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radiometric scale to minimize sun, sensor, viewl@aagd atmospheric differences

among images. We present a comparison of five gihmeric correction methods



used to calibrate a nearly continuous, 20-year sandM/ETM+ image data set
(19-images) over western Oregon (path 46 row ¥9¢ found that an automated
ordination algorithm called multivariate alteratidetection (MAD) (Canty et al.,
2004), which statistically locates invariant pixbktween a subject and a reference
image yielded the most consistent common scale gnmeages. Using the cross-
normalized image-series we modeled percent treercoeasurements derived by
ground survey and airphoto interpretation to theatgr landscape. Developing a
series of forest regrowth classes we identifieddewange of successional
regrowth pathways 18 years after clearcut harvgstive observed the propensity
for faster regrowth on north facing aspects, shabtopes and at low elevations.
Finally, we utilized two sets of forest inventorgtd to evaluate a Landsat based
curve-fitting model for predicting live forest cann. At the pixel level, the model
tended to over-predict carbon and performed béteer higher correlation, lower
RMSE) in the Coast Range ecoregion, likely theltedfaster, less variable
growth patterns. At the landscape scale, we fabatthe flux of forest carbon
predicted by the curve-fit model was in absolutente well within the standard
error of the inventory estimates. In the proadssvaluating the curve-fit model,
we discovered a new method for detecting subte, forest to non-forest) land-use
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forests. We were also able to identify severa¢ptal improvements to estimating

live forest carbon with the curve-fitting approach.
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Understanding Changes in Forest Cover and Carbmadgi in Early Successional
Forests of the Pacific Northwest Using USDA Fofastvice FIA
and Multi-temporal Landsat Data
Chapter 1 Introduction

The forested landscape of western Oregon is caenbof highly complex
matrix of early successional, late seral, and otoagh forest conditions. Each
forest condition type has the potential to impactiegical processes, such as
nutrient and water cycling, carbon storage poténtiddlife habitat, and trophic
interactions. Although knowing a forest standgenir state of succession is useful,
a clearer understanding of the impact forest chéwageon the aforementioned
ecological processes can be achieved with a marandig characterization of the
successional process.

Studying forest succession with the growing legafcemporal data
available from satellite sensors like Landsat (¥®f8sent) offers a unique
opportunity to analyze continuous forest succesdionanges over a thirty-two
year period (Cohen and Goward, 2004). A key corapbto using satellite
imagery to estimate forest change is successtedyiation with ground inventory
data. Inthe United States, the USDA Forest SeiviEorest Inventory and
Analysis (FIA) Program has been using a three-pldiagble sample design to
collect field measurements of forest attributesnfare than 50 years (Frayer and
Furnival, 1999). The purpose of this researchb isttegrate forest inventory and
multi-temporal satellite data to better understaady successional forest regrowth

patterns and carbon storage in western Oregont$ores



To detect and characterize continuous changeglynfesest succession
however, optical satellite images must first basfarmed to a common
radiometric scale which minimize sun, sensor, vaawle and atmospheric
differences among images. In Chapter 2 we preseamparison of five
atmospheric correction methods (2 relative, 3 alispused to calibrate a nearly
continuous 20 year Landsat TM/ETM+ image data ketrhages) covering
western Oregon (path 46 row 29) to like surfackeotdince values (Schroeder et
al., 2006). The findings of this work are impottéor two reasons. Thorough
radiometric cross-normalization allows for: 1.)cakate characterization of
continuous forest change with satellite imagery 2ndrobust integration with
ground measured forest inventory data.

Previous studies have established that foresbwabrafter disturbance in
western Oregon is highly variable both in termsesegetation rate (Nesje, 1996;
Tappeiner et al., 1997; and Yang et al., 2005)dmidy (i.e., time to reach 5%
canopy cover). While these studies provide conmmevidence that successional
variability in western Oregon is real, their usegodund survey (Tappeiner et al.,
1997) and airphoto interpretation (Yang et al.,320tas limited the number of
forest stands available to statistically analyzeepoal causes of the phenomena.
In Chapter 3 we overcome these limitations by sgghiercent tree cover
measurements derived by ground survey and airphtgpretation to the greater
landscape using 19 cross-normalized Landsat im@§&gl—-2004). Developing a

series of forest regrowth trajectory classes€litti no regrowth, slow regrowth,



moderate regrowth and fast regrowth) we obserwgdia range of successional
regrowth pathways 18 years after clearcut harvgstissing classification and
regression tree (CART) statistical modeling weratited to predict the developed
forest regrowth classes with a suite of climatid &opographic variables.

In Chapter 3 we developed a better understandimdnere and why
successional variability is occurring on the laragsein western Oregon, thus the
final stage of this research was to ascertain atgreinderstanding of the
uncertainty surrounding spatial predictions of agpound carbon storage made
with optical satellite imagery. In Chapter 4 wéizg two sets of FIA forest
inventory data to evaluate a Landsat based cutthegfiapproach to estimating live
forest carbon. We conducted a quantitative assa#sof model performance and
found that although the curve-fit model had a tegeo over-predict carbon, the
flux (or change between inventory periods) estisatere well within the standard
error of the inventory estimates. In the procdssvaluating the curve-fit model,
we discovered a new method for detecting subte, forest to non-forest) land-use
shifts which are common along the foothills of Wélamette Valley. Identifying
these types of land-use shifts is critically impattto developing a more accurate
comprehensive carbon budget from forests. We walseable to identify several
potential improvements to estimating live foresboa with the curve-fitting

approach.
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ABSTRACT

Detecting and characterizing continuous changesily forest succession using
multi-temporal satellite imagery requires atmospheorrection procedures that
are both operationally reliable, and that resuttomparable units (e.g., surface
reflectance). This paper presents a comparisdimeftmospheric correction
methods (2 relative, 3 absolute) used to calibaatearly continuous 20 year
Landsat TM/ETM+ image data set (19 images) coveniagtern Oregon (path/row
46/29) to like surface reflectance values. In tiigabsolute correction of
individual images in a time series should effedyivainimize atmospheric effects
resulting in a series of images that appears moméas in spectral response than
the same set of uncorrected images. Contradittisgheory, evidence is
presented that demonstrates how linear atmospt@mection algorithms such as
Second Simulation of the Satellite Signal in théa&8pectrum (6S), Modified
Dense Dark Vegetation (MDDV), and Dark Object Sattion (DOS) actually
make images in a time series somewhat less sggdimailar to one another.
Since the development of meaningful spectral réedlece trajectories is more
dependant on consistent measurement of surfaeetaiice rather than on accurate
estimation of true surface reflectance, relativanradization is also tested. The
relative methods are variants of an approach eddr as absolute-normalization,
which matches images in a time series to an atnesgyaiily corrected reference
image using pseudo-invariant features and redu@drraxis (RMA) regression.

An advantage of absolute-normalization is thaina#iges in the time series are



converted to units of estimated surface reflectaviuée simultaneously being
corrected for atmospheric effects. Of the twotreétamethods used for absolute-
normalization, the first employed an automatedration algorithm called
multivariate alteration detection (MAD) to statestily locate invariant pixels
between each subject and reference image, whilsgtend used analyst selected
pseudo-invariant features (PIF) common to the emmirage set. Overall, relative
normalization employed in the absolute-normalizatontext produced the most
consistent temporal reflectance response, witlathemated MAD algorithm
performing equally as well as the handpicked PI&shough both relative
methods performed nearly equally in terms of obsgerror, several reasons
emerged for preferring the MAD algorithm. The papencludes by demonstrating
how time series normalization improves (i.e., retuscatter in) spectral
reflectance trajectory models used for charactagipatterns in early forest

succession.



1. INTRODUCTION

Landsat has been providing a nearly continuousrdeaf global land
surface change since 1972. This record represeastsf the most consistent
available archives of recent earth history infoiporatand its use has facilitated
understanding of earth surface processes acrosalspal temporal scales and
disciplines (Cohen and Goward, 2004).

In forestry, Landsat imagery has been importacharacterizing and
mapping frequency and extent of forest fire (Mikkerd Yool, 2002; and van
Wagtendonk et al., 2004), stand replacing distwwbd@ohen et al., 1998; Cohen et
al., 2002; and Sader et al., 2003), partial harffestinklin et al., 2000; Nilson et al.,
2001, and Healey et al., 2006), successional gtagiéet al., 1991; and Mausel et
al., 1993) and vegetation regrowth (Foody et &96t Viedma et al., 1997; and
Sabol et al., 2002). Studies focusing on the lyiglyghamic process of forest
succession have generally relied on forest ags atésrmation extracted from
single image dates to make inferences about suonasstage attributes (Fiorella
and Ripple, 1993; Peterson and Nilson, 1993; akdhkuskas, 1996). The
difficulty with this approach is that the relatidms between forest age and spectral
data can be highly variable, especially for youn@Q year) stands with low
canopy cover (Horler and Ahern, 1986). The reasonthis variability are many,
but can include differences in site quality andatloan, site preparation, planting
practices (density and spacing), and species catiggosPerhaps even more

important is that forest age is not directly rerhogensible in any given date of



imagery, as are forest structure and compositioth bf which are physically
related to forest succession (Cohen et al., 1995).

An alternative use of Landsat for characterizing$b succession is
examination of a multi-temporal image series. &y forest stand that has been
disturbed since 1972 one could theoretically obséne recovery trajectory, and
therefore know both its age and how its structaral compositional attributes have
changed. However, as described by Song and Wokd20603), factors such as
phenology, topography, and illumination and viewgapmetry can contribute to
variability in multi-temporal spectral responseattmay have little to do with
forest succession. In any multi-temporal analydisre the spectral signal is not
sufficiently strong to minimize the effects of tkesomplicating factors,
radiometric calibration is essential to differetgiaeal change from noise. With
adequate calibration it may be possible to exatangoral trajectories of Landsat
data for a more dynamic characterization of fosestession.

The objective of this paper is to compare the #éffeness of absolute and
relative radiometric calibration procedures witk thitimate goal of producing
normalized temporal reflectance trajectories oé$ts that are recovering from
stand replacing disturbance. In the strict sefadleabsolute calibration involves
both atmospheric correction and application of toehts for sensor and related
parameters to derive estimates of surface refleetaim this study, however, we
are also interested in examining results of thermediate step in which calibration

parameters are applied, but atmospheric effecta@reemoved; i.e., at-satellite



reflectance. For clarity, we refer to this as jédorrection. Relative calibration
(commonly referred to as normalization) involvesage-to-image radiometric
matching, where any number of techniques can bdogexqbto select pseudo-
invariant features (PIFs) (Schott et al, 1988),chlare subsequently used to
empirically calibrate images in a time series. &weing on the application,
relative normalization need not include correctitorsatmospheric and sensor
related parameters and thus derivation of physigas such as reflectance.
However, when physical surface units are desirabie gssential that at least one
image receive full absolute calibration, and thdrebimages can be relatively
normalized to it. This combined calibration-noripation approach may have
certain advantages over use of absolute procedioes.

The main questions addressed in this paper incllidéiow do absolute
and combined absolute-relative calibrations compdren used to produce Landsat
temporal reflectance trajectories for coniferoug$b stands recovering from
disturbance in western Oregon? We compare partialseveral full calibration
methods and (as suggested in Question 2) twovelatethods. 2) Are automated
relative calibration procedures based on statisticiination as effective as those
based on analyst selected PIFs? The processeatisgl PIFs, if done by the
analyst, can be time consuming, particularly if entiran two image dates are
examined. Thus, an automated procedure could dr@at merit. The ordination
procedure we use is called multivariate alteratietection (MAD). 3) How does

temporal calibration/normalization affect the spalatnanifestation of forest
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succession? As the ultimate purpose of a largelyss to characterize temporal
spectral trajectories in relation to forest suciegst is important to determine how

the different calibration methods compare in thiesms.

2. METHODS
2.1. Data and Study Area
The remote sensing dataset used in this studysterefi16 Landsat 5 TM
and 3 Landsat 7 ETM+ images (WRS-2 path 46 rowfr2®) western Oregon
ranging between 1984 and 2004 (Table 2-1). Allgesawere resampled to a 30 m
resolution and co-registered using an automatepidiiet program (Kennedy and
Cohen, 2003) to the 1987 image, which had beemathfied by the United
States Geological Survey. All images were co-tegesl to the UTM coordinate
system (zone 10) with a root mean square erraess than 0.5 pixels per image.
The study area encompasses nearly the full etevéigure 2-1) and
climatic gradients present in western Oregon. die@ also includes a diverse
distribution of existing land ownership categori€shen et al., 2002), and

therefore represents the disturbance and recoattgrps present in the region.

2.2. Calibration and Normalization
In this study we compared the effect of absolutdion (both full and
partial, as described earlier) and combined cdlimanormalization on temporal

reflectance trajectories of recovering conifer &tse Calibration was a multi-step
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process. For the final step, atmospheric corracteveral different methods were

used and compared.

2.2.1. Calibration

Calibration was a several step process that inddallve use of standard
equations to convert 8-bit satellite-quantizedlralied digital numbers (DN) to at-
satellite reflectance. Landsat 5 images were dwstverted to at-satellite radiance

using Eq. (1),

L, =(DN*G)+B (1)

where L, is band specific at-satellite radiance (W 1t um?), DN is satellite

guantized calibrated digital numbds,is band specific bias in DN, ar@is band-
specific gain (fisrpm WY). The impact of sensor degradation on the gain
parameter was accounted for using data publishéithbyne et al. (1997) and
Teillet et al. (2001), while revised gain paramgteublished by Chander and
Markham (2003) were used for images acquired aodgssed after May 5, 2003.
The biases reported by Markham and Barker (1986¢ weed for all images.
Landsat 7 images were converted to at-satellitenad using Eq. (2),

L., =(LMAX _, —LMIN_,)/(DNMAX — DNMIN))* (DN = DNMIN) + LMIN _,
(2)
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where LMAX, is band-specific spectral radiance scalddNMAX (W m? st
um™), LMIN,, is band-specific spectral radiance scaledNMIN (W m? sr*

umY), DNMAX is maximum quantized calibrated digital number {255
andDNMIN is minimum-quantized calibrated digital numbefdOLPGS data, 1
for NLAPS data). Equation (2) accounts for gaates{i.e. high/low setting) and
published LMIN/LMAX values (Landsat 7 Science Daksers Handbook).

After conversion to at-satellite radiance, eachgenaas converted to at-
satellite reflectance (assuming a uniform Lambersiarface under cloudless
conditions) using Eq. (3),

_ n(LsaI - Lp)
" T,(E, coS@)T, + Egp) 3)

0

where pis estimated surface reflectands,is path radiance (W thsr* um™), T,

is atmospheric transmittance from the target tovilaedsensork, is the
exoatmospheric solar constant (W pm™), T, is atmospheric transmittance in the
illumination direction,® is solar zenith angle, ard,,,,, is downwelling diffuse

irradiance (W rif um™). By definition, at-satellite reflectance does remove

atmospheric effects, thugand T, equal 1.0, an&,,,, andL, equal zero.

2.2.2. Atmospheric Correction
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In the previous steps, all imagery was partiallyocated. For full
calibration, at-satellite reflectance was convettedurface reflectance using three
different methods for deriving values ®f, T,, E,,,, andL in Eq. 3. These
methods included dark object subtraction (DOS), iffetidense dark vegetation
(MDDV), and second simulation of the satellite sibim the solar spectrum (6S).
These methods range in complexity from a simplegeAaased correction
procedure (DOS) to a detailed, theoretical modsétian radiative transfer code

(6S).

2.2.2.1. Dark Object Subtraction (DOS)

The DOS method assumes that within a satellite enthgre exist features
that have near-zero percent reflectance (i.e.,nvaémse forest, shadow), such that
the signal recorded by the sensor from those festigrsolely a result of
atmospheric scattering (path radiance), which rhesemoved (Chavez Jr., 1996).

Path radiancel.,, was estimated using Eq. 4,

L, = G ODN,, + B - 001E,cos@)T, + Egu ] T,/ 7 (4)

where DN, is the darkest DN value in each spectral band atiteast one
thousand pixels (Teillet and Fedosejevs, 1995) D®S method calculated here
is referred to in Song et al. (2001) as DOS3, wiestimated, ase™™'*“*®) andT,

as e /0 agssuming a Rayleigh atmosphere with no aerosol®aagercent
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surface reflectance for the dark object. Opficadkness for Rayleigh scattering

(7,) (Kaufman, 1989) was estimated by,

7, =0.00856917* (1+0.01131 +0.000131™) (5)

where A is wavelength imm. E_,,, for a Rayleigh atmosphere was estimated as

zero aerosol optical depth at 550 nm using thea@#tive transfer code (Vermote
et al., 1997). DOS3 was selected for use in tidysin lieu of other DOS methods
based on its ability to create a consistent comsuaile as evaluated by change
detection and classification accuracy for parthefitandsat scene under

investigation (Song et al., 2001).

2.2.2.2. Modified Dense Dark Vegetation (MDDV)

This approach is based on the dense dark veget@ilow) method (Liang
et al, 1997), which assumes that areas of dendeydgetation are present in the
satellite image in which to use as dark objectd fordsat bands 1 (blue) and 3
(red). Since longer spectral wavelengths aredéssted by atmospheric
scattering, Landsat band 7 at-satellite reflectamessumed equal to its surface
reflectance. As in Liang et al. (1997), dark anease spatially defined for each
image where band 7 reflectance wa905 and NDVI was > 0.1. The identified
dark areas were used to estimate band 1 and bsudie8e reflectance based on the

following relationships with band 7 surface refeate (Kaufman et al., 1997),
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p=p 14 py=p, 2 (6)

where the subscripts pf are Landsat band numberk, for each image was

estimated as the difference between the at-satediitectance in bands 1 and 3 and
the estimated surface reflectance from Eqg. (6)is &pproach was first used with a
“smart moving window” (Liang et al., 1997) to atrpberically correct individual
pixels, and was subsequently modified by Song.€2801) to a “fixed” window
approach for band-wise correction as applied h&tee presented MDDV approach
derives an appropriate aerosol optical depth gtiteely running 6S radiative
transfer code until the output surface reflectamed¢ches the predicted surface
reflectance from Eq. (6). Matching aerosol optabapbths were then used in 6S to

atmospherically correct the subsequent bands ¢f iezege.

2.2.2.3. Second Smulation of the Satellite Sgnal in the Solar Spectrum (6S)

The 6S general radiative transfer code (Vermotd.£1997) was used to
estimate surface reflectance using aerosol optiggaith (AOD) data collected at the
AERONET site located at the HJ Andrews ExperimeRtakst in Blue River,
Oregon (Figure 2-2). Estimates of aerosol optiegth were acquired at 500 and
670 nm for the day and time closest to satelliterpass for the 1994 through 2004

images (except 2002, no data). To estimate tresakoptical depth at 550 nm

required as input to 6S the relationship= al® was used, wherg, is aerosol
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optical depth at wavelength (hanometers), andand b are empirical parameters
(Liang et al., 1997). The estimated aerosol opteath at 550 nm (Table 2-2) was
used along with the 6S midlatitude summer atmospaed continental aerosol
model to derive surface reflectance for each imaggeoptical depth data were
only available for 1994 — 2001 and 2003 — 2004y ankges from these years

could be calibrated with 6S.

2.2.3. Relative Normalization

For relative normalization, one fully calibratedage (1994) was chosen as
the reference to which all others were adjustedhgusvo separate approaches:
analyst selection of PIFs and statistical ordima{ff’dAD). This image was
selected because of its high radiometric qualityigsmcentral location in the time
series. Because we used a fully calibrated referenage (6S version) for these
procedures, we refer to them as two variants @li@ration-normalization

approach.

2.2.3.1. Pseudo-invariant Feature (PIF)

Using the criteria for selecting normalization &tgysuggested by Eckhardt
et al. (1990), the image time series was thorougityected to derive a total of 63
PIFs (the same 33 dark and 30 bright featuresch eaage) for relative
normalization. The bright (dune, urban, rock) dadk (water, forest, lava)

features were hand-selected to be evenly distbarteund the image (Figure 2-2),
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and to encompass the full range of spectral breggivalues (bright, medium,

dark) found. Normalization was accomplished omadsby-band basis using these
“training” PIFs with reduced major axis (RMA) regsgon (Cohen et al., 2003;
Canty et al., 2004). An independent set of PIFs 26) to be used for testing the

results of calibration and normalization were aetected (Figure 2-2).

2.2.3.2. Multivariate Alteration Detection (MAD)

Selecting PIFs by hand, as previously describedl tisie-consuming task,
particularly when the time series consists of sgMenages. An attractive and less
subjective alternative for selecting PIFs is to ststistical methods to locate them
automatically. One such method, multivariate atteradetection (MAD) (Nielsen
et al., 1998; Canty et al., 2004) uses traditi@aalonical correlation analysis
(CCA) (Hotelling, 1936) to find linear combinatiobstween two groups of
variables (i.e. the spectral bands of subject afefence images) ordered by
correlation, or similarity between pairs. Diffeoes between such ordered pairs are
called MAD variates and these are invariant tonaffransformations (including
linear scaling). This implies that linear atmogphand instrumental effects will
not influence the change/no-change probabilitiehefpixels derived from the
method. In fact, the sum of squares of the statizizd MAD components (the
MAD components divided by their standard deviatjaaspproximately chi-
square distributed, enabling no-change thresholtie tset easily. The MAD

transformation was used here to locate invariaxglpi(chi-square threshold 0.99)
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between each image in the time series and the 89%brrected reference. The
selected invariant pixels were subsequently usedtmalize each image band-by-

band to the reference scene using RMA regression.

2.3. Error Analysis

The absolute (full and partial) and relative atnieesc correction methods
tested here all use linear adjustments to congerimage DNSs to units of
estimated surface reflectance (or top of atmosptediectance in the case of partial
correction). Thus, each image in the time seea&sdpt 6S, applied only to images
with available in situ atmospheric data) was coteceto estimated surface
reflectance using the look up table (LUT) approdebcribed by Song et al. (2001).

After applying atmospheric corrections to the iméiges series, a 3x3
window was placed over each test PIF (26 in numdned)the mean spectral
reflectance value for each band of corrected ima@iemethods x 18 images x 6
spectral bands + 9 6S corrected images x 6 spéetnals = 594 in all) was
extracted and compared to the mean PIF specttattafce values of the reference
image. The difference between corrected PIF reflee and the reference PIF
reflectance is reported as the root mean squave @MSE). Thus, all relatively
normalized images where compared to the 6S codd&@®84 reference image,
whereas the absolutely calibrated images were coadpa the 1994 reference
image corrected with each corresponding calibratiethod (e.g. DOS3 corrected

images were compared to the DOS3 1994 refered@assess robustness of
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calibrating an image time-series, RMSE was caledldly image (across spectral
bands), by Landsat band (across images), and bbgrehlibration/normalization
method (across images and spectral bands). AalyRNISE for detailed absolute
calibration of Landsat imagery has been previoushprted at 0.02 (Moran et al.,
1992), therefore 0.02 will serve here as a benckifioarestablishing successful

calibration/normalization.

2.4. Spectral Reflectance Trajectories

The development of meaningful spectral reflectarmectories is not
solely dependent on the accurate calculation ef $tuface reflectance, but more
on a consistent measurement of surface reflec@momg images, which has
previously been referred to as “common scale” (Setrgg., 2001). The
consistency of common scale is based here on tieeatice in spectral response
among the corrected images, relative to the resgecference image over the set
of test PIFs. The calibration or normalization noetfiound to have the least
amount of spectral difference (lowest RMSE) amasg PIFs will be used to
derive the spectral reflectance trajectories obvedng conifer forests. If two
methods have similarly low RMSEs, the method bestihg itself to operational
use will be selected for spectral trajectory depeient.

Forest stands undergoing stand-replacing distudbbatween 1986 and
1987 were visually identified using a multi-temddR&B color composite of

spectral band 5. To evaluate the effect of imadm@tion/normalization on the
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spectral manifestation of forest succession, twllvest stands were hand-selected
for spectral reflectance trajectory development.th® twelve forest stands selected
(Figure 2-2), six were located in the Coast Rar@fe)(and six in the Western
Cascades (WC). Stand mean reflectance valuesextacted from the

normalized and partially corrected image time seaied fit with quadratic
polynomial curves. These quadratic polynomial esnor spectral reflectance
trajectories were developed for all six Landsatspébands, as well as for the
tasseled cap transformation (brightness, greennetsess) and the normalized
vegetation index (NDVI). Standard error (RMSE) amadance explained @R

were calculated for each quadratic polynomial mattheln averaged across the
twelve forest stands to determine whether thedtajg models were improved (i.e.

lower RMSE) by image calibration/normalization.

3. RESULTS
3.1. Image Calibration/Normalization
3.1.1. RMSE by Image

To evaluate the consistency of common scale atthge level, RMSE was
calculated for each image (across spectral barydslibration/normalization
method (Figure 2-3). Examining RMSE for the pdistiaalibrated images (Figure
2-3a) reveals the surprisingly consistent specgsgpponse of the image time series
even with no atmospheric corrections applied. ddmesistent nature of the

partially corrected time series is expressed bgs@®f the eighteen images (1984,
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1986, 1989, 1992, 1997, 2000 and 2004) havingthess0.02 RMSE, with seven
others (1993, 1996, 1998, 1999, 2001, 2002, an8)Z@ling just slightly above
the 0.02 benchmark. Only four images (1987, 19881, and 1995) were
considered appreciably different than the referemage, with RMSESs nearly
equal to or greater than 0.03.

Only nine of the eighteen images in the time senere calibrated with all
three absolute calibration methods (Figure 2-3hjs reducing the number of
observations to assess improvements to the comoaba af the full time series.
Of these nine images, DOS3 had the lowest RMSkxiaofghe images, compared
to three for 6S. The MDDV method yielded the highe8ISE of all the absolute
calibration methods in six of these nine imagesortler to determine whether
common scale was improved by absolute calibratfmpartially corrected image
time series was used as a standard for compar{3bthe nine images that were
corrected by all three absolute methods, only {@@88, 1999, 2000, and 2001)
had lower RMSEs than their partially corrected d¢egmarts. Of the four images
with improved common scale resulting from absotakbration, two were
corrected with DOS3 and two with 6S. Thus, theteamplex DOS3 method
proved to be the most effective absolute calibratieethod. It yielded the lowest
RMSE in six of the nine images corrected with latee absolute methods, and
slightly lowered RMSE from that which was obserugthe partially corrected
images. Even so, the common scale of the imagederies was not consistently

improved by any of the absolute calibration methods
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On the other hand, the image time series nornthliath the two relative
methods appears consistently improved in term&wincon scale (Figure 2-3c).
All eighteen images had at least one relative nbzatgon method yield an RMSE
of 0.02 or less. Compared to the partially corddime series, fifteen of the
images had lower RMSEs after relative normalizati@verall, it appears that the
improved common scale was achieved nearly equglhoth the PIF and MAD
methods. Though differences in RMSE were sligtiben the two methods, PIF

did have lower RMSEs for eleven of the eighteengesan the full time series.

3.1.2. RMSE by Landsat Band

The consistency of the image time series was alsluated based on
RMSE by Landsat band (across images) (Figure Ztprter wavelength spectral
bands like Landsat bands 1 and 2 are commonly itegdxy Rayleigh scattering.
Although scattering is likely, bands 1 and 2 do se@m significantly impacted
here as both have low (< 0.02) partially corre¢d@dSEs. On the other hand, band
3 has the highest partially corrected RMSE, whgclikely attributed to
atmospheric scattering. Longer spectral regidesllandsat bands 4, 5 and 7 are
typically influenced by atmospheric absorption, evhis likely contributing to the
elevated (> 0.02) partially corrected RMSEs obs#ifee these spectral bands.

If the errors detailed above are truly a resulttofiospheric scattering and
absorption, then it stands to reason that absoalileration would likely account

for some of these effects, serving to lower RMSifthat observed in the
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partially corrected images. Quite the oppositebiserved however, with all of the
absolute methods yielding an increase in RMSE um @, 2, 4, and 5) of the six
spectral bands. In fact, all of the absolute mesHailed to lower RMSE to < 0.02.
DOS3 and 6S vyielded similar RMSEs in four (1 —#dhe six spectral bands; two
(3 and 4) of which were nearly equal to the ertmsesved in partial correction. On
the other hand, MDDV yielded the highest RMSEsliahe methods tested in five
(1, 2, 3, 4, and 5) of the six spectral bands. r@lijeabsolute calibration did not
improve the consistency of common scale from thaeoved in the partially
corrected images.

Relative normalization on the other hand signiftstaimproved the image
time series from the spectral perspective. Botthefrelative methods lowered
RMSE from that observed in partial correction.fdaot, after relative normalization
five of six spectral bands had at least one redatnethod lower RMSE to < 0.02.
In terms of lowering RMSE from partial correctidoand 4 seemed least improved
by relative normalization whereas band 3 the m8sith of the relative methods

performed nearly equally in all six spectral bands.

3.1.3. RMSE by Atmospheric Correction Method

To assess overall effectiveness RMSE was calcutateeach atmospheric
correction method (across all images and specaradi®) (Figure 2-5). Similar to
observations by image and by Landsat band, notieeaibsolute calibration

methods reduced the RMSE below that observed ipahelly corrected data.
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The MDDV method produced the greatest overall exith the DOS3 and 6S
methods resulting in slight increases in the estiserved in the partially corrected
images. The relative methods were equally effectigducing the error observed
in the partially corrected images by nearly 25%e PIF method produced a

slightly lower overall RMSE than MAD.

3.2. Spectral Reflectance Trajectories

Although the PIF method yielded slightly less etittan MAD, there was very
little difference between the two methods in teohsnproving the common scale
of the image time series. Given the similaritytted two methods, the MAD
calibration-normalization approach is preferredetfer several reasons (see
discussion) including its utility to operationaleug\s a result, spectral reflectance
trajectories were developed using the MAD normaliaed partially corrected
image time series. The parameters4Rd RMSE) of the quadratic polynomial
models used to form the spectral reflectance tt@jies were averaged across the
twelve hand-selected forest stands and are preseniable 2-3.

The results indicate that on average, MAD specéf&ctance trajectories
have less residual scatter (lower mean RMSE astassls) than trajectories
created with the uncalibrated time series. AlthoMAD band 1 and 2 trajectories
yield the lowest post-correction errors, they expharelatively low percentage of
variance as expressed b§.ROn the other hand, NDVI spectral reflectance

trajectories explain a high percentage of variateamnd in the temporal data, yet
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yield high prediction errors. ldeally, models eaptg a high percentage of
variation combined with low prediction error woydtbduce the best spectral
reflectance trajectories. In this regard, trajgescreated with MAD normalized
band 7 and the tasseled cap wetness seem prorfusicigaracterizing the dynamic

process of forest succession.

4. DISCUSSION
4.1. Image Calibration/Normalization

The results indicate that the absolute calibratn@thods tested here were
ineffective at correcting satellite images to asstent common scale, a finding
similarly reported by Song et al. (2001) for a mortof the same Landsat scene.
The more complex methods (MDDV and 6S) attempstomeate aerosol optical
depth, which generally rely on various simplifyiagsumptions. These
assumptions have been previously reported as oieféefor improving change
detection and classification accuracies (Song.e2@01) and have not served to
improve the common scale of the image time seniesgmted here. Given the
relatively stable common scale observed in theglrtorrected data, it is not
surprising that complex theoretical adjustmentsiced the spectral consistency of
the image time series. While simple correctioke DOS3 generally worked the
best, none of the absolute methods produced a carsoabe more consistent than

observed in the partially corrected images.
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The MDDV method was the least effective absolalécation method, and
as reported in other studies, tends to signifigaoikr-estimate aerosol optical
depth (Table 2-2). This over-estimation resulted disproportionate amount of
dark features (water and mature forest) being adese¢o near zero values in
bands 1 and 3, yielding over-corrected water anestespectral signatures. Based
on observations in this study it is likely that ttr@eria for defining dark areas
(band 7 reflectanceg 005 and NDVI > 0.1) is too liberal. More stringeniteria
for defining dark areas may improve the performaofdfis method, especially in
highly vegetated scenes. Furthermore, the partalirected data also suggests
that band 7 may be impacted by atmospheric absorgterhaps invalidating the
MDDV assumption that band 7 apparent reflectancelsdband 7 surface
reflectance.

Although the most complex method, 6S was sliglgsleffective than the
much simpler DOS3 method at creating a consistemiton scale. The AOD data
used in 6S were collected at the Western CascatRONET site, located at the HJ
Andrews Experimental Forest. Since Landsat scér#94ies adjacent to the
Pacific Ocean and covers portions of two mountanges it is likely, given the
highly variable nature of aerosol loadings, thatDA&stimates recorded in the
western Cascades may differ significantly from eéhobserved elsewhere in the
scene. Since accurate AOD data is often difficutibtain, improving image-based

estimates from methods like MDDV warrant furtherastigation. Determining the
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success of 6S as an absolute correction methodntaer limited by the lack of
AOD data for the full image time series.

Whether analyzed by image, by Landsat band, or by
calibration/normalization method, relative normatian produced the most
consistent common scale for the image time sefiéss finding is similar to
Olsson (1995), who reported that relative norméhrawas to be preferred to
absolute calibration for accurate detection of liazea changes in boreal forests.
Although the PIF method had a slightly lower ovieRMSE, there are several
reasons for preferring MAD.

First, MAD is easier and more time efficient toplement than PIF.
Although hand-selecting invariant features has Iseecessfully employed in other
studies, it is a time consuming process that sno$ubject to analyst interpretation,
and potentially limited by scene location. The MAi2thod however, has been
automated to statistically locate invariant pixels small subset or clip (Figure 2-
2) taken from the subject and reference imagestsTaot presented) show that the
performance of normalization can vary dependinghenquality and quantity of
invariant pixels selected from different image slifSelecting clips that contain
large, highly stable (i.e. low variance) brighttigas like sand dunes and stable
dark features like water and mature forest shoalgreferred. Although mature
forest is likely to change spectrally from yeay&ar due to phenological
differences, it seems capturing this natural vaitgton the normalization model

will facilitate separation of real forest changenfr noise. A simple test can be
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conducted to locate several suitable image clipd.prdsat scene for future
implementation of MAD. In addition, the MAD progmnais currently being
modified to integrate invariant pixels selectedvrmultiple image clips into one
normalization model.

The second advantage to using MAD is that areagyafficant change (i.e.
disturbance, cloud cover) occurring between thgestiland reference images do
not need to be accounted for prior to selectingimant pixels. Other methods for
statistically selecting invariant pixels, such adimation by principal components
analysis (PCA) have been previously suggested {@l,e2002). While this
method has produced favorable results, it typiaatuires more processing time
as PCA is not invariant to linear scaling of indata. Hence, significant areas of
change between the subject and reference imagel@uels) must be masked out
prior to statistical ordination. PCA can also mgicantly weighted by a single
image in the time series that has high varianeéeceShe basis for MAD is CCA,
pixels that significantly change between the suljed reference image do not
need to be masked out prior to ordination, offeadditional time savings when
correcting multiple images.

Although atmospheric correction is not requiretbberunning MAD, it
may be useful to have all the images in the times@&ormalized to units of
surface reflectance. Thus, the third advantagesitag MAD is that since it is
invariant to linear scaling, all images in a tineeiss can be corrected for

atmospheric effects while simultaneously being estad to units of reflectance.
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This is best achieved by using the calibration-radization approach suggested
here, where the selected reference scene is dinstected to estimated surface
reflectance using one of the absolute calibratiethwds, and then all other images
are normalized to it. It is important to note tha¢ar transformations such as
sensor gain/bias adjustments and absolute cabbrate not necessary prior to
running MAD. The same consistency of common sedlebe achieved with

MAD whether or not images are first calibratededfig additional savings in

processing time depending on user needs.

4.2. Spectral Reflectance Trajectories

The objective of radiometric calibration is notmarily to improve the
percentage of variance explained)By a spectral reflectance trajectory, but rather
to reduce the noise associated with multi-date, dlatess lowering residual scatter
(RMSE). Our results indicate that for all spectrahds and indices evaluated,
MAD normalized spectral reflectance trajectoried less residual scatter than
trajectories created with the partially correcte@dges. Although normalization
effectively reduced residual scatter, two factastdbuted to a less than expected
magnitude of improvement. First, images acquiredestern Oregon during the
summer months already have a high degree of speotrasistency due to
seasonally dry conditions. Second, calibrationfradization error is obtained here
by comparing atmospherically corrected images @ges subjected to partial

correction (e.g. sun and view angle effects), likelducing the magnitude of
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improvement derived from a comparison against uected images (e.g. DN).
We are currently using MAD to normalize images aaglin more spectrally
diverse forest types (i.e. eastern deciduous)desssthe level of improvement
normalization can make to those types of speatfdatance trajectories.

Now that we have determined that calibration-ndization with MAD
effectively improves the development of spectriemtance trajectories, our focus
turns to using the spectral reflectance trajecsaieeanalyze spatial patterns of
forest succession. Our observations indicategpattral reflectance trajectories
developed with MAD normalized band 7 and tassetgrwetness seem promising
for characterizing continuous attributes of fomstcession. It should be noted
however, that spectral reflectance trajectoriesdark here on single variables,
while models of successional recovery after distade will likely include multiple

variables.

5. CONCLUSION

An effective and efficient method for atmosphdhceorrecting an image
time series for characterization of forest succasdipatterns, referred to as
calibration-normalization, was presented. Thishuodtrelatively normalizes all
images in a time series to an absolutely calibregéegtence image. The benefits of
this approach are the reliance on the more depé&ndahative normalization
process to yield an improved temporal common segdide subsequently

converting all images in a time series to unitswface reflectance. The results
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demonstrated how converting images in a time séviesflectance using absolute
calibration alone tends to decrease the consisteihcymmon scale compared to
that observed in the partially corrected images.

Overall, the MDDV method was the least effectiveabte method,
possibly resulting from the overly lenient spatlefinition of dark areas. Although
the most complex method, the 6S radiative transide performed slightly worse
than the much simpler DOS3 method, with possibtetsbmings attributed to the
extrapolation of point sampled AOD data to the bhalhdsat scene. The image
based DOS3 method did the best job of all the albsaialibration methods at
correcting the image time series, supporting tlser@i®n that simpler atmospheric
correction methods may be preferred when consigtehcommon scale is more
important than accurate estimation of surface cedlgce (Song et al., 2001).

The best normalization results, in terms of RMSEtenachieved nearly
equally by both relative methods, with correcti@séd on analyst selected PIFs
generating only a slightly more accurate commotedtean relative correction
based on invariant pixels statistically selectedi®yMAD algorithm. Although
the PIF method generated slightly lower overalbesyseveral reasons emerged for
preferring the MAD based approach to invariantdeaselection. These reasons
include ease and time efficiency of implementatiamariance to linear scaling
effects, and the simultaneous correction of atmespleffects during the
conversion to reflectance. While previously shdermork well in arid

environments (Canty et al., 2004), the MAD algarithas been shown here to
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generate a temporally consistent, spectrally devemsge of invariant pixels for
successful normalization of a highly forested Latdisne series.

To assess the impact of image normalization orchiaeacterization of
recovering conifer forests, spectral reflectanagetitories were developed for
twelve hand-selected forest stands undergoing stpldcing disturbance. For all
spectral bands and indices evaluated, MAD normalspectral reflectance
trajectories had less residual scatter (lower RM&&) trajectories created with

partially corrected images.
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TABLES

Table 2-1. Landsat time-series used in this study.

Sensor Date
™ 8/26/1986
™ 7/12/1987
™ 8/31/1988
™ 9/3/1989
™ 7/7/1991
™ 8/10/1992
™ 8/29/1993
™ 7/31/1994
™ 8/19/1995
™ 8/21/1996
™ 7123/1997
™ 8/11/1998
™ 8/16/2000
™ 8/25/2003
™ 7126/2004

ETM+  8/22/1999

ETM+  7/26/2001

ETM+  7/29/2002

41
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Table 2-2. Aerosol optical depth (AOD) obtained from HJ Andeeferonet site
and AOD estimated by the modified dense dark véiget&DDV) absolute
calibration method.

Image MDDV AOCD AERONET AOD
1984 0.240 -
1986 0.230 -
1987 0.380 -
1988 0.370 -
1989 0.110 -
1991 0.400 -
1992 0.140 -
1993 0.090 -
1994 0.150 0.015
1995 0.290 0.010
1996 0.400 0.036
1997 0.110 0.028
1998 0.100 0.008
1999 0.110 0.032
2000 0.130 0.048
2001 0.090 0.029
2002 0.090 -
2003 0.130 0.093
2004 0.070 0.030
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Table 2-3. R-square and RMSE of quadratic polynomial mode¢saged across

twelve forest stands recovering from stand reptadisturbance.

R? RMSE
Mean Mean

Band 1 Partial 0.62 0.0107
MAD 0.51 0.0057

Band 2 Partial 0.63 0.0088
MAD 0.56 0.0054

Band 3 Partial 0.77 0.0141
MAD 0.72 0.0105

Band 4 Partial 0.54 0.0379
MAD 0.84 0.0255

Band 5 Partial 0.82 0.0217
MAD 0.77 0.0208

Band 7 Partial 0.90 0.0124
MAD 0.91 0.0109

Brightness Partial 0.36 0.0390
MAD 0.31 0.0254

Greeness Partial 0.84 0.0226
MAD 0.91 0.0181

Wetness Partial 0.92 0.0138
MAD 0.93 0.0133
NDVI Partial 0.92 0.0426
MAD 0.90 0.0410
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ABSTRACT

The rate at which forest vegetation re-establisloesinance after clearcut
harvesting can impact many ecological processes, @sl erosion/sedimentation,
nutrient and water cycling, carbon storage poténtiddlife habitat, and trophic
interactions. Although knowing a forest stand’srent state of succession is
useful, a clearer understanding of the impact tdrasvesting has on the
aforementioned ecological processes can be achweitleéd more dynamic
characterization of the successional process. dre ffially model the continuous
nature of forest regrowth following clearcut hatuag we extrapolated percent tree
cover data collected by the U.S. Forest ServicdiP&orthwest Forest Inventory
and Analysis program to a cross-normalized Lantiise-series using a date-
invariant regression modeling approach. Usingelperiods of mapped clearcuts
we extracted and classified the extrapolated petoes cover data into four
regrowth classes (little to no, slow, moderate fast). These forest regrowth
classes were used to develop frequency distribsigi@scribing the landscape
patterns of post-harvest forest recovery for twal@gical provinces in western
Oregon. The patterns of forest regrowth observext the three clearcut periods
indicated a much higher percentage of fast regramvthe Coastal Range Province
and a much higher percentage of little to no re¢inawthe Western Cascade
Province. For both ecological provinces we obsgthe propensity for faster
regrowth on north facing aspects, shallow slopesaahow elevations. The forest

regrowth classes and the frequency distributiodsated that a wide range of
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successional stages could be found in both ecabgrovinces 18 years after
clearcutting. The extension of forest regrowtletrtories to the spectral space of
Landsat provided an opportunity to use CART stiaastanalysis to more fully
investigate the climatic and topographic driveffuencing the rate of post-harvest
forest regrowth. Based on the Kappa statistigliptens from both CART models
were in “fair” to “moderate” agreement with thetteamples. Both classification
trees yielded ecologically interpretable insigint® ithe environmental attributes
influencing forest regrowth rates after clearcuyjtinn both ecological provinces,
elevation followed by potential relative radiatiPRR) explained the largest
amount of variation in forest regrowth rates. Boige the effectiveness of
predicting more generalized post-harvest foresioreth rates we combined the
four forest regrowth classes into two general *fastd “slow” categories. Based
on the Tau statistic, the CART models correctlgsified 12% (CRP) and 26%

(WCP) more combined test samples than classificatfahe four regrowth classes.



47

1. INTRODUCTION

There is growing evidence suggesting considenadli@bility in the rate at
which trees re-establish dominance following stegyglacing harvest disturbance
in the temperate forests of the Pacific Northwdstis variability in forest
regrowth has been observed even among standsimitarsabiotic conditions and
management prescriptions (Nesje 1996; Tappeirar,et997; Sabol et al., 2002;
Yang et al., 2005; and O’Connell et al., unpublthheRe-establishment of forest
vegetation after harvest is important becausentimuence many ecological
processes, such as erosion/sedimentation, nuamehivater cycling, carbon
storage potential, wildlife habitat, trophic intetians, and because of the economic
value of conifer trees in the region.

Variability in the timing of tree re-establishmesone of the most widely
studied phenomenons in forest ecology (Franklal.e002). In western Oregon,
ground surveys (e.g., Tappeiner et al., 1997) atatpretation of high-resolution
aerial photographs (Nesje 1996; and Yang et al5PBave been previously
utilized to study tree re-establishment, both ofoltare time consuming and
expensive. Ground surveys are critical in undestanthe role of local site factors
controlling tree re-establishment, however the nemnab stands analyzed is often
fewer than required to statistically validate relaships between the abiotic and
biotic factors influencing forest regrowth. Stusllgased on the interpretation of
high-resolution aerial photographs are useful at they help establish the spatial

and temporal extent over which regrowth variabiktyccurring, but they do not



48

readily permit explicit spatial modeling of the pioenenon (Nesje, 1996; and Yang
et al., 2005). We seek to overcome these limitatiny scaling estimates derived
by ground survey and airphoto interpretation togteater landscape using Landsat
data. This synergistic approach should effectivetyease the number of stands
available for statistical modeling, thus offering@pportunity to advance our
understanding of the geographically referencedrenmental attributes

influencing rates of forest regrowth following cleatting in western Oregon.

The use of satellite imagery to characterize fosastessional processes
has mainly focused on estimating forest age frorglsiimage dates to make
inferences about successional stage conditioneapoimt in time (Fiorella and
Ripple, 1993; Peterson and Nilson, 1993; Jakubaydlé96; Cohen et al., 2001;
and Song et al., 2007). The difficulty with thigpaoach is that the relationship
between forest age and spectral data can be highigble, especially for young (<
20-year) stands with low canopy cover (Horler amery, 1986). A more limited
number of studies have taken advantage of multipégies to study the dynamic
process of forest succession (Hall et al., 199bdcet al, 1996; and Lucas et al.,
2002), but have utilized relatively simple techr@gsuch as post-classification
comparison to estimate forest change. Althouglpkaro execute, post-
classification comparison relies on differencing tar more independently
produced image classifications. Thus, its effestass at estimating forest change

is hindered by the fact that errors inherent tdhaadividual classification combine
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multiplicatively as they are overlaid for compansoesulting in a final change
product that contains more error than any of thgimal classification-based inputs.

An alternative use of satellite imagery for chagaieing forest successional
processes is through the examination of a multptaal image series. A multi-
image time-series constructed from the Landsag¢ sfibptical sensors could (at
present) theoretically consist of 35 images (190262 per scene, which could be
used in a continuous fashion to create “regrovdfettories” for any forested stand
disturbed since 1972. Although in some areas ggbge and climatic factors may
limit the availability of suitable images requirexcreate useful trajectories of
forest regrowth, it is likely the number of image=eded to sufficiently capture the
landscape disturbance/recovery signal will be fettvan conceptualized in this
theoretical example. As forest stands in the Ralibrthwest commonly enter the
stem exclusion phase (i.e., closed canopy conglitbauccessional development
within the first 20 years after clearcutting (Franlet al., 2002) we base our
analysis of post-harvest early forest successioaérns on 16 Landsat TM and 3
Landsat ETM+ images covering 18 years. This raguiel of tree regrowth after
disturbance eliminates the need to lengthen the $ipan of our image series back
to the Multi-Spectral Scanner (MSS) system. Initaoldl the improved 30 m
resolution of the post-MSS images better matchesdbolution of our ground
referenced tree cover data.

We define “trajectory” as a series of states thhowdich a system proceeds

over time. Trajectories (or change-curves) areprisad of a series of
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mathematical or statistical models fit to repeatedéasured observations, which
are used to characterize or quantify various pagswé vegetation response to
disturbance. The shape of vegetation regrowtkdtajies has long been
recognized by field ecologists as a practical medmescribing plant community
responses to various disturbance types (Armestdarebtt, 1986; Halpern and
Franklin, 1990; and del Moral and Bliss, 1993)ddferences in trajectory shape
infer differences in the controlling mechanismwvefetation change. Additionally,
the trajectory concept forms the basis of many engdifunctions commonly used
by foresters to predict theoretical plant growtic{fards, 1959) and stand-level
growth based on site-index (Hegler, 1968).

Although the use of repeated observations collelsyeshtellite remote
sensing platforms such as Landsat seem particuallysuited to analyzing
continuous trends in vegetation via trajectory gsial only a few examples can be
found in the literature (Viedma et al., 1997; angicé and Olsson, 1999). One
example is presented by Lawrence and Ripple (1888®)derive vegetation change
trajectories with estimates of percent green vegeta@over predicted
independently from 8 Landsat TM images (coveringyd#ars). These change
trajectories were used to describe and quantifypuarregrowth pathways
following the 1980 volcanic eruption of Mt. St. ldak in southwestern
Washington.

Ultimately the success of the trajectory approa&cteaipturing real

vegetation change hinges on the successful radimneatibration of the multi-
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temporal image series. Given this importance,aveifthe use of a radiometric
calibration method which was specifically desigt@dperationally minimize
residual scatter (i.e., lower RMSE) in early fonesgrowth trajectories in western
Oregon. The method, referred to as “absolute-nlizateon” (Schroeder et al.,
2006), uses statistically selected pseudo-invafeattres (see Canty et al., 2004)
to relatively normalize an image time-series taanospherically corrected
reference image (corrected with 6S, Vermote etl@B7). All images in the multi-
temporal Landsat series presented here were naeddlb a common radiometric
scale (across all images < 0.025 RMSE), while dimmglously correcting for
atmospheric and sun/sensor view-angle effects.

Once the images comprising a multi-temporal images share a common
radiometric scale, meaningful regrowth trajectooas be constructed directly
from spectral reflectance values, from fractiongesderived via spectral mixture
analysis (Smith et al., 1990) (e.g., green vegatation-photosynthetic vegetation,
soil and shade images) or with biophysical estisyptedicted from reflectance
(e.q., percent tree cover). In this paper we basdorest regrowth trajectories on a
date-invariant relationship developed between Lanhsisectral data and ground
measured tree cover data collected by the U.SsE8exvice Pacific Northwest
(PNW) Forest Inventory and Analysis (FIA) progralthough date-invariant
regression can be thought of as a form of possitieation comparison, the use of
a detailed radiometric calibration procedure, aomus versus class based

estimates and derivation of change information froaitiple image trajectories
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improves on the traditional application of the noeth For more details on the date-
invariant regression approach, referred to aséstaidel differencing” see Healey
et al. (2006).

We aim to address the following three objectivésrst, we seek to
corroborate the existence of divergent forest netigpathways among harvested
stands previously identified in western Oregonarr@hoto interpretation (Nesje,
1996; and Yang et al., 2005). Second, we comjpaudstape scale early
successional forest regrowth patterns betweentbg@timary forested provinces
in the study area (i.e., the moist, warm Coast Rargvince and the drier and
colder Western Cascade Province). Finally, wecasemonly available physical
proxies (e.g., aspect, slope, elevation) and pilavant (e.g., potential relative
radiation, temperature, precipitation) explanataagiables to predict early

successional forest regrowth patterns in both picBs.

2. METHODS
2.1. Study Area

The study area is comprised of Landsat WRS-2 ¢attow 29, which
covers approximately 185 kmz of western Oregonyfe@-1). The two main
forested provinces in the study area are deschideranklin and Dyrness (1988)
as the Coast Range Province (CRP) and the Weststa@e Province (WCP). The
CRP is characterized in the far west by a Sitkaspreone a few kilometers wide

lying directly adjacent to the Oregon coast. Téw of the CRP and the majority of
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the WCP are dominated by conifers common to theglsdfir/western hemlock
zone, although hardwood species such as red aidermaple, big leaf maple, and
Pacific dogwood can dominate moist riparian are@sday valley margins.

In Douglas-fir forests two principal seral groupgically comprise post-
disturbance vegetation communities, residuals (neesnbf the original forest
community) and invaders (non-forest species thiainize after the disturbance
event) (Halpern and Franklin, 1990). Halpern (1,9B%ble 1) describes six forest
understory communities common to Douglas-fir fasedh addition to conifer
trees, early seral communities in this region déendoe dominated by several
grass, herb, shrub (e.g., ceanothus, oceansptaly,\sae maple, Oregon grape,
hazel and sword fern) and non-conifer tree spdbiger cherry, Pacific madrone,
and chinkapin). The extent to which of thesefiiiens dominates after disturbance
is likely a function of disturbance intensity, initseed abundance, site condition,
stochastic processes (e.g., climate, seed dispeasdl forest management
activities. Regardless of life form dominancepanplex mixture of several species
is likely to occur until canopy closure is fullylaeved.

Overall, the climate of the Pacific Northwestyipified by warm, dry
summers and mild, wet winters. The study arearapesses a wide range of
elevations, yielding strong physical and climatiadients. Based on annual
averages, the CRP typically receives more pre¢ipig3000 mm vs. 2300 mm)
and is warmer in the winter (5° C vs. -5° C) andler in the summer (16° C vs.

23° C) than the WCP. These climatic differencesancert with differences in



54

elevation (CRP: 450-750 m vs. WCP: 450-3000 m)gaudogic parent materials
yield a wide array of growing conditions. The studea also includes a diverse
distribution of existing land ownership categori€shen et al., 2002), and

therefore represents the disturbance and recoattgrps present in the region.

2.2. Data
2.2.1. Multi-temporal Image Series

Our characterization of forest regrowth patterng@stern Oregon focuses
on the analysis of a multi-temporal image seriesisting of 19 summer (e.g., July
— September), near anniversary Landsat TM and Eifvges (WRS-2, path 46
row 29) (Table 3-1). A detailed description of theage selection criteria, as well
as the geometric and radiometric corrections agpbehe multi-temporal image
series can be found in Schroeder et al. (2006alllthe images comprising the
multi-temporal image series were atmosphericallyemied and normalized to
within 0.025 RMSE of the selected reference imd@94) using the absolute-
normalization approach detailed above. For thidysthe 2005 image was added
to the multi-temporal image series using the saewrgtric and radiometric

processing protocols described in Schroeder ¢2@06).

2.2.2. Tree Cover
Three independently collected (1 ground based,a2opimterpretation

based) tree cover (measured as percent) data eetsutilized in this study. The
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ground measured tree cover data set was recorditeltyansect method (see pgs.
155 - 162, USDA Forest Service, 1995) during th@s1®eriodic forest inventory
of western Oregon conducted by the U.S. Foresti@RNW-FIA program. The
2.1 ha FIA plots are coded from 1 to 5 based omthmeber of different land cover
conditions (e.g., forest, water, non-forest) obedren each of the five measured
subplots. Thus, a plot labeled 1 (referred targle condition) would have only 1
dominant land cover condition, whereas a plot kab& would have a different
observed land cover condition at each measuredaubpo avoid spectral mixing
with unwanted non-forest and water condition clase® elected to use only the
tree cover data collected on the single conditiorgsted plots (n = 202) falling
within the Landsat 46/29 study area. Although #pproach required discarding
some potentially useable data, our ultimate goal tvaninimize the impact of
sample heterogeneity on the date-invariant treercagression model.

The two airphoto based tree cover data sets, wirch used to validate the
date-invariant tree cover regression model, wellected by two separate photo-
interpreters. Both interpreters estimated pertrestcover over a fixed sample of
plots repeatedly over time using an assortmentigbf-hesolution aerial
photographs (see Table 3-2 for photo scales amdafis). Because we used a date-
invariant approach to model tree cover, we eletdadse photo-interpreted
estimates of tree cover recorded for a given gliodlifferent points in time, as
separate validation samples. Due to the timinghaitointerpretation,

guantification of interpreter to interpreter biagsanot possible.
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Interpreter 1 photo-interpreted percent tree cover 125 of the same 2.1
ha single condition, forested FIA plots that makethe ground based tree cover
data set. Several of these plots were re-intexgrat a second point in time,
yielding 162 tree cover validation samples (Tab®) .3 Interpreter 2 estimated
percent tree cover over 153, 1 ha sample plotsYageg et al., 2005), which
including remeasurement yielded 249 tree covedatibbn samples (see Table 3-2).
Overall, the two photo-interpreted tree cover datts combined to yield a total of
411 tree cover validation samples, spanning 11syelhiis important to note that
interpreter 1's photo-interpreted estimates of t@er were taken solely from
plots falling on private forest lands, whereasnotteter 2’s were only from national
forest lands. Thus, by combining the two data set®ot only maximized the size
and temporal span of our validation sample, bt atxounted for any potential

differences in tree cover based on land ownership.

2.2.3. Explanatory Variables

We are interested in spatially predicting pattexhfrest regrowth, thus we
compiled 12 geographically referenced explanatanjables (3 physical proxy, 9
plant relevant) for use in Classification and Regien Tree (CART) statistical
analysis. The physical proxy variables includesfarmed aspect (index 0-2)
(Beers et al., 1966), slope (%) and elevation (rsgtall derived from a 30 m DEM

of the study area. Since slope, aspect and etevate merely correlated with the
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moisture and temperature gradients plants comnresjyond to, we refer to them
as “physical proxies”.

On the other hand, recent advances in the spapigdsentation of direct
resource gradients such as moisture, temperatdreals allowed us to use several
“plant relevant” variables in our analysis. Theaeables include, potential
relative radiation (PRR) (Pierce et al., 2005),ahkhis a unit less index at 30 m
resolution used to approximate the “potential” d®sit radiation received by a
given surface location during a set window of tif@applied here using a 12 month
growing season). Here the range of PRR is 985, @egp, north facing canyon) to
21959 (e.g., open, slightly southern facing hibige). The highest value (21959)
represents the location with the highest probahilitreceiving incident radiation
in the absence of clouds. In addition to PRR, Ise ase PRISM temperature
(Parameter-elevation Regressions on IndependepéeSiodel, Daly et al., 1994,

http://www.prismclimate.org— July maximum and January minimum (1 km

resolution) in °C, and five CONUS (Conterminousted States) soil layers

(Miller and White, 1998http://www.soilinfo.psu.edu/index.cgestimated at a 1

km resolution (sand (%), silt (%), clay (%), sodpdh (cm), and field capacity

(kg)).

2.3. Date-invariant Regression Modeling
In this study we based our forest regrowth trajeesoon estimates of

percent tree cover derived from Landsat spectfidatance data. This was
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accomplished by first developing an initial regressnodel between the ground
measured percent tree cover data collected by PNWARd the 1995 Landsat
spectral reflectance data. To obtain reflectarata tbr each of the 202 single-
condition, forested FIA plots we took the mean @Rgpixel mask, (Figure 3-2)
which was developed to mimic the size and shapleeoFIA ground plot (for
details on FIA ground plots see pages 17 — 38 iDAJGorest Service, 1995). As
FIA plot coordinates are collected on the southmmion of each plot (i.e., subplot
1), we matched each plot coordinate to the soutpertion of our 22-pixel mask
(gray shaded pixel in Figure 3-2). Other studibsctv have extracted Landsat
spectral reflectance data for use with FIA dataehased similar techniques
(Ohmann and Gregory, 2002).

We then employed a standard correlation procedbhese the extracted
means of the spectral variables (Landsat bandsaheb7), and subsequently
derived vegetation indices [Normalized Differenceg€tation Index (NDVI)
(Rouse et al., 1973), Normalized Difference Moistimdex (NDMI) (Hardisky et
al., 1983; and Jin and Sader, 2005) and Tasselpd@#ast and Cicone, 1984)]
were evaluated via scatter plot to determine tteationship with tree cover and to
explore the need for transformation. This evabratevealed the need to linearize
the Landsat bands using a common square root eramafion.

Stepwise multiple regression was then used tdifgempreferred (i.e., high
R? low RMSE) model. Several models were evaludiediever we determined

that a three variable model containing Landsat dn@ and 7 best captured the
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variation in the ground measured tree cover da&®a dsscussion). To ensure that
the variance observed in our observations was adelgipreserved in our
predictions we preferred the use of reduced majisrragression (RMA) (Cohen et
al., 2003). Asin Cohen et al. (2003), we usednaral correlation analysis (CCA)
to derive a linear combination of the Landsat baddstified above for use in X on
Y RMA regression.

This initial RMA regression model was applied widually to the
remaining 18 “absolutely-normalized” Landsat imagesich yielded a total of 19
tree cover images. This date-invariant regresapproach (Healey et al., 2006)
assumes that an effective radiometric calibrati@mt@dure has resulted in a
common radiometric scale among all images, regpitiran date-invariant
relationship between spectral reflectance and ithyghlysical variable of interest.
To test the validity of this assumption, we conedca leave-one out cross-
validation of the initial RMA regression model (r262), as well as a temporal
accuracy assessment covering 11 different treeraémages using the two airphoto
based tree cover data sets (Table 3-2). The dasgiant tree cover estimates
falling below 0% and above 100% were rescaledltdé&ween 0 and 100% to
match the scale of the airphoto data. Mean trgeramas calculated for each of
the 2.1 ha (interpreter 1) and 1 ha plots (intégor2) using each plots coincident
tree cover image. The mean plot tree cover estsn@tredicted) were then
compared with the photo-interpreted tree covenegts (observed) via linear

regression. As we are primarily interested in kimgywthe accuracy of the percent
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tree cover predictions across all images (i.e sehaith validation data), we opted

to combine all 411 validation samples into one glokalidation model.

2.4. Stand Disturbance Maps

We are interested in using a trajectory basedoggprto analyze patterns of
forest regrowth following clearcut harvesting. Gequently, we mapped three sets
of clearcut harvests which we later use as spagaks to extract pixel level tree
cover estimates from our 19 tree cover images dénwa date-invariant regression
modeling. We decided on analyzing forest regrougimg three periods of
clearcuts for two reasons. First, regrowth pageme likely to vary from year to
year in complex ways, so by including stands clataat different times we hoped
to capture a broader range of regrowth variabititgur analysis. Second, clearcut
harvests tend to occur on relatively small (e.dlp<a), scattered blocks over the
landscape, so by developing regrowth trajectones olearcuts occurring in
different years we effectively increase the nundfestands, as well as the spatial
area available for statistical analysis.

The three sets of clearcuts occurring betweei® 198987, 1987 — 1988,
and 1988 — 1989 (hereatfter referred to as peried8)lwere mapped
independently using RGB color composite analyseppih et al., 2004) of
Landsat band 5 and a minimum distance to means\ssipe classifier (Lillesand
and Kiefer, 2004). As in Cohen et al. (1998), esteimd disturbance map was first

smoothed using a 7x7 majority filter to rid of urted noise (i.e., single pixels
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classified as clearcuts). We then used the ERD#&jine clump function to
identify and group contiguous groups of clearcyefs, and finally used the
ERDAS Imagine sieve function to eliminate all cteas less than 2 ha in size. The
three stand disturbance maps were then hand-adited several of the high
resolution aerial photographs from Table 3-2 asregfce. Areas classified as
forest change but were determined not to be cléamere removed to ensure a
high level of overall quality. Although we did nexplicitly evaluate the accuracy
of the stand disturbance maps, similar methodmfuping clearcut harvests
occurring in Oregon west of the Cascade crest hakeved upwards of 90%

accuracy (Cohen et al., 2002).

2.5. Forest Regrowth Class Trajectories

To spatially derive forest regrowth trajectories the clearcuts identified
from the supervised classification we first stackeslgeographically referenced
tree cover images derived via date-invariant reggoasmodeling into 3 multi-
temporal image stacks, one for each period of ndpf@arcuts. The first tree
cover image in each multi-temporal stack correspdadhe first growing season
after each period’s mapped harvest disturbances pétiod 1, the multi-temporal
stack contained a total of 17 tree cover imagesfitht tree cover image
corresponding to 1988. For subsequent periodsithi-temporal tree cover

stacks contained 16 and 15 tree cover images risggc The stand disturbance
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maps were then used to mask (i.e., isolate) thel gxel tree cover values from
each period’s respective tree cover stack.

The extracted time-series of pixel level tree ca@atimates were then
grouped into 20 individual “regrowth” classes usthg ISODATA clustering
algorithm in ERDAS Imagine. To facilitate clusteyj each period’s multi-
temporal tree cover stack was clustered separasebach had a different number
of tree cover images. Using the statistical meastitransformed divergence
(Jensen, 1996) the spectral separability of the&frowth” classes was evaluated.
In general, separability analysis is used in imegsesification to determine the
extent to which clustered class-mean values ovedap other in spectral space.
Here separability analysis revealed the need tdoammseveral of the “regrowth”
classes as they were not spectrally unique. Troisgss resulted in the creation of
5 statistically discrete forest regrowth classaspesiod. The four main classes
were visually assigned labels based on observed odtpercent tree cover
increase, which included little to no regrowth veleegrowth, moderate regrowth,
and fast regrowth. The fifth class, labeled miregrowth, was interpreted to
contain a highly variable mixture of partially hasted areas, prescribed burns and
shadows. These areas commonly have a dark spagpr@arance, resulting in a
false signal of high initial tree cover immediatélowing clearcutting. Thus,
given its highly variable nature, as well as itsited spatial extent, we exclude the

mixed regrowth class from the remainder of the ysisl
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2.6. Forest Regrowth Spatial Pattern Analysis

To corroborate the presence of divergent pathwéjarest regrowth in
western Oregon we summarized the pixel level fraquelistribution of the four
main forest regrowth classes identified from ISOD¥AdIustering according to
area disturbed by clearcut harvest and by topogragasition. These distributions
were used as a means of describing the landscajee frest regrowth signal for
both the CRP and WCP. To make meaningful compasiséforest regrowth
between the two ecological provinces we attempietbtmalize the differences in
harvest area between the CRP and WCP by basirfgeguency distributions on

the “percent of clearcut area” metric, which wecaddted using Eq. 1,

% of Clearcut ArealAFRC + TACHP x100 (1)

where, TAFRC is the total area of each forestawtn class, TACHP is the total
area clearcut per harvest period. With three gerad clearcuts available for
analysis, we were able to use this metric to charae the landscape scale forest
regrowth patterns occurring in each ecological proe. To gain further inference
into the patterns of forest regrowth associateti e geographically referenced
environmental attributes we also summarized thieepet of forest regrowth in the
CRP and WCP according to three relevant topogragriables (i.e., aspect, slope,
elevation). For ease of display, the topographitables were binned into class

groupings (e.g., aspect 1° — 33° labeled as N-Id&s§l For each topographic
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class grouping, the distribution of each forestoagh class was based on “percent
of clearcut area” as above, except the mean vddsereed over all three periods is

reported (error bars are across period standardtass).

2.7. Classification and Regression Tree Modeling

To formulate a better understanding of the envirental attributes
influencing forest regrowth following clearcut hasting in western Oregon we
attempted to predict forest regrowth rates for ibthCRP and WCP using the
aforementioned explanatory variables and CARTsttesil modeling. We select
CART as it is flexible, non-parametric, and robiastcomplex non-linear
relationships (Friedl and Brodley, 1997) and hanba@reviously used to examine
changes in vegetation (Lawrence and Ripple, 2000;Laitz and Halpern, 2006).
Since CART modeling is typically data intensive, @exided to combine the three
periods of regrowth classes into one spatial l&ay@naximize the available land
area from which to draw our statistical sampleannattempt to keep training data
equal among regrowth classes (Lawrence and W2giX]) we used a stratified
random design (separately for the CRP and WCR)lezsapproximately 300
pixels per regrowth class (4 classes) to be uséciasng samples. An additional
~300 samples per regrowth class were selected gepafor the CRP and WCP)
for the purpose of testing the predictive powethef developed CART models.
Overall, a total of 2,375 (1,186 testing, 1,18%Mtreg) samples were derived for the

CRP and 2,371 (1,183 testing, 1,188) for the WGP elach sample location, the
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explanatory variables were extracted on a per fasis for use in statistical
modeling.

Using the tree modeling tools in S-plus we devetb@ART models for
both the CRP and WCP. In S-plus, terminal nodesegated either when the total
number of observations at the node is less thaor e deviance at the node is
less than 1% of the total deviance for the entee {Venables and Ripley, 1997).
Since CART models tend to over-fit the data, itngcial that they be pruned back
to some degree to avoid over-fitting, but not fwoant that affects the robustness of
the model. To determine an appropriate size fotr@e models we elected to use a
cross validation procedure (Venables and Riple9/iand Lawrence and Wright,
2001) where each set of training samples is dividedten equal parts. Trees are
fit iteratively for nine of the ten trees, with thenth being used as validation. After
all the trees have been fit, the minimum averaggadee suggests a suitable
number of nodes for the final tree. Although aalgst may opt to use a smaller
size tree than suggested by cross validation, weddhe suggested tree sizes to be
acceptable for both the CRP and WCP models. Tia tiiee models contained 10
(CRP) and 6 (WCP) terminal nodes and were plotetthat branch size was
roughly proportional to the deviance explained agtenode.

To assess the accuracy of both CART models we theei@st samples to
compute standard confusion matrices with overatidpcers, and users accuracies,
as well as Kappa (Congalton, 1991), and Tau (MaRedinond, 1995) statistics.

In addition, the accuracy of both CART models wea@ated using an aggregated



66

approach, where the four regrowth classes were ic@malio represent “fast” (i.e.,
combine fast and moderate regrowth classes) and/™gl.e., combine little to no

and slow regrowth classes) forest regrowth conaitio

3. RESULTS
3.1. Initial Tree Cover Model

Model parameters for the initial tree cover regm@ssnodel developed
using the 202 single condition, forested FIA groamehasured field plots and the
linear combination of spectral variables (band3 4nd 7) from the 1995 Landsat
TM image are found in Table 3-3. Using a leave ouiecross-validation
procedure (Cohen et al., 2003) we found the RMAeaggion model to be highly
significant both in terms of variance explained €/®.77) and predicted error
(RMSE = 14.15). The predicted (from cross-valioia}iversus observed tree cover
is presented in Figure 3-3. The selection of RMgression ensured that nearly all
the original variation found in our observationssvpsieserved in our tree cover
predictions (variance ratio = 1.00). The near Z@as (0.03) indicated that overall

there is no over- or under-prediction of tree camesur initial model.

3.2. Date-invariant Regression
The temporal accuracy of our date-invariant regjogsapproach was
assessed using the two airphoto based tree cotzesels which contained

coincident measurements with 11 of the 19 treerciovages (Table 3-2). Using
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411 airphoto based validation samples we incorpdrdata from all 11 tree cover
images into one global validation model (Table f&3regression model
parameters). The scatter plot of predicted (frate-dnvariant regression) versus
observed (airphoto interpreted) tree cover is prieskin Figure 3-4. Overall, we
found good agreement between the airphoto intexgneteasures of percent tree
cover and those derived via our date-invarianteggjon modeling approach. Both
the amount of explained variance (R? = 0.68) a$ agethe predicted error (RMSE
= 16.09) were found to be similar to those obsemdte initial tree cover model.
The selection of RMA regression ensured that nedrihe variation found in our
validation plots was preserved in our tree covedmtions (variance ratio = 1.00).
Furthermore, the near zero bias observed in tHeagl@lidation model indicates
that there is no bias in the relationship betwesge-thvariant regression and

airphoto based tree cover.

3.3. Forest Regrowth Class Trajectories

Each period’s mapped clearcuts were spatiallytetad into statistically
meaningful forest regrowth classes (i.e., littlenty slow, moderate, fast) using
ISODATA clustering. The mean values of each pésiéarest regrowth classes
were fit with third-order polynomial curves, resndf in 3 fitted curves per forest
regrowth class (Figure 3-5). These curves, or ‘mfeeest regrowth trajectories”
were visually compared for each regrowth classvese found nearly

indistinguishable across harvest periods. As altiese determined that each
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period’s forest regrowth classes could be usedahggeably in the CART

analysis.

3.4. Forest Regrowth Patterns

For the CRP and WCP we used “percent of clear@at’do summarize
forest regrowth at the landscape scale for ea@ralé harvest period (Figure 3-6).
The consistent patterns of forest regrowth obseowed the three clearcut periods
indicate a much higher percentage of fast regramvthe CRP as opposed to a
much higher percentage of little to no regrowtlhiea WCP.

Frequency distributions of forest regrowth wemsoalerived for three
topographic variables of interest (aspect, slopd,aevation). Forest regrowth by
aspect class is presented in Figure 3-7. FortbhatiCRP and WCP the highest
percentage of fast regrowth occurred on north tpaspects (i.e., N-NE, NE, NW,
and N-NW), with nearly twice as much fast regrotsing observed on the
northern aspects of the CRP then on the WCP. ©nttrer hand, both ecological
provinces saw the percentage of little to no ana $brest regrowth classes
increase on southern facing aspects (SE, S—-SE, SSBIV Although this general
trend was observed for south facing aspects in édodlogical provinces, the WCP
was found to have more than triple the amountttké lio no and slow regrowth on
southern aspects than the CRP.

Forest regrowth by percent slope class is predentEigure 3-8. For both

ecological provinces, as slope class increasedljgagt9% the amount of fast
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regrowth tended to decrease. For the WCP, thisrebd decrease in fast regrowth
was more pronounced than for the CRP and was atsorgpanied by a noticeable
increase in the amount of little to no and slovestregrowth. Other than the
observed decrease in fast regrowth with increaslimge, the remaining forest
regrowth distributions in the CRP were found tad&latively stable across slope
classes.

Forest regrowth by elevation class is presentddgare 3-9. For both
ecological provinces, the percentage of fast retirowticeably decreased as
elevation increased. This pattern seemed moreopraed for the WCP as clearcut
harvesting occurred over a much higher elevatiogea Although fast regrowth
decreased with elevation in the CRP, at no timeltkdoercentage of little to no
regrowth exceed fast regrowth. On the other hkitie, to no regrowth

significantly exceeded fast regrowth in the WCRIkeélevations above 762 m.

3.5. CART Models

Using the 12 explanatory variables we constru@A®&T classification
models to predict the forest regrowth classes ®@GRP and WCP ecological
provinces. Six of the explanatory variables (eleva PRR, percent slope, PRISM
average annual precipitation, CONUS soil silt, BRISM July average maximum
temperature) were used to construct the final CRRTmodel (Figure 3-10),
which yielded 10 terminal nodes or classificati@tidion rules. Branch length of

the tree indicated that elevation explained thgdsir percentage of variation in
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CRP forest regrowth classes, followed by PRR amdgoe slope. In the CRP, fast
forest regrowth was generally predicted to occulomnelevation sites (< 338 m)
and on high elevation sites (> 338 m) with reldfidew radiation exposure (PRR
< 14262). Little to no forest regrowth was preeétbnly on high elevation (> 338
m) sites having both high radiation exposure (PREF$34) and steep topography
(slope % > 32). A variety of other combinationglod 6 explanatory variables
resulted in predictions of the moderate and slawdbregrowth classes.

The overall accuracy of the CRP CART model was 46&ble 3-4).
According to Landis and Koch (1977) a Kappa of Zt%ggests “fair agreement”
between the predicted regrowth classes and tegtlsamThe Tau statistic
indicates that 27% more pixels were classifiedaxity than would be expected by
random assignment. Ranging from 17 to 79%, thivithall class accuracies
(Table 3-4) suggested that the maximum and minimegrowth classes (i.e., little
to no and fast) were predicted with greater acgutiaan the classes falling in
between (i.e., slow and moderate).

Four of the explanatory variables (elevation, PRRISM July maximum
temperature, and PRISM January minimum temperatuged used to construct the
final WCP CART model (Figure 3-11), which yieldedeBminal nodes or
classification decision rules. Branch length @& tree indicated that elevation and
PRR explained the largest percentage of variaidhe WCP forest regrowth
classes. Inthe WCP, fast forest regrowth was rgdiggoredicted to occur on low

elevation (< 805 m) sites having moderate to haghation exposure (PRR <
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18924) and warm winter minimum temperatures (Janonan. temp > 0° C). Little
to no forest regrowth was predicted to occur ot lglgvation sites (> 1,014 m)
and on moderately high elevation sites (> 805 m<af@14 m) with low summer
maximum temperatures (July max. temp < 24° C).aAety of other combinations
of the 6 explanatory variables resulted in prediddiof the moderate and slow
forest regrowth classes.

The overall accuracy of the WCP CART model was 4T&ble 3-4). A
Kappa of 29% suggests “fair agreement” betweerptadicted regrowth classes
and the test samples (Landis and Koch, 1977). THuestatistic indicates that 30%
more pixels were classified correctly than wouldelpected by random
assignment. Ranging from 29 to 68%, the individii@ass accuracies (Table 3-4)
suggested that the maximum and minimum regrowssek(i.e., little to no and
fast) were predicted with greater accuracy tharclasses falling in between (i.e.,
slow and moderate).

Since the maximum and minimum regrowth classes (ittle to no and
fast) showed greater predictive potential, we resssd the accuracy of the CART
models using an “aggregated” approach. This wesmaplished by combing the
fast and moderate regrowth classes to represestt ftaest regrowth and the little
to no and slow regrowth classes to represent “sfovést regrowth. Using the
aggregated approach the CRP model yielded an beelracy of 70% (Table 3-
5). Landis and Koch (1977) suggest that a Kap@0&6 represents “fair

agreement” between the predicted regrowth class$he test samples. The Tau
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statistic indicates that 40% more pixels were di@sscorrectly than would be
expected by random assignment. The WCP modebwegrto an overall
accuracy of 78% (Table 3-5). A Kappa of 56% iefipteted by Landis and Koch
(1977) as a “moderate agreement” between the peediegrowth classes and the
test samples. The Tau statistic indicates that B@&¥e pixels were classified
correctly than would be expected by random assigihm&s expected, both the
CRP and WCP overall accuracies improved with th@ementation of the
aggregated approach. The Tau statistics indibatenthen the CART decision
rules are used to predict the aggregated “fast™sloav” forest regrowth classes
the resulting classifications yield 12% (CRP) ab&2(WCP) more correctly

classified pixels than classification of the foegrowth classes.

4. DISCUSSION
4.1. Date-invariant Regression

Using date-invariant regression to create meaulrigfest regrowth
trajectories relies heavily on a thorough radiometalibration of the multi-
temporal image series and the creation of a sggmfiinitial regression model of
the biophysical variable of interest. Althoughagger sample of airphoto based
tree cover data was available, we opted to devalopnitial regression model
(Table 3-3, Figure 3-3) with the field measuretcever data collected by the
U.S. Forest Service PNW-FIA program. This decisi@s based on the fact that

photointerpreted percent tree cover often contsignsificant interpreter bias, which
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if extrapolated forward via date-invariant regresstould jeopardize the creation
of meaningful forest regrowth trajectories. Thigdds readily apparent in our
airphoto validation of the initial tree cover modébwn in Figure 3-3, where
Interpreter 1 (filled circles) had a tendency tal@npredict and Interpreter 2 (open
circles) over predict percent tree cover, espacialthe 20 to 80% tree cover
range. Had both interpreters shared the sametidmetbias the validation of our
initial tree cover model might have been less §atig. As it stands, our validation
model serves as an illustration of why field meadusiophysical variables are
critically important to the accurate modeling ofyegation with remotely sensed
imagery. In addition, use of spectral bands lilflesblue, responds to forest type
and serves as a measure of overall “brightnesgV)isble red, responds to
chlorophyll absorption in vegetation) and 7 (sheave infrared, responds to
vegetation shadowing and moisture) in our initieétcover model demonstrates
the utility of multi-wavelength sensors like Lantlaaresolving useful spectral
information directly pertaining to forested systef@®hen and Goward, 2004).
Given the wide variation of life forms likely pest after clearcutting it is
likely that some of the error in our initial treever model resulted from the use of
total tree cover. Utilizing separate hardwood softwood tree cover categories
could possibly improve both the fit of the initiaée cover regression model, as
well as the detail with which the compositional iihes associated with post-
harvest forest succession could be successfulbjves with an image time-series.

Other potential improvements include the use ofgenansformation methods
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such as spectral mixture analysis (Smith et aB0),9vhich separates and
guantifies sub-pixel scene components such as doéage, tree bark, and shadow
to estimate fractional vegetation cover. Trajaetoconstructed of fractional
images from SMA may help to more fully resolve tdoenplex mixtures of species
(deciduous vs. conifer) and vegetation cover (Iewhigh) typically found in early
successional forests of the Pacific Northwest (Sabal., 2002).

Although analysis with multi-temporal image seres be time consuming,
one major advantage to their use is that variatimm atmospheric effects and
vegetation phenology, which can seriously impaeingfe estimates based on year
to year image differences are minimized as theadivestimate of change is based
on the fitted trajectory curve (or curve classhis icase). In this sense, year to year
variations are viewed as residuals around eackeddtted trajectory. While
residuals resulting from atmospheric effects argktation phenology are viewed
as “error” in terms of the trajectory model, theemadl pattern of regrowth is not
assumed to be effected unless the curve fit isuallyslow. The lowest R? of all
four of our forest regrowth class trajectories v@8 indicating minimal year to
year impacts from residual error at the class leyslthe pixel level, we found a
high level of agreement (R? = .96, RMSE = 6.05\aein average pixel tree cover
estimates (selected randomly across all imagesjraactover predicted from the
forest regrowth curves (n = 240). The standardadiewms of the average pixel tree
cover estimates fell within the average acrossopestandard deviations of our

forest regrowth trajectories (Figure 3-5), indingtthat phenology effects did not
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prevent the forest regrowth curves from capturlregresponse of the original pixel
values.

In general, our date-invariant regression appraagmoves on similar
change detection techniques such as post-clasmficeomparison (Coppin et al.,
2004) which rely on simple image differencing obter more independently
produced classifications to estimate forest chartdgere we derive a more
meaningful characterization of continuous forestrde after clearcut harvest by
employing a robust radiometric calibration procedspecifically designed to
reduce the residual scatter in forest regrowthtsaleitajectories (Schroeder et al.,
2006) and by basing our estimates of forest changsntinuous trajectories of
percent tree cover. Although here we binned thicoous tree cover trajectories
into forest regrowth change classes, the trajecpproach also lends itself to more
detailed quantification of forest regrowth infornoat through parameterization of
the fitted mean trajectory curves (Figure 3-5) (kewce and Ripple, 1999; and

Yang et al., 2005).

4.2. Patterns of Forest Regrowth after Clearcutvékting

It was presumed that forest succession was iedtiat our study by stand-
replacing disturbance from clearcut harvestinggrafthich vegetation communities
are thought to shift from ephemeral herbaceouddifies to taller perennial shrubs
and finally trees (Franklin et al., 2002). Thetges of successional development

which are common to western Oregon have been prelyiclassified with percent
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tree cover trajectories from repeated airphotapnegation (Yang et al., 2005),
where shrub and herb dominance lasts until roug@® tree cover is achieved, at
which time semi-closed conditions persist untilagaynclosurex 70% tree cover).
Upon inspection, the endpoints of our forest reghoslass trajectories (Figure 3-5)
derived by date-invariant regression seem to cdenaiell with these previously
defined successional stage classes (e.g., litte torest regrowth class
corresponds to open and shrub/herb successiogalsstsiow forest regrowth class
corresponds to the end of shrub/herb successitagd;anoderate forest regrowth
corresponds to semi-closed forest successionad;shaag fast forest regrowth class
corresponds to closed canopy forest successiagg)st The similarity with which
patterns of continuous forest succession can Issitiked with airphoto and satellite
based tree cover trajectories suggests that oaridairiant regression approach
has successfully extended the forest regrowthdi@jg concept to the spectral
space of Landsat.

In terms of forest succession, our forest regrasdlsses derived by date-
invariant regression indicated that a wide rangsugtessional stages could be
found in both the CRP and WCP 18 years after dedrarvesting. The large
difference in tree cover regrowth rates betweerlittte to no (Figure 3-5a) and
fast forest regrowth (Figure 3-5d) classes subisti@st previous findings that rates
of vegetation recovery after disturbance in wes@rmagon can be highly variable
(Halpern, 1988; Myster and Pickett, 1994, Nesj®61@nd Lutz and Halpern,

2006). Because our forest regrowth classes weriecly defined in Landsat
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spectral space, we were able to summarize thedapdgatterns of forest regrowth
after clearcut harvesting at the pixel scale usieguency distributions (Figures 3-
6 — 3-9) based on the “percent of clearcut aredtimg.e., area of each forest
regrowth class =+ total area clearcut per harvesbge

Examination of the forest regrowth class distiidms in Figure 6 indicate
that 18 years after clearcut harvest a much highegortion of disturbed forest
land returned to semi-closed and closed canopyittonsl in the CRPX70%) than
in the WCP £50%). Conversely, a much higher proportion ofudts¢d land
persisted in open or semi-closed condition in tHeRA&34%) than in the CRP
(=10%). Similar distributional patterns of foresfjrewth have been previously
observed for the CRP and WCP (Yang et al., 200&) aae further substantiated
here based on the high degree of distributionasistency observed across three

periods of forest clearcuts (Figure 3-6).

As our forest regrowth trajectories were derivedlandsat spectral space,
we could further examine the landscape distributibforest regrowth in relation
to several topographic variables thought to infaeemegetation growth rates.
These distributions revealed several ecologicaligrpretable patterns in forest
regrowth after clearcut harvesting, such as a dseran fast and increase in slow
forest regrowth on southerly aspects (Figure 3if)steeper slopes (Figure 3-8)
and at higher elevations (Figure 3-9). In genéhal rate of forest regrowth seemed
most effected by elevation (i.e., as elevationagased rate of forest regrowth

tended to get slower) and least affected by stesspoieslope (i.e., forest regrowth
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classes were distributed somewhat evenly acrope slasses). It is possible that
spectral variation associated with sun-angle edfeotld be contributing to the
detection of slower regrowth on southern aspects, ([@ore sun on southern
exposures will brighten the spectral signal, resglin the prediction of less tree
cover). Using only the FIA plot data (n = 54) veaihd no statistical difference at
the 95% confidence level (ANOVA, F = 1.15= 0.30) between mean tree cover
of young stands (< 20 yrs of age) located on nonthed southern aspects. Given
the small sample size, we draw the conclusionrti@ae work is needed to fully
understand the effect of sun-angle on the chaiaatem of forest regrowth rates

with optical satellite imagery.

Overall, both the forest regrowth class trajaet(Figure 3-5) and the
frequency distributions of the forest regrowth sks(Figures 3-6 — 3-9) indicated
that forest regrowth rates after clearcut harvgstinvestern Oregon varied both
within and across ecological provinces. At thellrape scale we attributed some
of the across province variability in forest regtbwates to climatic and vegetative
differences between the CRP and WCP. With a loagdmore favorable
growing season (i.e., more annual rainfall and deep soils) the CRP was found
to have a larger proportion of fast forest regrothtdn observed in the WCP, which
is much drier and warmer during the summer growegson (Franklin and
Dyrness, 1988). We also observed elevation asempal limiting factor to forest
regrowth (Figure 3-9), which could explain in pdr propensity for little to no and

slow forest regrowth in the more mountainous W@®W®Athin-province differences
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in forest regrowth after clearcut harvest are {ikéle result of local site conditions,

as well as forest management practices.

4.3. Predicting Rates of Post-harvest Forest Regravith CART

The extension of forest regrowth trajectoried® $pectral space of
Landsat provided the opportunity to more fully istigate the climatic and
topographic attributes influencing the rate of &aneegrowth following clearcut
harvesting in western Oregon. Although the ovexediuracies of the CART
models were not high in terms of correctly classifiest samples (Tables 3-4 and
3-5), the resulting classification decision rulesypded interesting insights into the
geographically referenced environmental attributéaencing forest succession in
both ecological provinces. The CRP CART model (Feg3-10) had more decision
pathways or terminal nodes (10) than the WCP CAR#@eh(6) (Figure 3-11),
indicating that more favorable growing conditiomsenon to the CRP could
possibly result in more complex interactions amplagt relevant and physical
proxy variables influencing post-harvest forestoggh. Another possibility is
that more subtle environmental gradients influegdorest regrowth may not be
detectable with simple dichotomous models like CARE both physical proxy
(aspect, slope and elevation) and plant relevaetijpitation, temperature, soil silt,
radiation) explanatory variables were input inte @ART models, the relative
importance of each type of predictor could be iegblbased on model inclusion,

whereas the relative importance of each selectedigior could be assessed
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according to the amount of variance explained, {a&nch length in Figures 3-10 —
3-11).

The importance of plant relevant predictor vamralik apparent as 5 of the 7
predictor variables selected for use in both CARIdels are known to directly
influence forest growth (PRR radiation, PRISM agerannual precipitation,
PRISM July maximum temperature, PRISM January mimmtemperature, and
CONUS saoil silt). Of the explanatory variablesestéd, three (elevation, PRR,
PRISM July maximum temperature) were used in deehGRP and WCP models.
Elevation was found to explain the largest peragnta variation in both forest
regrowth models. Although elevation is not knowrdirectly influence forest
regrowth, it has been shown to influence air anldtemperatures, length of
growing season, amount of damage from wind and saod/amount of moisture
from orographic precipitation (Nesje, 1996). PRdRIlained the next largest
amount of variation in both CART models, indicatthgt radiation variables such
as PRR which integrate annual changes in solantatien and shading effects
from local topography are likely more effectivecapturing landscape radiation
patterns than commonly used physical proxies @lepe and aspect) (Lookingbill
and Urban, 2005; and Pierce et al., 2005 ). Istargly the interaction between
elevation and radiation has been previously fowngkt a limiting factor to post-
harvest forest successional rates in western Or@gjeary et al., 1978). Summer
temperature was also used by both CART models;atidig that even at relatively

coarse spatial resolutions (1 km) useful climatittgrns can still be resolved.
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Since both CART models yielded only “fair agreetiéas measured by
Kappa; Landis and Koch, 1977) between the prediciesbt regrowth classes and
the test samples we combined the four forest retfirol@sses into two general
“fast” and “slow” categories to gauge the statatieffectiveness of predicting
more generalized post-harvest forest regrowth raBased on the Tau statistic, the
CART models correctly classified a higher perceatafjtest samples than
classification of the four forest regrowth classegygesting that more general

regrowth classes may be more predictable at thastape scale.

5. CONCLUSION

The rate at which forest vegetation re-establisloesinance after clearcut
harvesting can impact many ecological processdhodgh knowing a forest
stand’s current state of succession is useful, i@ mabust characterization can be
achieved with the use of continuous trajectoriesgtigned with time-series data. A
useful methodology was presented which uses a bamdsge time-series to more
fully understand the spatial extent, as well asettidronmental attributes
influencing post-harvest forest regrowth rates est&rn Oregon forests.

Our methodology required that the Landsat image-eries be
transformed to a more meaningful biophysical meagiue., percent tree cover).
This was accomplished through date-invariant resjpes which is the
extrapolation of an initial regression model depeld between a single Landsat

image and ground measured data to a series ofeoosslized images. Here we
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extrapolated an initial percent tree cover moddlaomages which had been
previously calibrated to a common radiometric scaliag the “absolute-
normalization” approach of Schroeder et al. (200B)e accuracy of the resulting
tree cover estimates were successfully evaluategsatime using two sets of
photointerpreted tree cover data. Three periods$eaircut harvests were mapped
and used to extract tree cover estimates, whick s@nsequently classified into
four main rate classes (little to no, slow, modeatd fast). These forest regrowth
rate classes were then used to develop frequestijbditions describing the
landscape patterns of forest regrowth in westeegQn.

The patterns of forest regrowth observed ovethhee clearcut periods
indicated a much higher percentage of fast regramvthe CRP and a much higher
percentage of little to no regrowth in the WCPr Both ecological provinces we
observed the propensity for faster regrowth onmfating aspects, shallow slopes
and at low elevations. Overall, the forest regtoalasses and the frequency
distributions indicated that a wide range of susa®l stages could be found in
both the CRP and WCP 18 years after clearcut htamgesThis wide range in
successional stage classes corroborates previalisds that rates of forest
regrowth after disturbance in western Oregon cahnidiidy variable (Halpern,
1988; Myster and Pickett, 1994, Nesje, 1996; anad and Halpern, 2006). The
development of forest regrowth trajectories usipgctral data from Landsat

provided an opportunity to use CART statisticallgsia to more fully investigate
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the climatic and topographic attributes influencpagt-harvest forest regrowth
rates in western Oregon.

Both CART models provided ecologically interprdéaimsights into the
environmental attributes influencing forest regrowdtes in both ecological
provinces. Elevation followed by relative radiatiexpressed by PRR explained
the largest amount of variation in forest regrovstiihstantiating previous findings
that elevation and radiation interact to influefasal site factors limiting post-
harvest successional rates (Cleary et al., 19%8).observed only “fair agreement”
(as measured by Kappa; Landis and Koch, 1977) leetweedicted forest regrowth
classes and the test samples, however when comibitoeitivo general “fast” and
“slow” categories the CART models correctly clagsif12% (CRP) and 26%
(WCP) percent more test samples than classificatidhe four regrowth classes.
Overall, the CART models yielded ecologically iqmetable results regarding the
environmental attributes (both physical proxy atahprelevant) influencing

landscape scale early forest successional pattemesstern Oregon.
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Figure 3-2. Mask used to extract mean Landsatisphetata over FIA plots. Gray
shading indicates the anchor pixel matched to paticoordinate.
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TABLES

Table 3-1. Landsat path 46 row 29 multi-tempansge series.

Sensor Date
™ 8/26/1986
™ 7/12/1987
™ 8/31/1988
™ 9/3/1989
™ 7/7/1991
™ 8/10/1992
™ 8/29/1993
™ 7/31/1994
™ 8/19/1995
™ 8/21/1996
™ 7/23/1997
™ 8/11/1998
™ 8/16/2000
™ 8/25/2003
™ 7126/2004
™ 7/29/2005

ETM+  8/22/1999

ETM+  7/26/2001

ETM+  7/29/2002

Table 3-2. Airphoto based percent tree cover a#ibhth data set. BW stands for
Black and White.

Year of Photo Interpreter  Scale Format n
1987-1988 2 1:40 000 BW 81
1989 2 1:12000 True Color 33
1990-1992 2 1:12000 True Color 18
1993-1995 2 1:12000 True Color 26
1997-1998 2 1:12000 True Color 91
1994 1 1:24000 True Color 125
2000 2 1:40 000 BW 37

Total 411
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Table 3-3. Regression parameters for the inigatent tree cover and airphoto

validation models.

Model n Slope Intercept Mean Bias R2 RMSE

Initial RMA | 202 1.14 -9.66 70.97 0.03 0.77 14.15
Airphoto

Validation | 411 0.94 3.66 69.38 0.00 0.68 16.09

Table 3-4. Classification error matrices for tHreRFCand WCP CART models.

CRP Little to No Slow Moderate Fast Producers Users
Little to No 150 40 57 34 58% 53%
Slow 70 50 101 82 37% 17%
Moderate 30 30 100 138 34% 34%
Fast 10 15 40 242 49% 79%
WCP Little to No Slow Moderate Fast Producers Users
Little to No 189 57 29 3 49% 68%
Slow 136 93 60 15 38% 31%
Moderate 51 66 88 101 35% 29%
Fast 8 31 71 190 61% 63%
CRP WCP
Overall 45.58% 47.14%
Kappa 27.00% 29.00%
Tau 27.44% 29.51%
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Table 3-5. Aggregated classification error magifa the CRP and WCP CART

models.
CRP Slow Fast Producers Users
Slow 310 274 78% 53%
Fast 85 520 65% 86%
WCP Slow Fast Producers Users
Slow 475 107 75% 82%
Fast 156 450 81% 74%
CRP WCP
Overall | 69.81% 77.86%
Kappa | 39.25% 55.78%
Tau 39.60% 55.72%
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ABSTRACT

No matter the cause, global climate change hasyexhan accelerated use
of spatially explicit models to study carbon exapaover the terrestrial system.
Regardless of modeling strategy it is important ésimates of total carbon flux
from terrestrial sources account not only for lbabon stocks, but also for other
major component pools such as soils, woody detangasforest products.
Although an integrated approach is required to/fuliderstand the flux of carbon
to and from forests, estimates of the living masscatical for initializing
component pools in regional scale models and to tmaiselines from which to
estimate loss from cultivation. Optical satelliteagery has been used to estimate
aboveground biomass, however these methods haeealjgrproved ineffective at
providing useful estimates for high biomass fore$the Pacific Northwest. Thus,
we present an alternative modeling strategy whakks advantage of Landsat’s
temporal and spectral characteristics to predietforest carbon through
integration of age and site index maps and a detafly calibrated Chapman-
Richards curves. As this curve-fitting approach been previously used in
conjunction with a multi-component model to estientttal carbon flux for western
Oregon, we sought a robust evaluation of its ghiititestimate live forest carbon at
multiple scales. Predictions from the curve-fitdabwere evaluated at the local
(pixel level) and landscape (total carbon and carfhex) scales for two forested
ecoregions (Coast Range Province — CRP and WeSsstade Province — WCP)

using two periods of FIA field inventory data. the pixel level, the curve-fit
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model performed better (i.e., higher correlatianyér RMSE) in the CRP than the
WCP, likely the result of faster, less variablewgtio patterns common to the CRP.
Model predictions for both ecoregions were obsetedtave large positive bias
statistics, resulting in over-prediction of lowrtod-range carbon values and under-
prediction of high end carbon values. At the |aage scale, the curve-fit model
also over-predicted total study area forest cafboboth inventory periods.
Although this over-estimation was significant (age of 138.32 Tg per inventory
period) in absolute terms, the flux (i.e., diffecerbetween inventory periods)
estimated by the curve-fit model was found to b# within the standard error of
the inventory estimates. Inventory data is gehecainsidered one of the more
reliable means from which to estimate carbon ba&amwver large areas, although
for this to be true the sample plots must captoeespatial and temporal changes in
land-use patterns occurring on the landscape. aliggthe sense to which the
inventory plots captured the forest condition im stwdy area we compared
frequency histograms and stand age chronosequehtasdsat wetness derived
for the full study area and for the inventory plo®he study area and inventory
based frequency histograms had the same genepsd ahd magnitude of wetness,
however the map based stand age chronosequenceedetssubtle shift in land-
use which was not captured by the inventory sanfgteough optical satellite
imagery is limited in its ability to directly estate forest carbon, we found

Landsat’s temporal (e.g., age maps) and spectra| (getness chronosequences)
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characteristics to be useful inputs to a curve dasedel which was found to

estimate carbon flux from forests within the staddaror of inventory estimates.
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1. INTRODUCTION

As the global climate continues to warm (Keeling02) and countries
around the world are tasked with estimating anomépy changes in terrestrial
carbon stocks (e.g., Kyoto protocol) new and intiseaechniques must be
developed to accurately estimate forest carbon wagrspatial areas. Developing
reliable estimates of terrestrial carbon flux @ifficult task as all the major
terrestrial carbon pools exhibit considerable \lity across space and time
(Solomon et al., 1993). Terrestrial carbon flugasnot be measured directly, thus
at regional and global scales we must rely on edémderived from models which
can be process (Landsberg and Waring, 1997; antefet al., 2004) or
accounting based (Wallin et al., 1996, Cairns e28I00). Regardless of modeling
strategy it is important that estimates of totaboa flux from terrestrial sources
account not only for live carbon stocks, but alsodther major component pools
such as soils, woody detritus and forest produethén et al., 1996). Accurately
estimating the mass of living material howeverrigaal as it is often used to
initialize component pools in regional scale carbwodels (Kimball et al., 2000)
such as autotrophic respiration and post-disturbaletrital residues (Turner et al.,
2004). Optical satellite imagery has been useadiraxtly estimate amount and
temporal variability in aboveground biomass (Dohgle 2003), however these
methods are mostly sensitive to green foliage &ioevsan asymptotic relationship
with biomass. Thus we seek an alternative methagioly optical imagery to

estimate live carbon stocks which overcomes thasttions.
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A key to accurately estimating live forest carbsia account for the spatial
effects of anthropogenic disturbance, land-use glamd site productivity, which
can vary considerably by ecoregion or forest tylladerate resolution satellite
data like Landsat are particularly effective atkiag changes in land cover
associated with harvest disturbances and landhesge (Cohen et al., 2002) and
have recently been used to effectively charactesdtss of early successional
regrowth after clearcutting in western Oregon (8eler et al., in press). As forest
growth extends beyond the stem exclusion phasecoinslary succession however,
the spectral signal recorded by optical sensors asd.andsat shows an asymptotic
relationship to biomass (Turner et al., 2004), prewg further growth
characterization and limiting direct modeling obimiass for mature forests (Lu,
2005; and Labrecque et al., 2006). Although Lanhidsgenerally less effective at
predicting biomass above 50 to 80 megagrams (Mgheetare (ha) (Dong et al.,
2003), its spatial, spectral and temporal charesties permit derivation of a
variety of other useful products which can be z#itl to help predict live forest
carbon.

The growing legacy of temporal data available ficandsat (1972 —
present) can be used in a “change-detection” coteaccurately detect forest
disturbances (Cohen et al., 1998; Hayes and Sa0@t,), especially in systems
where disturbances are frequently the result a@rclg harvesting. If one takes
advantage of the full historical legacy of Land€a®hen and Goward, 2004), a

variety of disturbance mapping techniques (Cohal.£1998; Healey et al., 2006;
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and Kennedy et al., in press) can be used to depamdisturbed forests from
secondary forests. Once separated, an accurataadee assigned to younger
secondary forest stands which have been disturbedigdthe Landsat record G0-
years). When these secondary forest age mapsm@@ed with maps of initial
vegetation age (from Landsat) and site productifetg., site index) a modeling
strategy can be employed to estimate live forestara(including foliage,
branches, boles, and coarse roots) at the pixkd Sz@ugh the use of theoretical
growth curves like the Chapman-Richards functioicliRrds, 1959).

Site index curves and associated yield tables lmngbeen used by
foresters to predict the productive capacity oéfts (Hegler, 1968). Curves are
also an effective way of diagramming temporal patef forest productivity
especially as they relate to carbon sequestratigarsus spatial scales (Harmon,
2001). Since long term patterns of forest proditgtin the Pacific Northwest are
generally well understood (Janisch and Harmon, P@@2can reasonably construct
a predictive model using a meta-modeling approaealw(@nd Kelton, 1991). This
involves using a detailed stand-level model to pest@rize a simpler set of
functions which can more easily be applied to abeo landscape. The approach
(referred to here as curve-fit), while simple iriura is extremely useful in that
curves, once calibrated, can easily be incorporatedccomprehensive models
which track carbon through a variety of pools aathays. In addition, curves

offer the potential to be applied in a less comipartally intensive manner as some
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process driven models and offer potential to esemaore reasonably the upper
bounds of carbon storage in mature forests thatidinodeling with Landsat data.

This curve-fitting approach to estimating live aamlstorage has been
previously utilized within the framework of a corepensive model for estimating
total carbon flux from temperate coniferous foredtthe Pacific Northwestern
United States referred to as Landcarb (Cohen et296; Wallin et al., 1996; and
Wallin et al., in press). A multi-component modeandcarb spatially tracks
exchanges of carbon between the living, detritdl fanest products pools for each
25 x 25 meter Landsat pixel, allowing spatial viaoia resulting from natural and
anthropogenic factors to be accounted for over.tidghough live carbon
estimates from the curve-fit approach have beewsho accurately reflect county
level harvest statistics from the Oregon Departnoéiiorestry (ODF) (Wallin et
al., in press), a potentially more valuable evatuabf model performance could
result from comparison with field measured dataiur &m is to utilize field
inventory data collected and compiled by the U@&@eBt Service’s Forest
Inventory and Analysis (FIA) program to evaluatepsaf live carbon produced by
the curve-fit model for portions of two forestedesgions in western Oregon.

FIA has been using a three-phase, double sampigndescollect field
measurements of forest attributes in the UniteteStsince 1928 (Birdsey and
Schreuder, 1992). In general the FIA inventoryolek a two-phase stratification
process (Bechtold and Patterson, 2005), whereeifitdt phase a grid of sample

points is classified using aerial photo interprietabr forest/non-forest maps
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generated from Landsat imagery. A random or syatiersample of these grid
points is then selected for field measurement basestate specific criteria derived
from phase one interpretation of forest type, vauwlass or structural
characteristics. The grid points (or plots) saddare then field sampled by a
trained field crew and marked for remeasuremefuture inventories. Currently
the FIA program implements an annual sampling seh@eferred to as annual
inventory) where approximately 10% of field plotsr(western states) are
systematically measured and reported each yeanidesly plots were measured
non-systematically and reported approximately ext€yo 15 years (referred to as
periodic inventory).

Despite changes to the FIA inventory protocol duee, two characteristics
of FIA data make them patrticularly well suited t@kiate the live carbon maps
produced by the curve-fit model. First, tree ledala measured for each plot can
be consistently converted to units of biomass (tberarbon) using national scale
allometric equations (Jenkins et al., 2003). Rle¢l carbon estimates derived
from FIA data can be directly compared with mapbased pixel level predictions
using scatter plots and regression diagnosticetiebunderstand how well the
curve-fit approach performs at a local scale. Amdre available from multiple
inventories (i.e., annual and periodic), these faqtixel relationships can be
evaluated for performance and consistency over fiomeach of the forested
ecoregions. Second, as the FIA inventory is skeai$y designed to estimate

merchantable bole volume over large areas, platl kestimates of biomass can be
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expanded to calculate total live carbon and caflhwn(i.e., difference between
inventory estimates), which can be compared t@tinee-fit approaches map based
estimates for the study area. This two tiered @gghr to validation allows for
robust characterization of both local and landscmade estimates of carbon
dynamics in the region.

Inventory data like those collected by FIA is getlgrconsidered one of
the most robust ways of estimating carbon dynamicslation to land-use change
and interannual variation in climate. For thidb®true however, it necessary that
the sample of plots be carefully laid out in orttecapture the full range of forested
conditions and land-use patterns found in the studg. Satellite sensors like
Landsat offer both a synoptic view of the landscasewell as the spectral capacity
to characterize forests in terms of structure anecusing vegetation indices such
as the Tasseled Cap (Crist and Cicone, 1984). aisgl¢at wetness has been found
to be an important indicator of maturity and stanetin closed canopy forests and
is relatively insensitive to cosine of the incideramgle (Cohen and Spies, 1992,
and Cohen et al., 1995) we use it here in two wéirst, we evaluate the degree to
which the FIA sample plots capture the variabitifyforest cover in terms of the
spectral wetness observed in the study area. 8esobstituting space for time,
we develop two chronosequences of wetness by si@adlass (from the stand age
maps and from FIA field estimated stand age) tera@ne if subtle land-use shifts
which may impact the carbon balance are capturdatd¥IA sample and by the

stand age maps.
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Overall we aim to address the following two objees. First, to evaluate
predictions of live forest carbon produced by theve-fit model for image dates
corresponding to two FIA field inventories (1995aige for periodic, 2004 image
for annual). The predictions of live forest carlfortluding foliage, branch, bark,
bole, and coarse roots) are evaluated using inwedtta at the local (i.e., pixel
level) and landscape (study area totals and floaxles. At the local scale, we
evaluate pixel level estimates of forest carbomftbe curve-fit model using
inventory data collected for two forested ecoregiosith known differences in
productivity. At the landscape scale, total foremtoon and carbon flux is
estimated with field plots from each inventory dhd estimates are compared to
the curve-fit models map based estimates. Sed@milsat tasseled cap wetness
(calculated from the 1995 and 2004 images) is ts@uvestigate the degree to
which the FIA plot samples capture the spectrabtan in forest conditions found
in the study area. This is accomplished by comgdrequency histograms of
study area versus inventory plot wetness and blyzing patterns of forest growth
from chronosequences of wetness based on stardesaged from map based and

field measured sources.

2. METHODS
2.1. Study Area
The study area is comprised of a 2,140,557 hatfares determined by a

1988 vegetation map of western Oregon (Cohen,&2@01). The study area
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(Figure 4-1) covers portions of two major fores¢edlogical provinces, which are
described by Franklin and Dyrness (1988) as thestl®ange Province (CRP) and
the Western Cascade Province (WCP). The CRP isictesized in the far west by
a Sitka spruce zone a few kilometers wide lyingctiy adjacent to the Oregon
coast. The rest of the CRP and the majority oMi&P are dominated by conifers
common to the Douglas-fir/western hemlock zoné&aalgh hardwood species such
as red alder, vine maple, big leaf maple, and Radifigwood can dominate moist
riparian areas and dry valley margins. The clintditédne Pacific Northwest is
typified by warm, dry summers and mild, wet wintefide study area
encompasses a wide range of elevations, yieldneggtphysical and climatic
gradients. Climatic differences, in concert witfiatences in elevation and
geology yield a wide array of growing conditionghim the study area. The
prevailing winds and rugged topography genera®dywvarmer, wetter conditions
in the CRP and colder and drier conditions in theRV The combination of these
geographic characteristics in concert with imp&as forest management have
led to previous findings that following clearcutryesting, the CRP typically
supports faster forest regrowth than the WCP (Yatrgg., 2005; and Schroeder et

al., in press).

2.2. Data

2.2.1. Forest Inventory Data
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There are several differences between the per(ddia collected between
1993 — 1997) and annual (data collected betwee@l 2ED05) FIA inventories,
mostly resulting from the switch in 2000 to an “enbed” inventory design that
now collects data on a systematic sampl&q%) of plots within each western state
each year. Other differences include plot layauifiguration changes (shape and
size), number of measured subplots (periodic snbual = 4), and variable vs.
fixed radius subplots. In addition, during theipéic inventory FIA only collected
plot data on private forest lands in the westel®.|.as apposed to the current
annual inventory which now collects data on botkigie and public forest lands.
To compensate for this difference we make use @f dallected on public lands by
the U.S. Forest Service Region 6 (R6) and Buredianfi Management (BLM).
Data collected by all three land management agenaeee compiled by the Pacific
Northwest FIA program into an Integrated Datab#38&) which uses common
formats, definitions, measurement units, columnesand table structures
(Hiserote and Waddell, 2004). We refer to thisadst as IDB periodic and the
annual data set collected solely by FIA as FIA @ahnu

In both the inventories plots are coded basedhemtmber of different
land cover conditions (e.g., forest, non-foresttemaobserved on each measured
subplot. Thus, a plot labeled as 1 (i.e., singledttion) would have only 1
dominant land cover condition, whereas a plot kadbels 3 (i.e., multiple condition)
would have a different land cover condition oneatst 3 of the measured subplots.

To minimize spectral heterogeneity it is not uncasnrthat only single condition,
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forested plots are used in studies where plot @a&taised to directly model forest
attributes with remotely sensed imagery (Schroetlat., in press). Others have
used an approach where all condition classes e§fed plots are used and a
screening process (either visual or statisticallsesd to discard plots that are
assessed as obvious outliers (Ohmann and Gred0$).2 FIA plot coordinates
are not publicly available, however even when knewardinate locations are used
(as in this study) errors in plot coordinate locas and image registration can

combine to yield unmeaningful statistical relatiomps.

2.2.2. Stand Age Maps

Spatial representation of stand age is requiredpsg to the curve-fit
carbon model. The process of deriving stand agesrfaa our western Oregon
study area is adapted from the procedure deschp&uallin et al. (1996) for use
within the Landcarb modeling framework. Brieflyetbrocess combines a
vegetation age map of western Oregon (Cohen étCf)1) with a stand
disturbance map of timber harvests and wildfiregioally produced by Cohen et
al. (2002) through 1995; updated with similar chadgtection techniques through
2002 by Mouer et al., (2005) and through 2004 byriagtz (2005).

Image classification based on continuous varg{le., percent cover) was
used to develop the 1988 vegetation map of we€esgon, which included seven
classes: open (< 30% green vegetation cover (G\$€mj-open (30 — 70 % GVC),

broadleaf (>70% broadleaf cover (BC)), mixed (>7G%C, <70% BC and < 70%
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conifer cover (CC)), young conifer (>70% CC, < &&a¥s), mature conifer (>70%
CC, 80-200 years) and old-growth conifer (>70% €Q00 years). Stand age was
only considered for three broad categories (youragure and old-growth age)
when assessing map accuracy, which was report@2%aoverall (Cohen et al.,
2001).

Approximated “structural” age classes were assignghe seven
vegetation classes from the 1988 map, these incopn (1-10 years), semi-open
(11-20 years), broadleaf/mixed (21-30 years), yoi®ig80 years), mature (80-200
years) and old-growth (>200 years). For modeliagppses, we assumed the
median age was the current stand age in the 1988ateon map (old-growth was
assigned an age of 225). The stand disturbanpenas then used to mask out all
stands of known disturbance (fire and timber hap@scurring between 1972 and
2004 (in roughly 5 (£2) year intervals). We assdrtieat all disturbances occurred
during the median year of each mapped disturbarteeval. For example, when
creating the 2004 age map all areas of known diahge were masked from the
1998 vegetation map. If a pixel was labeled atuhed between 1984 and 1988
its age was estimated as 2004 minus median distoelbege, or 2004 — 1986 = 18
years of age. For all unmasked areas (i.e., umtistl since 1988), the age from
the 1988 vegetation map was added up 16 yeard. 280 if a pixel was labeled
as open in 1988, its age was estimated as medeaim d®88 (i.e., 5) plus 16 years
(2004 — 1988 = 16), which yields an age of 21 yediss procedure was used to

“spin-up” an estimated stand age map for both 885land 2004 image dates.
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2.2.3. Site Index

To account for variability in forest growth duediamate and soils (i.e.,
potential productivity) a site index map is usedngsit to the curve-fit carbon
model. Timber companies often keep local dataspadial records of productivity
for their land holdings, but consistent regionabdare not widely available
(Waring et al., 2006). The only known map of sit@ex available for western
Oregon and Washington was produced in 1949 by Iséhe map was produced
using field survey and elevation data (Swensomn. g2@05) and has been shown to
correspond with known relationships of forest prddity in the region (Wallin et
al., in press). As this was the site index mapuse¢he original work involving
Landcarb (Cohen et al., 1996; and Wallin et al96)9we elect to use it here for

further evaluation.

2.2.4. Landsat Imagery

Two cloud free, near anniversary Landsat TM (WR$d2h 46, row 29)
images were used in this study. Both images wadi®metrically normalized as
part of a 19 image time-series by Schroeder €2@06) using statistically selected
pseudo-invariant features (see Canty et al., 2@rBlatively normalize all images
to an atmospherically corrected reference (cordeaiéh 6S, Vermote et al., 1997).
The approach, referred to as absolute-normalizatifactively normalized all

images to a common radiometric scale (across aljes < 0.025 RMSE) while
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simultaneously correcting for atmospheric and semser view-angle effects.
Given similar radiometry, the Landsat wetness ieslicalculated for both images
can be compared over time to evaluate the repraseiess of the FIA random
sample both in terms of wetness frequency andrpattd forest growth derived

with the stand age chronosequences.

2.2.5. Inventory Carbon Estimation
2.2.5.1 Per Pixel Carbon

Data derived from both the FIA annual and IDB péicadatabases were
used to validate both pixel level and total studbagoredictions of live carbon from
the curve-fit model. For the pixel level validatjaaw tree data for trees > 2.5
centimeters (cm) diameter at breast height (DBbinfboth FIA inventories were
converted to aboveground biomass (including brasdhale, bark and foliage)

using national-scale allometric equations (Jenkiral., 2003) of the form of Eq. 1,

bm = Exp(3, + A, In doh) (1)

where bm is biomass per tree in kilograms (kg)tpes, dbh is diameter at breast
height (in cm), Exp is an exponential functionjdmatural log base “e”, arfid and

B, are parameters based on 10 general species dsmgydenkins et al., 2003
Table 4 for species group parameters). We fawute of national scale equations
as they are developed over broad areas with larg#ars of trees. Coarse root

biomass was estimated for trees > 2.5 cm DBH usm@?,
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ratio = Exp(8, + % (2)

where ratio is the coarse root ratio to total algpgend biomass from Eq. 1. For
each plot an adjustment was made to account fatisgdbiomass based on group
count data for trees < 2.5 cm DBH. Tree biomass exgpanded to represent plot
area (i.e., multiplied by trees per hectare) amdread resulting in a plot estimate
of biomass in kg Ha Plot biomass was then converted from kg to Mdjfamally

to Mg C h& assuming 50% of living biomass is carbon (Swiflet1979).

2.2.5.2. Total Study Area Carbon

To calculate total study area carbon, the treel ldata were converted to
aboveground biomass as stated above and then eegpagdhe number of hectares
each plot represents in the study area. To dénwarea each plot represents in the
study area we adjusted the number of hectarespatctepresents in each

inventory using Eqg. 3,

Sudyareaha

Adj Fac=
Inventory ha

3)

where Adj Fac is the adjustment factor appliechlot level expansion factor,
Study area ha is the total number of hectaresarstindy area and Inventory ha is
the total number of hectares each collection ofsplepresents in its respective
inventory. After applying the adjustment factord@b6 for IDB periodic, 0.9533

for FIA annual) the resulting numbers were useedpand the per plot biomass
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estimates, which were then summed across ploteld the estimate of total live

carbon reported in teragrams (TQ).

2.2.6. Curve-fit Carbon Model
Using a look-up table approach (Song et al., 200&) curve-fit model uses
a set of Chapman-Richards curves to estimate abowed carbon (including

foliage, branches, bole, and coarse roots). Theesuware defined using Eq. 4,
LIVE = LIVEMAX * (1 — ®* "8, (4)

where LIVE is the total aboveground carbon star®lg C hat, LIVEMAX is the
maximum live aboveground carbon store,8the rate that determines how
quickly live carbon approaches the maximumgdBtermines how long plant
production lags behind the maximum rate, and AGEEesnumber of years since
disturbance. The curve parameters (Table 2-1)lerged from STANDCARB
(Harmon et al., 1995), which is a stand-level mdbat integrates effects of site
condition, disturbance severity, tree re-establishinand species composition on
forest growth. The maximum carbon storage in abauend and belowground
pools was determined from past field based stuzbaducted within the region
(Grier and Logan, 1977, Harmon et al., 1986, Snithwt al., 2002). The curves,
parameterized using yield tables published for Deafyr (Curtis et al., 1982) are
presented in Figure 4-2. Live carbon maps werduwred for the 1995 and 2004

image dates to correspond with the two FIA inventmeriods. The steps of the
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curve-fit modeling and validation process are daaggd in the flow chart found in

Figure 4-3.

2.2.7. Carbon Model Validation
2.2.7.1. Per Pixel Carbon

To evaluate local scale performance of the cuitvexddel we directly
compared predictions of forest carbon to thosenedd from the FIA data. We
elected a conservative approach were we used #ipiewcondition plots with
measured trees, resulting in 1,180 IDB periodi¢gp{ao = 404 CRP, n = 776 WCP)
and 403 FIA annual plots (n = 165 CRP, n = 238 W&R)jlable for analysis.
Fewer plots are available from the FIA annual in@enas only 5 years of data (
40%) has been collected since the inception oh#dve enhanced FIA inventory
starting in 2000. For each of the sample plotsiereved the pixel level estimates
of carbon using the mean value of one of two pmasks (1. 22-pixel mask for
FIA plots in both IDB periodic and FIA annual datts; 2. 13-pixel mask for BLM
and R6 plots in the IDB periodic data set) whichrev@esigned to reflect the
various sizes, shapes and coordinate measurenoatiblas of the plots collected in
the two inventories. Scatter plots for both imdgées are developed by ecoregion
using the predictions (from the curve-fit modelflasbserved estimates (from FIA
data) of forest carbon. Descriptive statistios. (iminimum (min), maximum
(max), mean and standard deviation (stdev)) angssgn diagnostics (bias, root

mean square error (RMSE), variance ratio (VR))used to evaluate the carbon
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models capacity to locally predict forest carboeath ecoregion. A small portion
of the study area does not fall into either offthhested ecoregions used in the per
pixel validation. Thus, for each inventory, themher of plots used in the per pixel
validation are slightly less than the total numdiigplots used to estimate total live

carbon for the study area.

2.2.7.2. Total Sudy Area Carbon

To evaluate the landscape scale performance auitve-fit model we
directly compared the map based predictions oftararbon to those estimated
with a collection of plots from each inventory efi(n = 1,450 for IDB periodic, n
=432 for FIA annual). For each inventory peribd plots were used to calculate
total study area carbon (in Tg), as well as assetistandard errors. For the curve-
fit model, total study area carbon was calculatecdbbth image dates by

summarizing the map based predictions using Eq. 5,

Total C =) (AB,) [ AB [10.0625) ()

where Total C is the estimated study area carlvomd), AB represents the age
class bins from the stand age maj#3; is the number of pixels in each age class
bin, ABc is the carbon value in Mg C haf each age class bin, and 0.0625 is the
number of ha in each 25 x 25 meter Landsat pikehddition to total study area
forest carbon, we also difference the respectivp amal inventory based estimates

to report the carbon flux occurring between the megadal point-in-time
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estimates. Differences are reported in absoluteeggin Tg), relative percentages
(i.e., % of initial value) and amount of forestloan sequestered on a per year basis

(based on 9 years between point-in-time estimagesrted in Mg C hd).

2.2.8. Landsat Wetness

Landsat wetness was calculated for both the 18632804 Landsat images
using the reflectance based tasseled cap equati@rist (1985). We use wetness
to evaluate the extent to which the FIA samplegtatpture the spectral variation
of forest conditions found in the study area. Tikiaccomplished by comparing
frequency histograms of the wetness values obsawess the full study area (i.e.,
image base) to those captured by the inventong pieed to calculate total study
area carbon (n = 1,450 for IDB periodic, n = 432F0A annual). The frequency
histograms were constructed for both image dateg tise mean wetness value
from each plots respective pixel mask (describexvapb

In addition to the frequency histograms, we alseatbp temporal
signatures of forest growth using a chronosequappeoach were average wetness
values are plotted according to stand age fronbéimelsat age maps, as well as
from age derived from the inventory data. Sin@edtand age maps were
generated to represent forest structural agedfatetit points in time (e.g., age 12
in 1995 map is age 21 in 2004 map) we summarizaegstfrom both age maps in
one chronosequence. For the inventory based cbegnence, we combined

estimated stand age from both sets of FIA inveasonto the same age bins used
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in the stand age maps. For both chronosequendesssgdas reported as average
per age bin (error bars are standard deviatioAs)wetness responds predictably to
forest growth, we can use the chronosequencegéondee if land-use shifts that
might permanently impact the carbon balance casebected at the landscape scale

with the FIA sample and with the stand age maps.

3. RESULTS
3.1. Per Pixel Carbon Validation

Local scale performance of the curve-fit carbon elaglbased on the
descriptive statistics and regression diagnostiesgmted in Table 4-2. These
results indicate that across ecoregions and invgpteriods the curve-fit mean
predictions are in all cases greater than the raeamates of the inventory data. In
addition, all the curve-fit maximum predictions wééess than the maximum
estimates of the inventory plot data. The standardations of the curve-fit
predictions were similar across ecoregions andnitorg periods and were
observed to be within + 7 Mg C tef the standard deviations of the FIA plot
estimates. Scatter plots of predicted (from thwetit carbon model) versus
observed (from FIA plot data) live forest carboa presented by ecoregion in
Figure 4-4. The scatter plots indicate that achoasntory periods the curve-fit
model more accurately predicts (i.e., has higheretation and lower RMSE) live
forest carbon in the CRP than in the WCP. Theclgasitive bias statistics

suggests the curve-fit model consistently over iptedive forest carbon in both



125

ecoregions. The variance ratio reveals an inctergipattern regarding the amount

of observed variation preserved in the curve-fdoctions.

3.2. Total Study Area Carbon Validation

Landscape scale performance of the curve-fit carbodel is based on
estimates of total study area carbon found in Tdi8e For both inventory periods,
the curve-fit model estimated on average 138.3tnoce live forest carbon than
was estimated with the inventory plot data (+ 183[g in 1995, + 142.88 Tg in
2004). When considered in absolute terms, the(flex difference in inventory
estimates) of live forest carbon predicted by tineve-fit model is substantially
more (+ 9.12 Tg) than estimates derived with tivemmory data. In relative terms
however, the flux estimate derived with the curkerodel is nearly identical to
that of the FIA estimate. The results suggesttti@tlux of carbon estimated by
the curve-fit model is well within the standardoes calculated for the inventory
estimates (Table 4-3). It should be noted thahtgker standard error reported for
the FIA annual inventory results from fewer plo&srig available for total carbon
calculation. On a per year basis, the curve-filelgredicted a larger carbon sink

(0.47 Mg C h&/yr) than estimated with the inventory data

3.3. Frequency Histograms and Stand Age Chronoseqsae
To gauge a general sense of the forest conditiapired by the inventory

sample we derived frequency histograms of Lands#ess for the full forested
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study area and for the inventory plots. The histots, found in Figure 4-5a and b,
show that the inventory plots sample the full ranf@etness values observed in
the study area. The bell shape of the histogramggests that for both inventory
periods the systematic plot sample captures therebd wetness values with a
similar frequency as found within the forested gtadea. Both the study area and
inventory plot histograms have a mean wetness dr0WW0. This is not surprising
as wetness values approach 0.00 twice during ssioced development (once
during early succession just prior to canopy clestlren again later in succession).
Thus, to get a better sense of how well the inugrdample captures more subtle
changes in forest condition we re-examine wetnkgteg according to stand age
using a chronosequence approach (i.e., spacerfe}.tiThe curves (or trajectories)
of average wetness plotted by ecoregion (error && standard deviations),
derived with map and inventory based age classefand in Figure 4-6a and b.
The curves developed with the age maps show weitnagases steadily
from year one, with some evidence after year 6dkiatage growth in the CRP is
faster (i.e., approaches 0.00 more quickly) thaméenWCP. This same age range
in the inventory based curves shows a similar vestirecrease, and the ecoregion
pattern, although less clear shows the WCP curgeoaphing 0.00 more quickly
than the CRP curve. In year 12 the map based stiovdoth ecoregions show a
sharp drop in wetness (circled area on Figure 4¥@aich reveals a significant shift
away from the normal response of wetness that eauning the process of stand

development. As our age maps are 9 years a @85 @ 2004) the same shift in
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wetness is still present in the map based curvgean21. This sharp drop in

wetness is not captured by either of the invenbased curves.

4. DISCUSSION
4.1. Per Pixel Carbon

At the local scale we evaluated the performande@turve-fit carbon
model using pixel level scatter plots, descripstatistics and regression
diagnostics. The results indicated that the ctitvaodel, although simple in form
performs quite well considering its somewhat cot&mature. We caution
against strict interpretation of the pixel levedults as there are many sources of
potential error which have not been accounted Tdrese sources of error include,
but are not limited to allometric equations, plobainates, image registration,
outliers, age maps, site index map, curve calinafor Douglas-fir and the use of
one image date to represent each multi-date inngperiod. Nonetheless,
evidence suggests that the curve-fit model predilcte forest carbon more
accurately (i.e., higher correlation, lower RMSE}he CRP than in the WCP. ltis
possible the curve-fit model was able to more aely predict carbon in the CRP
as it tends to support faster, more consistent [ggs variable) patterns of forest
growth resulting from more favorable growing cormatis (Schroeder et al., in
press). As evidence of this hypothesis we plgtiest-harvest forest regrowth
classes (normalized by the % of area clearcut) exhppth trajectories of multi-

temporal Landsat imagery (Schroeder et al., ing)rieg site index class from the
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Isaac map (Figure 4-7). These graphs clearly shatwegardless of site index
there is very little variability in the distributioof forest regrowth classes in the
CRP. Inthe WCP however, there is substantiabbdriy in the distribution of
forest regrowth classes, especially for site inclesses 2 through 4.

Although the curve-fit model performed betterhe ICRP, the bias statistics
suggested that the model over-predicts forest cairbboth ecoregions. Some of
the over-prediction could result from using curpasameterized specifically for
one species (Douglas-fir). Another possibilityhat the model parameters (from
Table 4-1) themselves need to be modified. Thaesgalots reveal that the over-
prediction tends to occur in the low to middle rard carbon and under-prediction
at the high end. Thus, a slight decread& {oontrols how quickly live carbon
approaches the maximum value) and a slight increegse(controls lag of plant
production behind the maximum rate) from Eq. 4 rlgp linearize the
predictions of the model in relation to the fieléasured inventory data.
Additional pixel level accuracy could also be agkig by improving the spatial
representation of forest productivity (i.e., sitedeéx map) used to assign the curve
based carbon values.

One option to improve the spatial representatiofost productivity
would be to use a more detailed measure predigtedftrest growth process
model such as 3-PG (Landsberg and Waring, 1997iye®by coarse resolution (1
km) satellite data from the MODIS sensor the 3-Pagleh has predicted Douglas-

fir site index from FIA inventory data with reasdf@accuracy (R= 0.55) for the
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state of Oregon (Swenson et al., 2005). Anoth&oopo improve predictions in
young forests would be to rely on a direct meastiferest growth from time-
series data from Landsat. Given its temporal feegy, as well as recent advances
in algorithms which extract trajectories of foresgrowth in an automated fashion
(Kennedy et al., in press) this seems like a viaplgon. Although young forests
do not store large amounts of carbon, differencesticcessional rate (fast vs. slow)
has been shown to significantly impact the amotifive carbon (120 Mg C ha

vs. 53 Mg C h3) stored in 40-year old plantation forests in west@regon

(O’'Connell et al., in preparation).

4.2. Total Study Area Carbon

As the pixel level validation showed that the cufttenodel tended to over-
predict forest carbon at the local scale, it isaprise that total study area forest
carbon was also over-predicted in relation to tivemntory based estimates.
Although this over-estimation is significant (avgeeof 138.32 Tg per inventory
period) in absolute terms, the flux (i.e., diffecerbetween inventory periods)
estimated by the curve-fit model was found to b# within the standard error of
the inventory estimates. This finding helps prevadiditional credibility to the live
carbon flux estimates derived in previous studigh thhe curve-fit model (Cohen
et al., 1996; Wallin et al., 1996; and Wallin et al press). For a slightly larger
(but overlapping) western Oregon study area, Wallial. (in press) estimated a

sink of live forest carbon of approximately 1.7 K&dha/yr between 1991 and 1995.
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This estimate is similar in magnitude to our 1.6§ ®ha/yr sink estimated
between 1995 and 2004. As our results suggestitassize sink to that dating
back to 1991, it is possible that the flux of faregrbon in western Oregon could
be approaching a balanced state given currenttfprastices (Cohen et al., 2002)
resulting from implementation of the Northwest rielan (FEMAT, 1993).

In addition we note that our carbon estimated@dh inventory periods
were derived using the same set of national sdlametric equations (Jenkins et
al., 2003), thus eliminating unwanted error in fhux calculations due to
differences in equation form. FIA inventory regsaine., Pacific Northwest,
Interior West, Southern, Northern) typically caltiel and report biomass data
using a variety of different allometric equatiohewever based on the scale of
application we favor the use of national equatidwesthose utilized here so that
derived estimates and their associated errors emommpared in similar units

regardless of modeling strategy.

4.3. Frequency Histograms and Stand Age Chronosegse

Direct forest inventories like FIA are one of thena reliable methods from
which to base regional and national scale carbalgé&ts (Turner et al., 1995; and
Jenkins et al., 2001). For inventories (or anyhoeétfor that matter) to be truly
effective they must capture the spatial and temmbranges in land-use patterns
occurring at the landscape scale. This can bé#ieutl task in complex landscapes

where differences can occur between ecosystemantlyron the landscape and
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those that have been previously cleared (Hougltah,001). Thus, to gauge a
general sense of how well the inventory samplespiepresent the forest condition
present in the study area we utilized the tassspdvetness index (Crist, 1985) as
it responds predictably over the course of forestetbpment and is nearly
insensitive to topographic effects (Cohen and ${di@82; and Cohen et al., 1995).
The frequency histograms of wetness (Figure 4-Sabdshow that in terms of
shape and magnitude of response the inventory fpotsboth periods well
represent the forest condition in terms of speetethess found in the study area.
As this is a very general measure, we were inteddsta more detailed evaluation
of the inventory samples representation of the estrcontinuum found in the
study area.

Since wetness responds predictably to structusd@és associated with
forest growth, we utilized a chronosequence approadook for significant
deviations away from the normal pattern of forestelopment that might be
captured by the spectral index. A typical wetrtesggctory starts at its lowest
point & -0.15) immediately after disturbance in year anereases to around 0.00
as leaf area is accumulated, exceeds 0.00 urgéhdahes its highest point at canopy
closure, falls below 0.00 as scene components tthargreen foliage start to
increase, and finally increases slightly back tmuad 0.00 in old-growth stands
when crowns die back and the presence of epiphgtiens increases in the upper
canopy. In young stands (1 — 15 years, Figure dnglkb), the large standard

deviations around the mean wetness values charase¢he large amount of
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spectral variability that can occur early in foregtcession due to differences in
productivity and management (Horler and Ahern, }98&his variability is a
common feature associated with stands recoverorg @learcutting in western
Oregon (Yang et al., 2005; and Schroeder et apress). What is not common is
the considerable drop in average wetness obset\agkaclass 12 in the
chronosequence developed with the map based sgendasses (Figure 4-6a
circled area). This pronounced spectral shift afsay normal forest development
is not seen in the chronosequence developed wiltlagses from the inventory
plot data (Figure 4-6b).

Using the stand age maps (specifically age claggrdti-temporal
Landsat imagery and high resolution aerial phofolgyg 1 meter resolution true
color photography from National Agriculture Imagétsogram, 2005) we have
interpreted this shift in wetness response as pnetiiely forest clearing along the
Willamette valley margins resulting from urban (gergral homesteads) and
agricultural (e.g., crop fields and Christmas fisgens) expansion. As we used a
space for time approach using stand ages mappgegtbmand 2004, the age 12
class bin is represented again as age 21 in thebassal chronosequence (Figure 4-
6a). At age 21 we see that the curves of averageess have only increased
slightly from age 12, indicating that some of tleattted shift away from normal
forest development maybe a long term change inlemed This finding is

noteworthy as uncertainties associated with ratémno-use change (especially
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conversion of forest to non-forest) contribute mrencertainty of carbon fluxes
than do uncertainties in biophysical variables (§lden and Goodale, 2004).

Based on the stand age map statistics up to 18%668r 0.6 % of the study
area) could potentially be effected by this simftand-use. This equals
approximately 0.02 Mg C Hayr (based on the average of 5 site index curves fo
12 year old stands from Figure 4-2 and a 9 yeasoreanent interval), which is
not a large amount in absolute terms. The pointdver is not about the difference
between the amount of carbon present on the lapdgbased on land-use shift)
and what could be present if these areas wheregssigg along a track of normal
forest development, but rather on the differende/ben what carbon is present on
the landscape (based on land-use shift) and whatlveae before these areas were
disturbed. The later view could have a considerahpact on the long-term
carbon balance of the region.

Although we present evidence that the inventorgahronosequence did
not detect the subtle shift in land-use we havesabmeans of determining if this
had any impact on the total carbon estimates dfmethe study area. Our goal
was simply to demonstrate the subtle landscapegesaihat can be detected with
the synoptic view of Landsat. We also note tha oihthe major weakness of the
curve-fit carbon model is that it assumes all distd forests eventually grow back
to new forests. Clearly this a naive assumptian itinust be addressed in future
versions of the model, along with other issuesedis this study such as curve

prediction bias, site index representation, cufeesther species and ecoregion
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productivity differences (CRP vs. WCP). Regardigsthe method used to
estimate forest carbon (e.g., forest inventorycess model, accounting model), it
is important that shifts in land-use especiallystnovolving forest to non-forest
conversion be robustly accounted for. We hopeLandsat based chronosequence
approach can allow for better spatial accountinthese forest to non-forest
conversions in future applications of the curvexfiddel. Although optical satellite
imagery has its limitations regarding the direcireation of forest carbon, we have
demonstrated that Landsat’s temporal (e.g., ages)aqu spectral (e.g., wetness
chronosequences) characteristics can be usedeasiwdfinputs to a curve based
model which estimates carbon flux from forests witthe standard error of

inventory estimates.

5. CONCLUSION

Given the uncertainty surrounding the effects ohate change many
countries have been tasked with accounting foesénal carbon stocks over large
areas. Although estimating total carbon flux regsiiaccounting for live carbon, as
well as other major component pools (e.g., sodg;iis, and forest products) we
focused on prediction of live forest carbon aggBmation is critical to initializing
various component pools in regional scale modalsn@r et al., 2004) and is often
spatially estimated with considerable uncertaiftgyghten et al., 2001). As
optical satellite data have been shown to havesamptotic relationship with

biomass we sought a method that could overcomdirthiteition. The curve-fit
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model evaluated here uses a look-up table appredare a set of Chapman-
Richards growth curves are used in combination foitest stand age and site
productivity (i.e., site index) maps to spatialkggict live forest carbon (including
foliage, branches, boles, and coarse roots). i&&epted an ecoregion specific
(CRP vs. WCP) evaluation of the local (i.e., pibesfel) and landscape (i.e., total
carbon and carbon flux) scale performance of thmeeztit model using two periods
of FIA forest inventory data (represented by 1988 2004 image dates).

At the pixel level, the curve-fit model performeell considering its
conceptual framework. In general, the model pentat better (i.e., higher
correlation, lower RMSE) in the CRP than the WGkglY the result of faster, less
variable growth patterns which have been previoabberved for the CRP (Yang
et al., 2005; and Schroeder et al., in press). épcedictions for both ecoregions
were observed to have large positive bias stadistasulting in over-prediction of
low to mid-range carbon values and under-prediatidmgh end carbon values.
Prediction based descriptive statistics such aswfwast carbon were likely
effected by sources of error from outliers, geagtgtion (image and plot), input
maps, and for curves calibrated only for Douglas-All the pixel level patterns
were consistent across both inventory periods.

As the pixel level evaluation revealed the cuntenbdels tendency to
over-estimate inventory based forest carbon, itmesurprising to find the total
carbon estimates were also over-estimated. Evenestound that the flux (i.e.,

change between inventory periods) of forest capgredicted by the curve-fit
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model was, in relative terms nearly identical te itventory based estimate
(7.22% curve-fit, 7.40% inventory). In absolutens, we found the curve-fit
models flux estimate to fall well within the stand@rror of the inventory
estimates. On a per year basis, the curve fit hnestemated a carbon sink of 1.63
Mg C ha'/ yr and the inventory data a sink of 1.16 Mg C/ha between 1995 and
2004. Use of national scale allometric equatideskins et al., 2003) to predict
carbon for both inventory periods minimized unwantariation in our flux
estimates due to differences in equation form.

We consider data collected by national forestmeres like FIA as one of
the more reliable means from which to estimateaatkalances over large areas,
although for this to be true the sample of inveyntaobts must capture the spatial
and temporal changes in land-use patterns occuonrtge landscape. To gauge
the sense to which the inventory plots captureddhest condition in our study
area we presented frequency histograms of Landsaiess derived for the full
study area and for the inventory plots. Basedhape and magnitude of the
histograms we found that the inventory plots frasthiperiods well represent the
forest condition in terms of spectral wetness foumthe study area. As thisis a
very general measure, we also presented stanchageosequences of wetness
developed using age classes developed from thé aggmaps and from the
inventory data. Since wetness responds predictald{ructural changes associated
with forest growth, we were able to observe a $icgmt shift away from the

normal pattern of forest development using the breged stand ages. This shift,
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interpreted as forest to non-forest conversion, nasletected in the
chronosequence developed with the inventory bagediata.

As subtle land-use changes are difficult to detettt any method, we do
not imply the inventory sample does not repredemfarest conditions of the study
area, but rather that synoptic data from Landsaldcle used in more synergistic
ways to help assign plot locations that could betspture these fine grained
spatial processes. We also noted that our cutveeidels assumption that all
disturbed forests eventually grow back to new fisregeds to be addressed along
with other improvements to minimize curve prediotlwas, improve site index
representation, and account for species and ecor@goductivity differences
(CRP vs. WCP). Although optical satellite imagerjimited in its ability to
directly estimate forest carbon, we found Landdatsporal (e.g., age maps) and
spectral (e.g., wetness chronosequences) chastictetd be useful inputs to a
curve based model which estimated carbon flux ffomests within the standard

error of inventory estimates.
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Figure 4-4. Scatter plots of observed (from ineepnplots) versus predicted (from
curve-fit model) live forest carbon by ecoregionl amage date.
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TABLES

Table 4-1. Curve parameters defining Chapman-Rilshgrowth curves from

Figure 4-2.

Site index  Live Max (Mg C hat) B! B2
1 650 0.02 1.98
2 570 0.02 1.97
3 460 0.02 1.96
4 310 0.02 1.92
5 230 0.02 1.88
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Table 4-2. Descriptive statistics and regi@n diagnostics for pixel level carbon validation

1995 n Min* Max* Meart Stdev Bias RMSE* VR r R2
CRP 404 41.21 116.03 0.95 0.67 0.45
IDB Plot 0.02 633.71 182.83 136.91
Landcarb 0.73 541.23 224.04 130.08
WCP 776 3428 14289 1.01 0.50 0.25
IDB Plot 0.01 875.28 190.43 137.90
Landcarb 1.00 628.15 224.71 139.75
2004 n Min* Max* Mearf StdeV Bias RMSE VR r R2
CRP 165 52.81 126.87 1.06 0.58 0.33
FIA Plot 0.01 654.09 156.08 121.80
Landcarb 0.08 518.00 208.88 129.44
WCP 238 4575 135.29 0.94 0.57 0.32
FIA Plot 0.03 728.24 179.73 141.22
Landcarb 1.00 632.54 225.48 132.14

* units = Mg C ha
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Table 4-3. Total studgaacarbon validation statistics.

n Total C* SBE* Absoluteg* Relative Per Yeaf

Map
1995 Landcart - 435.94 - 31.48 7.22% -1.63
2004 Landcart - 467.42 -

Plot

IDB Periodic 1,450 302.18 7.98 22.36 7.40% -1.16
FIA Annual 432 32454 15.71

*units = Mg C ha
**units = Tg C
negative sign denotes C sink
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Chapter 5 — Conclusion

The purpose of this research was to rategorest inventory and multi-
temporal satellite data to better understand eartgessional forest regrowth
patterns and carbon storage in western Oregont$orés many of the data used in
this research were collected at different spatidl t@mporal scales, new and
innovative techniques were required to effectivaatgl accurately characterize
forest change. Scaling data from large to smaitiapscales to answer broad
ecological questions often requires a sequent@ageh which systematically
links one scale to the next through common attebutAs such, each chapter
presented here builds on the concepts develogiprivious, resulting in
significant advancement of our understanding offyeaarccessional forest processes
in western Oregon forests.

To detect and characterize continuous changeglynfesest succession
however, optical satellite images must first basfarmed to a common
radiometric scale to minimize sun, sensor, viewl@aagd atmospheric differences.
In Chapter 2 we presented a comparison of five gfiineric correction methods (2
relative, 3 absolute) used to calibrate a neamtinaous 20-year Landsat
TM/ETM+ image data set (19 images) covering west@megon (path 46 row 29)
to like surface reflectance values (Schroeder.e2@06). We found that an
automated ordination algorithm called multivarialieration detection (MAD)
(Canty et al., 2004), which statistically locategariant pixels between a subject

and a series of reference images yielded the noosistent common scale among
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all images. Applied in a “absolute-normalizatiam@ntext, we demonstrated how
radiometric calibration with MAD improves (i.e.,deces scatter in) spectral
reflectance trajectory models used to charactg@aterns of early forest
succession. The impact of this research was drasitnorough radiometric cross-
normalization allows for: 1.) accurate charactgran of continuous forest change
with satellite imagery and 2.) robust integratwith ground measured forest
inventory data.

Previous studies have established that foresbwabrafter disturbance in
western Oregon is highly variable both in termsesegetation rate (Nesje, 1996;
Tappeiner et al., 1997; and Yang et al., 2005)dmdy (i.e., time to reach 5%
canopy cover). While these studies provided canmmevidence that successional
variability in western Oregon is real, their usegodund survey (Tappeiner et al.,
1997) and airphoto interpretation (Yang et al.,20tas limited the number of
forest stands available to statistically analyzeepoal causes of the phenomena.
In Chapter 3 we overcame these limitations by sggdercent tree cover
measurements derived by ground survey and airphtgpretation to the greater
landscape using 19 cross-normalized Landsat im@§&el — 2004). Developing a
series of forest regrowth trajectory classesé€litti no regrowth, slow regrowth,
moderate regrowth and fast regrowth) we obserwgdia range of successional
regrowth pathways 18 years after clearcut harvgstirhese classes showed a
higher percentage of fast regrowth in the Coassaige Province and a much

higher percentage of little to no regrowth in thestérn Cascade Province. For
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both ecological provinces we observed the propgfsitfaster regrowth on north
facing aspects, shallow slopes and at low elevatidn both ecological provinces,
elevation followed by potential relative radiati®RR) (Pierce et al., 2005)
explained the largest amount of variation in foregfrowth rates.

As we now had a better understanding of where andsuccessional
variability is occurring on the landscape, the ffistage of this research was to
ascertain a greater understanding of the unceytauntounding spatial predictions
of aboveground carbon storage made with opticallgatimagery. In Chapter 4
we utilized two sets of FIA forest inventory datevlidate a Landsat based curve
fitting model for spatially predicting live foresairbon. We evaluated the
performance of the model at the local (pixel lewsl)l landscape (total study area
carbon) scales for both the Coast Range and WeStsoade ecological
Provinces. At the pixel level we found the curitaxfodel performed better (i.e.,
higher correlation, lower RMSE) in the Coast RaRgavince than the Western
Cascades due to faster, more consistent growtérpatt The model displayed
large positive bias statistics indicating a tengeiocover-predict carbon in relation
to the inventory data. At the landscape scalectimee-fit model also over-
predicted total study area forest carbon for botemntory periods. Although this
over-estimation was significant (average of 138.82er inventory period) in
absolute terms, the flux (i.e., difference betwementory periods) estimated by
the curve-fit model was found to be well within $tandard error of the inventory

estimates. To see how well the inventory plotswagl the forest conditions
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present in the study area we compared frequentygnesns and stand age
chronosequences of Landsat wetness developedefdulttstudy area and for the
inventory plots. The study area and inventoryebddsequency histograms had the
same general shape and magnitude of wetness, hothev@ap based stand age
chronosequence detected a subtle shift in landvbgsh was not captured by the
inventory sample. Although optical satellite imagerlimited in its ability to
directly estimate forest carbon, we found Landdatsporal (e.g., age maps) and
spectral (e.g., wetness chronosequences) chastictetd be useful inputs to a
curve based model which was found to estimate caftb® from forests within the
standard error of inventory estimates.

Taken as a whole, the development of the absoltexalization approach
to image radiometric calibration lead to one offin& continuous characterizations
of forest successional change with optical sageifitagery. In addition, our
effective cross-normalization procedure has fateéil a new concept of image
change detection referred to in this dissertat®fdate-invariant” regression. In
the process of evaluating an alternative way afgisiandsat data to estimate forest
carbon we developed a new way to detect subtleuaedshifts (forest to non-
forest) from chronosequences of the Landsat weindsg. Overall, the body of
work presented here has facilitated a greater statating of the function and

process of western Oregon forests.
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