soils (i.e., 

potential productivity) a site index map is used as input to the curve-fit carbon 

model.  Timber companies often keep local data and spatial records of productivity 

for their land holdings, but consistent regional data are not widely available 

(Waring et al., 2006).  The only known map of site index available for western 

Oregon and Washington was produced in 1949 by Isaac.  The map was produced 

using field survey and elevation data (Swenson et al., 2005) and has been shown to 

correspond with known relationships of forest productivity in the region (Wallin et 

al., in press).  As this was the site index map used in the original work involving 

Landcarb (Cohen et al., 1996; and Wallin et al., 1996), we elect to use it here for 

further evaluation.      

 

2.2.4. Landsat Imagery 

 Two cloud free, near anniversary Landsat TM (WRS-2, path 46, row 29) 

images were used in this study.  Both images were radiometrically normalized as 

part of a 19 image time-series by Schroeder et al. (2006) using statistically selected 

pseudo-invariant features (see Canty et al., 2004) to relatively normalize all images 

to an atmospherically corrected reference (corrected with 6S, Vermote et al., 1997).  

The approach, referred to as absolute-normalization effectively normalized all 

images to a common radiometric scale (across all images < 0.025 RMSE) while 
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simultaneously correcting for atmospheric and sun-sensor view-angle effects.  

Given similar radiometry, the Landsat wetness indices calculated for both images 

can be compared over time to evaluate the representativeness of the FIA random 

sample both in terms of wetness frequency and patterns of forest growth derived 

with the stand age chronosequences.  

 

2.2.5. Inventory Carbon Estimation 

2.2.5.1 Per Pixel Carbon                 

Data derived from both the FIA annual and IDB periodic databases were 

used to validate both pixel level and total study area predictions of live carbon from 

the curve-fit model.  For the pixel level validation, raw tree data for trees > 2.5 

centimeters (cm) diameter at breast height (DBH) from both FIA inventories were 

converted to aboveground biomass (including branches, bole, bark and foliage) 

using national-scale allometric equations (Jenkins et al., 2003) of the form of Eq. 1,  

   
      (1) 
 

where bm is biomass per tree in kilograms (kg) per tree, dbh is diameter at breast 

height (in cm), Exp is an exponential function, ln is natural log base “e”, and β0 and 

β1 are parameters based on 10 general species groups (see Jenkins et al., 2003 

Table 4 for species group parameters).  We favor the use of national scale equations 

as they are developed over broad areas with large numbers of trees.  Coarse root 

biomass was estimated for trees > 2.5 cm DBH using Eq. 2,  

)ln( 10 dbhExpbm ββ +=
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        (2) 
 

where ratio is the coarse root ratio to total aboveground biomass from Eq. 1.   For 

each plot an adjustment was made to account for seedling biomass based on group 

count data for trees < 2.5 cm DBH.  Tree biomass was expanded to represent plot 

area (i.e., multiplied by trees per hectare) and summed resulting in a plot estimate 

of biomass in kg ha-1.  Plot biomass was then converted from kg to Mg and finally 

to Mg C ha-1 assuming 50% of living biomass is carbon (Swift et al., 1979).     

 

2.2.5.2. Total Study Area Carbon 

 To calculate total study area carbon, the tree level data were converted to 

aboveground biomass as stated above and then expanded by the number of hectares 

each plot represents in the study area.  To derive the area each plot represents in the 

study area we adjusted the number of hectares each plot represents in each 

inventory using Eq. 3, 

 
                  (3) 
    

where Adj Fac is the adjustment factor applied to the plot level expansion factor, 

Study area ha is the total number of hectares in the study area and Inventory ha is 

the total number of hectares each collection of plots represents in its respective 

inventory.  After applying the adjustment factor (0.9956 for IDB periodic, 0.9533 

for FIA annual) the resulting numbers were used to expand the per plot biomass 

)( 1
0 dbh

Expratio
ββ +=

haInventory

haareaStudy
FacAdj =
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estimates, which were then summed across plots to yield the estimate of total live 

carbon reported in teragrams (Tg).    

 

2.2.6. Curve-fit Carbon Model 

 Using a look-up table approach (Song et al., 2001), the curve-fit model uses 

a set of Chapman-Richards curves to estimate aboveground carbon (including 

foliage, branches, bole, and coarse roots).  The curves are defined using Eq. 4,  

 
  (4) 

 
 
 where LIVE is the total aboveground carbon store in Mg C hā¹, LIVEMAX is the 

maximum live aboveground carbon store, B1 is the rate that determines how 

quickly live carbon approaches the maximum, B2 determines how long plant 

production lags behind the maximum rate, and AGE is the number of years since 

disturbance.  The curve parameters (Table 2-1) are derived from STANDCARB 

(Harmon et al., 1995), which is a stand-level model that integrates effects of site 

condition, disturbance severity, tree re-establishment and species composition on 

forest growth.  The maximum carbon storage in aboveground and belowground 

pools was determined from past field based studies conducted within the region 

(Grier and Logan, 1977, Harmon et al., 1986, Smithwick et al., 2002).  The curves, 

parameterized using yield tables published for Douglas-fir (Curtis et al., 1982) are 

presented in Figure 4-2.  Live carbon maps were produced for the 1995 and 2004 

image dates to correspond with the two FIA inventory periods.  The steps of the 

           LIVE = LIVEMAX * (1 – e
(-B

1* 
AGE)

)
B
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curve-fit modeling and validation process are diagramed in the flow chart found in 

Figure 4-3.         

 

2.2.7. Carbon Model Validation 

2.2.7.1. Per Pixel Carbon 

 To evaluate local scale performance of the curve-fit model we directly 

compared predictions of forest carbon to those estimated from the FIA data.  We 

elected a conservative approach were we used all multiple condition plots with 

measured trees, resulting in 1,180 IDB periodic plots (n = 404 CRP, n = 776 WCP) 

and 403 FIA annual plots (n = 165 CRP, n = 238 WCP) available for analysis.  

Fewer plots are available from the FIA annual inventory as only 5 years of data (≈ 

40%) has been collected since the inception of the new enhanced FIA inventory 

starting in 2000.  For each of the sample plots we derived the pixel level estimates 

of carbon using the mean value of one of two pixel masks (1. 22-pixel mask for 

FIA plots in both IDB periodic and FIA annual data sets; 2. 13-pixel mask for BLM 

and R6 plots in the IDB periodic data set) which were designed to reflect the 

various sizes, shapes and coordinate measurement locations of the plots collected in 

the two inventories.  Scatter plots for both image dates are developed by ecoregion 

using the predictions (from the curve-fit model) and observed estimates (from FIA 

data) of forest carbon.  Descriptive statistics (i.e., minimum (min), maximum 

(max), mean and standard deviation (stdev)) and regression diagnostics (bias, root 

mean square error (RMSE), variance ratio (VR)) are used to evaluate the carbon 
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models capacity to locally predict forest carbon in each ecoregion.  A small portion 

of the study area does not fall into either of the forested ecoregions used in the per 

pixel validation.  Thus, for each inventory, the number of plots used in the per pixel 

validation are slightly less than the total number of plots used to estimate total live 

carbon for the study area.   

 

2.2.7.2. Total Study Area Carbon 

 To evaluate the landscape scale performance of the curve-fit model we 

directly compared the map based predictions of forest carbon to those estimated 

with a collection of plots from each inventory period (n = 1,450 for IDB periodic, n 

= 432 for FIA annual).  For each inventory period the plots were used to calculate 

total study area carbon (in Tg), as well as associated standard errors.  For the curve-

fit model, total study area carbon was calculated for both image dates by 

summarizing the map based predictions using Eq. 5,   

 
  (5) 

 
where Total C is the estimated study area carbon (in Tg), AB represents the age 

class bins from the stand age maps, ABP is the number of pixels in each age class 

bin, ABC is the carbon value in Mg C ha-1 of each age class bin, and 0.0625 is the 

number of ha in each 25 x 25 meter Landsat pixel.  In addition to total study area 

forest carbon, we also difference the respective map and inventory based estimates 

to report the carbon flux occurring between the near decadal point-in-time 

∑ ∗∗=
AB

CP ABABCTotal ))0625.0()(
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estimates.  Differences are reported in absolute values (in Tg), relative percentages 

(i.e., % of initial value) and amount of forest carbon sequestered on a per year basis 

(based on 9 years between point-in-time estimates, reported in Mg C ha-1).        

 

2.2.8. Landsat Wetness  

 Landsat wetness was calculated for both the 1995 and 2004 Landsat images 

using the reflectance based tasseled cap equations of Crist (1985).  We use wetness 

to evaluate the extent to which the FIA sample plots capture the spectral variation 

of forest conditions found in the study area.  This is accomplished by comparing 

frequency histograms of the wetness values observed across the full study area (i.e., 

image base) to those captured  by the inventory plots used to calculate total study 

area carbon (n = 1,450 for IDB periodic, n = 432 for FIA annual).  The frequency 

histograms were constructed for both image dates using the mean wetness value 

from each plots respective pixel mask (described above). 

 In addition to the frequency histograms, we also develop temporal 

signatures of forest growth using a chronosequence approach were average wetness 

values are plotted according to stand age from the Landsat age maps, as well as 

from age derived from the inventory data.  Since the stand age maps were 

generated to represent forest structural ages at different points in time (e.g., age 12 

in 1995 map is age 21 in 2004 map) we summarize wetness from both age maps in 

one chronosequence.  For the inventory based chronosequence, we combined 

estimated stand age from both sets of FIA inventories into the same age bins used 
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in the stand age maps.  For both chronosequences wetness is reported as average 

per age bin (error bars are standard deviations).  As wetness responds predictably to 

forest growth, we can use the chronosequences to determine if land-use shifts that 

might permanently impact the carbon balance can be detected at the landscape scale 

with the FIA sample and with the stand age maps.             

 

3. RESULTS 

3.1. Per Pixel Carbon Validation   

 Local scale performance of the curve-fit carbon model is based on the 

descriptive statistics and regression diagnostics presented in Table 4-2.  These 

results indicate that across ecoregions and inventory periods the curve-fit mean 

predictions are in all cases greater than the mean estimates of the inventory data.  In 

addition, all the curve-fit maximum predictions where less than the maximum 

estimates of the inventory plot data.  The standard deviations of the curve-fit 

predictions were similar across ecoregions and inventory periods and were 

observed to be within ± 7 Mg C ha-1of the standard deviations of the FIA plot 

estimates.  Scatter plots of predicted (from the curve-fit carbon model) versus 

observed (from FIA plot data) live forest carbon are presented by ecoregion in 

Figure 4-4.  The scatter plots indicate that across inventory periods the curve-fit 

model more accurately predicts (i.e., has higher correlation and lower RMSE) live 

forest carbon in the CRP than in the WCP.  The large positive bias statistics 

suggests the curve-fit model consistently over predicts live forest carbon in both 
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ecoregions.  The variance ratio reveals an inconsistent pattern regarding the amount 

of observed variation preserved in the curve-fit predictions.           

 

3.2. Total Study Area Carbon Validation  

 Landscape scale performance of the curve-fit carbon model is based on 

estimates of total study area carbon found in Table 4-3.  For both inventory periods, 

the curve-fit model estimated on average 138.32 Tg more live forest carbon than 

was estimated with the inventory plot data (+ 133.76 Tg in 1995, + 142.88 Tg in 

2004).  When considered in absolute terms, the flux (i.e., difference in inventory 

estimates) of live forest carbon predicted by the curve-fit model is substantially 

more (+ 9.12 Tg) than estimates derived with the inventory data.  In relative terms 

however, the flux estimate derived with the curve-fit model is nearly identical to 

that of the FIA estimate.  The results suggest that the flux of carbon estimated by 

the curve-fit model is well within the standard errors calculated for the inventory 

estimates (Table 4-3).  It should be noted that the higher standard error reported for 

the FIA annual inventory results from fewer plots being available for total carbon 

calculation.  On a per year basis, the curve-fit model predicted a larger carbon sink 

(0.47 Mg C ha-1/yr) than estimated with the inventory data  

 

3.3. Frequency Histograms and Stand Age Chronosequences    

 To gauge a general sense of the forest conditions captured by the inventory 

sample we derived frequency histograms of Landsat wetness for the full forested 
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study area and for the inventory plots.  The histograms, found in Figure 4-5a and b, 

show that the inventory plots sample the full range of wetness values observed in 

the study area.  The bell shape of the histograms suggests that for both inventory 

periods the systematic plot sample captures the observed wetness values with a 

similar frequency as found within the forested study area.  Both the study area and 

inventory plot histograms have a mean wetness around 0.00.  This is not surprising 

as wetness values approach 0.00 twice during successional development (once 

during early succession just prior to canopy closure, then again later in succession).  

Thus, to get a better sense of how well the inventory sample captures more subtle 

changes in forest condition we re-examine wetness plotted according to stand age 

using a chronosequence approach (i.e., space for time).  The curves (or trajectories) 

of average wetness plotted by ecoregion (error bars are standard deviations), 

derived with map and inventory based age classes are found in Figure 4-6a and b.   

The curves developed with the age maps show wetness increases steadily 

from year one, with some evidence after year 6 that average growth in the CRP is 

faster (i.e., approaches 0.00 more quickly) than in the WCP.  This same age range 

in the inventory based curves shows a similar wetness increase, and the ecoregion 

pattern, although less clear shows the WCP curve approaching 0.00 more quickly 

than the CRP curve.  In year 12 the map based curves for both ecoregions show a 

sharp drop in wetness (circled area on Figure 4-6a), which reveals a significant shift 

away from the normal response of wetness that occurs during the process of stand 

development.  As our age maps are 9 years a part (1995 – 2004) the same shift in 
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wetness is still present in the map based curves in year 21.  This sharp drop in 

wetness is not captured by either of the inventory based curves.    

 

4. DISCUSSION 

4.1. Per Pixel Carbon 

 At the local scale we evaluated the performance of the curve-fit carbon 

model using pixel level scatter plots, descriptive statistics and regression 

diagnostics.  The results indicated that the curve-fit model, although simple in form 

performs quite well considering its somewhat conceptual nature.  We caution 

against strict interpretation of the pixel level results as there are many sources of 

potential error which have not been accounted for.  These sources of error include, 

but are not limited to allometric equations, plot coordinates, image registration, 

outliers, age maps, site index map, curve calibration for Douglas-fir and the use of 

one image date to represent each multi-date inventory period.  Nonetheless, 

evidence suggests that the curve-fit model predicted live forest carbon more 

accurately (i.e., higher correlation, lower RMSE) in the CRP than in the WCP.  It is 

possible the curve-fit model was able to more accurately predict carbon in the CRP 

as it tends to support faster, more consistent (i.e., less variable) patterns of forest 

growth resulting from more favorable growing conditions (Schroeder et al., in 

press).  As evidence of this hypothesis we plotted post-harvest forest regrowth 

classes (normalized by the % of area clearcut) mapped with trajectories of multi-

temporal Landsat imagery (Schroeder et al., in press) by site index class from the 
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Isaac map (Figure 4-7).  These graphs clearly show that regardless of site index 

there is very little variability in the distribution of forest regrowth classes in the 

CRP.  In the WCP however, there is substantial variability in the distribution of 

forest regrowth classes, especially for site index classes 2 through 4.     

 Although the curve-fit model performed better in the CRP, the bias statistics 

suggested that the model over-predicts forest carbon in both ecoregions.  Some of 

the over-prediction could result from using curves parameterized specifically for 

one species (Douglas-fir).  Another possibility is that the model parameters (from 

Table 4-1) themselves need to be modified.  The scatter plots reveal that the over-

prediction tends to occur in the low to middle range of carbon and under-prediction 

at the high end.  Thus, a slight decrease to β1 (controls how quickly live carbon 

approaches the maximum value) and a slight increase to β2 (controls lag of plant 

production behind the maximum rate) from Eq. 4 might help linearize the 

predictions of the model in relation to the field measured inventory data.  

Additional pixel level accuracy could also be achieved by improving the spatial 

representation of forest productivity (i.e., site index map) used to assign the curve 

based carbon values.   

One option to improve the spatial representation of forest productivity 

would be to use a more detailed measure predicted by a forest growth process 

model such as 3-PG (Landsberg and Waring, 1997).  Driven by coarse resolution (1 

km) satellite data from the MODIS sensor the 3-PG model has predicted Douglas-

fir site index from FIA inventory data with reasonable accuracy (R2 = 0.55) for the 
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state of Oregon (Swenson et al., 2005).  Another option to improve predictions in 

young forests would be to rely on a direct measure of forest growth from time-

series data from Landsat.  Given its temporal frequency, as well as recent advances 

in algorithms which extract trajectories of forest regrowth in an automated fashion 

(Kennedy et al., in press) this seems like a viable option.  Although young forests 

do not store large amounts of carbon, differences in successional rate (fast vs. slow) 

has been shown to significantly impact the amount of live carbon (120 Mg C ha-1 

vs. 53 Mg C ha-1) stored in 40-year old plantation forests in western Oregon 

(O’Connell et al., in preparation).     

 

4.2. Total Study Area Carbon 

 As the pixel level validation showed that the curve-fit model tended to over-

predict forest carbon at the local scale, it is no surprise that total study area forest 

carbon was also over-predicted in relation to the inventory based estimates.  

Although this over-estimation is significant (average of 138.32 Tg per inventory 

period) in absolute terms, the flux (i.e., difference between inventory periods) 

estimated by the curve-fit model was found to be well within the standard error of 

the inventory estimates.  This finding helps provide additional credibility to the live 

carbon flux estimates derived in previous studies with the curve-fit model (Cohen 

et al., 1996; Wallin et al., 1996; and Wallin et al., in press).  For a slightly larger 

(but overlapping) western Oregon study area, Wallin et al. (in press) estimated a 

sink of live forest carbon of approximately 1.7 Mg C ha/yr between 1991 and 1995.  
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This estimate is similar in magnitude to our 1.63 Mg C ha/yr sink estimated 

between 1995 and 2004.  As our results suggest a similar size sink to that dating 

back to 1991, it is possible that the flux of forest carbon in western Oregon could 

be approaching a balanced state given current forest practices (Cohen et al., 2002) 

resulting from implementation of the Northwest Forest Plan (FEMAT, 1993).   

 In addition we note that our carbon estimates for both inventory periods 

were derived using the same set of national scale allometric equations (Jenkins et 

al., 2003), thus eliminating unwanted error in our flux calculations due to 

differences in equation form.  FIA inventory regions (i.e., Pacific Northwest, 

Interior West, Southern, Northern) typically calculate and report biomass data 

using a variety of different allometric equations, however based on the scale of 

application we favor the use of national equations like those utilized here so that 

derived estimates and their associated errors can be compared in similar units 

regardless of modeling strategy.   

 

4.3. Frequency Histograms and Stand Age Chronosequences 

 Direct forest inventories like FIA are one of the more reliable methods from 

which to base regional and national scale carbon budgets (Turner et al., 1995; and 

Jenkins et al., 2001).  For inventories (or any method for that matter) to be truly 

effective they must capture the spatial and temporal changes in land-use patterns 

occurring at the landscape scale.  This can be a difficult task in complex landscapes 

where differences can occur between ecosystems currently on the landscape and 
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those that have been previously cleared (Houghten et al., 2001).  Thus, to gauge a 

general sense of how well the inventory sample plots represent the forest condition 

present in the study area we utilized the tasseled cap wetness index (Crist, 1985) as 

it responds predictably over the course of forest development and is nearly 

insensitive to topographic effects (Cohen and Spies, 1992; and Cohen et al., 1995).  

The frequency histograms of wetness (Figure 4-5a and b) show that in terms of 

shape and magnitude of response the inventory plots from both periods well 

represent the forest condition in terms of spectral wetness found in the study area.  

As this is a very general measure, we were interested in a more detailed evaluation 

of the inventory samples representation of the wetness continuum found in the 

study area.  

Since wetness responds predictably to structural changes associated with 

forest growth, we utilized a chronosequence approach to look for significant 

deviations away from the normal pattern of forest development that might be 

captured by the spectral index.  A typical wetness trajectory starts at its lowest 

point (≈ -0.15) immediately after disturbance in year one, increases to around 0.00 

as leaf area is accumulated, exceeds 0.00 until it reaches its highest point at canopy 

closure, falls below 0.00 as scene components other than green foliage start to 

increase, and finally increases slightly back to around 0.00 in old-growth stands 

when crowns die back and the presence of epiphytic lichens increases in the upper 

canopy.  In young stands (1 – 15 years, Figure 4-6a and b), the large standard 

deviations around the mean wetness values characterizes the large amount of 
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spectral variability that can occur early in forest succession due to differences in 

productivity and management (Horler and Ahern, 1986).  This variability is a 

common feature associated with stands recovering from clearcutting in western 

Oregon (Yang et al., 2005; and Schroeder et al., in press).  What is not common is 

the considerable drop in average wetness observed at age class 12 in the 

chronosequence developed with the map based stand age classes (Figure 4-6a 

circled area).  This pronounced spectral shift away from normal forest development 

is not seen in the chronosequence developed with age classes from the inventory 

plot data (Figure 4-6b).             

Using the stand age maps (specifically age class 12), multi-temporal 

Landsat imagery and high resolution aerial photography (1 meter resolution true 

color photography from National Agriculture Imagery Program, 2005) we have 

interpreted this shift in wetness response as predominately forest clearing along the 

Willamette valley margins resulting from urban (e.g., rural homesteads) and 

agricultural (e.g., crop fields and Christmas tree farms) expansion.  As we used a 

space for time approach using stand ages mapped in 1995 and 2004, the age 12 

class bin is represented again as age 21 in the map based chronosequence (Figure 4-

6a).  At age 21 we see that the curves of average wetness have only increased 

slightly from age 12, indicating that some of the detected shift away from normal 

forest development maybe a long term change in land-use.  This finding is 

noteworthy as uncertainties associated with rates of land-use change (especially 
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conversion of forest to non-forest) contribute more to uncertainty of carbon fluxes 

than do uncertainties in biophysical variables (Houghten and Goodale, 2004).   

Based on the stand age map statistics up to 13,668 ha (or 0.6 % of the study 

area) could potentially be effected by this shift in land-use.  This equals 

approximately 0.02 Mg C ha-1/yr (based on the average of 5 site index curves for 

12 year old stands from Figure 4-2 and a 9 year measurement interval), which is 

not a large amount in absolute terms.  The point however is not about the difference 

between the amount of carbon present on the landscape (based on land-use shift) 

and what could be present if these areas where progressing along a track of normal 

forest development, but rather on the difference between what carbon is present on 

the landscape (based on land-use shift) and what was there before these areas were 

disturbed.  The later view could have a considerable impact on the long-term 

carbon balance of the region.   

Although we present evidence that the inventory based chronosequence did 

not detect the subtle shift in land-use we have no real means of determining if this 

had any impact on the total carbon estimates derived for the study area.  Our goal 

was simply to demonstrate the subtle landscape changes that can be detected with 

the synoptic view of Landsat.  We also note that one of the major weakness of the 

curve-fit carbon model is that it assumes all disturbed forests eventually grow back 

to new forests.  Clearly this a naïve assumption that must be addressed in future 

versions of the model, along with other issues raised in this study such as curve 

prediction bias, site index representation, curves for other species and ecoregion 
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productivity differences (CRP vs. WCP).  Regardless of the method used to 

estimate forest carbon (e.g., forest inventory, process model, accounting model), it 

is important that shifts in land-use especially those involving forest to non-forest 

conversion be robustly accounted for.  We hope our Landsat based chronosequence 

approach can allow for better spatial accounting of these forest to non-forest 

conversions in future applications of the curve-fit model.  Although optical satellite 

imagery has its limitations regarding the direct estimation of forest carbon, we have 

demonstrated that Landsat’s temporal (e.g., age maps) and spectral (e.g., wetness 

chronosequences) characteristics can be used as effective inputs to a curve based 

model which estimates carbon flux from forests within the standard error of 

inventory estimates.   

 

5.  CONCLUSION  

 Given the uncertainty surrounding the effects of climate change many 

countries have been tasked with accounting for terrestrial carbon stocks over large 

areas.  Although estimating total carbon flux requires accounting for live carbon, as 

well as other major component pools (e.g., soils, detritus, and forest products) we 

focused on prediction of live forest carbon as its estimation is critical to initializing 

various component pools in regional scale models (Turner et al., 2004) and is often 

spatially estimated with considerable uncertainty (Houghten et al., 2001).  As 

optical satellite data have been shown to have an asymptotic relationship with 

biomass we sought a method that could overcome this limitation.  The curve-fit 
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model evaluated here uses a look-up table approach, where a set of Chapman-

Richards growth curves are used in combination with forest stand age and site 

productivity (i.e., site index) maps to spatially predict live forest carbon (including 

foliage, branches, boles, and coarse roots).   We presented an ecoregion specific 

(CRP vs. WCP) evaluation of the local (i.e., pixel level) and landscape (i.e., total 

carbon and carbon flux) scale performance of the curve-fit model using two periods 

of FIA forest inventory data (represented by 1995 and 2004 image dates).   

 At the pixel level, the curve-fit model performed well considering its 

conceptual framework.  In general, the model performed better (i.e., higher 

correlation, lower RMSE) in the CRP than the WCP, likely the result of faster, less 

variable growth patterns which have been previously observed for the CRP (Yang 

et al., 2005; and Schroeder et al., in press).  Model predictions for both ecoregions 

were observed to have large positive bias statistics, resulting in over-prediction of 

low to mid-range carbon values and under-prediction of high end carbon values.  

Prediction based descriptive statistics such as mean forest carbon were likely 

effected by sources of error from outliers, geo-registration (image and plot), input 

maps, and for curves calibrated only for Douglas-fir.  All the pixel level patterns 

were consistent across both inventory periods.     

 As the pixel level evaluation revealed the curve-fit models tendency to 

over-estimate inventory based forest carbon, it was not surprising to find the total 

carbon estimates were also over-estimated.  Even so, we found that the flux (i.e., 

change between inventory periods) of forest carbon predicted by the curve-fit 
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model was, in relative terms nearly identical to the inventory based estimate 

(7.22% curve-fit, 7.40% inventory).  In absolute terms, we found the curve-fit 

models flux estimate to fall well within the standard error of the inventory 

estimates.  On a per year basis, the curve fit model estimated a carbon sink of 1.63 

Mg C ha-1/ yr and the inventory data a sink of 1.16 Mg C ha-1/ yr between 1995 and 

2004.  Use of national scale allometric equations (Jenkins et al., 2003) to predict 

carbon for both inventory periods minimized unwanted variation in our flux 

estimates due to differences in equation form.  

 We consider data collected by national forest inventories like FIA as one of 

the more reliable means from which to estimate carbon balances over large areas, 

although for this to be true the sample of inventory plots must capture the spatial 

and temporal changes in land-use patterns occurring on the landscape.  To gauge 

the sense to which the inventory plots captured the forest condition in our study 

area we presented frequency histograms of Landsat wetness derived for the full 

study area and for the inventory plots.  Based on shape and magnitude of the 

histograms we found that the inventory plots from both periods well represent the 

forest condition in terms of spectral wetness found in the study area.  As this is a 

very general measure, we also presented stand age chronosequences of wetness 

developed using age classes developed from the stand age maps and from the 

inventory data.  Since wetness responds predictably to structural changes associated 

with forest growth, we were able to observe a significant shift away from the 

normal pattern of forest development using the map based stand ages.  This shift, 
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interpreted as forest to non-forest conversion, was not detected in the 

chronosequence developed with the inventory based age data.  

As subtle land-use changes are difficult to detect with any method, we do 

not imply the inventory sample does not represent the forest conditions of the study 

area, but rather that synoptic data from Landsat could be used in more synergistic 

ways to help assign plot locations that could better capture these fine grained 

spatial processes.  We also noted that our curve-fit models assumption that all 

disturbed forests eventually grow back to new forests needs to be addressed along 

with other improvements to minimize curve prediction bias, improve site index 

representation, and account for species and ecoregion productivity differences 

(CRP vs. WCP).  Although optical satellite imagery is limited in its ability to 

directly estimate forest carbon, we found Landsat’s temporal (e.g., age maps) and 

spectral (e.g., wetness chronosequences) characteristics to be useful inputs to a 

curve based model which estimated carbon flux from forests within the standard 

error of inventory estimates.   
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Figure 4-1.  The 2,140,557 ha forested study area in western Oregon. 
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Figure 4-2.  Chapman-Richards growth curves used to predict live forest carbon. 
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Figure 4-3.  The curve-fit carbon modeling and validation process. 
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Figure 4-4.  Scatter plots of observed (from inventory plots) versus predicted (from 
curve-fit model) live forest carbon by ecoregion and image date. 
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Figure 4-5.  Frequency histograms of Landsat wetness for a. 1995 image date and 
b. 2004 image date.  Dashed line is study area wetness, solid line is inventory plot 
wetness. 
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Figure 6.  Chronosequences of Landsat wetness according to stand age class from 
a. stand disturbance maps, b. inventory plots.   
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Figure 4-7.  Landsat based forest regrowth classes (from Schroeder et al., in press) 
according to map based site index class (Isaac, 1949).  Top graph is for the Coast 
Range Province (CRP) and bottom graph is for the Western Cascade Province 
(WCP).    
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TABLES 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 4-1.  Curve parameters defining Chapman-Richards growth curves from 
Figure 4-2.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Site index Live Max (Mg C hā¹) B¹ B² 
1 650 0.02 1.98 
2 570 0.02 1.97 
3 460 0.02 1.96 
4 310 0.02 1.92 
5 230 0.02 1.88 
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        Table 4-2.  Descriptive statistics and regression diagnostics for pixel level carbon validation.    

1995 n Min* Max* Mean* Stdev* Bias RMSE* VR r R² 
CRP 404         41.21 116.03 0.95 0.67 0.45 
                IDB Plot   0.02 633.71 182.83 136.91           

Landcarb    0.73 541.23 224.04 130.08           
WCP  776         34.28 142.89 1.01 0.50 0.25 
               IDB Plot   0.01 875.28 190.43 137.90           

Landcarb    1.00 628.15 224.71 139.75           
2004 n Min* Max* Mean* Stdev* Bias RMSE* VR r R² 

CRP 165         52.81 126.87 1.06 0.58 0.33 
               FIA Plot   0.01 654.09 156.08 121.80           

Landcarb    0.08 518.00 208.88 129.44           
WCP  238         45.75 135.29 0.94 0.57 0.32 
               FIA Plot   0.03 728.24 179.73 141.22           

Landcarb    1.00 632.54 225.48 132.14           
  * units = Mg C hā¹               
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                           Table 4-3.  Total study area carbon validation statistics.   

  n Total C**  SE** Absolute** Relative Per Year* 
Map             

  1995 Landcarb - 435.94 - 31.48 7.22% -1.63 
2004 Landcarb - 467.42 -       

Plot             

IDB Periodic 1,450 302.18 7.98 22.36 7.40% -1.16 
FIA Annual 432 324.54 15.71       

              

*units = Mg C ha           

**units = Tg C             

negative sign denotes C sink         
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Chapter 5 – Conclusion 

          The purpose of this research was to integrate forest inventory and multi-

temporal satellite data to better understand early successional forest regrowth 

patterns and carbon storage in western Oregon forests.  As many of the data used in 

this research were collected at different spatial and temporal scales, new and 

innovative techniques were required to effectively and accurately characterize 

forest change.  Scaling data from large to small spatial scales to answer broad 

ecological questions often requires a sequential approach which systematically 

links one scale to the next through common attributes.  As such, each chapter 

presented here builds on the concepts develop in the previous, resulting in 

significant advancement of our understanding of early successional forest processes 

in western Oregon forests.         

To detect and characterize continuous changes in early forest succession 

however, optical satellite images must first be transformed to a common 

radiometric scale to minimize sun, sensor, view-angle and atmospheric differences.  

In Chapter 2 we presented a comparison of five atmospheric correction methods (2 

relative, 3 absolute) used to calibrate a nearly continuous 20-year Landsat 

TM/ETM+ image data set (19 images) covering western Oregon (path 46 row 29) 

to like surface reflectance values (Schroeder et al., 2006).  We found that an 

automated ordination algorithm called multivariate alteration detection (MAD) 

(Canty et al., 2004), which statistically locates invariant pixels between a subject 

and a series of reference images yielded the most consistent common scale among 
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all images.  Applied in a “absolute-normalization” context,  we demonstrated how 

radiometric calibration with MAD improves (i.e., reduces scatter in) spectral 

reflectance trajectory models used to characterize patterns of early forest 

succession.  The impact of this research was crucial as thorough radiometric cross-

normalization allows for: 1.)  accurate characterization of continuous forest change 

with satellite imagery and 2.)  robust integration with ground measured forest 

inventory data.    

 Previous studies have established that forest regrowth after disturbance in 

western Oregon is highly variable both in terms of revegetation rate (Nesje, 1996; 

Tappeiner et al., 1997; and Yang et al., 2005) and delay (i.e., time to reach 5% 

canopy cover).  While these studies provided convincing evidence that successional 

variability in western Oregon is real, their use of ground survey (Tappeiner et al., 

1997) and airphoto interpretation (Yang et al., 2005) has limited the number of 

forest stands available to statistically analyze potential causes of the phenomena.  

In Chapter 3 we overcame these limitations by scaling percent tree cover 

measurements derived by ground survey and airphoto interpretation to the greater 

landscape using 19 cross-normalized Landsat images (1984 – 2004).  Developing a 

series of forest regrowth trajectory classes (little to no regrowth, slow regrowth, 

moderate regrowth and fast regrowth) we observed a wide range of successional 

regrowth pathways 18 years after clearcut harvesting.  These classes showed a 

higher percentage of fast regrowth in the Coastal Range Province and a much 

higher percentage of little to no regrowth in the Western Cascade Province.  For 
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both ecological provinces we observed the propensity for faster regrowth on north 

facing aspects, shallow slopes and at low elevations.  In both ecological provinces, 

elevation followed by potential relative radiation (PRR) (Pierce et al., 2005) 

explained the largest amount of variation in forest regrowth rates.     

As we now had a better understanding of where and why successional 

variability is occurring on the landscape, the final stage of this research was to 

ascertain a greater understanding of the uncertainty surrounding spatial predictions 

of aboveground carbon storage made with optical satellite imagery.  In Chapter 4 

we utilized two sets of FIA forest inventory data to validate a Landsat based curve 

fitting model for spatially predicting live forest carbon.  We evaluated the 

performance of the model at the local (pixel level) and landscape (total study area 

carbon) scales for both the Coast Range and Western Cascade ecological 

Provinces.  At the pixel level we found the curve-fit model performed better (i.e., 

higher correlation, lower RMSE) in the Coast Range Province than the Western 

Cascades due to faster, more consistent growth patterns.  The model displayed 

large positive bias statistics indicating a tendency to over-predict carbon in relation 

to the inventory data.  At the landscape scale, the curve-fit model also over-

predicted total study area forest carbon for both inventory periods.  Although this 

over-estimation was significant (average of 138.32 Tg per inventory period) in 

absolute terms, the flux (i.e., difference between inventory periods) estimated by 

the curve-fit model was found to be well within the standard error of the inventory 

estimates.  To see how well the inventory plots captured the forest conditions 
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present in the study area we compared frequency histograms and stand age 

chronosequences of Landsat wetness developed for the full study area and for the 

inventory plots.   The study area and inventory based frequency histograms had the 

same general shape and magnitude of wetness, however the map based stand age 

chronosequence detected a subtle shift in land-use which was not captured by the 

inventory sample. Although optical satellite imagery is limited in its ability to 

directly estimate forest carbon, we found Landsat’s temporal (e.g., age maps) and 

spectral (e.g., wetness chronosequences) characteristics to be useful inputs to a 

curve based model which was found to estimate carbon flux from forests within the 

standard error of inventory estimates.   

Taken as a whole, the development of the absolute-normalization approach 

to image radiometric calibration lead to one of the first continuous characterizations 

of forest successional change with optical satellite imagery.  In addition, our 

effective cross-normalization procedure has facilitated a new concept of image 

change detection referred to in this dissertation as “date-invariant” regression.  In 

the process of evaluating an alternative way of using Landsat data to estimate forest 

carbon we developed a new way to detect subtle land-use shifts (forest to non-

forest) from chronosequences of the Landsat wetness index.  Overall, the body of 

work presented here has facilitated a greater understanding of the function and 

process of western Oregon forests.     
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