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The impact of recent severe droughts throughout the United States, the 

potential for climate change to intensify the frequency and severity of drought, and 

discussion about the future of government assistance in agriculture highlight the 

need for a transition from drought as ‘disaster’ to drought as ‘managed risk’.  

However, guidance for agricultural producers about optimal drought preparedness 

and response is insufficient.  It is particularly unclear what optimal drought 

preparedness and response should look like, in practice, for farm systems with 

uncertain water supplies and intra- and inter-year dynamics. 

A mathematical programming model that captures the stochastic and 

dynamic aspects of an irrigated row crop farm is developed and used to explore the 

nature of optimal drought preparedness and response.  Results indicate several 

important characteristics.  First, drought has the potential to generate 

heterogeneous impacts, even across a set of homogeneous farms.  Second, a farm 

system with inter-year dynamics can continue to experience the effects of drought 

after the drought itself subsides; additionally, the effects of drought in one year can 

intensify the impact of drought in subsequent years.  Third, in the presence of 

discount and interest rates, crop diversification does not maximize expected profit, 

even though it is often considered a drought management tool.  Fourth, the primary 



 
 
 
 
effect of water supply uncertainty is the abandonment of more fall-prepared fields.  

Hence, the multi-peril crop insurance program’s prevented planting provision is 

identified as an optimal drought preparedness tool, even if unsubsidized.  Finally, 

the predicted effects of climate change for snowmelt-dependent farm systems 

require distinctly different forms of adaptation, and cause profit losses of different 

magnitudes. 

Because the model captures both intra- and inter-year dynamics, it provides 

1) a more thorough understanding of the complex tradeoffs that producers face 

when preparing for and responding to drought, 2) a more complete picture of the 

dynamic impacts of drought, and 3) important insights about the administration of 

drought assistance programs.  Lastly, it elucidates the meaning of optimal drought 

preparedness; a notion that has received increased attention in the policy arena, but 

whose practical form has been only vaguely alluded to.  
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Economics of Drought Preparedness and Response in Irrigated Agriculture 

 

1 Introduction 

 

Climate variability is a major source of uncertainty for agriculture in the 

United States, generating an expected annual loss of $80-95 billion (Easterling and 

Mendelsohn 2000).  Drought is one manifestation of climate variability that 

continues to challenge agriculture, particularly in the semi-arid regions of the 

western United States, where the frequency of drought is high (Wilhite and Rhodes 

1993).  Tannehill (1947, p. 15) wrote of the unique nature of drought, particularly 

the challenge of recognizing it in advance:  

 
We have no good definition of drought. We may say truthfully that 
we scarcely know a drought when we see one. We welcome the 
first clear day after a rainy spell. Rainless days continue for a time 
and we are pleased to have a long spell of such fine weather. It 
keeps on and we are a little worried.  A few days more and we are 
really in trouble.  The first rainless day in a spell of fine weather 
contributes as much to a drought as the last, but no one knows how 
serious it will be until the last dry day is gone and the rains have 
come again.  We are not sure about it until the crops have withered 
and died.   
 

Agricultural producers throughout much of the United States have recently 

experienced the creeping nature of drought to which Tannehill eluded over 50 

years ago.  The 1999-2006 drought is one of the most severe in the last 100 years 

(Heim and Lawrimore 2006).  At the peak of the drought, in 2004, two-thirds of 

the western United States was affected (Heim and Lawrimore 2006).  Indices such 

as the Standardized Precipitation Index (SPI), Palmer Drought Severity Index 

(PDSI), Surface Water Supply Index (SWSI), and Crop Moisture Index (CMI) 

have sharpened the definition and detection of agricultural drought, but the science 

of drought prediction is still in its infancy (Dole 2000).  Agricultural producers, as 

a result, rely largely on past experience and providence to account for the risk of 
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drought in their farm management plans (i.e. to prepare for drought), and to adjust 

farm plans in the event of drought (i.e. to respond to drought).  

Research suggests that global climate change, particularly increased 

evaporation rates, and a larger proportion of precipitation in the form of rain 

versus snow, will enhance the frequency and intensity of drought in many areas of 

the western United States (Gleick 2000; Intergovernmental Panel on Climate 

Change 2001a; Intergovernmental Panel on Climate Change 1998).  It will become 

increasingly important, in the event of such climate changes, to understand the 

characteristics of drought preparedness and response in farm management plans.  

Drought preparedness and response has concomitantly appeared in the policy 

arena, as policymakers discuss the future of government assistance in agriculture, 

including, for example, subsidized crop insurance (a drought preparedness tool) 

and  disaster assistance programs (a drought response tool) (Knutson 2001; 

Western Drought Coordination Council 1999).  Australia set an extreme example 

for U.S. policymakers in the late 1980s by removing drought from the list of 

recognized natural disasters.  Agricultural producers in Australia continue to 

struggle with the policy-transition from drought as a ‘disaster’ to which they 

simply respond, to drought as a ‘managed risk’ for which they prepare (Stehlik 

2005).  Although drought preparedness has garnered increased attention in the 

U.S., guidance for producers about how to incorporate drought preparedness into 

the farm’s broader management plan remains insufficient. 

Economic studies have increased the understanding of drought 

preparedness and response.  However, simplifying assumptions about farm 

systems’ uncertainty and dynamics, which are commonly used to improve model 

tractability, result in an incomplete understanding of the many tradeoffs producers 

face.  Four alternative sets of assumptions are common: 1) certainty with no 

dynamics  (Adams and Cho 1998; Bernardo et al. 1987; Jaeger 2004; Michelsen 

and Young 1993), 2) certainty with intra- or inter-year dynamics (Garrido and 

Gomez-Ramos 2000; Haouari and Azaiez 2001; Iglesias, Garrido, and Gomez-
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Ramos 2003; Thompson and Powell 1998), 3) uncertainty with intra-year 

dynamics (Adams et al. 1995; Keplinger et al. 1998; Mejias, Varela-Ortega, and 

Flichman 2004; Taylor and Young 1995; Turner and Perry 1997), and 4) 

uncertainty with inter-year dynamics (and in some cases intra-year dynamics as 

well) (Toft and O'Hanlon 1979; Weisensel, Van Kooten, and Schoney 1991).  The 

fourth set of assumptions most thoroughly captures the decision-making 

environment of a producer who faces uncertainty and a dynamic farm system.  

Few studies use this set of assumptions, however, to address optimal drought 

preparedness and response (where “optimal” refers throughout this dissertation to 

the solution that maximizes a mathematical programming model’s farm-level 

objective function; nowhere in this dissertation is “optimal” used to indicate Pareto 

optimality or social efficiency).  No studies have used this set of assumptions in 

the context of an irrigated crop farm.   

Uncertainty and dynamics make it challenging for a producer to identify 

optimal drought preparedness and response plans.  Because of uncertainty, 

producers typically do not know, prior to decision making, whether drought will 

occur in the near future, when or how frequently it will occur in the more distant 

future, how severe drought will be, or for how long any one drought will persist.  

Because of intra- and inter-year dynamics, producers also have to consider how 

current decisions will affect opportunities and outcomes in future periods.  

Producers whose farm systems involve both uncertainty and dynamics have to 

keep two things in mind when making drought preparedness and response plans: 

1) the cost of drought preparedness includes foregone opportunities if drought does 

not materialize, and 2) the dynamic effect of their plan on future decisions is state-

dependent.  The challenge, in summary, is to determine “whether the long-run 

rewards will be greater if one hedges against drought in their year-to-year 

operations, or plunges ahead boldly, facing up to drought only when it actually 

hits” (Clawson et al. 1980, p. 45).  Given the considerable complexity of such a 
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decision environment, it is difficult to derive an optimal drought preparedness and 

response plan based on intuition alone.   

This dissertation helps to develop the intuition of optimal drought 

preparedness and response by creating and solving a multi-year dynamic and 

stochastic farm decision model to obtain an optimal plan and examining the 

tradeoffs and parameters that shape that plan.  The model is parameterized for a 

hypothetical irrigated row-crop farm in the Vale Oregon Irrigation District (VOID) 

of eastern Oregon.  A row-crop system was chosen because it involves both intra- 

and inter-year dynamics.  The primary intra-year dynamic is that fall field-

preparation and planting decisions affect spring planting decisions. The primary 

inter-year dynamic is that the crop choice for a particular field in year t limits crop 

choices for that field in future years, via agronomic constraints.  VOID was chosen 

as the study area for the following reasons: 1) water supplies for the upcoming 

growing season are uncertain at the time fall decisions are made; 2) VOID 

producers experience drought frequently (most recently a three-year drought that 

ended in 2004), and have consequently adopted several preparedness and response 

tools, and 3) producers have indicated a desire to enhance their ability to prepare 

for and respond to drought.   

The farm decision model can be modified in numerous ways to address a 

suite of research questions.  This dissertation focuses on research questions that 

relate to three bodies of literature: farm-level drought preparedness and response; 

drought-related farm policy, and mathematical modeling of stochastic and 

dynamics farm systems.  Gaps in these bodies of literature are identified in the 

literature review.  Research objectives include the following: 1) to understand the 

tradeoffs that drive the optimal form and degree of drought preparedness and 

response identified by the model, and generalize them for potential application in 

other farm systems, 2) to determine the role of inter-year dynamics in the 

management and impact of drought, 3) to explore the usefulness of the multi-peril 

crop insurance program’s prevented planting provision, at the farm-level, as a 
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drought preparedness tool, and 4) to highlight the advantages and disadvantages of 

using integer stochastic programming to model a stochastic and dynamic farm 

system.  An overview of research findings is provided next.     

The optimal (i.e. expected profit-maximizing) form and degree of drought 

preparedness and response is considered first.  Drought preparedness is defined in 

this dissertation as the means by which an agricultural producer plans for drought 

before they know specifically when it will occur.  This is in contrast to drought 

response, which is defined here as an action taken once a producer knows that a 

drought will occur.  Drought response tools are shown to be part of the optimal 

farm plan, but drought preparedness tools are also prevalent.  The magnitude of 

profit loss attributable to drought under optimal preparedness and response is 

difficult to generalize because it exhibits large variation depending on the crops 

planted at the time the drought occurs.  Economic parameters, such as the interest 

and discount rates, play an important role in the solution’s characteristics.  The 

effects of uncertainty are then examined to determine how the impacts of drought 

differ when anticipated versus not.  The primary effect of drought under water 

supply uncertainty, in contrast to certainty, is identified, and shown to have 

implications for the multi-peril crop insurance program’s prevented planting 

provisions.        

Inter-year dynamics is an important characteristic of many farm systems.  

Yet the role of inter-year dynamics in drought preparedness and response, or its 

implications for profit impacts of drought, is not well-understood.  Producers 

indicate that inter-year dynamics sometimes result in the persistence of drought’s 

effects well after the drought subsides.  The model’s solution is examined for 

evidence of such persistence.  Drought, and the response to it, affect cropping 

plans and profit in subsequent years via inter-year crop dynamics.  This result has 

implications for the effectiveness of government assistance in response to drought.  

It also has implications for the impact of multi-year droughts.  The above results 

provide a more complete understanding of the complex tradeoffs that producers in 
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a stochastic and dynamic farm system face when preparing and responding to 

drought.   

The ability of the multi-peril crop insurance program’s prevented planting 

provision to mitigate the farm-level impacts of drought is also explored.  The 

prevented planting provision, which covers losses attributable to an anticipated 

water shortage, is shown to be a cost-effective drought preparedness tool for 

producers, whether premiums are subsidized or not.  Enrollment in the prevented 

planting provision effectively eliminates profit loss attributable to drought.  No 

attempt is made, however, to determine the social efficiency or social-cost-

effectiveness of the prevented planting provision.   

The effect of climate change, specifically more frequent and severe 

drought, on optimal drought preparedness and response, and on profit loss 

associated with drought is also analyzed.  An increase in drought frequency has 

little impact on the drought preparedness plan or on profit loss attributable to 

drought.  This result does not hold, however, for an increase in drought severity (or 

both severity and frequency).  Adjustments in the crop plan, and change in profit 

loss differ substantially depending upon which climate parameter changes.  These 

insights inform discussions about the need for and the design of government 

assistance in a changing climate.  

The last body of literature to which this dissertation contributes is 

mathematical modeling of stochastic and dynamic farm systems.  The use of multi-

stage discrete sequential stochastic programming (DSSP) to capture the dynamic 

and stochastic features of a farm system is illustrated.  Few studies have taken 

advantage of multi-stage DSSP’s ability to represent both intra- and inter-year 

dynamics.  A second contribution is made by solving both a binary and continuous 

variables version of the model and comparing their solutions.  A binary model 

represents the producer’s decision problem more accurately than a continuous 

model, but it is also more difficult to solve.  The ability of a continuous model to 

approximate the binary model’s solution is therefore examined.  The producer has 
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more flexibility in the continuous model than in the binary model; therefore, the 

continuous model fails to identify some of the drought preparedness tools 

identified by the binary model.   

The remainder of the dissertation is organized as follows.  Chapter 2 

provides an overview of relevant concepts and literature. Chapter 3 describes the 

study area.  Chapter 4 presents the farm decision model. Chapters 5 and 6 present 

results and a discussion of farm-level implications.  Chapter 7 summarizes 

research findings and draws them together in a concluding discussion of potential 

implications for drought-related farm programs.  
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2 Review of Relevant Concepts and Literature 

 

This chapter discusses key concepts and literature relevant to the 

exploration of the objectives of this dissertation.  Specifically, chapter 2 consists of 

the following sections: 2.1 Decision-making under uncertainty, 2.2 Incorporating 

stochasticity in linear programming models, 2.3 Economic studies of agricultural 

water shortage, 2.4 The multi-peril crop insurance program’s prevented planting 

provision, and 2.5 Climate change and drought in the western United States.   

2.1 Decision-Making under Uncertainty 

Agricultural producers make many production decisions without knowing 

the outcome a priori.  Much of the uncertainty that agricultural producers face is 

due to the strong influence of nature on the production of agricultural goods, and a 

limited ability to predict nature.  In addition to their subjective beliefs about the 

probability of different states of nature, a producer’s physical and financial 

resources, management objectives, and attitude towards risk also influence their 

decisions under uncertainty.   

Economists incorporate many of these factors in mathematical models to 

improve their ability to mimic the complex process of decision-making under 

uncertainty, and thus enhance the robustness of their economic analyses.  Producer 

characteristics are diverse, so economists typically must choose a finite number of 

“representative” producers to model, but model performance varies with the 

chosen characteristics. This fact is especially relevant for the selection of 

management objectives and risk preferences.  This section of the literature review 

provides an overview of the standard approach to modeling decision-making under 

uncertainty, and discusses the selection of management objectives and risk 

preferences. 



 
9 

 
In the presence of uncertainty, a decision problem has the following 

elements (Hirshleifer and Riley 1992, p. 7; Mas-Colell, Whinston, and Green 

1995, p. 184):  

1) a set of actions available to the decision-maker, (x = 1,…,X), 

2) a set of states possible in nature, (s = 1,…,S), 

3) a consequence function, c(x,s), showing outcomes of all combinations of 

acts and states, 

4) a probability function, p(s), expressing the decision-maker’s beliefs about 

the likelihood of each state, 

5) a preference scaling function, u(c), (also referred to as the Bernoullian 

utility function), which measures the desirability of the different possible 

consequences, and 

6) a von-Neumann-Morgenstern expected utility function, U(x), which maps a 

preference ordering for the set of acts from the preference scaling function 

and probability function. 

A researcher can usually identify elements 1), 2) and 3) with relative ease.  The 

researcher cannot, however, identify, a priori, how a decision-maker will choose 

among the actions.  This will depend on the remaining elements, 4), 5) and 6), 

which can vary significantly between individuals, even when faced with the same 

decision problem.  

Since the true probability of the random states of nature (element 4) can 

never be known with certainty, individual decision-makers must form subjective 

probabilities.  This subjective probability distribution must be elicited from the 

decision-maker, or assumed by the researcher.  The preference scaling function 

(element 5) must also either be elicited from the decision-maker, or assumed by 

the researcher.  Once elements 4) and 5) have been established, element 6), U(x), 

can be derived from them.   

The decision-maker’s expected utility function, U(x), expresses their 

preference for actions.  Each action is associated with a set of potential 
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consequences; each consequence results from a different state of nature, and each 

state of nature has a probability of occurrence.  Under certainty, the decision-

maker knows precisely the consequence of each action, because the state of nature 

has been revealed prior to the decision choice.  In contrast, under uncertainty, the 

decision-maker does not know which state will occur, and therefore does not know 

for certain which consequence will be realized for each action.  When choosing an 

action given uncertainty, the decision-maker cannot simply choose the action that 

is directly associated with their preferred consequence, because actions are no 

longer necessarily associated with a single consequence.  

The “Expected Utility Rule” of von Neumann and Morgenstern provides a 

way to order preferences over actions when actions and consequences are not one-

to-one (Hirshleifer and Riley 1992, p. 14).  The Expected Utility Rule states that if 

utility has the expected utility form (i.e. rational preferences satisfying the 

continuity and independence axioms (Mas-Colell, Whinston, and Green 1995, p. 

175)), and we are given the following information,  

1) uncertain states of nature (1,…,s,…S),  

2) consequences of action x under each state (cxs),  

3) the probability of each state (ps), and  

4) the utility of each consequence (u(cxs)),  

then the utility gained from action x is U(x), where:  

x1 x2 xS 1 2 S 1 x1 2 x2 S xS
1

U(x)= U(c , c ,...,c ; p , p ,...p )= p u(c )+p u(c )+...+p u(c ) = ( )
S

s xs
s=

(Hirshleifer and Riley 1992, p. 14).  Simply, the utility from action x is equal to 

the probability-weighted average (i.e. mathematical expectation) of the utilities of 

the consequences associated with action x, for all states of nature.  In terms of 

selection of a preferred action, the “Expected Utility Theorem” states that for 

preferences 

p u c∑ , 

the 

that admit the expected utility form, action x is strictly preferred to 

action y if: 
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he probability of states into a von-

Neuma

 an 

ince 

perties, such as 

risk-att te 

 

scaling function is usually assumed to be upward sloping; this implies monotonic 

utility, 

1 1

( ) ( )  ( ) ( )
S S

s xs s ys
s s

U x p u c p u c U y
= =

= > =∑ ∑  

(Mas-Colell, Whinston, and Green 1995, p. 176).  The Expected Utility Rule 

translates the preference scaling function and t

nn-Morgenstern expected utility function.  The Expected Utility Theorem 

provides a rule for choosing among actions.   

Economists are interested in the decision-maker’s utility function, since it 

contains information about behavior that can be used to predict their choice of

action.  Differential calculus is often used to describe the utility function, but s

actions are often discrete, differential calculus cannot be used to describe the 

properties of U(x).  Consequences, however, (usually expressed as monetary 

values) are often continuous; hence, economists look at the properties of the 

preference scaling function (Bernoullian utility function), u(c), to deduce the 

decision-maker’s behavioral properties.  From this point forward, the preference 

scaling function, u(c), is used to define and discuss behavioral pro

itude.  Since U(x) is a linear combination of points on u(c), it is appropria

to use u(c) for the purpose of determining behavioral properties. 

The shape of an individual’s preference scaling function, and hence the 

utility function, is as unique as the individuals themselves.  Figure 2.1 shows three

shapes commonly assumed for the preference scaling function.  The preference 

i.e. as the quantity of a desirable consequence increases, utility increases, or 

( )'( ) 0u cu c
c

δ
δ

= > . 

The shape of the preference scaling function indicates the decisio

risk attitude.  Figure 2.2 reveals that person A, represented by curve u

n-maker’s 

ced with the choice between a gamble, G(c1= -$200, c3= +$200; p1=0.5, p3=0.5), 

with an expected consequence of c2=$0 (a fair gamble), or a guaranteed 

consequence of c2=$0, derives greater utility from the guaranteed consequence  

A, when 

fa
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1992, p. 24).  

s expected consequence is equal to 

the gua

inty 

equivalent, CE), rather than take the gamble.   

 

 

 

 

 

 

Figure 2.1. Common preference scaling functions (Hirshleifer and Riley 

Figure 2.2.  Preference scaling function or Bernoullian utility function, 
u(c), for a risk-averse person. 

than from the gamble, even though the gamble’

ranteed consequence.  Person A is risk-averse.  They would accept a 

guaranteed amount that is less than the gamble’s expected payout (their certa

uA

xs - $200 $200 $0 

uA($0) 

uA(gamble) 

u(cxs) 

CE(gamble) 

 

5 
 

c =$100

u B

u C

uA

0 c  xs 

u(cxs) 

100 

40 
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eals that 

n 

guaranteed amount that exceeds the gamble’s expected payout to not take the 

Risk-preferences are expressed as the rate of change of the slope of the 

preference scaling function, equivalently, the second derivative of u(c), 

Figure 2.3 reveals that person B, represented by curve uB, when faced wi

the choice between a gamble with an expected consequence of c2=$0 (a fair 

gamble), and a guaranteed consequence of c2=$0, derives equal utility from the 

two choices.  Person B is risk-neutral. They only care about the expected payout of

a gamble, and do not care about the variance of the payout.  Figure 2.4 rev

person C, represented by curve uC, when faced with the choice between a gamble 

with an expected consequence of c2=$0 (a fair gamble), and a guaranteed 

consequence of c2=$0, derives less utility from the guaranteed consequence tha

from the gamble.  Person C is risk-loving.  They would have to be paid a 

gamble; this amount is their certainty equivalent of the gamble, or CE(gamble).  

Figure 2.3.  Preference scaling function, u(c), for a risk-neutral person. 

2

2

( )''( ) u cu c
c

∂
=

∂
.  Strict risk aversion is expressed as the strict concavity of u(c), i.e. 

'( ) 0,  ''( ) 0u c u c> < .  Strict concavity implies that the person’s marginal utility of 

xsc- $200 $200  $0 

uB($0) =  uB(gamble) 

u(cxs) uB 
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 is less than the utility lost from having one fewer dollar (Mas-

Colell, Whinston, and Green 1995, p. 186).  In a gamble where equal amounts of 

money can be lost 

 

money is decreasing.  That is, at any level of wealth, the utility gained from having

an additional dollar

cxs - $200 $200  $0 

uC(gamble) 

u(cxs) uC 

uC($0) 
=

CE(gamble) 
 

is 

.  A 

 

  In 

nts of money can be

g an additional dollar 

is more

Figure 2.4. Preference scaling function, u(c), for a risk-loving person. 

or won, the disutility of losing outweighs the utility of winning, so the gamble 

not taken.  Risk neutrality is expressed as a linear u(c), i.e. '( ) 0,  ''( )u c u c> =

risk-neutral person has a constant marginal utility of money.  That is, their utility

from an additional dollar is equivalent to their disutility from losing one dollar.

a gamble where equal amou  lost or won, they are indifferent 

between taking or not taking the gamble.  Strict risk loving is expressed as the 

strict convexity of u(c), i.e. '( ) 0,  ''( ) 0u c u c> > .  The risk-lover’s marginal utility 

of money is increasing.  That is, the utility gained from havin

0

 than the disutility of losing a dollar; thus, the risk-lover chooses to take the 

gamble when equal amounts of money can be lost or won.   
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lity 

contrast, implies that the producer cares not only about expected 

profit, 

lity 

mic 

features of the model can be enhanced.  Pannell et al. (2000) suggest that the 

matical programming model.  

2.2 I

It is clear that the preference scaling function’s general shape, or functional 

form, has important implications for the decision-maker’s behavior under 

uncertainty.  A review of the literature on decision-making under uncertainty 

reveals that agricultural producers are commonly assumed to be, or found th

empirical analysis to be, either risk-averse or risk-neutral (Gomez-Limon, Arriaza,

and Riesgo 2003; Hardaker, Huirne, and Anderson 1997, p. 101; Lin, Dean, and

Moore 1974; Meyer 2002; Torkamani and Haji-Rahimi 2001).  The choice 

between risk-averse or risk-neutral depends on the decision-making scenari

has important implications for the structure of the decision-making objective. 

Specifically, when profit is the only argument in the utility function, risk-neutra

implies that the producer’s objective is to maximize expected profit.  Risk-

aversion, in 

but also about the variance of profit.  An expected utility maximization 

problem with a non-linear utility function would be developed for the risk-averse 

producer.   

The choice of whether to model a producer as maximizing expected uti

or expected profit can have significant implications for the model’s solution (Isik 

2002; Just 1975).   A non-linear utility function often increases the complexity of 

analyses, particularly for mathematical programming models.  This source of 

complexity may require simplification of other, more critical, areas of the model.  

Risk neutrality is assumed in this dissertation, so that the stochastic and dyna

marginal benefit of accommodating risk aversion is small relative to that of 

improving other aspects of a farm-level mathe

ncorporating Stochasticity in Linear Programming Models 

2.2.1 Introduction to Linear Programming 

Linear programming (LP) is a common tool for analyzing farm 

m nagement problems.  LP models can be easily constructed and manipulated to a



 
16 

 

d 

tters, respectively) containing known 

constants.  The elements of vector c often represent, in a farm management 

problem

 

2) 

source i 

bility 

this 

ing models, including LP, are often unable to reproduce 

produc ts of the 

simulate many management scenarios.  Equations (1) – (3) represent a generic LP 

model.   
T

x
(1) Min  z = c x

  s.t.   
(2)     Ax b
(3)               x 0

≤
≥

 

where x is a vector of decision (activity) variables, and c, A, and b are vectors an

matrices (lowercase and uppercase le

, the per-unit cost of activities in vector x.  Matrix A contains technical 

coefficients that express, for example, resource use per unit of x.  Vector b would

then represent the quantity of resources available for use.  Note that equation (

can be equivalently expressed in summation notation, as follows, for re

and activities j:
n

ij j i
j=1

  a x b    i = 1, 2,..., M≤∑ . 

Assumptions underlying this general LP model limit the modeler’s a

to realistically represent actual decision-making processes.  The assumption of a 

linear objective function, for example, precludes the use of a nonlinear utility 

function to represent risk aversion. Nonlinear programming and linear 

approximation approaches, such as MOTAD, have been developed to address 

limitation (Hardaker, Pandey, and Patten 1991).  The assumption that all 

coefficients and relationships are known is also unrealistic in some cases.  

Mathematical programm

er behavior, in part because the model does not capture all elemen

decision environment, or because the model is incorrectly parameterized.  

Sensitivity analysis is often used in these cases to provide a range of possible 

model outcomes.  Alternatively, a calibration procedure known as positive 

mathematical programming can be used to improve a model’s ability to replicate 

reality (Howitt 1995).   
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ially 

rm managers make decisions in an uncertain environment. The 

elemen e 

 

rate 

Chance-constrained programming, passive programming, and stochastic 

laxing the certainty assumption (i.e. 

incorpo

) was an early attempt to introduce 

stochas  

l 

CCP optimizes (i.e. maximizes or minimizes) the objective function 

e 

t meet 

ity 

The limiting assumption of interest in this study is deterministic 

coefficients (c, A, and b in the equations above).  Such an assumption essent

ignores that fa

ts of c, A, and b often represent input and output prices, yield, and resourc

availability and requirements, many of which are random variables whose values

are not revealed until after decisions are made.  The assumption that all 

coefficients are both constant and known a priori is unrealistic, and can gene

solutions that lead to suboptimal outcomes when applied in the presence of 

uncertainty.   

programming are common approaches to re

rating stochasticity) in farm management LP models.  In the next section, 

an overview of each approach is provided, followed by a discussion of their 

advantages and weaknesses.  The review concludes by identifying the approach 

chosen for this study.            

2.2.2 Chance-Constrained Programming 

Chance-constrained programming (CCP

ticity into mathematical programming problems (Charnes and Cooper

1959).  Inspiration for the approach was derived from the oil industry’s need to 

optimally schedule oil production subject to stochastic demand for heating oil 

(Charnes, Cooper, and Symonds 1958).  Industry, more specifically, sought a 

production schedule that would guarantee that stochastic demands for heating oi

would be met with some level of probability.   

through choice of activity levels, subject to constraints, some of which involv

random variables with known distributions.  The optimal activity levels mus

all deterministic constraints, as well as maintain at a prescribed level of probabil
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the constraints that involve random variables (Charnes and Cooper 1959).  The

following equations represent a generic CCP model. 
T

x
(4) Min  z = c x         

     s.t.    
n

ij j i
j=1

n

hj j h h
j=1

j

(6) P( a x b ) p     h = m+1, m+2,..., M

(7) x 0

≤

≤ ≥

≥

∑

 

where j represents activities, and i and h represent resources required for the 

production of the activities. Subscript i represents resources that involve no 

uncertainty. The quantity of resource i that is available for use and the quantity 

required by an activity are constant and known a priori.  Subscript h represents 

resources that involve some uncertainty, perhaps in the quantity available, the 

quantity required per unit of activity, or both.  P is the probability operator, and 

(5) a x b               i = 1, 2, ..., m

is some critical probability level pertinent to the constraint on the h  resource

decision-maker selects p

th

h in advance.   

Constraints that strictly contain deterministic coefficients are represented 

by equation (5), just as they were in the LP model.  Constraints containing either

random right-hand side or left-hand side coefficients, or both, are represented

equation (6).  Equation (6) states that the use of the hth resource across all j 

activities must be less than the limit bh, with a probability of at least ph (Anderson,

Dillon, and Hardaker 1977 p. 222).  Right-hand side stochasticity occurs when bh 

is a random variable; that is, when the quantity of resource h available for use is 

uncertain at the time decisions are made, but follows a known distribution.  Tot

water supply for the growing season is an example in farm management of a right-

hand side random variable.  Its quantity varies annually and is rarely known a

time planting decisions are made, but historical data can be used to estim
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distribu 9) 

is, 

e 

erature, and humidity.  Segarra, Kramer, and Taylor 

(1985), Johnson and Segarra (1995), and Wojciechowski et al. (2000) provide 

additional examples of left-hand side stochasticity.  Most examples in the literature 

nt in order for a linear programming algorithm to find a 

solution.  Conversion involves the following steps: 1) estimate or assume the 

random variable’s probability density function, 2) choose the desired critical 

d 

tion.  Dillon (1999), Maji and Heady (1978), and Keith et al. (198

provide additional examples of right-hand side stochasticity.   

Left-hand side stochasticity occurs when ahj is a random variable; that 

when the quantity of resource h required per unit of activity j is uncertain at th

time decisions are made, but follows a known distribution.  Irrigation water 

required per acre of crop j is an example of a left-hand side random variable. The 

quantity of irrigation water required by a crop for the growing season varies with 

factors that are highly unpredictable at the time planting decisions are made, such 

as summer rainfall, air temp

consider the case of a single random variable, since having multiple random 

variables in the same constraint may require their joint distribution.        

The probabilistic structure of equation (6) must be converted to a 

deterministic equivale

probability level, ph, at which the constraint should hold, and 3) determine the 

value of the stochastic coefficient (ahj) or (bh), at which the constraint will hold ph 

percent of the time, using the random variable’s density function.  Assuming left-

hand side stochasticity, the deterministic equivalent of equation (6) is represente

by the following equation: 
n

(6a) a x b     h = m+1, m+2,..., Mα ≤∑  hj j h
1

where, hja

j=

α  represents the value selected from ahj’s density function, such that

constraint is guaranteed to hold p

 the 

h percent of the time.  Assuming right-hand side 

stochasticity, the deterministic equivalent of equation (6) is represented by the 

following equation:   
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∑
n

hj j h
j=1

α≤  

where h

(6b) a x b     h = m+1, m+2,..., M

bα  represents the value selected from bh’s density function, such that the 

constraint is guaranteed to hold ph percent of the time.  Note that equations (6) and

(6a) are written such that the coefficient a

 

is 

t the time a decision must be made, and the 

penalty e for 

own 

ng 

water supply is likely violated, since 

the opt sumes 

hj is random for every activity j.  This 

not always the case; a mixture of deterministic and random ahj is allowed.  For 

example, per acre yield of corn could be known and constant, while per acre yield 

of wheat could be a random variable.          

The intuition behind CCP is relatively straightforward.  If a random 

coefficient’s value is unknown a

 of not meeting a constraint is severe, then you should assume a valu

the random variable such that the model’s solution, under most circumstances, will 

meet the constraint.  The previous example of an uncertain total water supply 

(right-hand side) illustrates the intuition.   

Suppose that the water supply’s expected value is 20 inches, but that it 

varies from 10 to 40 inches, and follows a uniform distribution.  If the random 

variable “water supply” (bwater) is replaced with its expected value (this is kn

as the “expected value problem” and denoted EV), the problem is equivalent to a 

deterministic LP model.  The solution indicates optimal activity levels given a 

water supply of 20 inches.  It does not indicate, however, the outcome of applyi

these activity levels when water supply is revealed to be 10 inches, rather than 20.  

The constraint that water use must not exceed 

imal crop combination given 20 inches of water almost certainly con

more than 10 inches of water.   

Suppose instead that the random variable bwater is replaced with the 

conservative value of 10 inches (conservative in the sense that according to bwater ~ 

U[10,40] there is a high probability that in most years actual water supply will 

exceed 10 inches).  The resulting optimal activity levels, when implemented in the 

presence of all possible realizations of water supply, would always result in the 
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ly).   

 

 value will 

h 

s 

tion is 

s 

the 

the time (and planned water 

use will exceed actual water supply), and actual bwater will exceed b25% 75% of the 

time (and planned water use will be less than actual water supply).  Dillon (1999) 

presents a slightly different approach for determining the appropriate value for the 

random variable using historical data.   

The simplicity of CCP is appealing.  The most challenging steps are to 

identify the random variable’s probability density function (or a set of historical 

realizations), choose the desired level of ph, and select the appropriate 

 

exist, however.  The first 

criticis  

water constraint being met.  Essentially, by planning to be constrained to a small 

quantity of a resource, the resulting optimal activity levels are such that th

resource constraint is met for most realizations of the random variable.  Similarly,

in the case of a random left-hand side coefficient, by planning for a large quantity 

of resource use per unit of activity, you choose activity levels that, under most 

realizations of the random variable, result in the constraint being met (i.e. resource 

use is less than or equal to resource supp

How far the value chosen for the random variable deviates from its 

expected value depends on the probability, ph, with which the modeler wishes the

constraint to be met.  The closer ph is to 1, the more extreme the chosen

be.  Calculating the appropriate value for a random variable given a pre-selected p

involves estimating the mean and standard deviation, if the random variable i

distributed normally (see Segarra, Kramer, and Taylor 1985).  If the distribu

not normal, but relevant historical data are available, a value is chosen based on it

percentile (see Keith et al. 1989).  For example, suppose a value representing 

25th percentile of historic water supplies, call it b25%, is chosen.  Then by 

definition, actual bwater will be less than b25% 25% of 

deterministic value for the random variable.  Once these tasks are completed, the

problem is easily converted to its deterministic equivalent and solved with a 

standard LP algorithm.  Major criticisms of CCP 

m is that CCP deals only with random variables that appear in constraints,

and not those relevant to the objective function (Cocks 1968).  It is not clear 
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urce 

nd criticism of CCP is the arbitrary selection of a value for ph.  In 

reality, the decision-maker selects a value for ph by weighing the tradeoff between 

nderson, Dillon, and Hardaker 1977 p. 224; 

Hardak

ism 

o or to expect when constraints are actually 

violated (Cocks 1968).  Consider, for example, what might happen if a large city 

he 

whether this criticism is contradicted by the ability to construct a CCP model

the following structure (Charnes and Cooper 1963). 
T 0T 0

x

n

ij j i
j=1

n

hj j h h
j=1

j

(8) Min  P(c x c x )

      s.t.    

(9) a x b                   i = 1, 2, ..., m

(10) P( a x b ) p     h = m+1, m+2,..., M

(11) x 0

≤

≤

≤ ≥

≥

∑

∑

 

The objective in this CCP problem is to choose activity levels that guarantee an 

achieved value for the objective function with some probability, and meet reso

constraints with some probability (Cocks 1968). 

A seco

more certainty and less profit (A

er, Pandey, and Patten 1991).  The selection of a value for ph should 

therefore be part of the optimization problem.  Askew (1974), in an attempt to 

formulate a dynamic chance-constrained programming problem, may provide a 

means for incorporating the choice of ph in the decision process.  A final critic

of CCP is that it assumes that constraint violation is acceptable (1-ph)% of the 

time, but does not indicate what to d

managed its stochastic water supply in a manner that prevented shortages 9 out of 

10 years, but failed to develop a management plan for the 1 year out of 10 when a 

water shortage occurred. The CCP approach, while an improvement upon t

deterministic LP approach, clearly results in an incomplete solution to a stochastic 

problem.        
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notation for a PP proble

an acre 

ure.  The 

approp

y 

),s), 

ent 

s 

ed value at the time the decision is made, and can therefore make 

Passive Programming  

It is assumed in the passive programming (PP) approach that optimization

will take place under certainty at a future date.  The problem in the meantime is t

characterize the distribution of outcomes from which the eventual outcome will be 

realized (Cocks 1968).  The distribution of outcomes is derived by solving a 

deterministic LP problem for each realization of the random variable.  The genera

m follows. 
T
sx

(12) Min  z(x,s) = c x

      s.t.   

s sx b
(14) x 0
(15)  s 

≤
≥

∀

 

The subscript, s, identifies coefficients whose values vary depending upon the state 

of nature being considered.  Suppose, for example, that the cost of planting 

of corn (an element of vector c) differs between two states of nat

(13) A

riate value of the cost coefficient is c1 when state of nature 1 occurs, and c2 

when state of nature 2 occurs.  Similarly, coefficients in matrix A or vector b ma

vary with the state of nature.   

Equations (12) through (14) are solved for every state of nature, s.  The 

distributions of the optimal activity levels, x*(s), and objective values, z(x*(s

are then formed from the collection of s solutions (Birge and Louveaux 1997 p. 

138).  A decision-maker could use these distributions to inform other managem

decisions.  The expected value of the objective function (known as the wait-and-

see (WS) solution) is also of interest, and is calculated as follows (Cocks 1968):  

s *(16) WS = E z(x (s),s) .  See Tintner (1960) for a simple applied example, and 

see Birge and Louveaux (1997 p. 138) for a more thorough treatment of equation

(12) through (16). 

The PP approach represents a decision-maker who knows the random 

variable’s realiz
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the decision based on perfect information.  They do not know, however, the 

variabl o, prior 

to the decision-making period, is to solve the PP problem to determine the 

distr utcom  it

ario describe bove is e appropriate situation in which to use 

the  However sion- rs might also use the PP approach to 

inform  

 rule to 

on; the 

ll 

s 

of corn  

rtainty is 

 

e’s value at the time they solve the PP problem.  The best they can d

ibution of the o e, and use  to form atioan expect n.   

The scen d a  th

PP approach. , deci make

 their decisions when uncertainty is not resolved at the time decisions are

made. The distributions derived from PP may be combined with a heuristic

guide decisions.  Assume that a farm manager must make a decision before 

uncertainty is resolved.  They have conducted a PP analysis of their decisi

solutions appear in Table 2.1.  Suppose the manager constructs the following 

decision rule: implement the activity level that occurs most frequently among a

the solutions.  From the table of solutions, the manager would always plant 0 acre

 and 100 acres of wheat, because it appears most frequently among the set

of PP solutions.  This rule obviously has no theoretical basis for being optimal, 

which is the criticism of using the PP approach in scenarios where unce

not resolved a priori.  It may, none-the-less, seem like a rational approach to a

busy manager. 

 
Table 2.1.  A passive programming analysis of a hypothetical farm 
decision. 

 State of Nature 
PP’s solution Very dry Dry Average Wet Very wet 
Corn (ac) 0 0 50 75 100 
Wheat (ac) 100 100 50 25 0 

 

 an LP problem’s sensitivity to different 

values s 

 

PP is essentially the analysis of

of the random variable (Higle and Wallace 2003).  The approach’

advantage is its simplicity.  PP requires the modeler to solve one LP problem for 

each possible value of the random variable.  Once the initial LP model is 

developed, the PP problem only involves repeatedly changing a single value in the
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next in the 
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mple.     

2.2.4 

any 

tive 

t a 

ties, and denoted by a vector x.  

Decisio

 

program and resolving it.  Even if a random variable has hundreds of possib

values, PP requires only additional time, and not additional programming skill.   

PP is not an ideal approach to incorporating stochasticity in LP, since its

assumption of perfect information at the time decisions are made is unrealistic

Rae (1971) indicates, however, that the simple PP approach can be an 

improvement over the expected value problem approach (EV) (defined in 

previous section).  An additional role for PP exists, even in a world of imperfect

information.  The perfect information solutions derived in PP provide a baseline to

which imperfect information solutions (such as those discussed 

stochastic programming section) can be compared.  Such comparisons reveal 

expected value of perfect information (Birge and Louveaux 1997 p. 137), a topic 

of interest to organizations who provide weather and price forecasts, for exa

Stochastic Programming  

Stochastic programming (SP), also known as discrete stochastic 

programming (DSP) and discrete sequential stochastic programming (DSSP) was 

introduced by Cocks (1968) as a method for solving LP problems that include 

number of random variables as coefficients in the constraints and/or the objective 

function.  The ability to include random coefficients in constraints and the 

objective function enables a modeler to account for the timing of decisions rela

to the timing of information discovery. Specifically, a modeler can represen

multi-stage problem where decisions are made both before and after random 

variables are realized. Decisions made before the random variables’ values are 

revealed are known as “first-stage” activi

ns or calculations made after random variables’ values are revealed are 

known as “second-stage” or “recourse” activities, and denoted by a vector y. The

number of stages in a SP problem depends upon the number of 

decision/information/recourse decision cycles that occur during the decision-

making process. SP can also be adapted to single-stage problems where decisions 
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r and Apland 

1989): 

 

-

tes 

e first-stage activity levels that minimize 

current costs (or maximize current benefits) plus the expected cost (or expected 

benefits) of second-stage activities.  The SP solution indicates optimal first-stage 

activity levels, as well as optimal second-stage activity levels for each possible 

realization of the random variables.  This approach, at least in its discrete form, is 

reminiscent of decision tree analysis (Hardaker, Huirne, and Anderson 1997 p. 

198).  SP is unique among the approaches reviewed in this dissertation because it 

suggests what to do after a specific state of nature is realized.     

The SP model can be expressed in either the extensive form or the implicit 

form, both of which are presented below.  A single discrete random variable and a 

two-stage stochastic program with recourse are assumed in the following examples 

for notational ease.  The extensive form SP model, shown below in equations (17) 

through (20) (see also Birge and Louveaux 1997 p. 156), includes first-stage 

decision variables, indexed by activity only (e.g. xi in the model below), and 

second-stage decision variables, indexed by activity and state of nature (e.g. yis in 

the model below).  This form is labeled “extensive” because a set of second-stage 

are made prior to random variables’ values being revealed, but no recourse 

decisions are available (Cocks 1968).     

An SP model consists of the following four pieces (Kaise

1) a sequence of decision stages, 2) a set of decision variables for each 

stage, 3) discrete or continuous random variables, and 4) an information structure 

that represents the flow of information relative to the timing of decisions.  SP 

represents the following decision process.  First-stage decisions are made prior to 

random variables’ values being revealed. After decisions are made, the random

variables’ values are revealed.  This resolution of uncertainty prompts second

stage decisions, with which the decision-maker attempts to fix sub-optimal 

outcomes resulting from imperfect first-stage information.  Rae (1971), in one of 

the first applications of discrete stochastic programming to agriculture, illustra

how SP captures this decision process.   

The general goal of SP is to choos
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decisio

) 

1 low 1 avg 1 high 2 low 2 avg 2 high

n variables and constraints exists for every state of nature.  Numerical 

examples of the extensive form model can be found in Higle and Wallace (2003

and Birge and Louveaux (1997 p. 8).      

i i is is sx, y i i s

i
i

is i i

i is

(17) Max  z = - c x  + (r y )p

    s.t.       
(18) x L    (land constraint)

(19) y a x       s and i (sales constraint)
(20) x ,  y   0

≤

≤ ∀

≥

∑ ∑∑

∑  

th
i

i

where,
x  = a first-stage decision variable for the i  activity 

(e.g. acres of land devoted to crop i, where i = corn, wheat)
c  = the first-stage coefficient (known ) associated with activity a priori i

th th
is

x  
(e.g. cost associated with devoting an acre of land to crop i)

y  = a second-stage decision variable for the i  activity when the s  state 
of nature occurs (e.g. tons of crop i to sell when state 

is is

s occurs)
s   = state of nature of a random variable 

(e.g. if output price is the random variable then s = low, average, high)
r  = the second-stage coefficient associated with activity y  

th

 

(e.g. price

th
s

 received per ton of crop i sold when the s  state 
of nature occurs)

p  = the probability of the s  state of nature

i

L  = limit on activity i  (e.g. total acreage available)
a  = coefficient linking first-stage activity levels to second stage activity levels

(e.g. per acre yield of crop i)
 

 

The objective function above demonstrates SP’s goal of optimizing over 

both the current (first-stage) costs and the expected value of the future (second-

stage) revenues.  The expectation is taken over the probability distribution of the 

random variable.  Note that while the collection of first-stage activities is [x1, x2], 

the collection of second-stage activities is [y , y , y , y , y , y ].  
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is duplicated for every combination of crop i and state s.  It is interpreted as 

al 

ge activities.  Constraints that apply only to 

first-s ecision variables, such as equation (18), are not duplicated because 

they do not vary across states of nature.  The extensive form is limited, in practice, 

to problems that involve few random variables and random variables with few 

ns.  Otherwise, the “curse of dimensionality” arises, with symptoms 

ad constraints (Anderson, Dillon, and 

 form of SP enables modelers to compress large stochastic 

g problems.  The approach essentially tucks objective function terms 

 the 

ector is random, to differentiate it from its realization.  The sub-

problem

s 

Second-stage activities, yis, are interpreted in this example as the tons of crop i to

sell when state of nature s occurs.  As the notation above indicates, constraint (19) 

limiting the quantity of crop i sold when state s occurs to no more than the tot

quantity yielded from acres planted to crop i in the first stage (xi). The set of 

constraints represented by equation (19) establishes the timing of the decision 

problem by linking first and second-sta

tage d

realizatio

including cumbersome notation and myri

Hardaker 1977 p. 229; Hardaker, Huirne, and Anderson 1997 p. 197).  

The implicit

programmin

and constraints associated with second-stage variables into a sub-problem, denoted 

Q(x,s), which represents the value of the second stage for a given realization of

random vector s.  In contrast to the previous assumption of a single random 

variable, s, here a vector of random variables, s, is assumed. Boldface notation 

indicates the v

, Q(x,s), is optimized over second-stage decision variables for all 

individual realizations of s and all feasible values of first-stage activities.  The goal 

of a single optimization of Q(x0,s0) is to select the optimal level of second-stage 

activities, given the pre-selected first-stage activity level, x0, and the pre-selected 

realization of s, s0.  This optimization is repeated for all combinations of (x,s).   

The expected objective value of all sub-problems, Q(x) = E
s

Q(x,s), also known a

the value function or recourse function, is then placed into the SP problem’s 

original objective function.  The original SP problem is finally optimized over 
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in  c x + Es Q(x,s) 

contain the values taken by q, h, and T 

under e

ation 

es 

is 

 Birge 

hree-step process that is repeated until 

an opti re, given 

plicit 

first-stage decision variables, subject to first-stage constraints.  The implicit form 

is represented in the equations below.  

(21) M T

                  x

(22) Ax = b
(23) x 0≥

 

where,  

(24)  Q(x,s) = Min q

    s.t.   

Ty 

             s.t. 

(25)  Tx + Wy = h 

(26)  y ≥ 0, 

where qT, hT, and T form the vector s, and 

ach state of nature, and where W is assumed here to be constant across 

states of nature (fixed recourse).  Birge and Louveaux (1997 p. 11) provide a 

numerical example of the second-stage sub-problem that demonstrates the not

used above.   

The implicit form is less intuitive than the extensive form, but it reduc

the volume of programming code required, and is thus a more computationally 

efficient approach to large SP problems (Birge and Louveaux 1997 p. 155).  Th

is especially useful when several random variables are involved, or when random 

variables are continuous (see Birge and Louveaux 1997 p. 11).  The extensive 

form problem can be solved in the same manner as a generic LP problem.  The 

special structure of the implicit form, however, requires an alternative solution 

algorithm.  The L-shaped method is the most frequently used approach (see

and Louveaux 1997 p. 156).  It involves a t

mal solution is found.  The details of this approach are omitted he

the choice to focus on the more intuitive extensive form, rather than the im

form.   
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ns relative to the 

flow of information more realistically than CCP and PP.  Modelers using SP are 

 to a relatively small number of stages, compared to the large number 

of stages in a real farm manager’s decision-making process.  However, Rae (1971) 

demonstrates that the solution obtained from a three-stage SP model of a farm 

ger’s decision process is expected to generate 16% more profit annually than 

the solution obtained from an expected-value model (in which all random variables 

ced with their expected values).   

One disadvantage of SP is that it becomes more computationally difficult 

as the number of random variables, realizations, and stages increase.  SP also 

requires the modeler to obtain more data to sufficiently represent the random 

variables’ realizations and probability distributions.  Finally, there is no general 

rule for predicting the magnitude of gains from using the SP solution versus 

solutions obtained from less sophisticated approaches (Birge and Louveaux 1997 

p. 144).  It is generally believed that stochastic programming is more relevant 

when there is more randomness in the problem, but even this varies on a case-by-

case basis.  The benefit of modeling a decision-process using SP, rather than a 

simpler approach, cannot be known a priori.  The modeler might therefore invest a 

great d  a 

The most significant advantage to incorporating stochasticity into an LP 

model via SP is that the approach captures the timing of decisio

still limited

mana

are repla

eal of time in developing an SP model only to discover that it produces

solution that closely resembles those obtained from simpler approaches.     

2.2.5 Stochastic Dynamic Programming 

Stochastic dynamic programming (SDP) is similar to stochastic 

programming (SP); however, the approaches have different strengths and 

limitations.  SDP, like SP, is a mathematical optimization technique for solving 

multi-stage problems in which decisions are made under uncertainty.  The general 

form of an SDP problem is as follows (Kennedy 1986, p. 52): 
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where, 

 = objective or value function in decision stage i
 = vector of states at stage i

(e.g. acres eligible for onions in stage i)
 = vector of decision variables in stage i 

(e.g. acres of onions to pla

i

i

i

V
x

u
nt in stage i)

{ }
{}
{}
{ }1

 = random variable at stage i
= the value of 

 = probability that  takes the value 

.  = stage return function 

.  = state transformation function

 = terminal value funct

i

i i

i i i i

i

i

n

r
k r
p k r k

a

t
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Important characteristics of the SDP include the objective function’s 

recursive form and the expectation taken over future returns.  The recursive 

objective function represents the dynamic nature of the system being modeled. 

Decisions made in stage i affect decisions in stages i+1 through i+n.  This is 

comparable to the dynamics captured by SP problems, in which first-stage 

decisions (x) affect se

 

cond-stage decisions (y) (note that an SP problem can have 

more th , reflected in 

th 

 

an two stages).  The stochastic nature of the decision problem

the objective function, is attributable to random variables that, in combination wi

decision variables, determine returns and the state of the system in each stage.  

Random variables in a SDP problem are not realized prior to the decision.  Hence,
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ble, often over 

many stages.  SDP is therefore best-suited to decision problems that involve few 

mple, 

es.  

ich 

refore handle only a 

limited oft 

the objective function is the expected present value of returns from all stages.  

Stochastic dynamic programming is a relatively straightforward extension of 

dynamic programming, which is a common tool in economics; therefore, it wi

not be discussed further.   

A brief explanation of the difference between stochastic dynamic 

programming and stochastic programming is warranted, however, because both 

approaches can be used to model multi-stage decision-making under uncertainty

Haneveld (1986, p. 2) suggests that while SDP and SP are similar in purpose, they

arose separately to address fundamentally different problems, and are not equally 

suited for addressing the same problems.  SDP stemmed from a need to cost-

effectively manage dynamic systems that were only partly controlla

(often discrete) decision variables and many stages.   

SDP is a popular approach for forestry and fishery problems, for exa

in which the decision-maker chooses harvest levels throughout a long planning 

horizon (often twenty stages or more).  SP, in contrast, resulted from an effort to 

incorporate random variables, such as price and yield, as parameters in LP 

problems.  LP models often involve many (often continuous) decision variables, 

and relatively few stages; thus SP was developed to accommodate these featur

SP is a popular approach for farm management problems, for example, in wh

the decision-maker chooses levels for a variety of farm activities throughout a 

relatively short planning horizon (often three stages or less).  Both approaches 

unfortunately suffer the curse of dimensionality, and can the

 number of random variables (Featherstone, Baker, and Preckel 1993; T

and O'Hanlon 1979). 

Although SDP and SP are suited for problems with different 

characteristics, some decision problems can be solved using either approach.  In 

particular, multi-stage SP models that have random variables with finite discrete 

distributions can often be reformulated as discrete-time SDP models with a finite 
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typically assume a 

Markov  

 to 

  

number of stages (Haneveld 1986, p. 43).  One advantage to using SDP rather tha

SP is that analytical solutions can be derived for some problems, while only 

numerical solutions are possible with SP.  Kennedy (1986, p. 300) indicates, 

however, that solutions to most SDP problems are determined numerically.  In this

case, SP has the advantage of well-developed, commercially available solution 

algorithms, whereas SDP models often require problem-specific algorithms.  A 

final distinction between the approaches is that SDP models 

ian structure, such that actions and outcomes depend only on the current

state of the system (Birge and Louveaux 1997, p. 70).  That is, you do not need

know how you arrived at your current state to determine the optimal next move.

SP, in contrast, can accommodate a variety of recursive structures. 

2.3 Economic Studies of Agricultural Water Shortage  

Many economic studies address water supply uncertainty and farm 

management.  Example objectives include reporting producers’ actual responses to

water supply uncertainty (Schuck, Frasier, and Webb 2003; Zilberman et al. 20

identifying optimal fa

 

02),  

rm management in anticipation of, and response to, water 

supply onomic 

ecker 

k, 

p 

y of 

uncertainty (Bernardo et al. 1987; Wyse 2004), estimating the ec

impact of water supply uncertainty (Easterling 1993), estimating the value of 

improved water supply forecasts (Mjelde, Hill, and Griffiths 1998; Mjelde, 

Penson, and Nixon 2000; Wyse 2004), and estimating the ability of government 

policies or water markets to reduce the impact of water supply uncertainty (B

1999; Burke, Adams, and Wallender 2004; Jaeger 2004).   

Several studies have surveyed agricultural producers during or after a 

drought to document their responses (Kromm and White 1986; Rich 1993; Schuc

Frasier, and Webb 2003; Zilberman et al. 2002).  These studies consistently 

identify increased groundwater pumping and fallowing as primary responses to 

drought, and deficit irrigation, improving irrigation efficiency, or adjusting cro

mixes as secondary responses.  Each study solicits information from a diversit
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-based studies, however, it is challenging to draw general 

conclus

ns 

to 

 an 

as.  

itigate the impacts of a 

multi-y at 
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y, 

farm systems and producers, and is therefore able to identify common themes in

drought response.  These studies provide an incomplete picture, however, of 

drought preparedness and response.  First, they do not report specific

es for a particular farm system, or identify the degree to which alternative 

drought response tools are used on individual farms.  Second, they do not discu

how producers prepare for drought in their year-to-year activities.  Finally, they

not analyze the optimality of observed drought responses.    

Studies that use simulation or optimization models complement survey

based studies by providing insights about the optimality of alternative drought 

preparedness and response tools for individual farm systems and producers.  I

contrast to survey

ions from the model-based studies.  This is because they span a wide 

variety of farm systems, adopt different scales of time and space, focus on 

different sets of drought management tools, and make a variety of assumptio

about uncertainty and dynamics.  Some relevant studies are summarized below 

illustrate the diversity of methods, objectives, settings, and conclusions in this 

body of literature.    

Ziari and McCarl (1995) use a two-stage single-year stochastic 

programming model to determine that a runoff collection impoundment is

economical source of supplemental irrigation for mixed crop producers in Tex

Iglesias et al. (2003) solves a multi-year dynamic model for several farm systems 

in Spain, and concludes that improvements in the inter-year management of 

reservoir levels and perfect water supply forecasts could m

ear drought.  Bernardo et al. (1987) constructs a single-year model th

captures intra-year irrigation dynamics, and applies it to a representative farm

Washington’s Columbia River Basin.  This study finds that a surface irrigator 

anticipates a water shortage should increase labor to improve irrigation efficienc

decrease the frequency and depth of individual water applications, and deficit 

irrigate crops during non-critical growth stages.  Mejias et al. (2004), using a 
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The above studies reflect that the structure of a producer’s decision 

system

three-stage single-year stochastic programming model, finds that a mixed crop 

producer in southern Spain should shift to crops with lower water requirements in 

response to increases in the water price (related to water scarcity).   

Tapp et al. (1998) uses a five-year stochastic budgeting model to simulate 

the ability of various financial and herd management strategies to mitigate the 

impacts of drought for a livestock system in Australia.  They conclude that no 

strategy clearly dominates the others, and that no strategy successfully mitigat

the impacts of sustained drought.  Toft and O’Hanlon  also consider livestock 

management in Australia during drought, but use an 18-month s

ming model, rather than simulation, and focus on herd management 

options only.     

Kaiser et al. (1993), using a two-stage stochastic programming model

finds that a corn-soybean producer in the Midwest should make few changes 

their crop mix in response to more frequent drought.  Easterling (1993) also

focuses on the response of crop producers in the Midwest to short-term versus 

sustained drought.  They conclude from a multi-year simulation model that the 

most effective adjustments include shifting planting dates, selecting longer-season 

cultivars, and using furrow-dikes to capture rainfall.  Finally, Weisensel et al. 

(1991) develop a multi-year stochastic dynamic model for dryland wheat

production in western Canada.  The authors compare expected net return and 

variance of return for a fixed wheat-fallow rotation versus a flexible rotation

on available soil moisture data.  The flexible strategy generates higher expected

net return, but higher variance of return as well.    

problem and the set of relevant drought management tools vary across farm 

s.  The results for one farm system should therefore not be expected to 

transfer directly to another.  The modeling methods, however, are transferable; 

which method is most appropriate for a chosen farm system depends largely on the 

chosen assumptions about uncertainty and dynamics.  Four alternative sets of 
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le of inter-year dynamics in optimal drought 

prepare

assumptions are common: 1) certainty with no dynamics  (Adams and Cho 1998; 

Bernardo et al. 1987; Jaeger 2004; Michelsen and Young 1993), 2) certainty wit

intra- or inter-year dynamics (Garrido and Gomez-Ramos 2000; Haouari and 

Azaiez 2001; Iglesias, Garrido, and Gomez-Ramos 2003; Thompson and Powell 

1998), 3) uncertainty with intra-year dynamics (Adams et al. 1995; Kaiser et al. 

1993; Keplinger et al. 1998; Mejias, Varela-Ortega, and F

ung 1995; Turner and Perry 1997), and 4) uncertainty with inter-year 

dynamics (and in some cases intra-year dynamics as well) (Monke 1995; Toft an

O'Hanlon 1979; Weisensel, Van Kooten, and Schoney 1991).   

The fourth set of assumptions most thoroughly captures the decision-

making environment of a producer who faces uncertainty and a dynamic farm 

system.  Few studies have used this set of assumptions, however, to ad

optimal drought preparedness and response (Antle 1983).  No studies, to the 

author’s knowledge, have used this set of assumptions in the context of an 

irrigated crop farm (the farm system of interest in this dissertation).  Some farm 

systems may not involve all components of this set of assumptions, or researchers 

may not be interested in all components.  An alternative explanation is that mod

that capture uncertainty and both intra- and inter-year dynamics are analytically 

intractable and often difficult to solve numerically.  However, computer 

technology has advanced to the point that very large models can be solved within 

acceptable time limits.  The ro

dness and response can therefore be examined in the presence of other 

important characteristics of the decision environment.           

2.4 The Multi-peril Crop Insurance Program’s Prevented Planting Provision 

The federal government actively assists agricultural producers with the 

management of risk, and the mitigation of severe events, such as drought.  The

USDA-Risk Management Agency’s goal, for example, is to “promote, support and 

regulate sound risk management solutions to preserve and strengthen the economic 
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e programs to include more crop types and locations (107th United States 
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stability of America's agricultural producers” (Risk Management Agency 2004b).

The United States Department

“to provide a safety net to help farmers produce an adequate food supply, 

maintain viable operations, compete for export sales of commodities in the w

marketplace, and contribute to the year-round availability of a variety of low-co

safe, and nutritious foods” (Farm Service Agency 2002). 

These and other federal agencies have shown particular interest in the 

potential for crop insurance products to reduce economic losses associated wi

drought.  Data suggests that existing crop insurance programs have provided 

significant financial support during recent drought events.  The USDA’s Federal 

Crop Insurance Corporation has, since 1989, paid insured producers a total of $462 

million annually, on average, for qualifying drought losses (Office of 

Communications 2004).  In 2003 and 2002, fifty-four percent of the $3.

 of the $4.1 billion in total crop insurance indemnities paid, respecti

were attributable to drought (Office of Communications 2004).  Although these 

transfers generally benefit the individual agricultural producers that receive them, 

there is much debate about the implications of these wealth transfers and othe

forms of government intervention for social efficiency.  This aspect of farm poli

is not reviewed here; however, the economics literature offers a rich discourse o

the subject (e.g. Alston and Hurd 1990; Leathers and Chavas 1986; Luttrell 1989

Pasour and Rucker 2005).      

Interest in crop insurance is reflected in recent government policies.  Title 

X of the Farm Security and Rural Investment Act of 2002 (commonly referred to

as the “2002 Farm Bill”), for example, includes provisions to expand existing cro

insuranc

ss 2002).  Section 10108 initiated a feasibility study of expanding coverag

to include disaster conditions caused by federal actions that restrict access to 

irrigation water.  The potential for disruption of irrigation water supplies by

actions increases as the list of threatened or endangered species expands. The rol
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ts of 

f 

t 

urtan 

ms 2001; Young, Vandeveer, and Schnepf 2001), and the 

interaction or substitutability of crop insurance with other risk management tools, 

such as  

Skees, and Marchant 1994; Mjelde, Thompson, and Nixon 1996).  The role of crop 

insurance, sp e multi-peril crop insu gram’s prevented 

plantings provision, as a drought 

Th nagem

insurance pro lp producers sks. 

Provisions for surance products are made in Title X of the Farm Bill.  The 

feder many of the insurance products to encourage 

participation.  Several insurance products, which are sold to producers through 

priva e available to producers in the study area (table 

2.2).  Crop insurance became available in Malheur County (the county in which 

the study 990.  Over $7.5 million has been paid in crop 

insurance indemnities to producers in the county since then.  Onions, sugar beets, 

and wh

r 

for such a program will likely change through time, particularly as the effec

climate change materialize.   

Research on crop insurance is robust, and includes explanatory models o

crop insurance participation (Calvin 1992; Just, Calvin, and Quiggin 1999; 

Leathers 1994; Mahul 1999; Makki and Somwaru 2001; Sherrick et al. 2004), 

program design (Mahul 1999; Makki and Somwaru 2001), production and marke

effects of subsidized crop insurance (Glauber and Collins 2002; Hueth and F

1994; Wu and Ada

 improved forecasts and disaster assistance (King and Oamek 1983; Luo,

ecifically th rance (MPCI) pro

preparedness tool is of interest here.   

ent Agency (RMA) has developed many 

 better manage production and price ri

e USDA Risk Ma

duct to hes 

crop in

al government subsidizes 

te insurance companies, ar

 area is located) in 1

eat account for the largest portion of these indemnity payments. Twenty-

eight percent of insurance claims are attributed to drought or failure of irrigation 

supply. 

Prevented planting (PP), a provision included in basic MPCI policies for 

irrigated crops, is becoming an increasingly popular form of drought preparedness 

for producers in the study area (Agricultural Producers in the Vale Oregon 

Irrigation District 2003; Haight 2004).  A PP payment is made when a produce
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le 

ible Crops 

provides evidence that as of the final planting date they had no reasonable 

expectation of receiving sufficient water to follow standard irrigation practices, 

due to an insurable cause of loss, such as drought (in contrast to an uninsurab

cause of loss, such as infrastructure failure).  The cause of loss must also affect the 

surrounding area and prevent other producers from planting acreage with similar 

characteristics (Risk Management Agency 2003).  This contrasts to a traditional 

MPCI claim, where a crop was planted, but later failed due to unanticipated 

drought.     

 
Table 2.2. Crop insurance programs available, and eligible crops, in the 
study area (Risk Management Agency 2004a). 

Insurance 
Program Elig

MPCI 
Multi-peril Crop 

alfalfa seed, apples, barley, corn
forage production, oats, onions

Insurance processing beans, sugar beets, wheat 

, dry beans, 
, potatoes, 

 
CRC 

Crop Revenue Coverage
corn, wheat 

 
AGR 

Adjusted Gross Revenue 
all crops 

 
IP

Income Protection 
barley, wheat 

 

The PP provision encourages producers to avoid planting when the crop

expected to fail.  Producers forego spring planting costs when they expect to make

a PP claim; therefore, the PP loss payment is typically a fraction of the normal 

MPCI payment. The percentage is set at a starting level (e.g. 45% for onions an

sugar beets, 25% for potatoes, and 60% for wheat), and additional PP cover

be purchased for some crops (Haight 2004).  A PP payment is calculated as 

 is 

 

d 

age can 

[approved yield * coverage level election* price election * share in crop * PP 
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d 

for a PP

crop 

for a 

  

amined the 

on 

s, 

percentage].  Note that the first four terms in the brackets determine the normal 

MPCI payment.  Producers cannot plant a substitute crop on the acreage submitte

 claim without forfeiting the payment (Haight 2004).  Producers are 

allowed to plant some cover crops without forfeiting their PP payment, if the 

is not harvested for grain or seed and is not a normal part of a rotation program.  

Lastly, producers cannot rent acreage to other users if it has been submitted 

PP claim (Haight 2004). Producers in the study area indicate that the MPCI 

program’s prevented planting provision is a useful drought preparedness tool.

However, to the author’s knowledge, no economic studies have ex

prevented planting provision in this role.  Existing studies have focused instead 

the provision’s susceptibility to adverse selection and fraudulent claims (Rejesu

Escalante, and Lovell 2005; Rejesus et al. 2003).   

2.5 Climate Change and Drought in the Western United States 

The ability of the earth’s atmosphere to trap solar radiation and increase 

global temperature (the so-called “greenhouse effect”) has been recognized for at 

least 150 years.  More recently, global climate change has been a topic of 

scientific and political debate.  Certain

intense 

 evidence is unequivocal; carbon dioxide 

concen  

of 

 

ence 

trations (the most abundant greenhouse gas in the earth’s atmosphere) have

been increasing steadily for over a century.  Specifically, CO2 levels have 

increased 30% since the late 1800s, and are higher now than they have been in the 

last 400,000 years (National Assessment Synthesis Team 2000).  The decade 

the 1990s was also the warmest (on a global scale) in over a century.  Average 

annual temperature of the United States has risen almost 0.6° C (1.0° F) over the 

20th century (National Assessment Synthesis Team 2000).  The role that humans

have played in recent global warming, and whether it is possible to offset that 

effect in any meaningful time scale, is still debated.  The belief that global 

warming will continue, however, is becoming more widely accepted in the sci
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erity of drought in the western United States. 

 

 

o GCMs, the Canadian 

Climat ed 

, 

o 

ion should 

 not 

ted to result in less 

water available in many regions (Frederick and Gleick 1999).  For example, 

GCMs project global average evaporation to increase 3 to 15% with doubled CO2 

levels (Gleick 2000).  Simulation studies suggest that precipitation must increase 

by at least 10% to balance evaporative losses resulting from a 4° C temperature 

increase(Gleick 2000).  Projections of rising evaporation rates indicate they will 

outpace precipitation increases, on a seasonal basis, in many regions (Gleick 2000; 

Intergovernmental Panel on Climate Change 1998).  The greatest deficits are 

expected to occur in the summer, leading to decreased soil moisture levels and 

and policy communities.  It is prudent, therefore, to consider the impacts of such

warming on the frequency and sev

Several general circulation models (GCMs) have predicted U.S. average 

annual temperatures to increase 3 to 5° C (5 to 9° F) over the next 100 years 

(National Assessment Synthesis Team 2000).  Atmospheric scientists anticipate

numerous climatic effects to arise from these increasing temperatures.  For 

example, precipitation, which has increased in the U.S. by 5 to 10% over the 20th

century (Intergovernmental Panel on Climate Change 2001b), is predicted to 

continue to increase in many regions, particularly those at higher 

latitudes(Frederick and Gleick 1999; Gleick 2000).  Tw

e Centre, and the Hadley Centre in the United Kingdom, have project

specific precipitation changes across the U.S.  These include 25% precipitation 

increases in the Northeast, 10 to 30% increases in the Midwest, 20% increases in 

the Pacific Northwest, 10% precipitation decreases in the southern coast of Alaska

and up to 25% declines in the Oklahoma panhandle, north Texas, eastern Colorad

and western Kansas (National Assessment Synthesis Team 2000).  Caut

be exercised in using any of these as predictions, given the coarseness of 

geographical scale in existing GCMs. 

Increases in precipitation, given warmer atmospheric conditions, will

necessarily mean more available water at the state or regional level.  The higher 

evaporation rates that accompany rising temperatures are expec
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more frequent and seve ag Intergovernmental 

Panel on Climate Change 1998). 

Shifts in the form and timing of precipitation and runoff, specifically in 

ore frequent summer droughts.  More 

precise

 

1a). 

ges in snow pack and runoff are of particular concern to 

irrigated agriculture.  Fo

f, 

re ricultural drought (Gleick 2000; 

snow-fed basins, are also likely to cause m

ly, rising temperatures are expected to increase the proportion of winter 

precipitation received as rain, with a declining proportion arriving in the form of

snow (Frederick and Gleick 1999; Intergovernmental Panel on Climate Change 

2001a).  It is expected that snow pack levels will form much later in the winter, 

accumulate in much smaller quantities, and melt earlier in the season 

(Intergovernmental Panel on Climate Change 200

These chan

r example, if the runoff season occurs primarily in winter 

and early spring, rather than late spring and summer, water availability for 

summer-irrigated crops might decline during crucial spring and summer months, 

causing water shortages to occur earlier in the growing season.  Shifts in runof

precipitation and evaporation patterns may also intensify interstate and 

international water allocation conflicts, as water managers struggle to meet 

obligations of compacts and court decrees given more variable water availability 

and timing in headwater areas.  Global climate change is clearly relevant to 

drought in agriculture.  The effect of more frequent and severe drought on farm 

income and optimal crop plans is investigated in chapter 5.      
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3 Description of the Study Area 

 

3.1 Overview 

The Vale Oregon Irrigation District (VOID) is the study area chosen for 

this research.  VOID includes 35,000 acres of irrigable lands encompassing the 

towns of Harper, Little Valley, Vale, Willow Creek, and Jamieson, in Malheur 

County, Oregon.  Vale, Oregon, with a population of 1,976, elevation of 2,244 

feet, and average annual precipitation of 9.77 inches is the largest and most central 

town to VOID (Malheur County Oregon 2003).   

3.2 Reservoirs  

The Vale Oregon Irrigation District is located along the Malheur River, 

Willow Creek, and Bully Creek drainages in northeastern Malheur County, 

Oregon (figure 3.1).  Neighboring irrigation districts include the Warmsprings 

Irrigation District, Owyhee Irrigation District, and Orchards Water Company 

(figure 3.2).  Settlers began irrigating lands now included in VOID in 1881 

(Burea st 

of VOI

an agreem

purchasing one-half of the storage rights to the existing Warmsprings Reservoir 

from the neighboring Warmsprings Irrigation District, a diversion dam, main 

canal, and lateral canals were to be built.  The first unit of the Vale Project was 

open for irrigation in 1930 (Bureau of Reclamation 1998b). Two additional 

reservoirs were built for VOID, in 1935 and 1963.    

u of Reclamation 1998b), which established the 1881 priority date for mo

D’s reservoir storage rights.  The Vale Project was funded in 1926 through 

ent between VOID and the federal government.  In addition to 
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Figure 3.1. The Malheur River Basin, including Bully Creek Reservoir, 
Agency (Beulah) Reservoir, and Warmsprings Reservoir, which serve the 
Vale Oregon Irrigation District (adapted from Shock et al. 2001). 
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Figure 3.2. Vale Oregon Irrigation District and neighboring irrigation 
districts, Malheur County, Oregon (Unknown 19--). 
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oir, 

th 

noff 

torage capacity of 

30,000

 

 of 

 

s, 

03).  

Storage rights in Warmsprings, Beulah, and Bully Creek Reservoirs, an

surface rights from the Malheur River, Willow Creek, and Bully Creek provide 

water for VOID (figure 3.1).  The Bureau of Reclamation owns each of the 

reservoirs.  The Warmsprings Dam and Reservoir, located on the Middle Fork o

the Malheur River, 60 miles west of Vale, Oregon, collects spring snowmelt and

runoff from a drainage area of 1,110 square miles, and has an active storage 

capacity of 191,000 acre-feet.  VOID owns one-half, or 95,000 acre-feet, of this 

storage capacity.  The Warmsprings Irrigation District owns the other one-half o

the storage capacity and operates the dam on behalf of both irrigation districts 

(Bureau of Reclamation 1998b).  The Agency Valley Dam and Beulah Reserv

built in 1935, are located on the North Fork of the Malheur River, 18 miles nor

of Juntura, Oregon.  Beulah Reservoir collects snowmelt and runoff from a 

drainage area of 444 square miles, and has an active storage capacity of 59,900 

acre-feet.  VOID operates the dam (Bureau of Reclamation 1998b).  The Bully 

Creek Dam and Reservoir, built in 1963, are located on Bully Creek, 9 miles 

northwest of Vale, Oregon.  Bully Creek Reservoir collects snowmelt and ru

from a drainage area of 550 square miles, and has an active s

 acre-feet.  VOID operates the dam (Bureau of Reclamation 1998b).  In 

addition to storing Bully Creek flows, surplus winter flows in the Malheur River 

are also diverted to and stored in Bully Creek Reservoir for use the following 

growing season.   

Total reservoir storage capacity available to VOID is 184,900 acre-feet.  

Water is drawn from a total drainage area of 2,104 square miles to irrigate 35,000 

acres.  In comparison, the neighboring Owyhee Irrigation District receives its

irrigation water from Owyhee Reservoir, which has an active storage capacity

715,200 acre-feet, and collects water from a drainage area of 10,900 square miles

(Bureau of Reclamation 1998a).  Owyhee Reservoir serves 105,000 irrigated acre

including the Owyhee Irrigation District’s 65,000 irrigated acres (Jacobs 20
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t 

 (Ward 2004).  

To estimate how frequently these reservoirs are filled, the fraction of water years 

over a 

85% of Reclamation 

2004).  Bully Creek Reservoir content exceeded 85% of the storage capacity 

during 25 out of 35 years (71.4%).  Content was less than 50% of storage capacity 

in the years 1988, 1991, and 1992.  Beulah Reservoir content exceeded 85% of 

storage capacity during 23 out of 35 years (65.7%).  Content was less than 50% of 

storage capacity in the years 1988, 1991, and 1992.  Warmsprings Reservoir 

content exceeded 85% of storage capacity during 22 out of 35 years (62.9%).  

During the years 1988, 1991, and 1992 Warmsprings’ maximum reservoir content 

did not exceed 25% of storage capacity.  Warmsprings Reservoir also remained at 

less than 50% of storage capacity in the years 1997, and 2001 to 2004.  Beulah and 

Warmsprings Reservoirs are located only 30 miles apart; therefore, they often 

suffer simultaneous shortages.  Table 3.1 reports the frequency of ‘percent 

reservoir storage capacity’ classes over the 35-year period.  

Water stored in Warmsprings and Beulah Reservoirs must travel 65 miles 

east via the Malheur River before it reaches VOID’s main diversion, the Harper 

Diversion Dam.  Water is diverted there into the earthen Vale Main Canal, through 

which it must travel 74 miles along the western border of VOID to reach the end 

of the canal, near Jamieson, Oregon.  The canal empties there into Willow Creek, 

which acts as a conduit for producers in the Willow Creek area.  As water moves 

through the Vale Main Canal, it is diverted into numerous lateral canals and 

pipelines for delivery to individual VOID producers (Bureau of Reclamation 

1998a).  Water stored in Bully Creek Reservoir is released into Bully Creek and 

diverted to nearby VOID acreage.  An extensive drainage system is also in place 

throughout VOID to manage surface and subsurface runoff, which play an 

VOID can store enough water to irrigate for 1.5 seasons provided tha

Warmsprings, Beulah, and Bully Creek Reservoirs fill to capacity

35-year period during which the ‘maximum reservoir content’ exceeded 

 the reservoir’s storage capacity was calculated (Bureau of 
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important role in water allocation within VOID and between VOID and the 

m Bureau of Reclamation 1998a). War springs Irrigation District (

 
Table 3.1. Count and percent occurrence of five reservoir storage level 
classes during water years 1969-2004 at Bully Creek, Beulah, and 
Warmsprings Reservoirs (Bureau of Reclamation 2004).   

Bully Creek Reservoir Storage Capacity (acft): 31,650  
Acre-feet % of storage capacity # years % occurrence
0 - 7,913 0-25% 0 0.0% 

7,914 - 15,825 25.1-50% 3 8.6% 
15,826 - 23,738 50.1-75% 5 14.3% 
23,739 - 26,903 75.1-85% 2 5.7% 
26,904 - 31,650 85.1% + 25 71.4% 

    
Beulah Reservoir Storage Capacity (acft): 59,900  

Acre-feet % of storage capacity # years % occurrence
0 - 14,975 0-25% 0 0.0% 

14,976 - 29,950 25.1-50% 3 8.6% 
29,951 - 44,925 50.1-75% 6 17.1% 
44,926 - 50,915 75.1-85% 3 8.6% 
50,916 - 59,900 85.1% + 23 65.7% 

    
Warmsprings Reservoir Storage Capacity (acft): 191,100  

Acre-feet % of storage capacity # years % occurrence
0 - 47,775 0-25% 3 8.6% 

47,776 - 95,550 25.1-50% 5 14.3% 
95,551 - 143,325 50.1-75% 4 11.4% 
143,326 - 162,435 75.1-85% 1 2.9% 
162,436 - 191,100 85.1% + 22 62.9% 
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3.3 T

 

he Distribution of Water 

VOID appropriates an equal per acre water allotment to each district 

member.  The appropriation amount is determined at the beginning of each season, 

and is based on many factors, including current and expected reservoir levels.  

Recall that all VOID water rights share the same 1881 priority date, thus all 

members have equal rights.  Producers are allowed to apply their allotment to any 

of their acreage, but cannot easily transfer water to another VOID member (Jacobs 

2003).  Producers are assessed a fee of $80 per account plus $29 per acre, per year, 

regardless of the quantity of water delivered (Vale Oregon Irrigation District 

2004a).     

A full allotment in VOID is 3.5 acre-feet of water per acre of land (Ward 

2004), although they are allowed up to 4.5 acre-feet per acre in an unrestricted 

water year (Jacobs 2003).  Since 1992, VOID members have received a full 

of 0.92 acre-feet per acre 

in 1992

h 

ger 

eam-flow rights 

to Malh

, 

, but 

allotment only once, in 1997.  Allotment hit a record low 

 (Vale Oregon Irrigation District 2004b).    Table 3.2 reports district 

allotments for years 1981 to 2003 (Vale Oregon Irrigation District 2004b).  

Interviews with producers suggest that most crops can be grown successfully wit

a 3 acre-feet per acre allotment.  Producers received 3 or more acre-feet per acre 

during 11 of 23 years (48%) for the period 1981 to 2003.   

Some VOID members have access to supplemental water sources.  

Members with canal access to Bully Creek Reservoir sometimes receive a lar

allotment, because distribution from this reservoir cannot be distributed to all 

VOID members.  A small number of producers have individual str

eur River, Willow Creek, or Bully Creek, or have access to groundwater.  

Twenty groundwater wells were in place at the end of the 2003 growing season 

(Jacobs 2003).  The number of economically feasible wells is limited in VOID

due in part to deep aquifers (400 to 600 feet or more) and high electricity costs

producers continue to search for shallow aquifers (Jacobs 2003). 
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Table 3.2.  VOID water allotments (acre-feet per acre) for the years 1981-
2003 (Vale Oregon Irrigation District 2004b). 

Year 
Acre-feet 
per acre Year 

Acre-feet 
per acre

2003 1.75 1991 1.06 
2002 2.20 1990 2.05 
2001 2.13 1989 2.90 
2000 3.20 1988 1.02 
1999 3.03 1987 2.89 
1998 2.74 1986 3.55 
1997 3.56 1985 3.46 
1996 3.02 1984 3.60 
1995 2.71 1983 3.65 
1994 2.54 1982 3.58 
1993 3.05 1981 3.60 
1992 0.92   

 

3.4 Agricultural Production 

Today, up to 35,000 acres of land are irrigated for agricultural purposes 

during the best water years.  The eleven-year average of irrigated acreage for the

years 1992 to 2002, including acreage irrigated but not harvested (an average of 

570 acres), is 33,830 a

 

cres.  The eleven-year average acreage fallowed or idled is 

1,000 acres.  During the extremely dry year of 1992, irrigated acreage fell to 

00 acres fallowed.  Records indicate that 216 full-

time fa

d 

f 

28,100 acres, with nearly 6,8

rms and 207 part-time farms operated within VOID in the year 2000, 

compared to 230 full-time farms and 180 part-time farms that operated within 

VOID in the year 1992 (Vale Oregon Irrigation District 2004b).   

Soil quality in VOID is categorized into bench-land (Frohman-Virtue) an

bottom-land (Powder-Turbyfill-Garbutt) (Soil Conservation Service and Oregon 

Agricultural Experiment Station 1979).  Bottom-land has higher quality soil 

compared to bench-land, because it is flatter and deeper, which increases soil 

moisture retention.  The highest quality land in VOID is a one-mile wide strip o
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n 1979).  

ought.  

e 

he 

bottom-land that buffers Willow Creek.  Land west of Willow Creek, outside

the buffer area is bench-land, which tends to be hilly and have shallow soils.  A 

similar pattern occurs along Bully Creek.  Land surrounding the town of Harper

has deeper soils, but it is hillier than most bottom-land.  Most remaining land in 

VOID is bench-land (Soil Conservation Service and Oregon Agricultural 

Experiment Statio

It is important to note that the best land in VOID occurs along its streams, 

and that farms located on bottom-land along streams have a higher probability of 

owning stream rights.  This combination of having the best soils in VOID and 

owning supplemental water rights is likely an advantage during periods of dr

Recall, however, that land along Willow Creek is located at the end of the Val

Main Canal, making it more difficult to deliver water to the area during a drought, 

or at the end of the irrigation season.    

Alfalfa hay and irrigated pasture account for roughly 57% of VOID’s 

irrigated acreage.  Wheat, corn, and forage for silage account for 24% of irrigated 

acreage.  Other hay, barley, sugarbeets, dry beans, potatoes, and onions account 

for 16% of irrigated acreage (Vale Oregon Irrigation District 2004b).  Table 3.3 

reports ‘harvested acreage by crop’ as a percent of total harvested acreage for t

period 1992 to 2002.  

3.5 Irrigation Technology 

Most of VOID’s canals, including the Vale Main Canal, are unlined.  

However, canals are slowly being replaced with pipelines in an effort to reduce 

e over 130,000 feet of pipeline has been installed 

(Ward uce 

r 

conv yance losses.  Currently, 

2004), and 36,000 feet of additional pipeline is being installed to red

Escherichia coli levels in Willow Creek.  Furrow irrigation, using siphon tubes o

gated pipes, is the predominant irrigation technology in the VOID.  However, 

acreage under sprinkler irrigation (solid set, wheel line, and center pivot) grew 

from 4,000 acres (11.4% of district acreage) in 1992 to 5,500 acres (15.7%) in 



 

however, because most of VOID’s bottom-

land is too flat to generate sufficient head pressure, and thus electric pumps are 

ir urize the system (Ward 2004).  Producers indicate that the cost of 

the infr s 

tion efficiency.  Collection ponds are dug 

at the bottom of fields to collect surface and subsurface runoff.  Pumps, filters, and 

pipelines then deliver the recycled water to the same field or to neighboring fields.  

Reuse systems reduce and alter return flows, often to the detriment of downstream 

producers.  Warmsprings Irrigation District relies heavily on VOID’s return flows, 

and have already reported impacts from such water conservation efforts (Ward 

2004).  Producers who choose not to invest in improved irrigation technology 

combat water shortages by allocating more labor to the management of their 

furrow irrigation system.  However, labor is difficult to find during the irrigation 

season, so producers must weigh the cost of additional labor against the benefit of 

improved irrigation efficiency.  

3.6 Water Supply Forecasts

requ ed to press

astructure required to deliver electricity to the pressurized sprinkler system

is prohibitive.     

VOID onion growers have begun adopting drip irrigation. One-hundred 

acres were under drip irrigation in 2002, and as of 2004 this acreage has doubled 

(Vale Oregon Irrigation District 2004b).  Drip irrigation is used exclusively on 

onions in VOID because no other crop is sufficiently valuable to justify the 

installation and operating expenses. VOID producers are also installing reuse 

furrow systems to improve on-farm irriga

2001 (Vale Oregon Irrigation District 2004b).  The installation of additional 

sprinkler irrigation systems is limited, 

 

Snowpack is the primary source of irrigation water to VOID.  The 

transformation of winter snowpack to spring runoff is a complex process, and a 

major source of uncertainty for VOID managers and producers.  Water supply 

forecasts for the VOID currently have a limited forecast horizon (predictions are 

typically formulated no earlier than April), and limited accuracy.  An exploratory 
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economic analysis indicates positive economic benefit to VOID from improved 

water supply forecasts (W

3.7 Summ

yse 2004). 

ary 

T ale Oregon Irrigation District has many characteristics that make it 

an appropr pirica ucers experience 

drought freq ost recently a three-year drought that ended in 2004), which 

has resulted in application of numerous drought preparedness and response tools; 

2) row-crop systems year dynamics, and 

3) producers have indicated a desire to enhance their ability to prepare for, and 

respond to drought.  The model is therefore parameterized for a hypothetical 

irrigated row-crop farm in VOID.   

he V

iate em

uently (m

l focus for this research: 1) VOID prod

 in the VOID involve both intra- and inter-
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d acres by crop as a percent of total harvested acreage, 1992-2002 (Vale Oregon Irrigation District 

Ha ter ed
cft e) re t  

 

 

 

Table 3.3. Harveste
2004b). 

Year 
rvested 

Acres 
Wa
(A

 rDelive
er AcP r Alfalfa Hay Irrig. Pastu Whea Corn Silage

1992 28, % %    136 0.92 28.0 22.9 13.2% 2.3% 10.5%
1993 33, 9     079 3.05 25. 23.7 9.8 7.2 10.3
1994 33, 4     753 2.54 29. 25.5 9.7 5.1 8.9
1995 33, 9     589 2.71 29. 25.7 9.8 8.1 7.6
1996 34, 0     376 3.02 26. 26.9 15.4 10.7 5.9
1997 34, 2     345 3.56 27. 26.4 15.7 10.7 5.9
1998 34, 8     467 2.74 32. 26.9 10.0 8.1 6.7
1999 33, 0     850 3.03 33. 28.5 6.1 10.3 5.5
2000 33, 8     839 3.20 33. 29.3 6.0 8.5 5.6
2001 34, 6     410 2.13 38. 29.3 4.9 6.7 5.0
2002 33,816 42.6 2.20 27.2 4.5 5.8 6.5 
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gar
Potatoes  

(late) 

 

Table 3.3. (Cont.)   

Year Other Hay 
Barley 
(feed) Su  beet 

Beans  
(dry edible) 

Onions  
(dry) 

Potatoes 
(early) 

1992 4.6% 10.3% 2.9% 0.73% 0.99% 1.14% 0.40% 
1993 9.0% 4.8% 2.1% 2.55% 1.24% 1.54% 0.75% 
1994 4.6% 5.2% 2.3% 2.66% 1.33% 1.68% 1.17% 
1995 4.6% 4.2% 2.6% 2.61% 1.12% 1.32% 1.31% 
1996 2.9% 2.7% 1.9% 1.51% 1.03% 1.71% 1.64% 
1997 2.6% 2.7% 1.4% 1.53% 1.01% 1.60% 1.54% 
1998 3.9% 2.2% 2.4% 1.49% 0.68% 1.21% 1.70% 
1999 3.7% 2.3% 2.0% 2.10% 1.29% 1.10% 1.82% 
2000 6.0% 2.9% 2.6% 0.59% 1.16% 0.67% 1.45% 
2001 7.5% 1.5% 2.6% 0.24% 1.34% 0.34% 1.53% 
2002 6.2% 1.1% 2.1% 0.71% 1.04% 0.00% 1.90% 
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4 Model Description 

 

4.1 Overview of the Model 

Stochastic programming (SP) is selected to represent the decision-proc

of farm managers in the study area.  SP is able to represent farm managers who

make fall decisions about several cropping activities, given an uncertain future 

water supply, with explicit consideration of future spring decisions.  Managers 

decide in the fall the number of acres to plant to winter wheat, and the number of 

acres to prepare f

ess 

 

or onions, potatoes, and sugar beets.  The phenology of winter 

wheat r l 

ct 

 

ption.  Upon receiving these forecasts, and subject to constraints 

associa

me 

 

 

fewer). 

equires it to be fall-planted, and spring labor constraints require the fal

preparation of other acreage.  Ideally, fall decisions would be made given perfe

knowledge of the upcoming growing season’s water supply.  Unfortunately, only 

the subjective probability distribution of the future water supply is known when 

fall decisions are made.  Fall decisions therefore represent the first stage of the SP

model.     

Information enters the SP model decision framework in early spring when 

a water supply forecast becomes available.  The forecast is assumed to perfectly 

predict the growing season’s water supply; this is not the case in reality, but is a 

simplifying assum

ted with their fall decisions, managers make their spring decisions.  These 

spring decisions represent the second stage of the SP model.  Managers have so

recourse actions available at this time.  Suppose, for example, that the spring 

forecast indicates a full water allotment.  A manager who left a large acreage open

in the previous fall could plant it to a spring-prepared and planted crop, such as 

corn.  SP would capture the structure of this decision process much better than

CCP or PP.  SP is chosen over SDP because it accommodates several decision 

variables, and because the desired number of stages is relatively small (twelve or 
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cess.  

 

 

ities, 

water s

e.  

t 

 pests, 

(three for models that incorporate price uncertainty), and the number of random 

one, water supply; price is also treated as a 

random variable in some models.  Limiting the number of stages per year and the 

 of random variables allows us to expand a single-year (two-stage) model 

of a ribed 

in detai

decisio

model  in 

a multi

require -

year cr

continu

about t el 

Additional recourse stages exist in the manager’s true decision pro

These additional stages occur because the spring water supply forecast is

imperfect, and as the season progresses the manager gains additional information

about the seasonal water supply and responds by adjusting management activ

such as irrigation and date of harvest.  In fact, the actual value of the seasonal 

upply is not fully revealed until all crops have matured, since the water 

supply includes rainfall events that cannot be predicted beyond a few days notic

There are also other random variables that are not known a priori and that affec

managers’ optimal decision path, such as output prices and the occurrence of

hail, and wind.   

Dozens of stages could be constructed in to simulate farm managers’ 

decisions and flow of information over a year.  Such an attempt is beyond the 

scope of this research.  The number of stages within a crop year is limited to two 

variables will generally be limited to 

number

to a six-year (twelve-stage) model.  Six years is chosen because the dynamic effect 

 specific crop in the study area spans a six-year period.  The model is desc

l below.   

Many studies that use mathematical programming models represent farm 

ns as continuous variables (e.g. acres planted).  A continuous variables 

was initially developed for this study to address questions about drought

-year context.  One advantage of continuous variables models is that they 

 a less powerful solver and less computational time.  However, some inter

op rotation constraints can be modeled only approximately within the 

ous variables specification (this is discussed in detail below).  Concern 

he approximate nature of crop rotations in the continuous variables mod
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prompt

availab

opportu al 

solutio

outcom

ed by an 

explana

each m

model 

descrip Parameter 

constructed in GAMS (General Algebraic Modeling System) and solved using 

CPL

4.1.1 

(2)
(3)

(5)

x

ed the construction of an equivalent binary variables model.  The 

ility of both a continuous and binary variables model presents an 

nity to illustrate the structure of each model, and compare their optim

ns.  This comparison provides useful insights as to the differences in 

es between a binary and continuous model in a farm system context.   

A general representation of the models is presented next, follow

tion of the general features.  A detailed presentation and description of 

odel’s equations then follows.  In the following discussions, the binary 

is typically presented first and in the most detail, followed by a brief 

tion of any features that are unique to the continuous model.  

values used in the analyses are presented in the Appendices.  All models are 

EX; the programming code is provided on an attached floppy disc.                 

The Binary Variables Model 

ax ( , ; )

. .

s
y

E x y s

s t
Ax b
Dy e

,
(1) M

(4)
, 0

Mx Ny g+ =
≥x y

ndom vector that represents water supplies over a 6-year planning horizon

h realization of s consists of 6 components (s1 s2 s3 s4 s5 s6), which 

indicate the state of nature (water supply category) revealed in each o

six years. That is, s1 represents the state of nature revealed in year 1, s2 

state of nature revealed in year 2, etc.  Assuming 2 possible states of natur

Π

=
=

 

where 

s = A ra .   

Eac

f the 

the 

e 

(Dry or Full) in each of 6 years, 64 six-year water supply scenarios are 

possible.  Scenarios range from [Dry Dry Dry Dry Dry Dry] to [Full Full 
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rev  

bilities of the states of nature that occur each year.  For example, 

storical water allotment data and Gaussian 

sign quantity of 

x = Vector contain les for each year of the planning 

horizon. 

 the 

 

tion combination 

) is 

n for field f).  Each field may also be left “open,” implying that it is 

y = Vec

Exa r the spring of year 3, that 

technology i, and deficit irrigation category w, given the states of nature 

Full Full Full Full], and every combination between.  The scenario [Dry 

Dry Full Full Full Full] indicates (from left to right) that the state of nature 

ealed in year 1 is Dry, year 2 is Dry, year 3 is Full, etc.  Each state of

nature has a probability of occurrence within any given year, denoted 

pr(Dry) or pr(Full).  The state of nature in any one year is assumed 

independent of the state of nature in any other year (based on an 

autocorrelation analysis of historical stream-flow above the storage 

reservoirs as described by Haan (2002 p. 348).  Therefore, the joint 

probability of a particular six-year water scenario is the product of the 

proba

pr([Dry Dry Full Full Full Full]) = pr(Dry)*pr(Dry)*pr(Full)* 

pr(Full)*pr(Full)*pr(Full).  Hi

quadrature analysis (Featherstone, Baker, and Preckel 1993; Miller and 

Rice 1983; Preckel and Devuyst 1992) were used to as

water and probability to each state of nature (Appendix B).   

ing fall crop decision variab

Example element: x3,f,c,i,s1,s2, which indicates for the fall of  year 3, that field f 

is prepared for or planted to crop c, under irrigation technology i, given

states of nature revealed in past years 1 and 2. Each element of x is a

binary variable, taking on a value of 0 (if the crop/irriga

(c,i) is not chosen for field f) or 1 (if the crop/irrigation combination (c,i

chose

neither prepared for nor planted to any crop.  

tor of spring crop decision variables for each year of the planning horizon. 

mple element: y3,f,c,i,w,s1,s2,s3, which indicates fo

field f is planted to crop c in the spring of year 3, under irrigation 
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 a 

bination (c,i,w) is chosen for field f).  Each field may also be 

“fallowed,” in which case it is either abandoned (if prepared or planted in 

ted (if left open in the previous fall). 

revealed in past years 1, 2, and the present year 3.  Each element of y is

binary variable, taking on a value of 0 (if the crop-irrigation-deficit 

combination (c,i,w) is not chosen for field f) or 1 (if the crop-irrigation-

deficit com

the previous fall), or simply never plan

( , ; )x yΠ

at 

lso 

 that, with M and N above, define relationships between 

s = Vector containing the profit outcome for each water scenario.  An 

individual element of the vector is the discounted stream of profit th

optimal activities x and y generate over the 6-year period in which they 

occur, for a particular water scenario.  Terminal land rental values are a

included, as a function of activities in the 6-year period.  A terminal value 

for alfalfa acreage that remains in production after year 6 is also included. 

A, D = Matrices of coefficients that describe fall and spring activities’ resource 

use. 

b, e = Vectors of resource availability, such as land and water, which vary by state 

of nature for some resources. 

M, N = Matrices of coefficients that relate activities in different time periods to 

each other (intra- and inter-year rotation constraints). 

g = Vector of parameters

activities in different time periods.   

4.1.2 The Continuous Variables Model 

The continuous variables model, in its general form, is the same as the 

binary variables model described above, except for the interpretation of the 

decision variables.  The new interpretation is provided below. 

x = Vector containing fall crop decision variables for each year of the planning 

horizon. 
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f 

 under irrigation technology i, given 

deficit irrigation category w, given the states of nature revealed in years 1, 

2, and 3. 

4.2 Interpreting the General Model

Example element: x3,c,i,s1,s2, which indicates for the fall of year 3 the number o

acres of crop c to prepare for or plant,

the states of nature revealed in years 1 and 2. 

y = Vector of spring crop decision variables for each year of the planning horizon. 

Example element: y3,c,i,w,s1,s2,s3, which indicates for the spring of year 3 the 

number of acres of crop c to plant, under irrigation technology i, and 

 

The above discrete stochastic sequential programming models (binary and 

continuous) maximize the expected stream of profit over a 6-year planning 

horizon.  The expectation is taken over water supply, s, which is assumed to have a 

discrete probability distribution over a small number of pre-defined categories 

(e.g. dry and full).  Choice variables are contained in the vectors x and y.  Vector x 

includes fall cropping activities, which are chosen under an uncertain future water 

supply.  Vector y includes spring cropping activities, which are chosen after water 

supply is revealed.  Fall and spring activities are chosen for each year of the six-

year planning horizon, for each water supply scenario, (e.g. [Full Full Full Dry Dry 

Dry]).  Fall and spring activities are constrained by resource availability, as 

express  in 

the cro

year dy  subsequent years 

 known in the base model, but future water supply is uncertain.  

Specifically, fall cropping activities (xt) are chosen before the water supply for the 

upcoming growing season is known, and before the water supplies for future 

ed in equations (2) and (3).  Equation (4) describes dynamic interactions

pping system, including how fall activities restrict spring activities (intra-

namics), and how activities in year t restrict activities in

(inter-year dynamics).   

The timing of decisions relative to the availability of water supply 

information is an essential feature of the DSSP model (figure 4.1).  Past water 

supply is
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growin

en.  

ted in 

 fall of 

n.   

ry), 

the activities’ future impacts.  Future impacts are challenging to identify, however, 

 

g seasons are known.  Water supply for the upcoming growing season is 

revealed in early spring, after which spring cropping activities (yt) are chos

Note that although the water supply for the upcoming season is revealed in the 

spring, the water supplies in future growing seasons remain uncertain.  This 

sequence of events (choose xt, water supply is revealed, choose yt) is repea

each year of the six-year planning horizon.   

Intra- and inter-year dynamics between cropping activities require the 

producer to be forward-looking to make optimal decisions.  Activities in the

year 1, for example, will constrain activities in the spring of year 1, which will 

potentially constrain activities throughout the remainder of the planning horizo

 

Figure 4.1. Decision tree representation of decision-making under 
uncertainty.  Fall cropping activities (xt) are chosen given an uncertain 
spring water supply.  The spring water supply is then revealed (full or d
after which spring cropping activities (yt) are chosen.   

Therefore, when selecting activities for fall of year 1, the producer must consider 

water 
revealed 
(spring) 

Year 3 

x3|y2 

x3|y2 

x3|y  2

x3|y2 

x2|y1 

x2|y1 

full 

dry 

full 

dry 

y2|x2 

y2|x2 

y2|x2 

y2|x2 

Year 2 

water 
uncertain 

(fall) 

x1 
y1|x1

y1|x1 

full 

dry 

Year 1 

pr
of

it 
ou

tc
om

e 

water 
uncertain 

(fall) 

water 
revealed 
(spring) 

p(wet)=0.6 
p(dry)=0.4 

pr
of

it 
ou

tc
om
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rates this 

 

ities, the 

cenario.   

l plan, 

nts the 

 

he resulting set of optimal fall 

activities would likely differ from the set derived under uncertainty.  Note that the 

r epresents the cost of uncertainty, 

or equi

When this model is expanded from one year to two, the producer identifies 

one set of optimal “fall year 1” activities, two sets of optimal “spring year 1” 

activities, two sets of optimal “fall year 2” activities, and four sets of optimal 

“spring year 2” activities (figure 4.1).  The producer, in choosing their activities 

for fall year 1, considers that four water supply scenarios are possible over the 

two-year period:  [Full Full], [Full Dry], [Dry Full], and [Dry Dry].  In addition to 

because future water supplies are uncertain.  The following example illust

point.   

Suppose, for simplicity, that the planning horizon is a single year, within

which fall decisions are made given an uncertain water supply, and spring 

decisions are made given a certain water supply.  When selecting fall activ

producer must consider the impact on spring activities for two cases: 1) the spring 

allotment is revealed to be full, and 2) the spring is revealed to be dry.  A 

particular set of fall activities might maximize profit in the event of a full 

allotment, but not a dry spring, or vice versa.  In contrast, the optimal set of fall 

activities will, by the definition of “optimal” in this dissertation, maximize 

expected profit over both water scenarios.  That is, the producer must select fall 

activities based on their performance in each possible water scenario, and the 

probability of each s

A solution to this two-stage, single-year problem consists of one set of 

optimal fall activities, and two sets of optimal spring activities, one for a full 

spring allotment, and one for a dry spring.  The producer implements the fal

and after the water supply is revealed as full or dry, the producer impleme

corresponding spring plan.  Suppose that the producer knows, prior to making their

fall decision, that the allotment will be full.  T

diffe ence in profit between these two scenarios r

valently, the value of perfect information.   
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choosing a plan for fall year 1, the producer selects activities for each stage of 

every possible water supply scenario.  In reality, the producer will update year 2 

plans once the outcome of year 1 is realized, in order to make full use of 

information gained in year 1, and to look six years into the future before choosing 

a year 2 plan.  The plan made for year 2 in the fall of year 1 should therefore be 

interpreted as an estimate of the optimal year 2 plan.  Figure 4.1 illustrates the 

branching pattern of crop plans that arises when future water supplies are 

uncertain.  Two states of nature and a six-year planning horizon are assumed in the 

empirical model, which generates 64 unique water scenarios, and potentially 64 

unique six-year crop plans.  It is unlikely that a producer could envision six-year 

crop plans for all sixty-four scenarios.  It is likely, however, that a producer could 

clearly envision crop plans and outcomes for the near future, as well as attempt to 

consider the dynamic implications of those plans in the more distant future.  The 

farther into the future the producer can envision, the closer their year 1 plans will 

be to the optimal.    

Once a crop plan is determined for each stage (fall and spring) of each year 

of each water supply scenario, a discounted stream of profit is calculated for each 

scenario (i.e. for each branch of the decision tree).  Expected profit over all 

possible water supply scenarios is then calculated, given each scenario’s 

probability of occurrence.  The DSSP models are presented in detail next for both 

the binary and continuous variables models. 

4.3 Details of the Binary Variables Model 

The equations of the binary variables model are presented below, followed 

by their interpretation. 
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t = a cr ith possible values of 1 

 

f = the 

c = the rn, 

alfalfa (1st through 4th year), fallow, and open} 

i = the nter 

f land owned, such as a water district fee per acre 

 

where, 

op year within the 6-year planning horizon, w

through 6, or within the 6-year period following the planning horizon, with

possible values of 7 through 12. 

field in which the cropping activity takes place {F1,…, F10}. 

crop {onion, potato, sugar beet, wheat, barley, grain corn, silage co

irrigation technology {furrow, reuse furrow, solid set, wheel line, ce

pivot, drip} 

w = the deficit irrigation level {0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

ρs = probability of the 6-year water supply scenario s 

r = interest rate on operating loans and savings 

d = discount rate 

FAC = number of acres per field (fields assumed to be equal size) 

pc = price received per unit of crop c 

yldc,i,w = yield per acre of crop c, under irrigation technology i, and deficit 

irrigation level w 

jc,i = cost of spring planting per acre of crop c, under irrigation technology i. 

hc = cost of fall preparation or planting per acre of crop c 

fxdcost = fixed cost per acre o

and land taxes 

maxyldc,i = maximum yield for crop c, under irrigation technology i, given no 

water deficit 

kyc = yield response coefficient for crop c, which reflects sensitivity to water stress

ETmaxc = gross water requirement of crop c over the growing season to achieve 

maximum yield 

Ppt = precipitation received during the growing season, which reduces irrigation 

requirements 
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 to 

cenario s; acres inherit the irrigation technology used in year 6 

EligOth f 

1 = net reven no 

deficit irrigation (w =d1) 

 the 

 the crop c to which field f was planted five years prior to the first year of 

ar of 

f 

IrrigEffic = the proportion of water delivered to the field that reaches the crop root 

zone 

Water = per acre water allotment for the growing season 

TotAcres = total number of acres available for cropping activities 

RRateonion = rental rate of an acre eligible for onions (i.e. an acre not planted

onions in previous 5 years) 

RRateother = rental rate of an acre not eligible for onions 

EligOniont,s = acres eligible to be rented for onions in period t of scenario s 

EligAlft,i,s = acres of alfalfa with productive lifespan remaining in years 7 through 

9 for s

ert,s = acres eligible to be rented for crops other than onions in period t o

scenario s; a function of EligOniont,s and EligAlft,i,s.  

NetRvalf,i,d ue from alfalfa under irrigation technology i, assuming 

H1f,c = the crop c to which field f was planted six years prior to the first year of

planning horizon (i.e. planted in the first year of the previous (historical) 

planning horizon) (=0 if not planted, or 1 if planted) 

H2f,c =

the planning horizon (=0 if not planted, or 1 if planted) 

H3f,c = the crop c to which field f was planted four years prior to the first year of 

the planning horizon (=0 if not planted, or 1 if planted) 

H4f,c = the crop c to which field f was planted three years prior to the first ye

the planning horizon (=0 if not planted, or 1 if planted) 

H5f,c = the crop c to which field f was planted two years prior to the first year o

the planning horizon (=0 if not planted, or 1 if planted) 

H6f,c = the crop c to which field f was planted one year prior to the first year of the 

planning horizon (=0 if not planted, or 1 if planted) 
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) 

er abandoned (if prepared or planted in the previous fall), or not 

ction 

rop 

s that 

are eith

tion 

f 

 field 

ach 

field.  T  

mine 

 

PotatoContract = a fixed acreage of potatoes (expressed as number of fields

contracted in advance with local processors 

openf,t = field f is left unprepared and unplanted in the fall of year t (=0 if not left 

open, or 1 if left open).  This contrasts to “fallow,” which indicates that a 

field is eith

planted in the spring (if left open in the previous fall). 

 

The producer’s objective (equation 6) is to maximize the expected 

discounted stream of profit from the 6-year planning horizon through the sele

of fall and spring crop activities (x and y, respectively).  Decisions made in “c

year” t consist of fall decisions (xt,f,c,i,s) and spring decisions (yt,f,c,i,w,s).   Crop

er fall-planted or require fall bed-preparation require the following fall 

decisions: 1) number of fields to plant or prepare, and 2) an associated irriga

technology, i, for each field.  Spring decisions for each crop, c, include the 

following: 1) number of fields to keep (if c is a fall-planted crop) or number o

fields to plant (if c is spring-planted), 2) an irrigation technology, i, for each

(note: for some crops, decisions made in the preceding fall impose an irrigation 

technology on the spring decision), and 3) a deficit irrigation level, w, for e

he optimal choice of x and y depends on past, current, and expected future

water supplies, denoted by s. 

Economic profit for a particular crop year of the planning horizon, given 

water supply scenario, s, is described in (7). Crop mix, output price, number of 

acres planted, yield per acre, and cost of spring and fall activities partly deter

profit.  Fixed costs (which include land taxes and a water district charge), and the

opportunity cost of money and time also influence profit.  A 7% interest rate (r) is 

charged for short-term operating loans (Stanger 2005, personal communication).  

The opportunity cost of investing equity funds in the farm is also assumed to be 

7%.  It has been argued that the rate charged for equity funds should be less than 

  



 
 
 
 

71

odate a 

 and a 

higher  

the rate charged for borrowed funds, because the commercial lending rate includes 

fees that are not relevant to equity funds (American Agricultural Economics 

Association Task Force 1998, p33).  However, it is not possible to accomm

separate interest rate for each source of funds in this model.  Time preferences are 

captured with a 5% discount rate (d).  This rate strikes a balance between a 

conservative discount rate of 3% (the average real return on a risk-free asset 

(American Agricultural Economics Association Task Force 1998, p33)),

discount rate (7%) that is based on the assumed interest rate.  The effect of

choosing a lower versus higher discount rate on the model’s solution is discussed 

in chapter 5.  

The constant, FAC, which represents the size of each field and appears 

first in the profit calculation, is necessary when x and y are binary variables.  For 

example, 1, , , , , 1 f c i w s
f

y∑ calculates the number of fields planted to crop c under 

irrigation technology i and deficit irrigation level w in the spring of year 1 for 

water s C) 

zed 

g input 

) of 

.  

ield response function assumes water deficits occur at an 

equal proportion across the entire growing season.  It is preferable to model 

strategic deficit irrigation, in which crops are deficit irrigated during their least-

cenario s1.  This integer has to be multiplied by the acres per field (FA

before profit is calculated, because the revenue and cost data are per acre, not per 

field. 

Yield for crop c, under irrigation technology i and deficit irrigation level 

w, is calculated in equation 8, which is a linear yield response function populari

by Doorenbos and Kassam (1979).  Water is assumed to be the only limitin

to crop yield.  The degree to which actual crop yield (yldc,i,w) deviates from 

maximum yield (maxyldc,i) in a particular year is a function of the crop’s 

sensitivity to water stress (indicated by the empirically-based coefficient kyc), 

precipitation received during the growing season (Ppt), and the proportion (w

the crop’s maximum irrigation water requirement (ETmaxc-Ppt) actually provided

This formulation of the y
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sensitiv

e deficit 

 

, and 

eral 

fically equations (2) through (5).  

Equatio r the 

d.  

e 

e 

lume of required 

code. A

r 

, 

at 

e growth stages.  Data are insufficient, unfortunately, to model this 

approach.  The season-long deficit approach likely overestimates yield losses 

associated with a particular deficit level.  Thus the model is likely to choos

irrigation as an optimal strategy less frequently than a model that assumes strategic 

deficit irrigation.  

Terminal values are introduced in the model via equation 9.  Terminal 

values are needed to capture the following two sources of future profit: 1) alfalfa

planted or maintained in year 6 that has productive value in years 7 through 9

2) the rental value of land in years 7 through 12.  Decisions made in years 1 

through 6 impact the flow of profit from years 7 through 12; equation 9 is an 

attempt to incorporate this dynamic relationship into the decision problem.  

Equations (10) through (45) are the detailed representation of the gen

constraints presented in section 4.1, speci

n 10 constrains the sum of water use across all fields, accounting fo

application efficiency of various irrigation technologies, to no more than the 

farm’s total water allotment.  Total water allotted equals the per acre water 

allotment (set by the irrigation district) multiplied by total acres owned or lease

This equation must be met in every year of every water supply scenario.   

Equations 11 and 12 prevent crop-irrigation-deficit combinations that ar

not observed in the area from entering the solution.  Cost and yield data are not 

available for combinations not observed in the area, so they are not included in th

model.  The GAMS language uses set notation to reduce the vo

 by-product of this notation, however, is that cropping activities not 

currently practiced in the area are created through the set notation.  Suppose, fo

example, that set c = {onions, corn} and set i = {drip, center pivot}.  Set notation 

allows the modeler to specify one equation that applies to every (c, i) combination

rather than specifying one equation for each combination.  Suppose, however, th

not all (c, i) combinations occur in the study area; for example, (corn, drip) does 
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ies 

. 

f specific crop activities in 

the fall hese 

 

 pest 

h 

that field f can be planted to wheat in year 1 if it was not planted to wheat or barley 

years th

 

cannot exceed 1.  Equations 15 through 17 are the equivalent to (14) for other 

crops.  Note that sugar beets, onions, and potatoes require four to five years 

between plantings to avoid pests and diseases.  These agronomic practices create 

inter-year dynamics.     

not occur in the Vale Oregon Irrigation District.  Equations 11 and 12 prevent this 

combination from entering the solution.  Equation 13 states that cropping activit

can take on binary values only.  That is, a cropping activity can either be 

implemented in a particular field (i.e. take on the value 1), or not implemented (i.e

take on the value 0).  This is in contrast to a continuous definition of cropping 

activities, in which the activity variable could take on any continuous value 

representing the number of acres on which the activity is implemented. 

Equations 14 through 21 constrain the scope o

 of year 1 to reflect agronomic rules that prevent pests and diseases.  T

rules, derived from conversations with producers, represent agronomic guidelines

that they adhere to quite rigidly.  It is beyond the scope of this study to test the 

economic optimality of these rules.  Biological response functions that capture

and disease dynamics are not readily available, and are therefore not directly 

included in the economic decision model.  These functions are captured throug

crop rotation constraints instead. 

Interpretation of a few equations will help elucidate the nature of the 

agronomic constraints.  Equation 14 prevents the planting of small grains (wheat 

and barley) on the same acreage in two consecutive years.  It specifically states 

in year 6 of the historic period (i.e. H6).  The historic period consists of the six 

at immediately precede the current planning horizon; historic crop 

activities are exogenous to the decision model.  Equation 14 states, algebraically,

that the sum of the listed activities (each of which can take the value of 0 or 1) 
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Equation 18 states, for year 1, that the number of fields allocated to 

potatoes cannot exceed the “PotatoContract,” regardless of the water scenario.  

Potatoes in the study area are grown exclusively under contract with local 

processors, so producers are constrained to the quantity that the processor requests.  

A relatively small portion of onions and sugar beets are also grown under contract.  

It was decided, however, to exclude this option from the model.  Equations 19 

through 21 require the producer to maintain alfalfa that is one or more years old 

through its fourth year of production.  The producer does, however, have an 

opportunity to abandon newly planted alfalfa in its first spring.  Alfalfa is used in 

crop rotations to enhance soil quality; equations 19 through 21 ensure that alfalfa 

is left in place sufficiently long to accomplish this.  Equation 22 forces the 

producer to make a fall decision for each field in year 1; they can choose to 

prepare, plant, or leave each field open.  

Equations 23 through 29 constrain spring crop activities in year 1.  

Equation 23 limits the spring acreage of each fall-planted or prepared crop to no 

more than the number of fields planted or prepared in the preceding fall.  Winter 

wheat acreage, for example, is planted exclusively in the fall; therefore, wheat 

acreage cannot be increased in the spring.  Onion acreage, which is prepared in the 

fall, cannot typically be increased in the spring due to adverse field conditions. 

Equation 23 therefore generates intra-year dynamics.   Equations 24 through 26 

simply transfer fall alfalfa acreage to spring alfalfa acreage, thus preventing the 

abandonment of alfalfa stands that are one or more years old. 

Equation 27 states that corn (grain or silage) cannot be planted in the same 

field more than two consecutive years.  Algebraically, field f can be planted to 

grain corn in year 1 if it was planted to grain or silage corn in year H6 but not year 

H5, or if it was planted to corn in year H5 but not year H6.  Equation 28 presents 

the same constraint for silage corn.  Equation 30 must accompany equations 27 

and 28 for them to perform correctly.  It states that each field can be planted in the 
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spring to only one crop-irrigation-deficit combination; fallowing is included in the 

st of spring crops.  Equations 27 and 28 each sum over several corn-irrigation-

deficit combinations for year 1, and the sums are allowed to equal 2; thus, without 

equation 30, one field could be planted to two different combinations in the same 

year.  Equation 29 expresses the agronomic constraint for spring-planted barley.  

The equations explained above are defined for year 1 only.  Equations 31 through 

47 essentially repeat this block for year 2.  Blocks for years 3, 4, 5, and 6 are 

similar in content, and therefore not presented here.   

Care must be taken in constructing the above constraints, due to the 

stochastic water supply.  First, all constraints must be met in every water supply 

scenario.  The water constraint in equation 10, for example, must be met in the 

event of a full or dry spring.  Additionally, constraints must be constructed to 

properly account for past water supply conditions.  The number of fields planted to 

onions in year 4 of water scenario [Full Dry Full Full ___ ___ ], for example, 

cannot exceed the number of fields that remain eligible for onions, which is 

determined by cropping activities during the three preceding years, i.e. activities in 

scenario [Full Dry Full ___ ___ ___ ].  Use of the subscripts s1 through s6 ensures 

that current activities are constrained by their respective water supply histories. 

li

4.4 Details of the Continuous Variables Model 

Equations of the continuous variables model are presented next, followed 

 interpretation.  Although the modby their el is similar in general structure to the 

n.  binary variables model, variables differ slightly in their subscripts and definitio

6 1 π , , ,
1 (1 )

(6) Max ( , ; )
t s t s t st

t
s s

d
E x y s ρ =

12,

, 6, 6,

( , )

1 ( ,... )

where for t =1,...,6

x y s
t s t s st

x y

y yπ −

⎡ ⎤⎞⎛
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( )
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(21)  i,s

(22)  s

l,i,s

(24)  i,ss alf i s
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, , 1, 4, ,

, , , 1, , , ,
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gh 6, or within the 6-year period following the planning horizon, with 

ssible values of 7 through 12. 

 = the crop {onion, potato, sugar beet, wheat, barley, grain corn, silage corn, 

alfalfa  through 4th year), fallow} 

i = the irrigatio ogy { rrow, w, solid set, wheeline, center 

 = the deficit irrigation level {0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

ility of the 6-year water supply scenario s 

r = interest rate on operating loans and savings 
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where, 

t = a crop year within the 6-year planning horizon, with possible values of 1 

throu

(41)  i,s

po

c

(1st

n technol fu  reuse furro

pivot, drip} 

w

s = probabρ
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d = discount ra

rop c, under irrigation technology i. 

 planting per acre of crop c 

dcost = fixed cost per acre of land owned, such as a water district fee per acre 

and land taxes 

maxyldc,i = ma eld fo  crop c rrigati n tech , given no 

 root 

igible for onions in period t of scenario s 

EligAlf = acres of alfalfa with productive lifespan remaining in years 7 through 

te 

pc = price received per unit of crop c 

yldc,i,w = yield per acre of crop c, under irrigation technology i, and deficit 

irrigation level w 

jc,i = cost of spring planting per acre of c

hc = cost of fall preparation or

fx

ximum yi r , under i o nology i

water deficit 

kyc = yield response coefficient for crop c, which reflects sensitivity to water stress 

ETmaxc = gross water requirement of crop c over the growing season to achieve 

maximum yield 

Ppt = precipitation received during the growing season, which reduces irrigation 

requirements 

IrrigEffic = the proportion of water delivered to the field that reaches the crop

zone 

Water = per acre water allotment for the growing season 

TotAcres = total number of acres available for cropping activities 

RRateonion = rental rate of an acre eligible for onions (i.e. an acre not planted to 

onions in previous 5 years) 

RRateother = rental rate of an acre not eligible for onions 

EligOniont,s = acres el

t,i,s 

9 for scenario s; acres inherit the irrigation technology used in year 6, for 

simplicity 

EligOthert,s = acres eligible for crops other than onions in period t of scenario s; a 

function of EligOniont,s and EligAlft,i,s 
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 no 

 

horizon 

e of potatoes contracted in advance with local 

 

ill illustrate how they differ from the binary model.  Equation 14 

prevents the planting of wheat on acreage that was planted to wheat or barley in 

the previous year.  The constraint specifically defines acres eligible for wheat this 

t cannot guarantee that a particular field will not be planted to 

NetRvalf,i,d1 = net revenue from alfalfa under irrigation technology i, assuming

deficit irrigation (w =d1) 

H1c = acres of crop c planted six years prior to the first year of the planning 

horizon (i.e. planted in the first year of the previous (historical) planning 

horizon) 

H2c = acres of crop c planted five years prior to the first year of the planning 

horizon 

H3c = acres of crop c planted four years prior to the first year of the planning 

horizon 

H4c = acres of crop c planted three years prior to the first year of the planning 

horizon 

H55 = acres of crop c planted two years prior to the first year of the planning

horizon 

H6c = acres of crop c planted one year prior to the first year of the planning 

PotatoContract = a fixed acreag

processors 

opent = acres to leave unprepared and unplanted in the fall of year t 

 
Interpretation of the continuous variables model’s equations is similar to 

that of the binary variables model.  One difference is the lack of subscript f on the

x and y decision variables, which changes x and y from binary variables to 

continuous variables, measured in acres rather than fields.  Another difference is 

the manner in which agronomic constraints are specified.  Interpretation of a few 

equations w

year as total farm acreage less acres planted to wheat or barley last year.  This 

form of the constrain
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track crop history on a field-by-field basis.  However, it does guarantee at the 

farm

variable tory.   

grain and 

two

tracking

approxi

acreage ge corn cannot exceed twice the total acreage.  

The con

on the s

constra  are planted to corn.  Equation 

27 states that acres planted to corn in years 1, 2, and 3 cannot exceed two times the 

 implies that 0 acres are eligible for corn in 

year 3 f  

le 

ons well. 

 

small grains in two consecutive years, because the continuous model does not 

-level that acres allocated to wheat do not exceed eligible acres.  The binary 

s model avoids this spatial ambiguity by tracking each field’s crop his

Equation 27 attempts to capture the agronomic constraint for 

silage corn, which stipulates that acreage should not be planted to corn more than 

 consecutive years.  It is difficult to represent this constraint, however, without 

 the crop history of individual fields; equation 27 therefore only 

mates it.  Equation 27 states that over a three-year period the sum of 

 planted to grain corn or sila

straint works well if it is assumed that the producer avoids planting corn 

ame acreage in two consecutive years.  The illustrations below clarify the 

int. Suppose in year 1 and 2 that all 350 acres

total farm acreage (350 acres), which

or this example.  This coincides with the agronomic practice; corn was

planted in two consecutive years on all 350 acres, therefore, zero acres are eligib

in year 3.    

  
 
 

   

  Year 1   Year 2   Year 3 

Consider a second example in which the constraint also functi

Corn = 
350 acres 

Corn = 
350 acres 

Corn ≤ 700 
– 350 – 350 
≤ 0 acres 

 
   

 

Corn = 
150 acres 

Corn = 
350 acres 

Corn ≤ 700 
– 350 – 150 
≤ 200 acres 

  Year 1   Year 2   Year 3 
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Cor

Howev  

for corn

capture . 

 

 

the sam ld 

be as la lap 

(50 acr .  In 

reality, y 

150 acr

continu

discrete

practice

similar  

crops.  

does no

sufficie  

be disc

4.5 Alterna

n was planted for two consecutive years (years 1 and 2) on 150 acres.  

er, 200 acres were planted to corn only in year 2, thus 200 acres are eligible

 in year 3.  Consider a final example, in which the constraint does not 

 the agronomic practice exactly

   
Corn = 
200 acres 

Corn = 
200 acres 

Corn ≤ 700 
– 200 – 200 
≤ 300 acres 

  Year 1   Year 2   Year 3 

It is not clear in the third example whether corn in year 2 was planted on 

e acres as corn in year 1.  The overlap is, at a minimum, 50 acres, but cou

rge as 200 acres.  Equation 27 assumes that the minimum possible over

es) occurred in year 2, such that 300 acres are eligible for corn in year 3

 the producer may have overlapped the entire 200 acres, which leaves onl

es eligible in year 3.  This example highlights the limitations of using a 

ous variables model to represent agronomic practices that operate on 

 fields.  The binary variables model, in contrast, represents the agronomic 

 precisely.  The solutions to the continuous and binary models share 

characteristics, however, including the relative acreage of corn versus other

This suggests that the continuous variables version of the corn constraint 

t lead to serious errors in the solution.  The remaining equations are 

ntly similar in interpretation to those in the binary model, so they will not

ussed further. 

tive Versions of the Binary Variables Model 

The binary variables model is used in section 5.1 to establish the “base 

case” solution.  In sections 5.1 through 5.8, the binary variables model is modified 

to c alyses an

solution

Section 5.3 treats the water supply as certain to explore differences between 

onduct sensitivity an d facilitate interpretation of the base case 

.  Section 5.2 focuses on sensitivity to the discount and interest rates.  
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optimal

Section

introdu

Section 5.6 introduces price uncertainty in addition to water supply uncertainty.  

pro  

of incre

model’

solution

made (e in the 

modific

Section the model structure that 

    

4.5. rtainty 

uncerta

assume  

in the f i 

(e.g. 24

and spr ounted 

profit.  This model could be used to conduct a passive programming analysis of the 

effects of wate s as 

follows

 drought preparedness and response under certainty and uncertainty.  

 5.4 discusses the importance of inter-year crop dynamics.  Section 5.5 

ces crop history by setting parameters H1 through H6 to non-zero values.  

Section 5.7 introduces a crop insurance product known as prevented planting 

visions. Section 5.8 resumes water supply uncertainty, but examines the impact

ased drought frequency and severity.  Lastly, the continuous variables 

s solution is presented in section 5.9, and compared with the base case 

.  For most sections, only small modifications of the base case model are 

.g. parameter values are changed).  It suffices in these cases to expla

ation briefly at the beginning of the respective section in chapter 5.  

s 5.3, 5.6, and 5.7, in contrast, require changes in 

are sufficient to require more thorough descriptions. These are presented next.      

1 Water Supply Ce

A deterministic version of the base case model is constructed to tease out 

inty’s role in optimal preparedness and response.  The deterministic model 

s that the water supplies for all six years of the planning horizon are known

all of year 1.  A specific water supply scenario is therefore assigned a prior

 acre-inches per acre in each of the six years), and the model chooses fall 

ing activities for years 1 through 6 to maximize the stream of disc

r supply on production (see section 2.2.3).  The general model i

:   
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(3)

(5)

x,
(1) Max ( , )

. .
y

x y

s t

Π

(2) Ax b
Dy e

=
=

 

(4)
, 0

Mx Ny g
x y

+ =
≥

 

ll notation referring to states of naturwhere a e is removed, and some definitions 

simplif

x = Vec g 

3, under irrigation technology i, 

y as follows: 

tor containing fall crop decision variables for each year of the plannin

horizon. 

Example element: x3,f,c,i, which indicates for the fall of  year 3, that field f is 

prepared for or planted to crop c, under irrigation technology i. Each 

element of x is a binary variable, taking on a value of 0 or 1. 

y = Vector of spring crop decision variables for each year of the planning horizon. 

Example element: y3,f,c,i,w, which indicates for the spring of year 3, that field f 

is planted to crop c in the spring of year 

and deficit irrigation category w.  Each element of y is a binary variable, 

taking on a value of 0 or 1. 

( , )x yΠ = The discounted stream of profit that optimal activities x and y generate

over the 6-year period in which they occur, assuming that the water 

for each of the six years is known a priori.   

4.5.2 Price Uncertainty 

The base case model must be modified significantly to accommodate 

uncertainty of prices.  Price uncertainty is represented by three price categories 

(Appendix B.3), and is resolved after both fall and spring decisions are made.  A 

third stage is therefore added to the model, during which the producer learns which 

 

supply 

price will be received.  The producer has no recourse after the price is revealed. 
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(2)
(3)
(4)
(5) , , 0

Ax b
Dy e
Mx Ny Rz g
x y z

=
=
+ + =
≥

 

where 

s = A random vector that represents water supplies over a 3-year planning horizon.   

Each realization of s consists of 3 components (s1 s2 s3), which indicate the 

state of nature (water supply category) revealed in each of the three years. 

That is, s1 represents the state of nature revealed in year 1, s2 the state of 

nature revealed in year 2, etc.  

ss = A random vector that represents the price of onions in each of the 3 years of 

the planning horizon. 

Assuming 2 possible states of the water supply (Dry or Full) and 3 possible 

in each of 3 years, 216 three-year 

scenarios are possible.   [Dry Lo Dry Lo Dry Lo] to 

[F mbination between.  The scenario 

[D rom left to right) that the water 

price in year 1 was Lo, the water 

price in year 2 was Med, the water 

price in year 3 was Hi.  Each state 

of nature has a probability of occurrence within any given year, denoted 

pr(Dry) or pr(Full), and prp(Lo), prp(Med), or prp(Hi).  The state of nature 

All crops that are grown are assumed to be sold at the market price.  Marketing 

strategies were beyond the scope of this study.  The general price uncertainty 

model is presented next, followed by details of the model.     

4.5.2.1 THE GENERAL PRICE UNCERTAINTY MODEL 

,
,

(1) Max ( , , ; , )

. .

s ss
x y

E x y z s ss

s t

states of the onion price (Lo, Med, Hi) 

Scenarios range from

ull Hi Full Hi Full Hi], and every co

ry Lo Full Med Full Hi] indicates (f

supply in year 1 was Dry, the onion 

supply in year 2 was Dry, the onion 

supply in year 3 was Full, and the onion 

Π
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in any one year is assumed independent of the state of nature in any other 

year.  Therefore, the joint probability of a particular three-year scenario is 

the product of the probabilities of the states of nature ach year.  

For example, pr([Dry Lo Full Med Full Hi]) = pr(Dr r(Full)* 

prp(Med)*pr(Full)*prp(Hi).  Historical water allotm

data and Gaussian quadrature analysis (Featherstone Preckel 

1993; Miller and Rice 1983; Preckel and Devuyst 1992) were used to 

assign a value and a probability to each state of natu  B).   

x = Vector containing fall crop decision variables for each y nning 

horizon. 

Example element: x3,f,c,i,s1,ss1,s2, which indicates for the fall of  year 3, that field 

f is prepared for or planted to crop c, under irrigation technology i, given 

the states of nature revealed in past years 1 and 2. Ea f x is a 

binary variable, taking on a value of 0 (if the crop/irr ination 

(c,i) is not chosen for field f) or 1 (if the crop/irrigati ion (c,i) is 

chosen for field f). 

y = Vector of spring crop decision variables for each year of  horizon. 

Example element: y3,f,c,i,w,s1,ss1,s2,ss2,s3, which indicates for the spring of year 3, 

that field f is planted to crop c in the spring of year 3, under irrigation 

technology i, and deficit irrigation category w, given ture 

revealed in past years 1, 2, and the present year 3.  E  is a 

binary variable, taking on a value of 0 (if the crop-ir

combination (c,i,w) is not chosen for field f) or 1 (if on-

deficit combination (c,i,w) is chosen for field f). 

z = Vector of variables that represents the crops sold at the m each 

year of the planning horizon. 

Example element: z3,f,c,i,w,s1,ss1,s2,ss2,s3,ss3, which indicates for the post-harvest of 

year 3, that field f, which is planted to crop c in the spring of year 3, under 

 that occur e

y)*prp(Lo)*p

ent and onion price 

, Baker, and 

re (Appendix

ear of the pla

ch element o

igation comb

on combinat

 the planning

 the states of na

ach element of y

rigation-deficit 

the crop-irrigati

arket price for 
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irr ven the states of 

nature revealed in past years 1, 2, and the present year 3, is sold at market 

price ss.  Each element of z is a binary variable, taking on a value of 0 (if 

the crop-irrigation-deficit combination (c,i,w) on field f is not sold) or 1 (if 

the crop-irrigation-deficit combination (c,i,w) on field f is sold). 

 

igation technology i, and deficit irrigation category w, gi

( , , ; , )x y z s ssΠ = Vector containing the profit outcome for each scenario.  An 

individual element of the vector is the discounted stream of profit that 

optimal activities x, y, and z generate over the 3-year period in which they 

occur, for a particular scenario.  Terminal land rental values are also 

included, as a function of activities in the 3-year period.  A terminal value 

for alfalfa acreage that remains in production after year 3 is also included. 

A, D = Matrices of coefficients that describe fall and spring activities’ resource 

use. 

b, e = Vectors of resource availability, such as land and water, which vary by state 

of nature for some resources. 

M, N = Matrices of coefficients that relate activities in different time periods to 

each other (intra- and inter-year constraints). 

g = Vector of parameters that, with M and N above, define relationships between 

activities in different time periods.   

 

The above binary discrete stochastic sequential programming model 

maximizes the expected stream of profit over a 3-year planning horizon.  The 

planning horizon is shortened from six to three years because the programming 

software, GAMS, can only accommodate ten subscripts on decision variables.  A 

six-year horizon requires sixteen subscripts.  The expectation is taken over the 

joint probability of water supply, s, and onion price, ss, which are assumed to have 
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independent discrete probability distributions over a small number of pre-defined 

categories (e.g. dry and full; lo, med, and hi ).   

Choice variables are contained in the vectors x, y and z.  Vector x includes 

fall cropping activities, which are chosen under an uncertain future water supply 

and onion price.  Vector y includes spring cropping activities, which are chosen 

after water supply is revealed, but before onion price is revealed.  Vector z 

includes post-harvest sales activities, which take place after the price is revealed.  

It is assumed, however, that all crops grown are sold.  The producer therefore has 

no recourse after price is revealed; this is in contrast to the recourse options 

available after the water supply is revealed (e.g. fallowing, spring-planted crops, 

deficit irrigation).   Fall, spring, and post-harvest activities are chosen for each 

year of the three-year planning horizon, for each water supply scenario, (e.g. [Full 

Lo Full Hi Dry Med]).  Fall and spring activities are constrained by resource 

availability, as expressed in equations (2) and (3).  Equation (4) describes dynamic 

interactions in the cropping system, including how fall activities restrict spring 

activities, and how spring activities restrict post-harvest activities (intra-year 

dynamics), and how activities in year t restrict activities in subsequent years (inter-

year dynamics).  The timing of decisions relative to the availability of water 

supply information is presented in figure 4.2.  Past water supplies and onion prices 

are known, but future water supplies and onion prices are uncertain. 
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Figure 4.2. Decision tree representation of decision-making under water and price uncertainty.  Fall cropping activities (xt) 
are chosen given an uncertain spring water supply and post-harvest onion price.  The spring water supply is then revealed 
(full or dry), after which spring cropping activities (yt) are chosen under uncertain onion price.  The onion price is then 
revealed (hi, med, or lo), after which post-harvest sales activities (zt) are chosen.  This sequence continues for all three 
years of the planning horizon.  
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4.5.2.2 DETAILS OF THE PRICE UNCERTAINTY MODEL 
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where, 

r g horizon, with possible values of 1 

 with 

n, 

it of crop c in price scenario ss 

yldc,i,w 

2, , , , , , 1, , , , ,

1, , , , ,

2, , , , , ,

2, , , , , , 2, , , , , ,

(49) 1  f,s,ss

(50)  f,c,i,w,s,ss

f barley i w s ss f barley i w s
i w i w

f wheat i w s
i w

f c i w s ss
c i w

f c i w s ss f c i w s ss

y y

y

y

z y

+

+ ≤ ∀

= ∀

= ∀

∑∑ ∑∑

∑∑

∑∑∑

(48)

1  f,s,ss

t = a c op year within the 3-year plannin

through 3, or within the 6-year period following the planning horizon,

possible values of 4 through 9. 

f = the field in which the cropping activity takes place {F1,…, F10}. 

c = the crop {onion, potato, sugar beet, wheat, barley, grain corn, silage cor

alfalfa (1st through 4th year), fallow} 

i = the irrigation technology {furrow, reuse furrow, solid set, wheeline, center 

pivot, drip} 

w = the deficit irrigation level {0.0, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} 

ρs = probability of the 3-year water supply scenario s 

ρss = probability of the 3-year price scenario ss 

r = interest rate on operating loans and savings 

d = discount rate 

FAC = number of acres per field (fields assumed to be equal size) 

pc,ss = price received per un

= yield per acre of crop c, under irrigation technology i, and deficit 

irrigation level w 

jc,i = cost of spring planting per acre of crop c, under irrigation technology i. 

hc = cost of fall preparation or planting per acre of crop c 

fxdcost = fixed cost per acre of land owned, such as a water district fee per acre 

and land taxes 
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o 

r stress 

ortion of water delivered to the field that reaches the crop root 

zone 

ent for the growing season 

TotAcr

ing no 

H1f,c = 

l) 

maxyldc,i = maximum yield for crop c, under irrigation technology i, given n

water deficit 

kyc = yield response coefficient for crop c, which reflects sensitivity to wate

ETmaxc = gross water requirement of crop c over the growing season to achieve 

maximum yield 

Ppt = precipitation received during the growing season, which reduces irrigation 

requirements 

IrrigEffic = the prop

Water = per acre water allotm

es = total number of acres available for cropping activities 

RRateonion = rental rate of an acre eligible for onions (i.e. an acre not planted to 

onions in previous 5 years) 

RRateother = rental rate of an acre not eligible for onions 

EligOniont,s,ss = acres eligible for onions in period t of scenario s,ss 

EligAlft,i,s,ss = acres of alfalfa with productive lifespan remaining in years 4 

through 6 for scenario s,ss; acres inherit the irrigation technology used in 

year 3, for simplicity 

EligOthert,s,ss = acres eligible for crops other than onions in period t of scenario 

s,ss; a function of EligOniont,s,ss and EligAlft,i,s,ss

NetRvalf,i,d1 = net revenue from alfalfa under irrigation technology i, assum

deficit irrigation (w =d1) 

the crop c to which field f was planted six years prior to the first year of the 

planning horizon (i.e. planted in the first year of the previous (historica

planning horizon) (=0 if not planted, or 1 if planted) 

H2f,c = the crop c to which field f was planted five years prior to the first year of 

the planning horizon (=0 if not planted, or 1 if planted) 
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t year of 

f 

nning horizon (=0 if not planted, or 1 if planted) 

H5f,c = 

year of the 

eft 

ns 

 

umber of fields to plant (if c is 

spring- s, 

ng 

t decisions 

d 

H3f,c = the crop c to which field f was planted four years prior to the firs

the planning horizon (=0 if not planted, or 1 if planted) 

H4f,c = the crop c to which field f was planted three years prior to the first year o

the pla

the crop c to which field f was planted two years prior to the first year of 

the planning horizon (=0 if not planted, or 1 if planted) 

H6f,c = the crop c to which field f was planted one year prior to the first 

planning horizon (=0 if not planted, or 1 if planted) 

PotatoContract = a fixed acreage of potatoes (expressed as number of fields) 

contracted in advance with local processors 

openf,t = leave field f unprepared and unplanted in the fall of year t (=0 if not l

open, or 1 if left open) 

 

The producer’s objective (equation 6) is to maximize the expected 

discounted stream of profit from the 3-year planning horizon through the selection 

of fall, spring, and post-harvest crop activities (x, y, and z respectively).  Decisio

made in “crop year” t consist of fall decisions (xt,f,c,i,s,ss), spring decisions 

(yt,f,c,i,w,s,ss), and post-harvest decisions (zt,f,c,i,w,s,ss).  Crops that are either fall-

planted or require fall bed-preparation require the following fall decisions: 1) 

number of fields to plant or prepare, and 2) an associated irrigation technology, i, 

for each field.  Spring decisions for each crop, c, include the following: 1) number

of fields to keep (if c is a fall-planted crop) or n

planted), 2) an irrigation technology, i, for each field (note: for some crop

decisions made in the preceding fall impose an irrigation technology on the spri

decision), and 3) a deficit irrigation level, w, for each field.  Post-harves

are not actually decisions; all spring-grown crops are simply sold at the reveale

market prices (equations 31 and 50 above).   
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f x, y, and z 

depend

 

The 

lti-

ive a 

prevented planting payment, or to plant the crop.  Claims for post-planting 

disasters, such as hail, pests, freeze, or abnormally high temperatures are not 

modeled.  Crop insurance is also not offered in this model for spring-planted crops.  

These would require a third stage in each year of the model, in which the 

uncertainty about these events would be resolved.  Solution of the model is 

sufficiently difficult with only two stages per year, so the addition of a third year 

remains for future work.   

Other modifications are necessary to model prevented planting provisions.  

The following parameters, which are used to calculate a prevented planting 

payment, are added to the model: approved yield, MPCI coverage level, price 

election, PP coverage level, and the premium per acre paid (Appendix C).  All 

parameters are chosen based on options available in year 2004, so that premiums 

are consistent with other costs.  Yield and price elections are set to the levels that 

most closely match maximum yield and average historical price, as defined in the 

All crops’ prices are revealed post-harvest; however, onions are the only 

crop to which different prices are assigned for the alternative states of nature.  This 

implies price certainty for all other crops.  The optimal choice o

s on past, current, and expected future water supplies and onion prices, 

denoted by s and ss, respectively.  Interpretation of the price uncertainty model is

otherwise similar to that of the binary variables model.   

4.5.3 Prevented Planting Provisions 

The base case model is modified to accommodate prevented planting 

provisions primarily by adding new cropping activities to the existing set.  

new activities reflect the producer’s option to purchase alternative levels of mu

peril crop insurance (each with a prevented planting provision) for onions, 

potatoes, sugar beets, and wheat.  Insurance can be purchased on a field-by-field 

basis.  Crop insurance policies are purchased in the fall.  If the water supply is 

revealed dry, the producer then chooses whether to abandon the crop and rece
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base case mo l. duct 

sensitivity analyses.  Fall costs of insured crops are adjusted to include the 

premiu

ear.  

planted 

 it is not 

de  These assumptions could be altered, however, to con

m paid for insurance coverage.  Lastly, profit is redefined to reflect 

prevented planting payments received if insured crops are abandoned in a dry y

No payment is received if the crop is abandoned during a full allotment year 

(water must be insufficient to receive a payment), or if the insured crop is 

successfully.  The structure of the base case model remains unchanged, so

presented again.     

4.6 Model Validation 

The model described above abstracts from some aspects of the complex 

decision environment in which producers operate.  Such abstraction is needed i

order to focus on water supply uncertainty.  Isolation of this aspect of the d

environment enables the model to identify cropping and profit impacts that might 

otherwise be obscured.  The cost of this abstraction, however, is that the model 

cannot be expected to reproduce outcomes observed on an actual farm.  While 

model results display similarities to certain responses observed in the area, such as 

types of cropping activities and adoption of specific irrigation technologies, 

quantitative validation of such a 

n 

ecision 

the 

stylized model is difficult and not particularly 

relevant to the objectives of the study.  It is important, however, in the absence of 

nd appropriate 

interpre

lusion 

rete 

 of 

nd 

quantitative validation, to express clearly the limitations a

tation of the model’s results.      

Recognition of aspects of the producer’s decision environment that are 

simplified or excluded from the model is critical.  These include, but are not 

limited to the following: 1) the assumption of a risk-neutral producer, or exc

of risk-aversion, 2) the exclusion of many sources of uncertainty, 3) the disc

treatment of water supply, 4) the over-simplification of complex capital 

management issues (e.g. it is assumed that the producer can acquire and dispose

machinery and equipment each year without transactions costs, and hire a
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del’s solution versus observed cropping activities in the 

study area.     

 generally lead to 

conserva s of dro rue im

uncertainty, for example, would likely r asis on

preparedness and thus generate crop pla produ able 

to drought.  Continuous repres ion o ure woul  drought 

even than the d  cat  this ce 

incre mpact.  More tation of short-term 

capit s would reduce the pro bility, and thus also increase 

droug Acco  for tion-smooth ncies of 

many Kwon, Orazem ngemeier and Patrick 

1990), rather than excluding consumption from the model entirely, would decrease 

farm pr

 

he 

optima

tors an 

dismiss labor as needed), and 5) the exclusion of the farm household’s 

consumption decision.  The first point of departure is sufficient to cause 

discrepancies in the mo

These assumptions and simplifications should, however,

tive estimate ught’s t pact.  Inclusion of other sources of 

educe the emph

ns that leave the 

 drought 

cer more vulner

d includeentat f the state of nat

ts more severe iscrete egories defined in  model, and hen

ase drought’s profit i

al constraint

accurate represen

ducer’s flexi

 the consump

, and Otto 2006; La

ht’s profit impact.  

 farm households (

unting ing tende

ofit further in every scenario.  It is unclear, however, whether the profit 

impact of drought would be larger or smaller for a risk-averse producer.  A risk-

averse producer would choose a plan that generates lower expected profit, but less 

variable profit.  The difference in profit between a drought scenario and a drought-

free scenario would therefore be less.  Whether the current model over- or under-

estimates drought’s impact for a risk-averse producer would therefore depend on

how one defined “profit impact of drought.”   

The implication of the above abstractions is that the model used here is 

only one step towards a complete understanding of drought management.  T

l preparedness and response plans presented in chapter 5 are not 

prescriptions to be applied directly in the study area.  They do, however, help 

elucidate the tradeoffs that water supply uncertainty creates in a dynamic farm 

system, and in doing so help clarify for producers and extension educa

 



 
 
 
 

99

oblem.  It will also help policymakers and 

others c out 

s 

model.  Examples include the timing of decisions versus water supply information, 

common agronomic practices and the underlying reasons for them, common 

drough

most ch

framew  addition to producer input, 

enterprise budgets constructed for the county in which the study area is located 

overwhelmingly complex decision pr

oncerned with agricultural drought management think more critically ab

the meaning of optimal drought preparedness and response.      

Despite its abstractions, the model is based very closely on characteristic

of farms in the study area.  Specifically, conversations with producers and other 

experts in the study area provided information that was used to construct the 

t management tools, and insights about the aspects of drought they find 

allenging.  These and other details inspired the model’s two-stage 

ork and intra- and inter-year dynamics.  In

were the primary source of data for model calibration.  In summary, the model, as 

with all models, is an abstraction from reality, but it captures several fundamental 

and important aspects of an actual farm system under drought conditions.     
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5 Results and Discussion I: The Base Case Solution 

 

Results and discussion are divided into chapters 5 and 6 for ease of 

exposition.  Chapter 5 describes and compares the solutions of a binary versus 

continuous variables version of the base case model.  Continuous variables are 

commonly used to approximate a binary variables problem because large 

stochastic integer programming models are often difficult to solve.  The 

implication for the solution of using continuous variables to approximate binary 

variables is rarely explored.  In this study, both a binary and continuous version of 

the base case model can be solved, which presents an opportunity to determine 

how closely the solutions resemble one another.  Section 5.1 reports and examines 

the solution to the binary version of the model.  The importance of alternative 

drought preparedness and response tools is considered first, followed by a 

discussion of the magnitude and variability of drought’s profit impact.  Section 5.2 

reports nd 

compar

refers simply, in this dissertation, to activities that are included in the mathematical 

programming model’s solution; it does not indicate that the activities are Pareto 

optima

5.1 The Base Case Solutio

 the solution to the continuous variables version of the base case model, a

es it to that of the binary model.  Readers are reminded that “optimal” 

l or socially efficient.      

n (Binary Variables Model) 

The base case model is representative of recent conditions in the study 

area.  It is constructed as a six-year stochastic integer programming model, with 

two decision stages (fall and spring) in each year.  Water supply is known only 

probabilistically at the time of fall decisions, and is revealed prior to spring 

decisions in each year of the planning horizon.  To avoid the influence of a 

subjective crop history, the farm’s ten fields (35 acres per field) are assumed to 

have no constraining crop history.  Sensitivity of the solution to crop history is 

reported in section 5.5.  Table 5.1 reports the assumed values for several 
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e parameters in the base case; tables of other parameter values used in the base cas

are reported in Appendix A.  Sensitivity of the solution to select parameters is 

discussed in chapter 6. 

 

Table 5.1.  Parameter values assumed for the base case. 

Parameter Value Parameter Value 

Interest rate 7% Water supply 
during drought 

24 acre-inches 
per acre 

Discount rate 5% Full Allotment 40 acre-inches 
per acre 

Crop History None Expected onion 
price $6.00 per cwt 

Pr(Drought) in any 
given year 40% Price Stochastic No 

Pr(Full Allotment) 
in any given year 60% 

Difference 
between the 
optimal and 
reported solution 

< 3.00% 

 

The final entry in table 5.1, i.e. “Difference between…,” indicates that the 

commercial solution algorithm used to solve the model (CPLEX) generally reports 

a solution that only approximates the true optimal solution.  This is often the case 

for large and complex models, such as the stochastic integer programming model 

developed here.  The user can define the percentage difference allowed between 

the reported solution and the true optimal, including a 0% difference; however, 

obtaining a smaller difference often adds hours to the solve time.  The approximate 

optimal solution, which is within 3% of the true optimal solution for most cases, is 

referred to henceforth as the optimal solution, unless otherwise indicated.   

The base case solution includes the optimal portfolio of crops, irrigation 

technologies, and deficit irrigation levels, as well as discounted profit for 64 water 

supply scenarios, and the expected stream of discounted profit.  The cropping 

activities and profit components of the solution are discussed next.    
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5.1.1 Optimal Cropping Activities 

The crop plan that maximizes the expected stream of discounted profit, 

given a 40% chance of drought, includes the following activities i ll of year 

1 (figure 5.1): prepare seven fields for onions under drip irrigation, prepare one 

field for sugar beets under furrow irrigation, plant one field to winter wheat under 

furrow, and plant one field to winter wheat under reuse-furrow.  Spring activities  
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Figure 5.1.  Optimal fall and spring activities in year 1 of the base case.  
Note that spring activities differ for alternative water supp es (full 
or dry). Crop Key: F = furrow, RF = reuse furrow, D = drip, 0.5 = 50% of 
crop’s irrigation requirement is provided. 

depend on whether the water supply outcome (allotment) is full (4 hes 

per acre) or dry (24 acre-inches per acre).  Activities for a full allo lude 

planting and fully irrigating onions and sugar beets in the fields prepared for them, 

and fully irrigating wheat.  Activities for a dry spring include planting and fully 

irrigating onions in the fields prepared for them, fallowing the field prepared for 
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at (meeting 50% of its 

crop w

 

 2.  The 

sugar beets, and deficit irrigating the furrow-irrigated whe

ater requirement).     

Activities prescribed for year 2 are summarized in figure 5.2.  The set of 

three bars on the left indicates optimal year 2 activities given a full water allotment

in year 1, including individual recommendations for a full versus dry year

set on the right indicates optimal year 2 activities given a dry year 1, again 

including individual recommendations for a full versus dry year 2.  Activities 

prescribed for year 3 are presented in the same manner in figure 5.3.  Graphical 

presentation of optimal activities for years 4 through 6 quickly becomes 

unmanageable (e.g. year 6 results would require 32 sets of bars), so results for 

these years are provided in an Excel file located on the attached floppy disk. 
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Figure 5.2.  Optimal fall and spring activities in year 2 of the base case. 
Crop Key: F = furrow, D = drip, 0.9 = 90% of crop’s irrigation requirement 
is provided. 
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Figure 5.3.  Optimal fall and spring activities in year 3 of the base cas
Crop Key: F = furrow, RF = reuse furrow. 

Note that the activities prescribed for years 2 through 6 are only an 

approximation of the optimum.  A producer would technically re-solve the six-

year planning problem each year, taking into co

e.  

nsideration the outcomes of the 

previou rs.  

cause 

 sixty-four times to generate the conditional set of 

optima

s years, as well as the effects of the current decision on the next six yea

To mimic this behavior, the model would have to be re-solved for every possible 

past water supply outcome.  For example, the model would be re-solved twice to 

determine optimal year 2 activities for a dry versus full year 1.  Re-solving the 

model to determine optimal activities for years 3 through 6 is cumbersome be

the number of past water-supply scenarios increases exponentially.  The model 

would have to be re-solved

l activities for year 6.  The approximate solution obtained for years 2 

through 6 is sufficient for the purposes of this study. 
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 dry.  

fore 

owing two drought 

prepare  

 

 

 

ient 

ch technique is 

discuss

The first objective of this research is to determine the role of drought 

preparedness versus response in an optimal farm plan.  Recall that drought 

preparedness techniques are implemented in the fall, before the producer knows

whether the upcoming spring will be full or dry.  Drought preparedness reduces 

the potential for loss in the event of a drought, and is therefore a form of self-

protection (Ehrlich and Becker 1992).  Drought response techniques, in contrast, 

are implemented in the spring, after the producer knows that the spring will be

Drought response reduces the magnitude of loss during a drought, and is there

a form of self-insurance (Ehrlich and Becker 1992).  The foll

dness techniques appear in the base case solution: using relatively efficient

irrigation technologies on some crops, and leaving some fields open in the fall. 

The following two drought response techniques also appear in the base case 

solution: fallowing fields, and deficit irrigating crops.  These techniques are not

used exclusively in anticipation of, or in response to drought.  For example, a 

producer who knows that the next six years’ water allotments will be full does

leave some fields open, fallow a field occasionally, and uses relatively effic

irrigation technologies (figure 5.4).  However, these techniques are used more 

intensively when the possibility of drought exists (figure 5.4).  Ea

ed next. 
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f drought preparedness that appears in the optimal solution is 

ient irrigation technologies.  Efficiency refers here to the 

proportion of delivered water that is available to the crop for use (i.e. that remains 

in the r

, 

ust 

therefore b

 

 

y 

5.1.1.3 IRRIGATION TECHNOLOGY EFFICIENCY 

One form o

the use of relatively effic

oot zone) (table A.4).  Irrigation technologies with relatively high 

efficiency typically cause less runoff, evaporation, and deep percolation, and 

therefore decrease the volume of water that must be delivered to meet crop water 

requirements.  Irrigation technologies from which the model can choose include 

furrow, reuse furrow, wheel line sprinkler, solid set sprinkler, center pivot 

sprinkler, and subsurface drip.  Readers are likely familiar with most technologies, 

with the exception of reuse furrow, which  is a modified furrow irrigation system

in which runoff from the field is collected in a small pond, filtered, and pumped 

through pipelines to the top of the field or a nearby field for reuse (Hart et al. 

1980).  A producer can reduce a crop’s irrigation requirement by using more 

efficient irrigation technology.  This reduces the probability of a shortage during 

dry years, and increases the set of feasible crop combinations during full years.  

However, more efficient systems are also more expensive (table A.2).  The 

expected benefit and cost of investing in more efficient irrigation systems to 

increase total crop production or to reduce the likelihood of a water shortage m

e weighed.     

The optimal solution suggests growing onions under drip irrigation only. 

Drip irrigation is highly efficient (90%), which is beneficial during a water 

shortage; however, it also supplies water more uniformly, across time and space, to

the root zone, which increases onion yields.  Drip irrigation, therefore, is likel

chosen for reasons other than its water-saving property.  That the technology is 

also chosen when there is no possibility of drought confirms this (figure 5.4).  

Sensitivity analyses are conducted to test whether drip irrigation’s water-saving 

property plays any role in its selection, as compared to its yield-enhancing 
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hen re-solved.  Onions under reuse furrow irrigation are 

selecte

y 

 

 causing those 

additional attempted fields to be abandoned).   

It is interes though producers in the study area grow 

onions 

that 

he 

when 

property.  Specifically, the yield and cost of onions under furrow and reuse furrow 

are set equal to drip irrigation’s, such that the technologies differ only in their 

efficiency.  The model is re-solved, and drip irrigation is still chosen over furrow 

or reuse furrow (this result holds whether drought is certain or uncertain), 

suggesting that higher efficiency is valuable.   

To rule out multiple optima, the model is further modified by disallowing 

drip irrigated onions, and t

d over furrow irrigation, and profit (or expected profit in the case of 

uncertainty) is less than when drip irrigation is allowed.  This confirms that the 

water-saving property of drip irrigation is valuable, not just its yield-enhancing 

property.  Producers might use drip irrigation on onions largely to increase yield; 

however, the technology also enhances profit by reducing onion’s irrigation 

requirement, thereby freeing up water for other crops in a full year, and potentiall

decreasing the need to deficit irrigate or abandon fields in a dry year.  Note, 

however, that drip irrigation might also increase the number of fields abandoned or

deficit irrigated in a dry year, particularly if the water savings are sufficient to 

support additional fall-prepared or planted crops in a full year (thus causing 

additional fields to be attempted), but insufficient in a dry year (thus

ting to note that al

predominantly under furrow irrigation, drip irrigation is increasingly being 

adopted.  Additionally, one producer recently updated their drip system such 

the associated pumps, pipes and filters could be moved from year to year.  T

yield benefits of drip irrigation were the focus of this producer’s comments, 

however, they did indicate that the drought in the early 1990s spurred them to first 

consider drip irrigation.    

Reuse furrow technology, which is 80% efficient, is also suggested for a 

portion of the base case solution’s wheat acreage.  Although it is also used 
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ilable in reality, and therefore 

provide

there is no possibility of drought (figure 5.4), the technology is more prevalent 

when there is a positive probability of drought (figures 5.1 through 5.3).  This 

suggests that reuse furrow serves, in part, as a drought preparedness 

of reuse technology to reduce water supply risk has been established for 

other farm systems (Ziari and McCarl 1995).  The above result suggests the

for an irrigated row crop system.  Producers also indicate a recent increase

use of reuse furrow systems in the study area.  It is unclear, however, to what 

degree this is attributable to the recent drought, versus cost-sharing programs 

aimed at improving water quality in local waterways.           

A numerical example illustrates the water-savings that wheat under reuse 

furrow generates, as compared to wheat under furrow irrigation.  Wheat under 

furrow irrigation requires 40.2 inches of water to meet its seasonal crop wate

requirement of 24.1 inches, assuming 50% efficiency and 4 inches of effective 

precipitation during the growing season.  Wheat under reuse furrow, in contrast, 

requires only 25.1 inches to meet its seasonal requirement, because it is 80% 

efficient.  The use of reuse furrow for an acre of wheat, rather than furrow 

on, frees up 15.1 acre-inches for some other use.  Alternatively, it decre

the need to deficit irrigate or abandon wheat during a dry year.   

Note that the gains from adopting more efficient technology would be less

if a portion of water “lost” during furrow irrigation actually supported other fie

via subsurface irrigation or return flow (Green and Hamilton 2000).  For 

simplicity, this is assumed not to occur.  It is also assumed that the producer can 

replace any field’s irrigation system with another, annually, without incurring 

transaction cost.  Specifically, a producer is presumed to be able to sell the old 

irrigation system for exactly the balance on the original investment.  This 

assumption provides more flexibility than is ava

s a lower bound on the impacts of drought.  Improving the realism of this 

feature would require if-then relationships that track and assign costs when a 
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elds open in the fall creates flexibility in the crop 

plan; sp
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 of 
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field’s irrigation technology is changed; however, this causes endogeneity in the 

existing modeling framework.  One alternative for this assumption is to choose an

irrigation system for each field in the first year, and then require this system to 

remain in place for the entire planning horizon.  This more restrictive assumption 

would provide an upper bound on the impacts of drought.  It would not, however

reflect the current use of reuse furrow and drip irrigation in the study area.      

5.1.1.4 OPEN FIELDS IN THE FALL 

A second form of drought preparedness that appears in the base case 

solution is to leave some fields open (i.e. neither prepared nor planted) in the

(figures 5.2 and 5.3).  Leaving fi

ecifically, the producer can accommodate a full or dry spring without 

incurring sunk costs, which are generated when a field is fall-prepared or fall-

planted (table A.2).  Fields left open in the fall can either be allocated to a spring-

prepared and planted crop (e.g. barley, grain corn, or silage corn) if the s

water allotment is full (figures 5.3 and 5.4), or left fallow if the spring is dry 

(figures 5.2 through 5.4).  Fields that are prepared or planted in the fall (i.e. not left

open) can also be fallowed if the spring is dry; however, sunk costs generate no 

return if the field is fallowed.   

The drought literature commonly eludes to the importance of produc

flexibility as a drought preparedness strategy (Clawson et al. 1980; Lomas 2000

Thompson et al. 1996); flexibility is an important concept in the broader 

uncertainty literature as well (e.g. Albers 1996).  Few studies elaborate, however, 

on the specific means by which flexibility can be built into a farm system.  A 

notable exception is Weisensel et al. (1991), who explicitly examines the value

flexibility in a dryland wheat-fallow system.  The base case solution reveals, for a

irrigated row crop system, that leaving fields open in the fall is an optimal means 

to achieve production flexibility.  Observations of the study area reveal that 
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rought response tools considered in this 

study.   

hen 

 

cers 
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Figures 5.1 through 5.3 show that, in the event of a drought, open fields are 

y sugar beet fields, and then wheat fields.  Sugar beets 

are fall he 

ios 

t is 

producers frequently use this drought preparedness tool in their year-to-year 

operations.            

5.1.1.5 FALLOWING 

Fallowing is the first of two d

Fallowing can take the following two forms: 1) abandoning a field that was

prepared or planted in the previous fall, or 2) leaving an open field bare.   

Fallowing is recommended frequently in the base case solution, particularly w

high-value crops are planned and a water shortage occurs.  Fallowing reduces crop 

acreage and thus decreases the farm’s total irrigation requirement; it also frees up 

water from one field for use in another.  Fallowing is an important drought 

response tool because the per-acre water allotment during a dry year (24 acre-

inches) does not meet the per-acre net irrigation requirement of several crops, 

including onions (28 acre-inches, assuming 90% efficiency of drip irrigation and

4” of effective precipitation, see table A.8).  Model results indicate that produ

should take advantage of this drought response tool; observations from the study

area indicate that producers do.  Several survey-based studies of producer 

decisions during drought also identify fallowing as a common drought respons

tool (Rich 1993; Schuck, Frasier, and Webb 2003; Zilberman et al. 2002).

fallowed first, followed b

owed before wheat, even though beets are more profitable than wheat.  T

choice to abandon one crop rather than another therefore depends on parameters 

other than profitability, specifically, available water.  The following example 

illustrates this point.  Cropping activities in either of the “dry year 2” scenar

(figure 5.2) leave 137 acre-inches of excess water.  Suppose that after a drough

revealed in year 2, a producer decides to modify the optimal solution.  Instead of 

fallowing sugar beets and keeping wheat, they decide to keep one field of sugar 

beets under furrow irrigation, and fallow one field of wheat under furrow 
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rrow.  Sugar beets under reuse furrow are also less 

profitable than wheat under furrow or reuse furrow.  The rational choice for the 

produc r 

beets, rather tha

Note th n th to one field or 

less.  This cons  small or negative profit directly, 

but that contrib h soil-quality enhancement and 

nutrient manag on functions that quantify these and 

other c

detail o on available to estimate functions for the study area.  In addition, 

agronomic constraints included in this model do not capture completely the true 

production function.  Constraints, such as limited fallowing during a full year, are 

therefo

preven

fallowi

 

 if 

irrigation.  The quantity of water saved by fallowing the wheat field satisfies only 

70% of the beet’s water requirement, and deficit irrigated sugar beets are less 

profitable than fully irrigated wheat.  Suppose the producer instead keeps one fie

of sugar beets under reuse fu

er, given a water shortage of the magnitude modeled here, is to fallow suga

n wheat.   

at fallowing during a full year is limited i e model 

traint forces crops that generate

ute to more profitable crops thoug

ement, into the plan.  Producti

rop inter-dependencies are not readily available, nor are data of sufficient 

r durati

re used in lieu of the true production function.  These constraints primarily 

t unrealistic solutions, such as growing only potatoes and onions, and 

ng the land for years until it is again eligible for these crops. 

5.1.1.6 DEFICIT IRRIGATION 

Deficit irrigation is the deliberate and systematic under-irrigation of crops

(English and Raja 1996).  The goal of deficit irrigation is to expose plants to 

controlled levels of water stress in order to conserve water without causing 

significant yield reductions (Kirda 2002).  Alternatively, deficit irrigation can be 

used to equilibrate the marginal value of water across crops.  That is, profit might 

be increased by deficit irrigating a crop with low marginal value of water (even

it reduces yield significantly) to provide water to a crop with high marginal value 

of water (English and Nakamura 1989; Kirda 2002).  Two types of deficit 

irrigation can be practiced: season-long deficit irrigation, in which the crop is 
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ikely to use the strategic rather than season-long 

approa  

.  

 profit.  

r 

  

ught tolerance 

(its yield response coefficient (table A.5) is not greater than 1), its low cost of 

production (table A.2), and its relatively low market value (table A.1).  Wheat, in 

summary, is one of the few crops that remain profitable under season-long deficit 

irrigation (table A6).  Additionally, wheat has a relatively low total irrigation 

requirement (table A.3), which enables the producer to more frequently support 

deficit irrigated wheat during years in which the quantity of excess water is small, 

as compared to more water-demanding crops.   

The above result is consistent with existing studies that show winter wheat 

to be well-suited for, and profitable under deficit irrigation in many cases (Bazza 

deficit irrigated by the same proportion throughout the entire growing season, and 

strategic deficit irrigation, in which the crop is deficit irrigated only during its most 

drought-tolerant growth stages (Kirda, Kanber, and Tulucu 1999).   

Strategic deficit irrigation generally results in smaller yield reductions than 

season-long deficit irrigation (Bazza 1999; Hargreaves and Samani 1984); 

therefore, producers are l

ch.  However, a linear yield response function for strategic deficit irrigation

is not readily available; in contrast, a function for season-long deficit irrigation 

exists and is well-established in the literature (Doorenbos and Kassam 1979)

Season-long deficit irrigation is therefore used in this dissertation, and table A.6 

reports the effect of alternative deficit irrigation levels on per-acre yield and

Deficit irrigation may be used more frequently, in practice, than the optimal 

solution indicates, if producers use strategic deficit irrigation rather than season-

long deficit irrigation.  Note, however, that Bazza (1999) indicates that a produce

who is uncertain of the most critical growth stage in which to irrigate might do 

better to practice season-long deficit irrigation to achieve water conservation goals. 

Deficit irrigation, the second drought response tool considered in this 

study, appears in the base case solution.  Wheat, in particular, is the primary crop 

that is deficit irrigated.  This is attributable to wheat’s relative dro

 



 
 
 
 

114

1999; English 1990a; Musick and Dusek 1980).  More generally, it supports the 

findings of Bernardo et al. (1987) and English (1990b), who report, respectively, 

that producers in Washington’s Columbia River Basin (an area of similar climate 

and farming systems) should and do practice deficit irrigation during a water 

shortage.  Producers in the study area also indicate that they deficit-irrigate less 

sensitive and less valuable crops to ensure water for more sensitive and more 

valuable crops, or to increase the proportion of fields planted.  It is not known, 

however, how common the use of deficit irrigation is among producers in the 

study area.  Zilberman et al. (2002) and Schuck et al. (2003) report, respectively, 

that only a small portion of California and Colorado producers used deficit 

irrigation during past droughts. 

The literature also indicates minimal yield loss under deficit irrigation for 

sugar beet (Kirda, Kanber, and Tulucu 1999); however, sugar beet is rarely deficit 

irrigated in the base case solution.  Th

that ma

require

sugar b  

not clea

possible explanation is that sugar beet requires a relatively large quantity of water, 

particu

 

n-long 

is corresponds with Bazza’s finding (1999) 

ximum profit from sugar beet is obtained when the crop’s water 

ment is fully met.  Nonetheless, under the model’s assumed parameters, 

eet is profitable if 80% or more of their irrigation requirement is met.  It is

r then why sugar beet is not deficit irrigated in the optimal solution.  One 

larly in comparison to wheat.  Sugar beet might therefore have to be 

severely deficit irrigated to generate sufficient water savings during a drought.  

Severe deficit levels are associated, in the model, with unprofitable sugar beet 

yields.  Another possible explanation is that results from the literature are largely 

based on strategic deficit irrigation, whereas the model’s results are based on 

season-long deficits.  The season-long representation used in the model likely 

overestimates yield losses associated with strategic deficit irrigation (Fujun et al.

1999), in which case deficit irrigation will be recommended less under seaso

deficit irrigation than it would be under strategic deficit irrigation.  Finally, one 
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ucer 

lution indicates a role for both drought preparedness tools (leaving 

fields open and using relatively efficient irrigation technologies) and drought 

respons e 

study a ities are 

currently used.  Specifically, producers commonly leave fields open to provide 

prod ib ig e w

response to drought.  More efficient irrig hnologies o bec

more common in the st , in parti se furro p irri

The prep edness and r tools d bove hav alyze

previous studies.  However, few studie sidere ultan

The above results indicate that all of the tools are needed to optimally prepare for 

and res

neutral e each tool.      

5.1.2 

 

ly 

benefit of deficit irrigation that is highlighted throughout the literature is the ability

to expand crop acreage using the conserved water (English 1990a).  The prod

in the model is unable to expand farm acreage beyond the 350 owned acres; the 

benefit of deficit irrigation to which the literature refers might therefore be larger 

than that captured in the model.       

To summarize the above results regarding optimal cropping activities, the 

base case so

e tools (fallowing and deficit irrigation).  Observations of producers in th

rea validate this result; many of the preparedness and response activ

uction flex ility, deficit irr ate less sensitiv  crops, and fallo  fields in 

ation tec  are als oming 

udy area cular, reu w and dri gation.  

ar esponse iscussed a e been an d in 

s have con d them sim eously.  

pond to drought.  The results also illustrate the degree to which a risk-

 producer in an irrigated row crop system should us

Profit Outcomes 

Profit outcomes associated with the base case solution are presented in 

table 5.2, figure 5.5, and table A.7.  Recall from chapter 4 that “profit” refers, in 

this study, to returns to land and management.  Table 5.2 and figure 5.5 describe

the distribution of the stream of discounted profit for the six-year planning 

horizon.  These will be compared in subsequent sections with profit outcomes 

from alternative versions of the model.  The profit impact of drought, particular

as it varies with the duration of drought, is the focus of this section.  The profit 

impact of drought is defined as the difference in discounted profit between a 
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of interest, 

or [Dry  a multi-

me. 

scenario that includes drought and a scenario that does not (e.g. [Dry Full Full Full 

Full Full] versus [Full Full Full Full Full Full] for a single-year drought 

 Dry Full Full Full Full] versus [Full Full Full Full Full Full] for

year drought of interest).     

 
Table 5.2.  Summary statistics of the base case solution’s profit outco

Statistic Value ($) 
Expected Stream of Discounted Profit 531,853 
Standard Deviation of Expected Stream 36,076 
Maximum Discounted Profit 590,100 
Discounted Profit of Scenario 
     [Full Full Full Full Full Full]* 582,703 

Minimum Discounted Profit 408,273 
*An explanation for the discrepancy between maximum discounted profit 
and discounted profit for this scenario is provided at the end of section 
5.2.1. 
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Figure 5.5.  Cumulative 
profit for the base c

 

distribution function of the stream of discounted 
ase solution.  E.g. approximately 70% of water supply 

scenarios (n=64) generate less than $540 thousand in discounted profit.  
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The primary objective of this section is to determine whether the impacts 

of drought can be generalized in a useful manner for policymakers.  For examp

it is not clear whether a three-year drought can be presumed to generate a larg

profit loss than a two-year drought.  In reality, the characteristics of individual 

droughts are sufficiently unique to make comparison difficult.  The model, in 

contrast, assumes a single level of severity for every drought (24 acre-inches pe

acre, rather than 40), such that the affect of duration on profit loss can be analyz

Figure 5.6 reports the average loss of discounted profit for droughts of various 

duration (from one year to six years), as well as the minimum and maximum p

loss for each duration category.  Average profit loss is reported because a drou

of particular duration (e.g. a single-year drought) can occur at alternative points 

the six-year planning horizon (e.g. [Dry Full Full Full Full Full] versus [Full Full 

Full Full Full Dry]).  The profit impact of drought varies depending on t

the crop plan at which it occurs (Appendix H), because crop plans vary across

years.  Drought that occurs during a year in which many fields are left open in the 

fall, for example, has less impact than one that occurs during a year in which all 

fields are fall-prepared.  

Three features of figure 5.6 indicate that few generalizations can be made 

about the profit impact of drought by duration alone.  First, average profit loss 

increases as the number of droughts during the planning

er, the magnitude of profit loss increases at a decreasing rate.  Two years o

drought cause 183% larger losses than one year of drought.  Three years of 

drought cause 68% larger losses than two years of drought; four years of drought 

cause 48% larger losses than three years; five years cause 38% larger losses than

four years, and six years cause 33% larger losses than five years.  The marginal 

impact of each additional drought is smaller.  This result stems from the fact tha

the impacts of drought are larger for some scenarios than others.  As the number of 

years of drought experienced increases, the probability increases that the worst-
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 of impacted scenarios have already been experienced.  Hence, the marginal impact

an additional year of drought is likely to be small on average.     
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Figure 5.6.  Average change in total discounted profit (black dashes) by 
years of drought experienced (as compared to 6 years of full water supply)
Gray brackets indicate the maximum and minimum impact of drought.  
E.g. Three years of drought can cause a minimum loss of $29,000 in 
discounted profit, or a maximum loss of $96,000, depending on the years 
in which the droughts occur.  Discounted profit loss, on average, is $64
when droughts occur in three years out of six.           

Second, profit loss within each drought category varies widely, with the 

standard deviation of loss generally increasing as the number of droughts increases

(table 5.3).  An example illustrates the importance of this feature.  The largest 

profit loss attributable to three years of drought is $96,000, which occurs in the 

scenario [Full Dry Dry Full Dry Full].  The smallest profit loss attributable to thre

years of drought is $29,000, which occurs in the scenario [Full Dry Full Full Dry 
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he 

droughts alone cannot 

precise  predict the magnitude of profit losses.  In fact, as the number of droughts 

increases, profit loss becomes more variable and harder to generalize.  The timing 

of drought events within the planning horizon (i.e. within the crop plan) is a 

crucial determinant of profit losses.  Unfortunately, crop plans are likely to vary 

widely across producers; even producers who implement the same six-year crop 

plan co

attribut

producers.  

 

Table 5.3.  Characteristics of change in total discounted profit ($) as the 
ears of drought experienced (during the 6-year planning horizon) 

increases.   

Years of 
Drought 

Avg. Change 
in Disc. π*

Max. Change 
in Disc. π 

Min. Change 
in Disc. π 

Std. Dev. 
of Change 

Dry].  A drought in year 3, rather than year 6, more than triples profit loss.  T

policy implication of this result is that the number of 

ly

uld be in different years of the plan when a drought occurs.  Profit losses 

able to a particular drought event are therefore likely to vary widely across 

y

1 -13,488 -28,106 7,397 13,502
2 -38,216 -68,491 -6,499 16,600
3 -64,198 -95,840 -28,543 18,484
4 -95,109 -120,484 -57,427 19,246
5 -131,145 -145,230 -113,777 12,082
6 -174,430 -174,430 -174,430 0

*Change in discounted profit is calculated as discounted profit of the 
drought scenario less the discounted profit of scenario [Full Full Full Full 
Full Full].  Negative numbers indicate profit loss. 

 

The discount rate, interest rate, and differences in the crop plans of years 3 

and 6 explain how the timing of drought influences the resulting profit loss.  The 

discount rate implies that losses in year 3 are given more weight than losses in year 

6.  The interest rate implies that losses in year 3 will reduce earned interest (on 

savings) for more years than losses in year 6.  Finally, fall crop plans in place prior 

to the year 3 drought versus the year 6 drought lead to larger losses in the year 3 
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drought.  Specifically, one field is left open in the fall of year 3 (scenario [Full 

Dry]), while four fields are left open in the fall of year 6 (scenario [Full Dry Full 

Full Dry]).  Drought in year 3 forces the producer to fallow four fields, including 

three fields prepared for sugar beets.  Drought in year 6 also forces the producer to 

fallow four fields, but all were open, so no fall investments were lost.   

A third feature of figure 5.6 that has important implications for 

generalizations about drought is that the maximum loss attributable to two years of 

drought can exceed the average loss attributable to three years of drought.  The 

same holds for three years of drought, whose maximum loss can exceed the 

average loss of four years of drought.  This feature highlights the difficulty of 

generalizing profit loss attributable to drought.  Profit loss grows larger, on 

average, as the number of droughts increases, but in some cases, fewer years of ill-

timed drought can cause greater losses than more years of favorably-timed 

drought.   

 

drought based on its duration alone.  Specifically, policymakers should not view 

droughts within the same duration category equally, or necessarily base their 

expectations of loss for a drought on the impacts of similar past droughts.  A 

producer could experience multiple identical droughts throughout their life, and be 

affected differently by each of them, depending on the crops in place when the 

droughts occur.  Similarly, two producers that follow the same crop plan, but are in 

different stages of that plan, could experience the same drought and yet incur 

considerably different profit losses.  This result highlights the difficulty that 

policymakers face when determining the need for, and appropriate extent of, 

assistance during or after a drought.  The magnitude of impact might be highly 

variable across producers, even in a homogeneous agricultural area.  Policymakers 

would also be ill-advised to assume that the profit impact of a relatively short-lived 

drought is less than that of a more prolonged drought.  While this is true on 

In conclusion, few generalizations can be made about the profit impact of
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average

various

The base case solution raises several questions that parametric or structural 

variations of the base case model can be used to address.  These questions are 

raised a

Before proceeding, however, readers may have noted from tables 5.2 and A.7 that 

the scenario “si m ted profit.  

This implies th s m  than the 

scenario with n  initially coun e result is 

explain d here.  Fallowing is limited in the model to one field or less during a full 

year; in contrast, fallowing is unlimited in a dry year.  Several crop-irrigation 

combinations in the model generate negative returns to management and land 

under the assumed prices, yields, and costs (including a 7% opportunity cost of 

money).  Grain corn under reuse furrow, for example, generates -$38.55 per acre.  

However, from a whole farm budget perspective, they contribute to the 

sustainability of long-term production of profitable crops, such as onions, by 

utilizing excess nutrients, reducing pests and disease, and maintaining soil quality.  

The model does not capture these benefits, however, and therefore underestimates 

the economically profitable level of such crops.  To counter-balance the systematic 

under-estimation of these crops’ economic benefits, the model is required to plant 

most acres during a full year, regardless of whether the crops brought into solution 

are economically profitable on that field in that year.   

Fallowing is not limited during dry years, however, because fallowing is 

needed to ensure water for high-value crops.  Crops that generate small or negative

profit a in 

corn un n 

that in os’ profits is relatively small, 

however, typically around $1000.  A reader might infer that fields are fallowed 

, there is considerable overlap of the ranges of profit loss for droughts of 

 durations.              

nd addressed in the remaining sections of chapter 5 and in chapter 6.  

x full years” does n e the maxiot generat um discoun

at a scenario containing drought generate ore profit

o drought.  The reason for this terintuitiv

e

 

re fallowed first.  Fallowing crops that generate negative profit (e.g. gra

der reuse furrow) causes profit in the drought scenario to be higher tha

the full scenario.  The impact on most scenari
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during s.  

st 

dry years for profit-purposes only, rather than water-management purpose

This does not appear to be the case.  Excess water (i.e. the volume of allocated 

water less the volume required for a specific crop plan) is insufficient in all 63 

drought scenarios to support an additional field of any crop.  That is, it is almo

always a physical necessity, not just profitable, to fallow rather than plant an 

unprofitable crop during a drought.  

5.2 The Base Case Solution (Continuous Variables Model) 

Many farm-level linear programming models define decision variables as 

n 

more ti

n, 

 

d to 

 left open in the fall, and 4) aside from open fields, sugar 

beets a

 

under reuse furrow and less under furrow irrigation.  The profit outcomes for the 

continuous, rather than integer, to enhance problem solvability.  The results 

reported in this dissertation are primarily from an integer (binary) model, which 

enables crop history for each field to be tracked through time, and hence 

agronomic constraints to be enforced at the field-level, rather than at the farm-

level.  The binary variables model is a more accurate representation of productio

in the study area; however, it requires a more powerful solution algorithm and 

me to solve than a continuous variables model.  The solution to a 

continuous variables version of the base case model is presented in this sectio

and the similarities and differences between the continuous and binary models’ 

solutions are discussed. 

Figures 5.7 through 5.9 report the optimal crop plan for years 1 through 3

of the continuous variables model.  Similarities to the optimal crop plan for the 

binary variables model include the following: 1) most of the acres are plante

onions under drip irrigation in the first year, with the remaining eligible acres 

planted in year two; 2) reuse furrow irrigation is used on a portion of the wheat 

acreage, 3) some acres are

re the first crop fallowed during drought.  The continuous model’s optimal 

solution differs, however, in the following ways: 1) deficit irrigation is not 

included, 2) more onions are planted in the first year, and 3) more wheat is planted
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the continuous variables model (table 5.4 and figure 5.10) are similar, however, to 

binary variables model.  Differences in the optimal solutions do not lead to 

significantly different profit outcomes, in this case.   
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Figure 5.7.  Optimal fall and spring activities in year 1 of the continuous 
variables model’s base case solution.  Note that spring activities differ for a 
full versus dry spring.  Crop Key: F = furrow, D =drip. 
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Figure 5.8.  Optimal fall and spring activities in year 2 of the continuous 
variables model’s base case solution.  Crop Key: F = furrow, RF = reuse 
furrow, D =drip. 
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Figure 5.9.  Optimal fall and spring activities in year 3 of the continuous
variables model’s base case solution.  Crop Key: F = furrow, RF = reuse 
furrow. 

 

Table 5.4.  Summary statistics of the base case’s profit outcome for the 
continuous variables m

ro
p

 

 

odel. 

Statistic Value ($) 
Expected Stream of Discounted Profit 547,049 
Standard Deviation of Expected Stream 36,436 
Maximum Discounted Profit 597,958 
Minimum Discounted Profit 416,793 
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Figure 5.10. Average change in the continuous variables model’s total 
discounted profit (black dashes) by years of drought experienced (as 
compared to 6 years of full water supply).  Gray brackets indicate the 
maximum and minimum impact of drought. 

The most noteworthy difference in the solutions is that deficit irrigation 

appears in the binary model’s optimal solution, but not in the continuous model’s.  

This is because the binary model constrains producers to make discrete decisions, 

specifically 35 acres at a time.  The continuous model, in contrast, allows the

producer to make continuous acreage decisions, which allows more flexible 

allocation of resources.  A producer cou
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ld choose in the continuous model, for 

example, to furrow irrigate 18.6 of their 350 acres.  The equivalent choice in the 

binary model, in contrast, is to furrow irrigate 35 acres (1 field), or no acres.  

Suppose the producer chooses, in the binary model, to furrow irrigate 1 field.   

They might have to use deficit irrigation, in the event of drought, to compensate 

for the “extra” 16.4 acres of relatively inefficient furrow irrigation.  The producer, 
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in the continuous model, can apply a more efficient irrigation technology to the 

16.4 acres, and possibly eliminate the need for deficit irrigation.  Therefore, a 

modeler who uses a continuous variables model to represent a binary variables 

farm system might conclude erroneously that deficit irrigation is unnecessary. 

The farm system being modeled should influence whether a binary or 

continuous variables model is used.  Many farm landscapes are divided into 

discrete fields by windbreaks, streams, and roads.  It is impractical, in some cases, 

to apply multiple crops or irrigation technologies to an individual field, or to 

change the size of a field, at least in the short-run.  These producers are likely to 

choose one crop and irrigation technology per field.  A binary variables model 

would best represent this decision environment.  How closely a continuous 

variables model can approximate this is likely to decrease as field size increases 

(again, assuming the producer can choose only one crop and technology per field, 

regardless o

 

apply o ocating one 

field to wheat, and the other to sugar beets.  A continuous variables model might 

suggest allocating one-fifth of the acreage (0.4 fields) to corn, three-fifths (1.2 

fields) 

continuous model’s solution that the (more accurate) binary model would allocate 

at least

 

ight 

f field size).   

For example, suppose a farmer has two 100-acre fields to which they can

nly one crop each.  A binary variables model might suggest all

to sugar beets, and one-fifth to wheat.  While it would be clear from the 

 one field to sugar beets, it would be less clear which crop it would allocate 

to the second field.  The continuous model might also identify more than two 

irrigation technologies, making it unclear which technology a binary model would

assign to each field.  As a result of these tendencies, the continuous model m

also misestimate profit outcomes.  Smaller field sizes would likely reduce the 

difficulty of translating a continuous model’s solution into a binary (field-by-field) 

solution.   
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urately 

 such as 

 that 

ould 

In summary, it is unlikely that a continuous variables model will acc

represent the farm system being studied when taking scale characteristics

field size into consideration.  However, the availability of a solution algorithm

is capable of solving more complex binary models, as well as time limits, sh

also influence the choice of a continuous versus binary model.      
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ion.  

explore several aspects of optimal drought preparedness and response given water 

supply uncertainty and inter-year dynamics. Readers are again reminded that 

“optimal” refers simply, in this dissertation, to activities that are included in the 

mathematical programming model’s solution; it does not indicate that the activities 

are Pareto optimal or socially efficient.  Section 6.1 explores the role of the interest 

and discount rates in the base case solution.  Section 6.2 presents solutions to a 

certainty version of the model, which differentiates the impact of anticipated 

versus unanticipated drought.  Section 6.3 discusses the importance of recognizing 

inter-year dynamics when estimating the impacts of drought on cropping activities 

and profit.  Section 6.4 investigates the impact of previous crop history on the base 

case solution.  Section 6.5 introduces price uncertainty into the model and explores 

its effects on optimal drought preparedness 

usefulness of the multi-peril crop insurance program’s prevented planting 

provision as a drought preparedness tool.  Section 6.7 considers the impact of 

climate  

profit i

severity

6.1 The Role of Interest and Discount Rates 

6 Results and Discussion II: Applications of the Binary Model 

 

Chapter 6 is the second of two chapters devoted to results and discuss

The binary variables version of the base case model is used in this chapter to 

and response.  Section 6.6 explores the 

 change on optimal drought preparedness and response, and the resulting

mpact.  Specifically, the impacts of increases in the frequency of drought, 

 of drought, and both frequency and severity of drought are considered.   

 

Agronomic constraints dictate that each field can be planted to onions 

once in a six-year period to avoid disease; hence, a total of 10 fields can be planted 

to onions over the six-year planning horizon.  The binary variables version of the 

base case solution prescribes planting seven of those ten fields to onions in the first 

year.  This seems co

only 

unter to the notion of diversification as a drought preparedness 

tool (Lomas 2000; Vlachos and James 1983; Yevjevich and Vlachos 1983) and to 
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the app

 

 

 of 

, in 

tive 

rea 

 in year 1 of the base case solution.  However, water supply 

uncertainty, and agronomic constraints that generate inter-year dynamics, also 

ore not clear, based on intuition alone, whether 

special d 

 

ns 

ast to 

roach taken by most onion producers in the study area.  Onions are the 

primary source of profit in the study area; they require a $600 fall investment, and

are among the most water-sensitive crops grown.  A more intuitively appealing

plan, from a drought preparedness perspective, would spread the ten fields

onions out over several years, and include drought-tolerant crops, such as wheat

the suite of crops planted each year.  This would reduce the likelihood of 

abandonment or deficit irrigation of onions during a water shortage.  The objec

of this section is to determine what drives the model’s initially counterintuitive 

solution, or alternatively to determine what motivates producers in the study a

to spread high-value crops throughout the planning horizon.     

Positive interest and discount rates provide incentive to plant valuable 

crops first, primarily to generate as much profit as soon as possible.  Interest on 

profit can thus be earned for a longer period, and the discounting of profit can be 

minimized.  These incentives could be driving the specialization (as opposed to 

diversification)

influence the solution.  It is theref

ization in year 1 of the base case solution is attributable to the discount an

interest rates alone, or also to water supply uncertainty and inter-year dynamics.  

Sensitivity of the solution to alternative interest and discount rates is therefore 

tested.   

The interest and discount rates are reduced from the base case values of 7

and 5%, respectively, to the extreme values of 0 and 0% to test their role in the 

base case solution.  No onions are planted in the year 1 when the interest and 

discount rates are set equal to zero (figure 6.1).  A few fields are planted to onio

in years 2 and 3 (figures 6.2 and 6.3).  Onions are planted, in fact, throughout the 

planning horizon in the absence of an interest or discount rate, in sharp contr

the base case.  Drought management does not appear to be the motivation for 
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diversi

 larger 

fication in the absence of discount and interest rates, however.  The 

motivation is the opportunity to shift crops through time to make use of a

proportion of the total water allotment expected over six years, thereby increasing 

crop acreage and profit.  Details of this opportunity are described next.   
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Figure 6.1.  Optimal fall and spring activities in year 1 of the “zero interest
and discount rates” case.  Crop Key: F = furrow, RF = reuse furrow, 0.6
60% of crop’s irrigation requirement is provided, 0.5 = 50% provided
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Onions under drip irrigation require less water than many other crops.  The 

base case crop plan, which allocates most fields to onions in year 1, leaves 2,800 

acre-inches of the year 1 water allotment (in a full year) unused.  This quantity of 

excess water is sufficient to supply 40 acre-inches to two additional fields.  The 

producer in this model does not have access to additional fields, however, nor can 

they sell or store the excess water.  The only means of using this water is to plant 

more water-intensive crops in year 1, and shift onion production into future years.  
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The benefit of increasing the proportion of the water allotment used is that more 

fields can be planted over the six-year planning horizon.  The opportunity cost is 

the delay of onion profit.  Cost exceeds benefit when discount and interest rates are 

positive, but not when discount and interest rates are zero.  In the latter case, onion 

production is therefore shifted from

intensive crops are shifted into year 1, and additional fields can be planted, in most 

scenarios, over the planning horizon.   
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Figure 6.3.  Optimal fall and spring activities in year 3 of the “zero interest 
and discount rates” case.  Crop Key: F = furrow, RF = reuse furrow, D = 
drip. 

A comparison of overall crop activities for the “zero rates” ersus the 

base case confirms that, in the absence of interest and discount rat attempts 

of wheat and sugar beets increase.  Additionally, for many water s s, more 

wheat and sugar beet fields are successful, i.e. fewer fall-planted f e 

fallowed.  The benefit of spreading onions over the planning horizon, in summary, 

is that more fields are planted, and more crops are successful.  It appears, however, 

that the benefits of this strategy accrue mostly during full years.  Shifting crops 

between years frees up additional water in all years.  The model ta antage 

by attempting more fall-prepared or planted crops.  The additiona

sufficient in full years to allow for additional fields to be planted, 

insufficient in dry years.  This leads to higher profits in full years, and higher 

expected net crop revenue overall, without an increase in profit variability.  
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 of the tradeoffs that 

produc

 

 of 

), 

er, it also leads to reduced profits in some dry years (relative to the base 

case) because the additional prepared or planted fields have to be deficit irrigated 

or abandoned.  Average profit losses associated with drought for the “zero rat

crop plan (figure 6.4a) are, therefore, slightly higher for some droughts than those

for the base case crop plan (figure 6.4b).     

The absence of interest and discount rates, in summary, decreases the 

benefit of specialization in the first year of the crop plan, or equivalently, 

decreases the cost of diversification (delayed profit).  The benefit of diversification

in year 1 is that more fields can be planted and grown successfully, particularly in 

full years, over a six-year period.  Expected net crop revenue in the zero rat

fore higher (without an accompanying increase in profit variability) tha

the base case.  Note, however, that diversification in the presence of positive 

discount and interest rates will not increase expected net crop revenue (other

the base case solution would recommend diversification).  Surprisingly, 

diversification in year 1 does not lessen the average profit impact of drought, and 

actually increases it slightly for some droughts.  Diversification is therefore not a 

form of drought preparedness for the conditions assumed in this model.  The 

policy implication of this result is that extremely low interest and discount rates 

could induce producers to adopt crop plans that result in larger loss during some 

droughts.        

These conclusions provide insight about some

ers under water supply uncertainty face when deciding whether to 

specialize or diversify within a production year.  The tendency of producers in the

study area to diversify, counter to the results found here, suggests the presence

equipment or labor constraints not captured in the model, or other sources of 

uncertainty (e.g. price) that make specialization too risky (the topic of section 6.5

other means to use excess water in year 1, more severe drought than what is 

defined here (the topic of section 6.7), or an erroneous compulsion to make full  
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Figure 6.4. (a) Average change in the “zero interest and discount rates” 
model’s total discounted profit (gray circles) by years of drought 
experienced (as compared to 6 years of full water supply).  Gray brackets 
indicate the maximum and minimum impact of drought.  (b) A comparison 
of average change in total discounted profit for the “base case” (black 
triangles and brackets) versus “zero rates case” (gray circles and brackets).  
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 their water allotment despite positive discount and interest rates.  Risk 

ion related to water supply uncertainty is not strongly implicated as the cause 

oducer’s diversification behavior, since the standard deviation of discounted 

t is nearly the same for the base case versus zero rates case solution ($36,100 

s $33,600).    

As a final note, the above results highlight an interesting hypothetical link 

een instream flow issues and the effects of interest and discount rates on the 

n.  There is more excess-water during dry years than during full in the 

tes” case, while this is rarely true in the base case.  Again, this is 

ble to the fact that the “zero rates” crop plan frees up additional water, 

 then used in full years, but unused in dry years.  Instream flows are often 

al concern during dry years.  Extremely low or subsidized interest and 

t rates could ease instream flow issues during dry years and increase them 

ull years.  This result is highly sensitive, however, to increases in the 

rate.  A 1% interest rate is sufficient to restore much of the base case 

, such that there is more excess water in full years than dry.  Zero interest 

ount rates are highly contrived, so this link likely has limited implications 

ce. The notion that macroeconomic parameters can impact water use via 

ation patterns is interesting, however, and perhaps worthy of additional 

.         

e Role of Uncertainty
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6.2 Th  

ing and duration of drought exacerbates profit 

ibutable to drought.  A producer, who knows in advance when a drought 

ur and how long it will persist, is able to prepare perfectly for the event.  

s not imply that the drought will generate no loss.  A water shortage, even 

ely to reduce profit, because fewer crops can be grown.  

The cost of uncertainty for a particular scenario can be estimated by comparing 

profit in the stochastic model to that in the deterministic model (section 4.5.1).  

Uncertainty about the tim

loss attr

will occ

This doe

when anticipated, is lik
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 the base case crop plan under uncertainty).  A producer who knows 

 the fall of year 1 that water allotments in the next six years will be full is able to 

change r 

planted aluable spring-prepared and planted 

crops or allowing.  Specifically, t ugar beets nd 

wheat are substituted fo  f o  n  f  f table 

6.1).  D fit un cer y at r u inty by 

24,568 (a 4% increase).   

ing of 

 

ng of 

 an 

The deterministic model assumes that the water supplies for all six years of the 

planning horizon are known in the fall of year 1.  This is an extreme assumption, 

but provides insights about the impacts of uncertainty.  A few scenarios are 

presented next to illustrate how optimal drought preparedness and response under 

certainty differs from that under uncertainty.  

The first scenario analyzed is [Full Full Full Full Full Full].  The objective

is to determine how certainty changes the crop plan and profit outcomes 

(compared to

in

 the crop plan, such that additional fields of more valuable fall-prepared o

 crops can be grown, rather than less-v

 f wo additional fields each of s  a

r three ields f grain corn a d one ield of allow (

iscounted pro der taint therefore exceeds th unde ncerta

$

The producer is able to increase the number of successful fields not only 

because a full water supply is guaranteed, but also because they shift the tim

crops across the planning horizon (figure 6.5) to more fully utilize the certain

water supply each year.  Table 6.2 shows that excess water is both smaller and less 

variable under certainty than under uncertainty.  The primary shift in the timi

crops is that onions are spread over three years, rather than two, and additional 

sugar beets, which are more water-intensive, are planted in year 1.  A tradeoff 

exists, however, between the benefit and cost of retiming crops.  The benefit is

extra field of sugar beets or wheat, but the cost is the delay of profit from onions.  

The benefit outweighs the cost for this particular water supply scenario under 

certainty, but it may not for all scenarios, and it does not under uncertainty.  
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Table 6.1.  Number of fields successfully planted to various crops in 
scenario [Full Full Full Full Full Full] under certainty and uncertainty. 

  
# Successful 

Fields 
Crop Irrig Deficit Cert Uncert 

Onion Drip D1 10 10 
Sugbeet Furrow D1 13 11 
Wheat Furrow D1 22 19 
Wheat Reusefrw D1 5 6 
Gcorn Furrow D1 6 8 
Gcorn Reusefrw D1 0 1 
Fallow Furrow D7 4 5 
  60 60 

 

 

Table 6.2.  Excess water (i.e. the quantity of water remaining after crop 
water requirements are met) by year for scenario [Full Full Full Full Ful
Full] under uncertainty and certainty. 

 Excess Water (acre-inches)  

l 

 Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Total 
Uncertainty 2,801 1,241 54 54 302 451 4,903
Certainty 4 969 27 161 213 292 1,666
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substituted f

only five of seventeen attem

fficiently small that  

The next scenario analyzed is [Dry Dry Dry Dry Dry Dry]. A producer 

who knows in the fall of year 1 that the next six years will be dry is able to change 

the crop plan (from the base case crop plan under uncertainty), such that one 

additional field of wheat is fully irrigated, and two additional fields of wheat are 

or one field each of sugar beet and fallow (table 6.3).  Discounted 

profit for this scenario under certainty exceeds that under uncertainty by $109,824 

(a 27% increase).  However, six years of perfectly anticipated drought still reduces 

profit by $89,173 (15%), compared to six years of perfectly anticipated full water 

allotments.  This is a drastic improvement, however, over the profit impact of six 

years of unanticipated drought, which reduces profit by $174,430 (30%).   

Compared to the uncertainty case, additional fields are planted in this 

scenario under certainty.   However, the large disparity in profit under certainty 

versus uncertainty is largely attributable to the number of attempted versus 

successful fields under certainty versus uncertainty (table 6.3).  Under uncertainty, 

pted sugar beet fields are successful, and twenty-five 

of twenty-six wheat fields are successful, with one field severely deficit irrigated 

(table 6.3).  In contrast, under certainty, all four attempted sugar beet fields are 

successful, and all twenty-seven attempted wheat fields are successful with less 

severe deficit irrigation.  No fields are abandoned under certainty.  The producer 

knows in the fall that the upcoming growing season will be dry, and therefore 

attempts exactly the quantity that can be supported.   

The retiming of crops does not play a role in the adjusted crop plan for six 

dry years, as it did for six full years.  All fields in the former scenario are planted 

to onions within the first two years of the planning horizon (figure 6.6), even 

though the producer knows in advance that six years of drought will occur.  This 

provides additional evidence that diversification within a year is not an optimal 

drought preparedness strategy.  The lack of diversification in scenario [Dry Dry 

Dry Dry Dry Dry] is because the annual water allotment is su
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Table 6.3.  Number of fields attempted and successfully plan rious 
crops in scenario [Dry Dry Dry Dry Dry Dry] under certainty and 
uncertainty. 

  
# Fields 

Attempted 

ted to va

Crop Irrig Deficit Cert Uncert 
Onion Drip D1 10 10 
Sugbeet Furrow D1 4 17 
Wheat Furrow D1 12 15 
Wheat Furrow D2 2 0 
Wheat Reusefrw D1 13 11 
  41 53 
    

  
# Successful 

Fields 
Crop Irrig Deficit Cert Uncert 

Onion Drip D1 10 10 
Sugbeet Furrow D1 4 5 
Wheat Furrow D1 12 11 
Wheat Furrow D2 2 2 
Wheat Furrow D6 0 1 
Wheat Reusefrw D1 13 11 
Fallow Furrow D7 19 20 
  60 60 
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Figure 6.  Cr pin t t y t e D  ] g
stage comparison of activities under uncertainty and certainty.  Crop Key: F = furrow, RF = reuse furrow, D = 
drip, 0.5 = 50% of crop’s irrigation requirement is provided, 0.9 = 90% provided. 

 6. op g impac s of wa er suppl  certain y for sc nario [Dry Dry ry Dry Dry Dry .  A sta e-by-
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water conserved by the retiming of onions would be insufficient to support 

additional fields (table 6.4).  The benefit of spreading onions across the planning 

horizon is therefore smaller than the opportunity cost.  In summary, the primary 

effect of unanticipated versus anticipated drought is that more fall-prepared fields 

are abandoned; particularly, those prepared for water-intensive sugar beets.  This 

result is relevant to the discussion of the impact of climate change in section 6.5, 

and to the discussion of participation in the multi-peril crop insurance program in 

section 6.6. 

 
Table 6.4.  Excess water (i.e. the quantity of water remaining after crop 
water requirements are met) by year for scenario [Dry Dry Dry Dry Dry 
Dry] under uncertainty and certainty. 

 Excess Water (acre-inches)  
 Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Total 
Uncertainty 12 137 141 313 313 841 1,757
Certainty 622 300 106 134 106 134 1,401

 

One final observation regarding drought under certainty versus uncertainty 

is that the expected value of a perfect six-year water supply forecast can be 

calculated by solving the deterministic model for all sixty-four water supply 

scenarios, taking the difference between profit under certainty and uncertainty, and 

weighting those differences by the probability of each scenario.  There is no 

anticipated ability to predict water supplies that far in advance, so this exercise 

was not undertaken.  The value of a perfect fall forecast for only the upcoming 

spring’s water supply is more useful, but also more difficult to estimate.  The 

model would have to be modified to allow for perfect information for the current 

year, but only probabilistic information for the remaining years of the planning 

horizon.  Due to time constraints, this was not pursued.  However, there is no 

shortage of literature providing estimates of the value of water supply forecasts 

(Adams et al. 1995; Adams et al. 2003; Johnson and Holt 1997; Mjelde and 
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Cochra  et al. n 1988; Mjelde, Hill, and Griffiths 1998; Mjelde et al. 1988; Solow

1998; Wyse 2004). 

6.3 The Role of Inter-year Dynamics 

Inter-year dynamics are an important characteristic of many farm systems, 

including row crop farms in the study area; yet, they receive limited attention in 

the economics literature (Antle 1983).  The effects of inter-year dynamics on 

drought preparedness and response and the profit impacts of drought are relativel

unexplored.  Equations 14 through 21, and 27 through 29 of the binary variable

model (section 4.3) represent agronomic constraints that connect current cropp

decisions to those in past years.  Producers indicate tha

y 

s 

ing 

t such inter-year dynamics 

sometim

 

 that 

e 

 has total 

 met with the use of highly efficient (and 

thus mo e 

es result in the persistence of drought’s effects, well after the drought 

subsides.  The base case solution is therefore examined for evidence of this 

persistence.      

The set of inter-year agronomic constraints influence the optimal solution 

in two ways.  They necessitate careful sequencing of crops across space and time,

to maximize profit, which is partly a function of the number of fields of crops

can be grown over the planning horizon.  If crops are not carefully sequenced, 

fallow has to be used to break up infeasible crop sequences (e.g. wheat-fallow-

wheat), and profit opportunities are lost.  Inter-year dynamics also require careful 

sequencing of crops to manage total water requirements in each year.  Suppos

that the sequence of crops that maximizes the number of profitable fields

crop water requirements that can only be

re costly) irrigation technologies.  It might be more profitable to reduce th

total number of fields planted over the planning horizon, such that the total crop 

water requirement is reduced and less costly irrigation technologies can be used.  

Inter-year crop dynamics, in summary, require the producer to consider the impact 

of current decisions on future opportunities.      
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t 

ill do 

supply scenarios are compared first to determine 

whethe

].  

 

s in 

r 

ated 

In the presence of inter-year crop dynamics, drought and the producer’s 

drought response can generate impacts not only in the years in which the drough

occurs, but in subsequent years as well.  Clawson et al. (1980) expressed the 

following:  

 
Much of the discussion about the economics of drought 
management seems to be concerned, often implicitly, with what to 
do when drought strikes and when it continues.  It seems 
sometimes to be assumed, when the rains finally come, that the 
drought has ended and that all is well.  The need for help may still 
exist, even when the drought is over in an agricultural sense.  
Moreover, the form of the recovery from one drought may greatly 
affect the flexibility of the persons to deal with the inevitable next 
drought.   

 

If this is true, then studies that ignore inter-year dynamics, or limit the 

timeframe of their analyses to the years in which drought occurs are likely to 

misunderstand drought’s full impact, or worse, to recommend drought 

preparedness and response plans that fail to consider what the producer w

after the drought is over.  The base case solution provides an opportunity to ask 

whether drought and drought response, in the presence of inter-year dynamics, 

generates effects in subsequent years. 

6.3.1 Single-Year Drought   

The following water 

r a year 2 drought affects cropping activities and profit after the drought 

subsides: (a) [Full Dry Full Full Full Full] and (b) [Full Full Full Full Full Full

Response to a year 2 drought includes fallowing two fields that were prepared in 

the fall for sugar beets, and deficit irrigating two wheat fields (figure 6.7).  Net

revenue in year 2 is $25,641 less than if no drought occurs (table 6.5).  Change

both total revenue and total cost occur.  Total revenue decreases because suga

beets that are not planted cannot be sold, and because yield in the deficit irrig
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paribus, to support an extra field of s

wheat fields is less than if fully irrigated.  Total cost decreases because spring 

planting costs for sugar beets are not incurred.  The impact of drought in the year 

in which it occurs is straightforward.  Considered next is whether inter-year crop 

dynamics generate impacts in years subsequent to the drought.   

Differences in the two scenarios’ profit and cropping activities subsequent 

to the drought would indicate that the impacts of drought are not isolated to the 

year in which it occurs.  The two scenarios’ profits in years subsequent to the 

drought are, in fact, not equal (table 6.5).  One might expect profit following the 

drought to be lower in scenario (a) than in scenario (b) because less profit in year 2 

implies less earned interest in subsequent years.  Scenario (a)’s profit is indeed 

lower in year 6, and the subsequent six years, which capture terminal values.  

Profit in years 3 through 5, however, is higher for scenario (a).  This is because 

drought affects profit in subsequent years not just through reductions in earned 

interest, but also through changes in cropping activities.   

The two scenarios’ cropping activities differ in years subsequent to the 

drought (figures 6.7 and 6.8).  Drought’s role in these differences is clear for years 

3 and 4.  The producer, having abandoned two sugar beet fields during the year 2 

drought, reattempts those fields in subsequent years.  Specifically, sugar beet 

production is increased from three to four fields in both years 3 and 4 (note: 

scenario (b)’s activities serve as the reference point).  This requires them, however, 

to adjust other cropping activities as well, because water is insufficient, ceteris 

ugar beets.  Adjustments include removing 

grain corn from the crop plan in years 3 and 4 to accommodate sugar beets, and 

using reuse furrow on one additional field of wheat.  The above adjustments to the 

crop plan in response to drought result in higher profit in years 3 and 4 than in 

scenario (b) (table 6.5).  Profit lost in year 2 is therefore partially recaptured in 

years 3 and 4.  An economic analysis that focuses on activities during the year of 

drought alone will fail to capture this post-drought rebound. 
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F re 6.7.  Cropping impacts of a year 2 dro ght.  A stage-by-stage comparison of opt mal cro ping activities 
f cenarios [Full Full Full Full Full Full] an  [Full Dry Full Full Full Full] of the base case.  Crop Key: F = 
fur , R us urrow, D = drip, .9 = 90% of crop’s irrig tion requiremen  is prov ded.
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Table 6.5.  Impact of a year 2 drought on undiscounted profit.  A year-by-year comparison of undiscounted 
profit for scenarios (a) [Full Dry Full Full Full Full] and (b) [Full Full Full Full Full Full] of the base case 
optimal solution.  

Undiscounted Profit ($) 
 6-Year Period of Active Production 6-Year Period of Terminal Values 

Scenario Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Total 
(a) 74,121 26,257 32,727 35,018 22,946 23,054 160,052 108,683 69,362 74,217 79,413 84,972 790,823
(b) 74,121 51,898 30,180 32,293 19,885 25,764 161,453 110,183 70,966 75,934 81,249 86,937 820,863

(a)-(b) 0 -25,641 2,547 2,725 3,061 -2,710 -1,401 -1,499 -1,604 -1,717 -1,837 -1,965 -30,040
 

 

Table 6.6.  Impact of a year 3 drought on undiscounted profit.  A year-by-year comparison of undiscounted 
profit for scenarios (b) [Full Full Full Full Full Full] and (c) [Full Full Dry Full Full Full] of the base case 
optimal solution. 

  Undiscounted Profit ($) 
 6-Year Period of Active Production 6-Year Period of Terminal Values 

Scenario Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Total 
(c) 74,121 51,898 6,820 25,102 32,415 28,844 160,407109,064 69,769 74,653 79,878 85,470 798,439
(b) 74,121 51,898 30,180 32,293 19,885 25,764 161,453110,183 70,966 75,934 81,249 86,937 820,863

(c)-(b) 0 0 -23,361 -7,191 12,530 3,080 -1,046 -1,119 -1,198 -1,281 -1,371 -1,467 22,424-
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 (i) (ii) 
 

Year 1 [Full] 

O O SB F W 

O W O O O 
 

Year 2 [Full] 

F W O SB O 

W O SB W W 
 

Year 3 [Full] 

W GC W W W 

SB W F SB SB 
 

Year 4 [Full] 

SB W GC F SB 

W SB W W W 
 

Year 5 [Full] 

W SB W W GC 

F W GC GC GC 
 

Year 6 [Full] 

GC W SB F W 

W GC W GC W 
 

Year 1 [Full] 

O O SB F W 

O W O O O 
 

Year 2 [Dry] 

F W O F O 

W O F W W 
 

Year 3 [Full] 

W SB W W SB 

SB W W F SB 
 

Year 4 [Full] 

SB W F SB W 

W SB SB W W 
 

Year 5 [Full] 

W F W W GC 

GC W W SB GC 
 

Year 6 [Full] 

GC W SB GC W 

W GC F W W 

Figure 6.8.  Crops assigned to each field (first row of each box reads 
from left to right, F1 to F5; second row reads from left to right, F6 to 
F10) in each year of the six-year planning horizon.  Boxes on the left 
(column (i)) are for scenario (b) [Full Full Full Full Full Full]; boxes on 
the right (column (ii)) are for scenario (a) [Full Dry Full Full Full 
Key: O=onion, SB=sugar beet, W=wheat, GC=grain corn, F=fallow.  
Bold letters in column (ii) indicate fields whose crops differ from those 
in column (i). 

Full].  
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t the 

op in year t, 

they co

op 

s in 

ought, 

losses a utable to drought total $30,040, a 17% increase from their initial value 

of $25,

$20,01

earned interest more than ffset the  via replanting.  

This result changes, however, when disco tin s c ide d.  The total loss of 

discounted profit elev s after the drought is $24,700, which is very close to 

the initial loss of $25,641.  Nonetheless, studies that only examine drought’s 

immediate crop cts mi t m esti

misinterpret subsequent crop choices.

There ar enc n th crop plans of scenario (a) and (b).  

However, not all differences are caused by  ye 2 drough   S ifically, crops 

in fields F5, F8 and F9 of year 3 are different in the two scenarios (figure 6.8), but 

not because of d crops all ate e fi ds i ol n (ii) allow the 

producer to grow l su essf  field o he in y  5.  However, the 

The producer’s ability to rebound from drought by re-planting an 

abandoned crop is possible because of the agronomic constraints, which prevent 

producers from continuously growing an individual crop.  Suppose instead tha

producer could continuously plant an individual crop without risk of pest, disease, 

or depleted soil quality.  If the producer was forced to abandon the cr

uld not replant in subsequent years without displacing the current year’s 

crop.  The producer in the base case model, in contrast, can replant an abandoned 

field of sugar beets, for example,  without displacing next year’s sugar beet cr

because the field is eligible for sugar beets only once every five years.  Future 

sugar beet crops in that field are delayed; however, the farm’s total sugar beet 

acreage over the six-year crop plan is not reduced.      

Although some profit is recovered after the drought by replanting crop

later years, the portion that is not recovered causes reductions in earned interest, 

and these reductions compound through time.  Eleven years after the dr

ttrib

641.  This contrasts to losses just five years after the drought, which total 

8, a 22% decrease from profit loss during the drought.  Reductions in 

 o  preliminary recovery of losses

un g i ons re

en year

and profit impa gh is mate total impacts and 

   

e additional differ es i e 

the ar t. pec

rought.  The oc d to thes el n c um

 an additiona cc ul f w at ear
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same c  

 

 

remains eligible.  Field F2, which was the planned location prior to the drought, 

was planted to sugar beets in year 3, in an e of the fields of 

beets ab

howeve olumn (ii), are 

attributable to the approximate nature of the optimal solution, as discussed above.  

Sufficient evidence exists to conclude that drought in year 2, or more precisely, the 

producer’s response to the drought, generates impacts not only during the year in 

which drought occurs, but also in subsequent years.   

6.3.2 Multi-Year Drought 

The inter-year dynamics of the model also enable the study of multi-year  

or prolonged drought, a topic that has received relatively little attention in the 

literature (Iglesias, Garrido, and Gomez-Ramos 2003; Tapp et al. 1998; Thompson 

et al. 1996; Toft and O'Hanlon 1979; Ward et al. 2001).  The potential for the 

impacts of one year of drought to modify the impacts of a subsequent year of 

drought is of particular interest (Clawson et al. 1980).  Consecutive years of 

drought have the potential, because of inter-year crop dynamics, to generate 

rop plan for these three fields could also be followed in scenario (b).  The

approximate optimal solution simply did not detect the opportunity to increase 

undiscounted profit by $4,500.  This implies that undiscounted profit in year 5 

should be similar for the two scenarios (table 6.5), and total profit loss attributable

to drought is actually higher than $30,040.   

It is more difficult to determine whether the drought in year 2 causes the 

differences in cropping activities for years 5 and 6.  Close inspection of figure 6.8 

reveals, however, that some of the differences in year 5 activities can be traced 

back to the drought.  In year 5, sugar beets are planted in field F9 in column (ii),

rather than in F2 as in column (i).  This has no effect on profit in year 5, but 

illustrates that drought can generate impacts several years after it subsides.  Sugar 

beets’ location on the farm is altered in year 5 because F9 is the only field that 

 effort to recover on

andoned in year 2.  The remaining crop differences in year 5 and 6, 

r, including the extra field of wheat in year 5 of c
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complex impacts on cropping activities and profit.  A comparison of the following 

four scenarios is made to understand the potential impacts of a two-year drought 

occurring in years 2 and 3: (a) [Full Dry Full Full Full Full], (b) [Full Full Full Full 

Full Full], (c) [Full Full Dry Full Full Full], and (d) [Full Dry Dry Full Full Full].   

A year 2 drought generates a loss of $30,040 in undiscounted profit (table 

6.5).  A year 3 drought generates a loss of $22,424 (table 6.6).  If the impacts of 

these droughts were isolated within the year in which they occurred, two outcomes 

would be expected: 1) the profit impact of a two-year drought that occurs in years 

2 and 3 should be approximately equal to the sum of the individual droughts’ 

impacts ($52,464), and 2) the losses attributable to a year 3 drought should be the 

same regardless of whether it preceded by a dry or full year.  The result, however, 

is that a two year drought generates a loss of $85,737 (table 6.7), which is much 

larger than the hypothesized loss of $52,464.  Also, the impact of a year 3 drought 

is $55,697 when preceded by a year 2 drought (table 6.8), and only $22,424 when 

not pre f a 

year 3  

that the a year 2 drought depends on whether a drought is revealed in 

year 3.  The results suggest, more generally, that the impact of a multi-year 

drought is more complex than the sum of its parts.  This result also reinforces the 

previou  

that has

ht 

for 

ceded by drought (table 6.6).  These two results indicate that the impact o

drought depends on whether it was preceded by drought, or equivalently,

 impact of 

s subsection’s conclusion, i.e. that the impact of drought in a farm system

 inter-year dynamics can continue after the drought subsides. 

The impact of a year 3 drought is larger when preceded by a year 2 droug

than when not because of the response to the year 2 drought.  Specifically, the 

producer attempts to recover from the year 2 drought by preparing four fields 

sugar beets in the fall of year 3, rather than three fields (figure 6.7).  When drought 

is revealed in the spring of year 3, the producer has to abandon three fields, rather 

than two (figure 6.9).  Investments in fall field preparation are sunk, so the 

producer receives no return on a fall-prepared field that is later abandoned.

 



 
 
 
 

 

153

153 

 

Table 6.7.  Impact of a two-year drought (years 2 and 3) on undiscounted profit.  A year-by-year comparison of 
undiscounted profit for scenar ll F
base case optimal solution. 

  

ios (b) [Full Full Full Full Full Full] and (d) [Full Dry Dry Fu

Undiscounted Profit ($) 

ull Full] of the 

 Perio  Actd of ive Production Period to Capture Terminal Values 
Scenario   Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Total 

(d) 74,121 26,257 -2,091 26,596 30,101 22,026 157,454105,904 66,388 71,035 76,007 81,328 735,126
(b) 7 8 4,121 51,89 30,180 32,293 19,885 25,764 161,453110,183 70,966 75,934 81,249 86,937 820,863

(d)-(b) 1 -0 -25,64 -32,271 5,697 10,216 -3,738 -3,999 -4,279 -4,579 -4,899 -5,242 -5,609 -85,737
 

 

 6.8
com

Table  scou
year f un ount  
Full Full] o ase c opti

.  I
par

mp
iso

f th

act
n o
e b

 on undi
disc
ase 

nted profit of a year 3 drought when preceded by a year 2 drough
ed profit for scenarios (a) [Full Dry Full Full Full Full] and (d) [F
mal solution. 

Undiscounted Profit ($) 

t.  A year-by-
ull Dry Dry Full

 Peri f Activeod o  Production Period to Capture Terminal Values 
Scenario  Yr4Yr1 Yr2 Yr3  Yr5 Yr6 Yr7 Yr8 Yr9 Yr10 Yr11 Yr12 Total 

(d) 26,5974,121 26,257 -2,091 6 30,101 22,026 157,454105,904 66,388 71,035 76,007 81,328 735,126
(a) 74,121 26,257 35,01 84,32,727 8 22,946 23,054 160,052108,683 69,362 74,217 79,413 972 790,823

(d)-(a) 0 0 -8,42-34,818 2 7,155 -1,028 -2,598 -2,780 -2,974 -3,183 -3,405 -3,644 -55,697
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Figure 6.9.  Cropping impacts of a year 3 drought when 
comparison of activities for scenar
case.  Crop Key: F = furrow, RF =
provided. 
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Fifteen

This co , only 

five fields are planted to grain in s nine in scenario (b).   

Following the second f droug roducer’s approach to recovery 

is the same.  They attempt fo r beet fie  year 4, and thus face the same 

risk of abandoning more fields of sugar beets in the event of a dry spring.  The 

producer, in scenario [Full Dry Dry Dry Full , would attempt sugar beets in 

eighteen fields, with only nine successes.  In scenario [Full Dry Dry Dry Dry Dry], 

sugar beets would be attempted in eighteen fields, with only seven successes.  

Only one field of grain corn is grown in each of these scenarios, in contrast to nine 

in scenario (b).  The cropping and profit impacts of an unanticipated multi-

yeardrought are complex; specifically, they are more than just a scaled version of a 

single-

 

cer 

t 

st, 

 sugar beet fields are attempted in scenario (d), but only ten are successful.  

ntrasts to eleven attempts and successes in scenario (b).  Similarly

 corn scenario (d) versu

 year o ht, the p

ur suga lds in

 Full]

year drought’s impacts.   

The above results have important implications for government assistance in

the event of drought.  Suppose a government official asks a producer, after 

enduring one year of drought, to report profit impacts of the drought.  A produ

in the study area should answer, “I don’t know yet.”  The total impact of a drough

will depend on water supplies in subsequent years.  The producer will initially 

recover some of their loss if they receive a full allotment next year.  In contra

their loss will be larger if next year is also dry.   

6.4 The Role of Crop History 

The base case solution for the binary variables model assumes no crop 

history prior to the first year of production.  Fields are assumed to have had no 

crops on them in the previous six years that would limit the producer’s planting 

options in the next six years.  The producer can therefore consider any crop plan as 

long as it meets the agronomic constraints defined for years 1 through 6.  

Producers, in reality, have a crop history, one that potentially limits their a

follow the base case optimal solution.  It is therefore useful to

bility to 

 consider the degree 
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to which the optim

case optimal solution appear in the crop 

history, including potatoes, 

al drought preparedness and response tools identified in section 

5.1 can be transferred to farms that have crop history.  An infinite number of crop 

histories are possible in reality; this section illustrates the impact of only one 

example crop history on the producer’s optimal drought preparedness and response 

plan.  This example is hereafter referred to as the “history” model.   

The crop history used in this example (table 6.9) approximates the crop 

history of a row crop producer in the study area during the period 1997 to 2002.  

Crops that do not appear in the base 

alfalfa and silage corn.  The producer, after whom the 

history was modeled, has a livestock enterprise in addition to the crop enterprise.  

Some of the crops are used as an input to the livestock enterprise, which might 

justify their appearance in the crop history, but not in the base case solution.  

Potatoes are not an input to livestock in this case, but a favorable contract with the 

local processor could have caused them to enter the producer’s plan.   

 
Table 6.9.  Crop history used in the “history” model. Year 1 of the historic 
period occurred six years prior to the current planning period.  Year 6 of 
the historic period occurred one year prior to the current planning period.   

 Year in the Historic Period 
 1 2 3 4 5 6 

Crop (# of fields) 
Onion 1 2 2 2 1 2 
Winter Wheat 3 2 2 2 2 1 
Russet Potato 1 1 1 1 1 1 
Sugar Beet 2 2 1 1 2 3 
Alfalfa-1 yr old 1  1 1 
Alfalfa-2 yrs old 1 1  1 1 
Alfalfa-3 yrs old  1 1  1 
Alfalfa-4 yrs old   1 1  
Grain Corn 1 1 1 1 1 1 
Silage Corn     1 1 1  
Total 10 10 10 10 10 10 
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The resulting optimal crop plan (figures 6.10 through 6.12) is similar to 

ase case.  Specifically, fields are left open in the fall; reuse furrow is 

en fields and sugar beets are fallowed in dry years; wheat is 

cit irrigated in dry years, and grain corn is planted in some full years, if water 

ilable.  Crop history alters the optimal crop plan, however, in several 

t, alfalfa appears in years 1 and 2, while it does not appear in 

e solution.  This is because young alfalfa stands appear in year 6 of the 

 is required to keep alfalfa, once plan

 enforces the use of alfalfa in the study area for long-

 maintenance of soil quality.  The model is unable to systematically capture 

ic benefits of alfalfa in soil quality maintenance, which combined with 

ter requirements, prevents alfalfa from entering the base case solution.   
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Figure 6.10. Optimal fall and spring activities in year 1 of the “history” 
case.  Crop Key: F = furrow, RF = reuse furrow. 
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Figure 6.11.  Optimal fall and spring activities in year 2 of t ” 
case.  Crop Key: F = furrow, WL = wheel line, RF = reuse furrow, D = 
drip, 0.9 = 90% of crop’s irrigation requirement is provided, 0.6 = 60% 
provided. 

orn F

he “history

 



 
 
 
 

159

0
1
2
3
4
5
6
7
8
9

10

Onion D Wheat F Wheat F 0.9 Wheat F 0.6 Wheat F 0.5
Sg-beet F Open Gcorn F Fallow

os
en

 fo
r E

ac
h 

of
 1

0 
Fi

el
ds

 
ch

 fi
el

d 
= 

35
 a

cr
es

) 

Fa
ll

Sp
r,

l

Sp
r, Fa

ll

Sp
r, 

{F
D

ll

Sp
r, 

{F
D

} 
D

ry

Fa
ll,

 {
D

F}

Sp
r, 

{D
F}

 F
ul

l

Sp
r, 

{D
F}

 D
ry

Fa
ll,

 {
D

D
}

Sp
r, 

{D
D

} 
Fu

ll

Sp
r, 

{D
D

} 
D

ry

Decision Stage, {Past} Current Water Supply

, {
FF

} 

 {
FF

} 
Fu

l

 {
FF

} 
D

ry

, {
FD

}

} 
Fu

C
ro

ps
 C

h (e
a

 

Figure 6.12. Optimal fall and spring activities in year 3 of the “history” 

se.  A 

ields of sugar beets are planted overall in the 

history

n 

t change the 

applicability of most drought preparedness and response tools.   

case.  Crop Key: F = furrow, D = drip, 0.5 = 50% of crop’s irrigation 
requirement is provided, 0.6 = 60% provided, 0.9 = 90% provided. 

Alfalfa is also deficit irrigated in year 2, rather than wheat, for the same 

reasons that sugar beets are deficit irrigated, rather than wheat, in the base ca

related difference is that fewer f

 model, because alfalfa displaces sugar beets in years 1 and 2.  A third 

difference is that onions are planted throughout years 2 through 6, rather than i

years 1 and 2, as in the base case solution.  Onions are planted in the history model 

as soon as fields become eligible, but the crop history delays this for most fields.  

The cost of this delay is foregone earned interest on savings, and higher 

discounting of profit because it is delayed.  Crop history clearly limits the 

producer’s feasible set of crop plans.  However, it does no
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Crop history limits the feasible set of activities, and should therefore 

 the average impact of drought.  Expected 

profit in the history case is $55,000 (table 6.10), or 11% less than in the base case 

(table 5.2).  Maximum profit is $50,000 (9%) less, and minimum rofit is $40,000 

(10%) less.  The average profit impact of drought is $10,000 more in the history 

 

 

ree 

 of 

 conclusion, crop history, in this 

exampl

e 

Table 6.10.  Summary statistics of the “history” case’s profit outcome. 

Statistic Value ($) 

reduce expected profit, and increase

 p

case (figure 6.13 versus 5.6) for all drought categories, except six years, which is

$13,000 less.  That is, the effect of drought in the crop history case is 88% worse

for a one-year drought, 32% worse for two years of drought; 26% worse for th

years of drought, 13% worse for four years of drought, 6% worse for five years

drought, and 7% better for six years of drought.  In

e, necessitates an alternative solution, one that is less profitable in 

expectation and less successful during all but the most extreme drought.  Futur

modeling efforts should attempt to expand the model’s time horizon, such that one 

could test whether a producer with any starting crop history will eventually 

transition to the base case solution’s crop plan.    

 

Expected Stream of Discounted Profit 475,036 
Standard Deviation of Expected Stream 37,431 
Maximum Discounted Profit 538,573 
Minimum Discounted Profit 368,101 
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years of full water supply).  Gray brackets indicate the maximum and 
minimum impact of drought.  

6.5 Price Uncertainty 

The economics literature has increasingly emphasized the joint effect of 

multiple sources of uncertainty on farm decisions (Isik 2002; Pannell, Malcolm, 

and Kingwell 2000; Thompson and Powell 1998).  Producers in the study area face 

both water supply and output price uncertainty.  Onions, which generate much of 

e 

purpos

 

he 

the profit in the model, have an especially volatile output price (table 6.11).  Th

e of this section is to determine whether onion price uncertainty changes the 

optimal drought preparedness and response plan.  Specialization in onions in the

first year of the base case solution is of specific interest, since producers in t

study area tend to diversify instead for reasons that are not yet clear.   
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the Table 6.11.  Prices received (2004$) by growers for yellow onions over 
period 1995-2004 (Malheur County Extension Service 2004a).   

Year Price Received* 

($/cwt) 
1995 4.09 
1996 6.57 
1997 8.50 
1998 8.03 
1999 2.37 
2000 13.01 
2001 4.85 
2002 5.12 
2003 5.51 
2004 2.79 
Mean 6.08 

Std Dev 3.15 
*Prices do not include packing and shipping premiums. 
 

The base case model is modified to accommodate onion price uncertainty

(section 4.5.2).  Price uncertainty is represented by three price categories [Hi = 

$12.25, Med = $6.00, Lo = $2.50], derived from price data for the study area 

(Appendix B.3).  Note that the price of onions in category “Med” is the same as 

the price in the certainty model.  Price uncertainty is assumed to be resolve

after both fall and spring decisions are made.  The producer therefore has no

recourse after the price is revealed.  The model’s planning horizon has to be 

shortened from six years to three to enable the programming software to 

accommodate a third stage decision stage.  This modification causes some 

discrepancies in the base case solutions of the six versus three-year models.  It 

would therefore be inconsistent to compare the three-year price uncertainty 

 

d only 

 

model’

is 

s solution to that of the six-year base case model.  A three-year version of 

the base case model is constructed to facilitate comparison.  The solution to th

truncated model is used as the reference solution, against which the price 

uncertainty model’s solution is compared.   
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se 

has 

ee-year base case 

solutio

) 

, price 

ing of 

lly 

f 

 

rate net revenue of $320 and $4400 per acre, respectively.  Expected 

net rev

d 

The three-year base case solution is largely similar to the six-year base ca

solution for years 1 through 3 (figure 6.14).  The three-year solution recommends 

more sugar beets than the six-year solution, specifically in year 3, because it 

fewer years in which to plant them.  The three-year model also plants one 

additional field of onions in year 1 instead of year 2, which enables it to 

accommodate an additional sugar beet field in year 3.  With a thr

n established, the effects of introducing onion price uncertainty can be 

determined.   

Optimal cropping activities for scenarios [Full Full Full] (price certainty

and [Full Med Full Med Full] (price uncertainty) are compared first.  Overall

uncertainty has little effect on the optimal crop plan (figure 6.15).  The tim

onions remains unchanged, despite a 25% chance of receiving only $2.50 per 

hundredweight (cwt), which would result in a net loss of $2000 per acre for fu

irrigated onions under drip irrigation.  There is also, however, a 50% chance o

receiving $6.00 per cwt, and a 25% chance of receiving $12.25 per cwt, which

would gene

enue under price uncertainty for fully irrigated onions under drip irrigation 

is therefore $760 per acre.  Under price certainty, the producer receives $6.00 per 

cwt, for a per acre net revenue of $320.  The price uncertainty model is also solve

for the following price categories: Hi = $9.55, Med = $6.00, Lo = $2.44.  These 

prices are such that the expected net revenue per acre for onions equals the net 

revenue per acre for onions in the price certainty model.  The timing of onions, 

again, remains unchanged.  

The optimal crop plan remains essentially unchanged when price 

uncertainty is added because the producer cannot influence the expected outcome 

of price uncertainty by manipulating their crop plan.  That is, the expectation 

operator does not act over the decision variables.  A simple example best 

illustrates this point.  Suppose a producer can grow ten fields of onions (and no 

 



 
 
 
 

 

164

164 

0

1

2

3

4

5

6

7

8

9

10

(6
-Y

r)
 F

al
l Y

r1
  

r)
 S

pr
 Y

Y
r)

 S
pr

 Y

(6
) F

al
l

(3
) F

al
l

(6
) S

p

(3
) S

p

(6
)

(3
) F

al
l Y

r3

nd Year

(3
-Y

r)
 F

al
l Y

r1

(6
-Y

r1

(3
-

(P

r1

 Y
r2

 Y
r2

r Y
r2

r Y
r2

 F
al

l Y
r3

(6
) S

pr
 Y

r3

(3
) S

pr
 Y

r3

lanning Horizon) Decision Stage a

Onion D Wheat F Wheat RF Sg-beet F Sg-beet F 0.9 Open Fallow Gcorn F

tim l Fu era
-year version of the 

crop rigation requirement is provided.

 
ted by a six-

C
ro

ps
 C

ho
se

n 
fo

r E
ac

h 
of

 1
0 

Fi
el

ds
 

(e
ac

h 
fie

ld
 =

 3
5 

ac
re

s)
 

Figure 6.14.  Op
year versus three
90% of ’s ir

al cropping activities for years 1 through 3 of scenario [Full
base case model.  Crop Key: F = furrow, RF = reuse furrow, D = drip, 0.9 = 
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other crops) over a two-year  zero discou  each 

field g erates it e uc in

only, and that two prices pos , h and l, w  pro liti (h) and pr(l

respectively.  Prices are assumed independent between years.  The producer 

con o options: a) nt all ten fie s in y r 1, isk ivin a low

pr en s, or s 1  2, hope at 

a high price will occur in east one yea  The pected prof

 1 ( 0 ( 0]
)

.

p h pr l pr h pr
E p ice E price
E p ice

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅ +
= ⋅

 
The ex

E price E price= ⋅ + ⋅  

e 

ely.  

 plant 

five fie

 period (assuming a

tp ssu th

nt rate), and that

es  u taen  on  une  of ou ut.  A me  prod er fac  price ncer ty 

es pr ),  are sible ith babi

siders tw  pla ld ea and r  rece g  

ice for all t field  b) plant five fields in each of year  and and  th

 at l r.  ex it of option a) is: 

 
( )r h[ 10 + ( )l ⋅ 0] [+ )h   + )l l⋅ ⋅

 ( r 0⋅) 10 (
( r ) 10

pected profit of option b) is: 

 
[ ( ) 5  ( ) 5] [ ( ) 5  ( ) 5]pr h h pr l l pr h h pr l l⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅

( ) 5 ( ) 5
( ) 10.E price= ⋅

 
Regardless of how the producer allocates the ten onion fields across time, expected 

net revenue is the same.  Returning to the more complex model, it is clear why th

optimal solution under water supply uncertainty remains unchanged when price 

uncertainty is introduced.  Retiming of onions does not change the expected 

outcome of price uncertainty.   

A parallel example for water supply uncertainty reinforces this point.  

Suppose the same producer faces water supply uncertainty only, and that two 

water supplies are possible, f and d, with probabilities pr(f) and pr(d), respectiv

The producer again considers the following two options: a) plant all ten fields in 

year 1 (and if the spring is dry they will have to abandon two fields), or b)

lds in each of years 1 and 2 (and if the spring is dry they will not have to 

abandon any fields).  The expected profit of option a) is: 
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[ ( ) 10  ( ) 8] [ ( ) 0  ( ) 0]

[ ( ) 10  ( ) 8].
pr f pr d pr f pr d

pr f pr d
⋅ + ⋅ + ⋅ + ⋅
= ⋅ + ⋅

 

 
The expected profit of option b) is: 

 
[ ( ) 5  ( ) 5] [ ( ) 5  ( ) 5]

[5 5] 10.
pr f pr d pr f pr d⋅ + ⋅ + ⋅ + ⋅

= + =
 

 
In contrast to the price uncertainty example, the expected outcome of these two 

options is not equal (unless the water supply is certain, i.e. pr(f) equals one).  In 

conclus

nothing

mitigate the effects of water supply uncertainty.   

The structure of the ert modeled in this study, is 

different than that of the water supply uncertainty problem.  The expectations 

operator in the price uncerta lem acts on price independent of the 

producer’s decisions.  The operator in the water supply uncertainty 

problem, in contrast, acts on the random variable through total yield, which is a 

function of the producer’s decisions.  This distinction is illustrated below.   

 

ion, the hypothetical producer who maximizes expected profit can do 

 to mitigate the effects of price uncertainty on expected profit, but can 

 p crice un aint s y problem, a

inty prob

 expectations 

 
Although price uncertainty has no effect on a risk-neutral producer’s 

optimal preparedness and response plan, it does affect the profit outcome.  The 

addition of price uncertainty increases expected profit by nearly 50% (from 

(Net Revenue) ( ( ))
( ) ( )

(Net Revenue) ( ( ,
( ( , ))

E E price totyield decisions
E price totyield decisions

E E price totyield decisions water
price E totyield decisions water
pr

= ⋅
= ⋅

= ⋅
= ⋅
≠

Price Uncertain : 

Water Supply Uncertain : 

( , ( ))  ice totyield decisions E water⋅
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y spreading onions over the planning horizon, reduces the standard 

deviati  

rse 

$473,000 to $700,000), due to a 25% chance of receiving $12.25 per cwt for 

onions rather than $6.00.  Price uncertainty also drastically increases profit 

variability (from a standard deviation of $26,000 to $980,000), and creates the 

potential for large profit losses (table 6.12).  A risk-neutral producer would be 

unconcerned by this, but a risk-averse producer would seek an alternative crop 

plan that reduces profit variability.  Crop diversification within each year, 

specificall

on of profit from $980,000 to $650,000.  This result suggests that producers

in the study area might spread onions through the planning horizon as a risk-ave

response to price uncertainty.   

 
Table 6.12.  Summary statistics of the profit outcome ($) for the following 
three-year models: (i) water supply uncertainty and onion price certainty, 
and (ii) water supply and onion price uncertainty. 

Statistic (i) (ii) 
Expected Stream of Discounted Profit 472,974 701,280 
Standard Deviation of Expected Stream 26,179 981,272 
Maximum Discounted Profit 507,876 2,597,705 
Minimum Discounted Profit 416,048 -755,400 

 

One final observation about the effect of price uncertainty on the base case 

solutio e 

on, 

sk 

gram

n is that a low onion price is clearly more devastating than a drought (tabl

D1).  A risk-averse producer would therefore likely focus their efforts on 

managing price uncertainty (e.g. planting onions throughout the planning horiz

or contracting onions in advance), rather than water supply uncertainty.  

Thompson and Powell (1998) also conclude that price risk is greater than yield ri

for many, but not all Australian farm systems.     

6.6 Prevented Planting Provision of the Multi-peril Crop Insurance Pro  

ing (PP) 

r 

The multi-peril crop insurance program includes a prevented plant

provision for irrigated crops.  A PP payment is made when an insured produce
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, where a crop was planted, but later 

failed due to unanticipated drought.  Produ

t of 

historical crop yield that the insurance company will reimburse in the event of a 

loss.  The PP coverage level is the percent of the MPCI indemnity that the 

producer will receive in the event of a successful PP claim.  Crop insurance 

policies are purchased in the fall, before the upcoming growing season’s water 

supply is known.  If the water supply is revealed dry, the producer then chooses 

whether to abandon the crop and receive a prevented planting payment, or to plant 

the crop.  No payment is received if the crop is abandoned during a year in which a 

full water allotment is received, or if the insured crop is planted successfully.   

provides evidence that as of the final planting date they have no reasonable 

expectation of receiving sufficient water to follow good irrigation practices, due to 

an insurable cause of loss, such as drought (Risk Management Agency 2003).  

This contrasts to a traditional MPCI claim

cers in the study area indicate that the 

PP provision is a useful drought preparedness tool, and an insurance agent for 

producers in the study area attributes participation in MPCI largely to the PP 

provision (Agricultural Producers in the Vale Oregon Irrigation District 2003; 

Haight 2004).  However, to the author’s knowledge, no economic studies have 

examined the prevented planting provision in this role.  Existing studies have 

focused instead on the provision’s susceptibility to adverse selection and 

fraudulent claims (Rejesus, Escalante, and Lovell 2005; Rejesus et al. 2003).  The 

prevented planting provision’s effectiveness at the farm-level as a drought 

preparedness tool is therefore analyzed in this section.  No attempt is made, 

however, to determine the social efficiency of the prevented planting provision.  

The producer in the model has the option to purchase alternative coverage 

levels of multi-peril crop insurance (each with a fixed level of PP coverage) for 

individual fields of the following fall-planted crops: onions, potatoes, sugar beets, 

and wheat.  The MPCI coverage level, in the context of PP claims, is the percen
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Claims for post-planting disasters, such as hail, pests, freeze, or abnormally 

peratures are not modeled.  Crop insurance is also not offered in the 

lanted crops.  These would both require a decision third stage in 

odel.  Solution of the prevented planting model is sufficiently 

The exclusion of spring sources of crop 

plies that the producer pays the entire multi-peril crop insurance premium, 

erage only.  The portion of the premium 

erage is unknown, however, so a conservative 

lt, likely underestimates the adoption of 

ulti-peril crop insurance with prevented planting provisions.    

In the base case solution, the producer frequently abandons sugar beets in 

e producer might therefore purchase multi-peril crop 

ted planting provisions for at least some portion of their 

t fields.  Theoretically, the producer should fully insure a crop (i.e. 

urance coverage equal to the potential loss) if the premium is 

rially fair.  A premium is actuarially fair if it equals the expected insurance 

nity (i.e. the expected payment to the producer).  An actuarially unfair 

ium should cause the producer to underinsure.  An actuarially favorable 

ium should cause the producer to over-insure, if the insurance company 

Unsubsidized and subsidized premiums (table 6.13) are estimated using the 

ement Agency’s online premium calculator for the year 2004 (the year 

e calibrated) (2006).  Expected insurance 

nities are estimated assuming alternative values for the expected probability 

donment in any given year due to drought (i.e. the probability of an 

nity occurring) (table 6.13).  The true abandonment probabilities are likely 

unique to each crop; for example, the base case solution indicates that 68% of 

attempted sugar beet is abandoned on average during drought, while only 5% of 

high tem

model for spring-p

each year of the m

difficult with only two stages per year.  

loss im

but receives prevented planting cov

attributed to prevented planting cov

approach is taken.  The model, as a resu

m

response to drought.  Th

insurance with preven

sugar bee

purchase ins

actua

indem

prem

prem

allows it.   

Risk Manag

to which all other cost and price data ar

indem

of crop aban

indem
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attempted wheat is abandoned during drought, and 0% of onions are abandoned.  

The expected probability of abandonment of sugar beets, wheat, and onions in any 

given year, assuming no abandonment during a full year and a 40% chance of 

drought, is 27%, 3%, and 0%, respectively.  However, the base case solution also 

illustrates that the proportion of attempted fields abandoned during aries 

with the suite of accompanying crops.  The proportion of abandoned sugar beets 

varies from 33 to 100%; the proportion of abandoned wheat varies f .      

 
Table 6.13. Unsubsidized and subsidized premiums, prevent
payment, and expected indemnity ($ per acre) for alternative s 
of crop and MPCI coverage level.  Parameter assumptions u
PP payments appear in tables C.1, C.2, C.4, and A.2.  

Insured 
Crop 

MPCI 
Cover
-age 

Level 

Unsub
Prem-
ium 

Sub 
Prem-
ium 

Prevented
Planting 
Payment*

Exp
Indem
Proba
Aband

drought v

rom 0 to 20%

ed planting 
 combination
sed to estimate 

ected 
nity by 

bility of 
onment 

     40% 25% 5% 1%
Onion 50 72 19 402 161 101   20 4

 65 128 42 523 209 131   26 5
 75 195 71 603 241 151   30 6

Potato 75 97 35 260 104 65  13 3
Sug Beet 50 20 5 272 109 68  14 3

 65 37 12 354 142 89  18 4
 75 65 24 408 163 102   20 4
 85 118 59 462 185 116   23 5

Wheat 55 6 2 138 55 35  7 1
 65 10 3 163 65 41  8 2
 75 15 6 188 75 47  9 2
 85 28 14 213 85 53  11 2

 

Table 6.13 reports expected indemnity for alternative probability of 

abandonment, specifically 40%, 25%, 5% and 1%.    A probability of 
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abandonm

favorable if the true prob

e 

ply  

ent equal to 40% assumes that the crop is always abandoned when 

drought is revealed; therefore, a 40% probability of drought implies a 40% 

probability of abandonment.  It is clear from previous models’ solutions that 

drought does not imply abandonment for all crops, because other drought 

responses are available (e.g. deficit irrigation, or abandon one crop to provide 

water for another).  The middle and right columns assume, more conservatively, 

that a 40% probability of drought implies a 25, 5, and 1% probability of 

abandonment, respectively.   

Pair-wise comparisons of premium and expected indemnity (table 6.13) 

indicate whether premiums are actuarially fair, favorable, or unfair at these 

assumed abandonment probabilities.  Table 6.14 reports whether premiums are 

fair, favorable, or unfair for alternative probabilities of crop abandonment.  All 

premiums (subsidized or unsubsidized) are actuarially favorable if the true 

probability of abandonment is 40%.  All subsidized premiums are also actuarially 

ability is 25%.  Recall that the expected probability of 

sugar beet abandonment indicated by the base case solution is approximately 25%.  

All premiums are unfair if the true probability of abandonment is 1%, which is th

case for onions.  Lastly, the base case solution indicates that the expected 

probability of wheat abandonment, when rounded up, is approximately 5%.  

Subsidized premiums for wheat are favorable, except for the highest coverage 

level; unsubsidized premiums for wheat are unfair, except for the lowest coverage 

level. (table 6.14).  These results suggest that under subsidized premiums, sugar 

beets should be over-insured, onions under-insured, and wheat over-insured, but 

not to the maximum degree possible. 

It is not immediately clear in the case of prevented planting coverage how a 

producer can over or under-insure, since the level of prevented planting coverage 

is fixed for each crop (in this model) (table C.4).  A producer who anticipates $600 

losses for an acre of abandoned onions, for example, cannot over-insure by sim
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Table 6.14.  Actuarial fairness of unsubsidized and subsidized multi-peril 
crop insurance (MPCI) premiums, in 2004, for alternative crops and 
coverage levels. Key: fair (+), favorable (++), unfair (-).    

Insured 
Crop 

MPCI 
Cover
-age 

Level 

Fairness of 
Unsubsidized Premiums 

by Probability of 
Abandonment*

Fairness of 
Subsidized Premiums by 

Probability of 
Abandonment*

  40% 25% 5% 1% 40% 25% 5% 1% 
Onion 50 ++ ++ - - ++ ++ - - 

 65 ++ - - - ++ ++ - - 
 75 ++ - - - ++ ++ - - 

Potato 75 ++ - - - ++ ++ - - 
Sug Beet 50 ++ ++ - - ++ ++ ++ - 

 65 ++ ++ - - ++ ++ ++ - 
 75 ++ ++ - - ++ ++ - - 
 85 ++ - - - ++ ++ - - 

Wheat 55 ++ ++ ++ - ++ ++ ++ - 
 65 ++ ++ - - ++ ++ ++ - 
 75 ++ ++ - - ++ ++ ++ - 
 85 ++ ++ - - ++ ++ - - 

* Fairness is reported for alternative probabilities of crop abandonment (40, 
25, 5, and 1%).  Premiums are actuarially fair if premium = expected 
indemnity; favorable if premium > expected indemnity; unfair if premium 
< expected indemnity.  Premiums and expected indemnities are reported in 
table 6.13.   
 

rage.  A producer can over-insure only 

  Specifically, if they wish to insure 

c problem for X:  [550 · X · 0.45 · $3.25 

 the desired payment in the event of a 

.  The left-hand side is the equation used to determine the 

ent; specifically, it is the product of approved yield, MPCI coverage level, 

 The producer, in order to receive a $700 

payment in the event of onion abandonment, should elect for a MPCI coverage 

level of 87%.  The producer could, in reality, achieve the same effect by selecting 

purchasing $700 of prevented planting cove

by purchasing a higher MPCI coverage level.

for $700, they solve the following algebrai

= $700].  The equation’s right hand side is

prevented planting claim

PP paym

PP coverage level, and the elected price. 
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a higher price election for a particular MPCI coverage level, or purchasing 

itional PP coverage, which is not allowed for all crops.  These two options are 

 considered here because the model becomes too large to be solved.    

The equation illustrated above is used in combination with the parameters 

ables C.1, C.3 and C.4, and the fall cost of each crop (table A.3) to provide 

gh estimates of the MPCI coverage levels necessary to fully insure a producer’s 

onment losses (table 6.15).  To fully insure sugar beets, for example, a 

cer solves the following equation for X: [ 31 · X · 0.45 · $39.00 = $150].  Fall 

ration costs of $150 per acre represent the loss if an acre of sugar beets is 

oned.  The producer should adopt an MPCI coverage level of 28% to fully 

 sugar beets, assuming approved yield of 31 ton, prevented planting 

age of 45%, and a price election of $39.00 per ton.  The producer over-

s (under-insures) if they choose MPCI coverage levels greater (less) than 

reported in table 6.15.   

 
Table 6.15.  MPCI coverage levels required to fully insure a producer’s 
losses from drought-induced abandonment.  Parameter values in tables A.3, 
C1, C3, and C4 are assumed. 

Insured 
Crop 

MPCI Coverage
Level (%)  

add

not

in t

rou

aband

produ

prepa

aband

insure

cover

insure

those 

Onion 75 

Potato 29 

Sugar Beet 28 

Wheat 64 
 

The prevented planting model’s solution indicates that the producer enrolls 

ar beet acreage, in all scenarios, at the 75% coverage level.  The producer, 

ected, over-insures sugar beets.  The number of wheat fields enrolled varies 

from 0 to 3 fields depending on the water supply scenario; however, on average, 

only one field of wheat is enrolled (out of 5 attempted fields on average), and at 

all sug

as exp

 



 
 
 
 

175

vel of 85%.  That the producer insures very little of their 

wheat c

r at 

l 

ities 

and pro

ost of 

 

ly undesirable for the 

produc  

g 

the unexpectedly high le

ompared to sugar beets reflects that wheat is abandoned relatively 

infrequently.  The producer over-insures wheat, as expected, but to an unexpected 

degree.  Recall that the subsidized premium for 85% MPCI coverage is unfai

the 5% abandonment probability.  The producer’s enrollment at this unfair level 

suggests that the probability of abandonment for wheat is actually higher than 5%, 

or that the model’s approximate solution has not identified the optimal coverage 

level.  Lastly, one onion field is enrolled at the 50% level in a small number of 

scenarios.  Onions are never abandoned in the optimal solution, so it is unclear 

why a producer would enroll any onion field.  The enrollment of an occasiona

field might be attributable, however, to the approximate nature of the optimal 

solution. 

The availability of subsidized PP coverage affects both cropping activ

fit outcomes.  Cropping activities change in the following ways.  More 

fields of sugar beets are attempted; this is because PP coverage reduces the c

abandonment in the event of a dry year.  The following two adjustments make it 

possible to attempt more sugar beets: 1) shifting onions from year 1 to years 2 and

3 to make more complete use of water supplies, and 2) decreasing the number of 

open fields, which subsequently reduces the number of grain corn fields.  

Although more fields of sugar beets are attempted, fewer fields are successful in 

most scenarios.  Fewer successful fields is not necessari

er, however, particularly if the prevented planting payment for sugar beets

exceeds actual losses.  The producer in this model is allowed to and does over-

insure, which implies that the payment exceeds actual losses.   

The perverse incentive to plant additional sugar beet acreage is partially 

offset, however, by the fact that the producer cannot receive a prevented planting 

payment in the event of a full water allotment year.  The pursuit of prevented 

planting payments must therefore be balanced against the consequences of gettin
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tic 

the study area are generally positive about 

the usefulness of the PP pr

trapped in a full year with too many beet fields.  The latter could be problema

due to crop water requirements (e.g. only 6 sugar beet fields can be fully irrigated 

given a full allotment; all other fields would have to be abandoned), and 

agronomic constraints (e.g. eligibility of fields for sugar beets is quickly 

exhausted, so less profitable grain corn has to be rotated with wheat to avoid 

exhausting eligibility for wheat).  Sugar beets are limited in most years and 

scenarios to three or four fields.  Five or six fields do appear in some years; 

however, a portion of these fields are typically under reuse furrow, which reduces 

crop water requirements. 

The profit impacts of subsidized prevented planting coverage are 

substantial (figure 6.16).  Expected profit is increased by 16% ($85,000); 

minimum profit is increased by 41% ($150,000); maximum profit is increased by 

15% ($88,000), and standard deviation is decreased by 38%.  The PP provision 

therefore achieves the goal of most farm programs, to stabilize farm income 

(Lewandrowski and Brazee 1992).  In addition, scenarios dominated by drought 

become more profitable than those that are not (figure 6.17).  Six years of drought, 

for example, is 17% more profitable than six years of full water allotments (table 

C.5).  Prevented planting coverage effectively eliminates profit losses attributable 

to drought.  The actual effects of this program on profit in the study area have not 

been quantified.  However, producers in 

ovision as a drought management tool.  This analysis 

suggests that PP coverage, for sugar beets in particular, is a very effective drought 

preparedness tool at the farm-level.  Note again, however, that this study makes no 

attempt to determine whether the PP provision improves social welfare. 
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Figure 6.16.  Cumulative distribution function of discounted profit without prevented planting coverage (solid 
line) and with subsidized PP coverage (dashed line).
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Figure 6.17.  Average change in total discounted profit by years of drought experienced (as compared to 6 years 
of full water supply).  Black dashes represent average change without prevented planting coverage.  Black 
asterisks represent average change with subsidized PP coverage.  Gray brackets indicate the maximum and 
minimum impact of drought with PP coverage (dashed gray) and without (solid gray). 
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ll sugar beet acreage at the 

65% co r 

ss 

nd 

t, in 

f 

e 

 fields. 

 

d deviation is decreased by 72% (versus 38%).  The 

additio  

 

an 

ge 

The potential role of an unsubsidized PP provision as a drought 

management tool is investigated next. The solution to the unsubsidized coverage 

model indicates that the producer enrolls most, but not a

verage level.  This contrasts to the subsidized model, in which the produce

enrolled sugar beets at the 75% coverage level.  Enrollment of wheat ranges acro

scenarios from 0 to 3 fields, and at various coverage levels, including 55, 75, a

85%.  Lastly, no onion fields are enrolled in prevented planting coverage.  Despite 

the absence of subsidies, the producer still over-insures sugar beets, and whea

most cases.  However, the number of insured fields of sugar beets decreases 

slightly, and the degree of over-insuring declines.  The effects of unsubsidized 

prevented planting coverage on cropping activities are nearly identical to those o

subsidized coverage.  More fields of sugar beets are attempted, with fewer fields 

successful in most scenarios.  Onions are shifted from year 1 to years 2 and 3.  Th

number of open fields decreases, and thus so does the number of grain corn

The profit impacts of unsubsidized prevented planting coverage remain 

positive, from the perspective of reducing drought impacts, but are less extreme.  

Expected profit is increased by 11% (versus 16% with subsidized coverage);

minimum profit is still increased by 41%; maximum profit is only increased by 5% 

(versus 15%), and standar

nal decrease in the standard deviation of profit is attributable to a reduction

in the right-tail levels of profit (figure 6.18)   Scenarios dominated by drought are

still more profitable than those that are not, but to a lesser degree (figure 6.19).  

Six years of drought, for example, is only 5% (versus 17%) more profitable th

six years of full allotment (table C.6).  Unsubsidized prevented planting covera

effectively eliminates profit losses attributable to drought, but does so while 

creating less extreme profit improvements (figure 6.18).  The prevented planting 

provisions, in conclusion, would remain an effective component in producers’ 

drought management toolbox even if premiums were not subsidized.     
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6.7 Climate Change  

 One anticipated effect of climate change in the west is that mountain 

precipitation will be received increasingly as rain, rather than snow (Frederick and 

Gleick 1999; Intergovernmental Panel on Climate Change 2001a; Knowles, 

Dettinger, and Cayan 2006).  Snow pack levels are also expected to form much

later in the winter, to accumulate in much smaller quantities, and to melt earlier 

the season (Intergovernmental Panel on Climate Change 2001a; Stewart, Cayan, 

and Dettinger 2004).  Observation of the runoff process and resulting reservoir 

levels in the study area by the regional water master and water district manager 

indicate the potential for climate change to decrease runoff to reservoirs, and 

therefore increase the frequency of water shortage (Jacobs 2004; Ward 2004).  The

effects of increased drought frequency and severity o

 

in 

 

n drought preparedness and 

response, and on the profit impact of drought, are examined in this section.  

severity of dry years in the study ar

scenarios, which are the focus of this s therefore hypothetical 

in nature:  1) a 25% in th a ( n drought from 40 to 

50%, 2) a 25% increase in drought severity om 24 to 18 acre-inches per acre, and 

3) a 25% increase in both ought uen nd rity he three climate 

change scenarios’ relative pact on croppi  profit, as 

compared to the base case solution, is

Producers adapt to increased drough

number of fields prepared for sugar b s, a water-intensive crop, and increasing 

those prepared for wheat, a less water-intensive crop.  Although wheat, like sugar 

beet, is use 

it requi

beets, which creates a viable alternative to abandonment in the event of a drought.  

Shifting the crop mix is considered one of the least-costly means of adjusting to 

No estimate has been made yet of the expected increase in the frequency or 

ea.  The following three climate-change 

ection’s analysis, are 

crease in e prob bility 

 fr

freque cy) of 

 dr freq cy a seve .  T

 im ng patterns and expected farm

 discussed next.   

t frequency (case 1) by reducing the 

eet

 subject to the risk of abandonment, it is less prone to abandonment beca

res less water.  Wheat is also more profitable under deficit irrigation than 
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climate

 1 

te that an increase in the probability of drought does not affect the 

timing of onions.  A sensitivity analysis indicates that the timing of onions across 

years is not affected even by very extreme increases in the probability of drought 

(e.g. from 40 to 80%).  It has already been determined, however, that the water 

supply during drought, defined as 24 acre-inches per acre, allows up to seven 

fields of drip-irrigated onions to be fully irrigated.  Recall that the benefit of 

retiming onions is that it provides opportunities to support additional fields over 

the planning horizon by balancing total crop water requirements through time.  

This benefit is largest when water supplies are full.  As the probability of a full 

allotment declines, due to climate change, the expected benefit of retiming onions 

declines.      

Producers adapt to increased drought severity (case 2) by shifting one field 

of onions from year 1 to 2.  Water is insufficient during a more severe drought to 

fully support seven fields, and the fall preparation cost of onions is too high to risk 

abandoning them.  Producers also shift some wheat production from furrow to 

reuse furrow irrigation, which reduces wheat’s net irrigation requirement, and 

subsidizes other crops’ water needs, such as sugar beets (figure 6.21).  The number 

of fields prepared for sugar beets increases under increased drought severity.  This 

contrasts with the response to increased drought frequency.  An increase in 

 change (Lewandrowski and Brazee 1992; Mjelde et al. 1997).  More 

efficient irrigation technologies are also used on a larger number of fields; 

specifically, wheat is grown primarily under reuse furrow rather than furrow 

irrigation (figure 6.20).  If the producer continued to implement the base case 

solution under increased drought frequency, more deficit irrigation and 

abandonment of fall-prepared sugar beet fields would be necessary.  The case

solution indicates that it is instead more profitable to shift the crop mix by 

increasing the proportion of fields prepared for less water-intensive crops, and 

using more efficient irrigation technology.     

No
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Figure 6.20.  Cropping impacts of incre
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Figure 6.21.  Cropping impacts of increased dro
Dry Dry Full Full Full].  A stage-by-stage comp
drought.  Crop Key: F = furrow, RF = reuse furr
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of onions.  The tendency of producers in the study area to spread onions through 

drought severity will require more fields to be abandoned and fallowed.  Failed 

sugar beet fields are typically reattempted in later years; increased failure therefo

implies increased attempts over the planning horizon.   

It is not immediately clear why wheat is not substituted for sugar beets 

the case of increased drought severity, as it is for the case of increased drou

frequency.  Substitution of wheat for sugar beets reduces the abandonment of 

fields in the case of increased dro

e of more severe drought as well.  It is not, however, because water is 

sufficiently short during the more severe drought to require even some wheat 

fields to be abandoned.  Wheat requires larger fall investments than sugar beets,

and is thus more costly to abandon.  Wheat is substituted for sugar beets for it

ability to avoid abandonment, but its ability to do so depends on the severity of the 

drought.  Additionally, sugar beets, in the event of a full year and full irrigation

are more profitable than wheat.  Again, if drought leads inevitably to field 

abandonment, a producer should prepare fields for the crop with a low

and higher profit in the event of a full year.  Sensitivity analysis co

osts in the substitution, or lack thereof, of wheat for sugar beets.  A 

reduction in the fall cost of wheat causes wheat to be substituted for sugar beets in

case 2, just as in case 1.   

As the severity of drought worsens, onions are increasingly spread acro

multiple years to avoid abandonment of onion fields.  If drought is defined as 12 

acre-inches per acre, for example, the producer plants four fields to onions in each

of years 1 and 2, followed by two fields in year 3.  More modest increases in 

drought severity, from 24 to 22 or 20 acre-inches per acre for example, do not 

affect the timing of onions, but do prompt a shift from furrow to reuse furrow 

irrigation of wheat.  The shift of onions across an increasing number of fields a

drought severity increases indicates some drought-preparedness role for the timing 
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time co t.  
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nally 

terialize.   

o 

  The producer, in summary, alters 

several

 

 

uld reflect, in part, a positive probability of sufficiently severe drough

This would justify planting only one or two fields of onions per year, which may 

be all that can be supported during these severe droughts.            

The results above indicate that the response to climate change depends on 

which climate characteristics change.  The only similarity in response to a chang

in drought frequency versus severity is a shift from furrow to reuse furrow 

irrigation for wheat production.  Reuse furrow irrigation, coincidentally, is 

becoming increasingly prominent in the study area.  The technology was origi

introduced there to reduce agricultural runoff and improve water quality.  

Producers who have adopted this technology are likely, however, to experience 

additional benefits from it if the predicted impacts of climate change ma

Producers adapt to an increase in both the frequency and severity of 

drought (case 3) in much the same manner as they adapt to case 2.  Adaptations to 

case 3 include the following: a) shifting one field of onions from year 1 to 2, b) 

continuing to attempt sugar beets, rather than shifting to wheat, despite more 

frequent abandonment, which results in more fallowing in dry years, and c) 

replacing furrow irrigation with reuse furrow on many wheat fields.  There is als

a unique adaptation to case 3.  The number of wheat fields attempted is reduced, 

and the number of open fields is increased.  This adaptation, in an environment of 

more frequent and severe drought, reduces the cost of fallowing in dry years and 

increases grain corn production in full years.

 features of their crop plan to mitigate the impacts of more frequent and 

severe drought.  The impact of each climate change case on profit is discussed 

next.    

The impact of increased drought severity (case 2) on expected profit, when

responded to optimally, is nearly three times that of increased drought frequency

(case 1) (table 6.16).  Increased drought severity also significantly reduces 

minimum profit, which is opposite of increased drought frequency, which actually 
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uent 

neously.  

rity on expected 

profit i

t 
 

 π  

increases minimum profit.  Lastly, the variability of profit increases by more than 

half in case 2, whereas variability decreases in case 1.  The hypothetical producer 

is better able to mitigate for more frequent moderate drought than for less freq

but more severe drought.  Suppose that both characteristics change simulta

The impact of an increase in both drought frequency and seve

s 50% larger than that of severity alone.  Additionally, profit variability 

increases and minimum profit is reduced, as in case 2.  Maximum profit also 

declines by more in case 3.   

   
Table 6.16.  Profit impacts ($1,000) of three climate change cases as 
compared to the base case: 1) increase in the frequency of drought from 40 
to 50%, 2) increase in drought severity from a 24 acre-inch/acre water 
allotment to an 18 acre-inch water allotment, and 3) an increase in drough
frequency and severity.  Numbers in brackets indicate percent change from
the base case. 

Case 
Frequency 
(% years) 

Severity 
(ac-inches/ac) E(π)  Std Dev Min π  Max

Base 40 24 532 36 408 590 

1 50 24 515 [-3] 28 [-21] 429 [+5] 572 [-3] 

2 40 18 476 [-11] 59 [+65] 272 [-33] 572 [-3] 

3 50 18 448 [-16] 55 [+51] 302 [-26] 552 [-7] 
 
The profit-maximizing producer is clearly worse off, in terms of expected 

profit, in each of the climate change scenarios examined.  An increase in drough

severity, or both severity and frequency leave the producer significantly worse of

The average profit impact of drought, however, is not necessarily worse for

climate change scenarios (table 6.17).  An increase in the frequency of droug

(case 1) actually decreases the percent profit impact of drought.  As the probability 

of drought increases, the crop plan is increasingly tailored to drought, rather than 

the less common full year; therefore, the difference between expected profit and 

profit during drought is less than in the base case solution.   

t 

f.  

 all 

ht 
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s, in 

 

cer to respond to more severe water shortages at less cost (e.g. fallowing 

open fi

gh 

An increase in drought severity (case 2), in contrast, nearly doubles the 

percent profit impact of all drought categories.  That is, the producer’s expect

profit declines, and the average impact of drought worsens.  This again reflects the

producer’s difficulty in effectively mitigating more severe water shortage

contrast to more frequent but moderate shortages.  Lastly, an increase in both 

drought frequency and severity (case 3) also causes larger percent profit losses 

attributable to drought.  The percent losses are slightly less than those experienced 

in case 2, but more than those in case 1.  Again, more frequent drought provides

the producer with incentives to prepare a crop plan in which drought is no longer 

the unexpected outcome.  These adjustments (e.g. leaving more fields open) allow 

the produ

elds, rather than fall-prepared fields).            

 

Table 6.17.  Average percent change in total discounted profit, by years of 
drought experienced, for the base case and climate change cases 1 throu
3.  

 Average % change in π 
Years of 
Drought

Base 
Case*

Case 
1 

Case 
2 

Case 
3 

1 -2 -1 -6 -6 

2 -7 -3 -13 -11 

3 -11 -7 -20 -18 

4 -16 -11 -29 -26 

5 -23 -16 -40 -35 

6 -30 -23 -52 -45 
 

*Base case defined as Pr(D)=0.4, Dry = 24 ac-in/ac.  Case 1 defined as 
Pr(D)=0.5, Dry = 24 ac-in/ac.  Case 2 defined as Pr(D)=0.4, Dry =
in/ac.  Case 3 defined as Pr(D)=0.5, Dry = 18 ac-in/ac. 
 

 18 ac-
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ty and frequency.  

Even af ill 

The above results suggest that climate change has the potential to alter 

agricultural producers’ need for government assistance in response to drough

in dramatically different ways, depending upon the characteristics of climate tha

are affected.  This result can help guide the evolution of farm support program

a changing climate.  Specifically, producers will not be affected significantly by

increase in drought frequency alone.  In contrast, producers will be affected 

significantly by an increase in drought severity or both severi

ter producers adjust cropping plans in response to these changes, they w

be much worse off during drought events than they are currently.   
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grams, 

 

he 

ght, and 

ss and drought response.  Optimal drought preparedness and 

response is a challenging decision problem because few producers know a priori 

whether drought will occur in the near future, when or how frequently it will occur 

in the more distant future, how severe drought will be, or for how long any one 

drought will persist.  Producers whose farm systems are characterized by intra- and 

inter-year dynamics face additional complexity in their decision environment.  

They must consider not only how the outcomes of their decisions will vary across 

states of nature, but also how their decisions today will affect opportunities and 

outcomes in future periods.  The future consequences of their current decisions 

will also depend on the states of nature revealed through time.  Given the 

7 Summary of Results and Policy Implications 

 

Chapter 7 summarizes the dissertation’s motivation, objective, method, and

major results.  Chapter 7 also draws the large set of results together by discuss

their broader implications for the administration of drought-related farm pro

in contrast to the farm-level implications presented in chapters 5 and 6.  Readers

should note, again, that the term “optimal,” as used in this dissertation, refers 

simply to activities that are included in the mathematical programming model’s 

solution; it does not indicate that the activities are Pareto optimal or socially 

efficient.      

A transition from drought as ‘disaster’ to drought as ‘managed risk’ is 

underway.  The impact of recent severe droughts throughout the United States, t

potential for climate change to intensify the frequency and severity of drou

discussion about the future of government assistance in agriculture have all 

increased the need to make this transition a reality.  However, guidance for 

agricultural producers about how to optimally manage for the risk of drought 

remains insufficient.   

Managing for the risk of drought involves two planning components, 

drought preparedne
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considerable complexity of this decision environment, it is not clear what optimal 

rought preparedness and response, in practice, should look like.   

A mathematical programming model that captures the stochastic and 

on is 

dev ought preparedness 

resp

between maximizing the use of scarce water resources and minimizing the effects 

ter-

yea ffects of climate change, the effectiveness of the 

dro

man certainty.  These insights, which are presented in 

ader 

disc ns for drought-related farm programs.   

pre se.  It 

is difficult to generalize the im

occ  specifically, the crops planted at the time the drought occurs.  This 

Dis

lev  qualify 

for disaster assistance.  This study illustrates that drought could impact identical 

the 

drought occurs.  A farm community’s collective losses might therefore be 

synchronize their crop plans.  Note, however, that the community’s economy is 

d

dynamic nature of a representative irrigated mixed crop farm in eastern Oreg

eloped and used to explore the characteristics of optimal dr

and response.  Insights are gained about the role of alternative preparedness and 

onse tools, the profit impact of droughts that vary in length, the tradeoff 

of discounting and interest costs, the role of crop history, the importance of in

r dynamics, the potential e

multi-peril crop insurance program’s prevented planting provision for reducing 

ught’s impact on producer profit, and the influence of price uncertainty on the 

agement of water supply un

detail in chapters 5 and 6, are summarized below in the context of a bro

ussion of their potential implicatio

The magnitude of profit loss attributable to drought under optimal 

paredness and response increases as the number of years of drought increa

pact of drought beyond this, however, because 

profit loss exhibits large variation depending upon the year in which drought 

urs, or more

presents a challenge to the administration of drought-related farm programs.  

aster declaration, for example, is based on the severity of loss at the county 

el; that is, some threshold of loss must be reached at the county-level to

farms very differently if they are in a different stage of the crop plan when 

insufficient to receive disaster assistance, particularly if producers do not 
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ans.  

The ely 

impacted producers are likely to be left without assistance in all but the most 

man t, be optimally 

rought 

wit

 

on lt for 

crop insurance adjusters to identify comparable losses with which to validate a 

denied an indemnity payment because their crop plan is not synchronized with 

wer ever, farm program 

het

The potential for drought to generate spillover effects from one year to 

corroborated by the model’s results.  A farm system with inter-year dynamics can 

 drought itself 

sub

h producers likely prefer prompt 

ass d 

ral 

yea  the sum 

of its parts.  The marginal profit impact of a year of drought is shown for one 

                          

likely sheltered from risk when producers do not synchronize their crop pl

re are distributional implications of such a threshold-based policy; sever

severe droughts.  These severely impacted producers are not necessarily poor 

agers, as is sometimes assumed.  They could, in contras

prepared for drought, and simply have experienced an unfortunately-timed d

h respect to their crop plan.   

Crop insurance companies also judge the validity of a claim based in part

the occurrence of similar losses in the neighboring area.  It could be difficu

producer’s claim.  A producer with valid drought losses could potentially be 

their neighbors’.  Timely program delivery would not be possible if assistance 

e based on individual producers’ circumstances.  How

administrators should recognize the potential for drought to generate 

erogeneous impacts, even across a set of homogeneous farms. 

another due to inter-year dynamics, a phenomenon which producers allude to, is 

therefore continue to experience the effects of drought after the

sides.  Additionally, the effects of drought in one year can intensify the profit 

impact of drought in subsequent years.  Althoug

istance in the event of drought, program administrators should keep in min

that the total impact of a particular year of drought might not be felt for seve

rs, and that the impact of a multi-year drought can be more or less than

scenario, for example, to be 150% larger when preceded by a year of drought.
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pre ne important tradeoff is between maximizing 

minim terest rates.  A producer 

rst, 

wh ation in onions in year 1.  However, 

agr

num e total 

vely 

wh nefits of specialization outweigh the cost through time.   

opt

man producers in the 

thro

yea

attributable to aversion to price-uncertainty for high-value crops, not water supply 

con

nd 

inte llotment 

of 1

ear 

as c re probable case of less 

wit f high value crops to reap 

Producers face a complex set of tradeoffs when designing a drought 

paredness and response plan.  O

the use of scarce water resources in each year of the planning horizon, and 

izing the negative profit impacts of discount and in

with a positive discount rate is generally expected to plant valuable crops fi

ich implies, for this farm system, specializ

this strategy is not costless in a farm system with water supply uncertainty and 

onomic constraints that generate inter-year dynamics.  It reduces the total 

ber of fields that can be successfully planted and the proportion of th

water allotment used over the planning horizon.  It is therefore not clear intuiti

ether the be

The model’s results indicate that specialization in onions in year 1 is 

imal, even in the presence of uncertainty and inter-year dynamics.  This finding 

differs from the commonly-held belief that diversification is an effective drought 

agement tool.  It also contradicts the observed behavior of 

study area, who tend to spread the production of high value crops, such as onions, 

ughout the planning horizon, rather than concentrating it within one or two 

rs.  A sensitivity analysis indicates, however, that this behavior is more likely 

uncertainty.  For some producers, this behavior is also attributable to agronomic 

straints generated by past crop history.   

Diversification is only optimal in the risk-neutral model when discount a

rest rates are set to zero, or drought is defined as very severe (a water a

2 acre-inches per acre, rather than 40).  The hypothetical producer should, 

more specifically, plant as many fields to the highest valued crop in the first y

an be supported in the event of a drought.  In the mo

severe drought (24 acre-inches per acre), up to seven fields can be supported 

hout risk of abandonment.  Delaying the production o
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from

the planning horizon, due to the increased cost of discounting and interest on 

magnitude of these tradeoffs using intuition alon

of 

wat s much attention in the economics literature.  

wat

prim  

is result 

exp

insu lanting provision.  The prevented planting 

sho

pro means for producers to prepare for and 

The

The predicted effects of climate change for snowmelt-dependent farm 

te 

and  plans will therefore 

gen

inc

expenditures if agricultural producers suffer losses due to natural disasters, such as 

pro  optimally to a changing climate therefore has a variety of social 

consequences.  The impact of increased drought frequency and severity on optimal 

the benefits of more complete use of scarce water resources (i.e. more net revenue

 crop production) is not as profitable as concentrating the production early in 

borrowed funds.  It would be difficult for a producer to weigh the relative 

e.                 

The potential for improved water supply forecasts to reduce the impacts 

er supply uncertainty receive

Losses attributable to drought can be separated into a portion caused by the actual 

er shortage and a portion caused by uncertainty about the water supply.  The 

ary effect of water supply uncertainty in the farm system modeled here is that

more fall-prepared fields are abandoned than would be under certainty.  Th

lains why the hypothetical producer is found to enroll in the multi-peril crop 

rance program’s prevented p

provision covers a portion of the losses incurred when an anticipated water 

rtage makes it unreasonable to follow through with a planned crop.  The 

vision is shown to be an effective 

mitigate the profit impacts of drought, even when premiums are not subsidized.  

 social welfare implications of the provision are not examined, however. 

systems include more frequent and severe drought.  Producers’ ability to formula

 implement optimal drought preparedness and response

become increasingly important to the success of agricultural communities.  The 

eral public relies on these communities to provide many public goods, 

luding open spaces and wildlife habitat.  The public may also incur large 

drought, and receive assistance from the government.  The ability of agricultural 

ducers to adapt
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ought is 

ana  

preparedness plan or on profit loss attributable to drought.  However, an increase 

sus ties thus depends critically on which features 

val tive forms 

ents and 

imp

mat rm systems.  The base case 

ing 

(DS

intr

yea

tradeoffs that producers face when preparing and responding to drought, 2) a more 

abo ght assistance programs face.  

ion 

tha y arena, but whose practical form 

diss

continuous variables version of the model and comparing their solutions.  

drought preparedness and response, and on profit loss associated with dr

lyzed.  An increase in drought frequency has little impact on the drought

in drought severity (or both severity and frequency) changes the relative 

importance of alternative drought preparedness tools, and substantially increases 

profit loss attributable to drought.  The impact of climate change on the economic 

tainability of agricultural communi

of the climate change.  Future research on the impacts of climate change or the 

ue of improved climate change information should investigate alterna

of climate change to identify the range and uniqueness of optimal adjustm

acts. 

The last body of literature to which this dissertation contributes is 

hematical modeling of stochastic and dynamic fa

model illustrates the use of multi-stage discrete sequential stochastic programm

SP) to capture the dynamic and stochastic features of a farm system.  Few 

studies have taken advantage of multi-stage DSSP’s structure to represent both 

a- and inter-year dynamics.  Because the model captures both intra- and inter-

r dynamics, it provides 1) a more thorough understanding of the complex 

complete picture of the impacts of drought through time, and 3) important insights 

ut the challenges that administrators of drou

Lastly, it elucidates the applied aspects of optimal drought preparedness, a not

t has received increased attention in the polic

has been only vaguely discussed.   

Beyond using DSSP to capture both intra- and inter-year dynamics, this 

ertation also contributes to the literature by solving both a binary and 

Continuous variables are commonly used, rather than binary variables, because 
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mo

contrast, are innately binary; for example, crops are often chosen for individual 

represents the producer’s decision pr

mo model to 

g.  

 it 

doe

bin el.  More importantly, drought preparedness tools that are observed on 

Had the continuous model been used exclusively, one might have concluded that 

n fact 

optimal in a more realistic model.  In conclusion, factors such as field size or other 

n a 

con el.   

ts of 

dro here are many opportunities to 

ists to more realistically capture 

to-y  

(i.e  The producer’s crop mix and irrigation 

pro

mathematical representation of yield response to deficit irrigation is also needed, 

irrigation plays a larger role in the response to drought than is found here.  

linear programming models are more easily solved than integer programming 

dels, particularly when the model is stochastic.  Many farm decisions, in 

fields, rather than individual acres, or portions of an acre.  A binary model 

oblem more accurately than a continuous 

del, but it is also more difficult to solve.  The ability of a continuous 

approximate the binary model’s solution is thus examined.   

The continuous model suggests similar cropping activities and timin

However, because the continuous model affords more flexibility in activities,

s not identify the same set of drought preparedness and response tools as the 

ary mod

the ground are identified by the binary model, but not by the continuous model.  

the activities excluded from the solution are sub-optimal, when they are i

discontinuities in the farm system need to be considered when choosing betwee

tinuous versus binary (or integer) mod

The results of this dissertation shed light on several important aspec

ught management at the farm-level.  However, t

improve and expand this analysis.  A need ex

constraints on the producer’s ability to change irrigation technologies from year-

ear, or to accommodate alternative scales of production for individual crops

. machinery and labor constraints). 

technology is more constrained than is assumed here; hence, expected profit and 

fit in dry years are likely less than those found here.  A more accurate 

such that strategic rather than season-long deficits can be modeled.  Deficit 
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exp

More work is also needed to better represent the continuous and updating 

exi  the farm continues to operate after the current 

 

pla

also enable a m al 

 

programming and a more powerful solution algorithm would be needed, however, 

pro bsequent modeling efforts, such as loan 

pro

d to 

oth mal 

drought preparedness and response, and the impacts of drought in these systems 

d in 

this

Strategic deficit irrigation may enable producers to adjust their crop mix such that 

ected profit and profit in dry years are increased.   

nature of decision-making through time.  Terminal values are included in the 

sting model to reflect that

planning horizon ends.  However, explicit modeling of decisions in subsequent

nning horizons would capture the long-term dynamics directly.  This would 

ore thorough analysis of the impact of crop history on the optim

drought preparedness strategy and the transition to that strategy.  More advanced

to accommodate such additional stages in the decision problem.  Additional farm 

grams should also be included in su

deficiency payments, low-interest rate loans, and the conservation reserve 

gram, to place drought preparedness and response tools in a more realistic 

decision context.  Lastly, the modeling framework used here should be applie

er farm systems that exhibit inter-year dynamics to determine whether opti

are affected by inter-year dynamics in ways similar to the farm system modele

 dissertation.   
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 case parameters and profit 

ab rice ximum

 (y nit) 
Price 

per Un
($2004

Max Yield 
(irrigat
system

Appendix A.  Base

T le A.1.  Per-unit p s and ma  yield assumed in the base case. 

Crop ield u it 
)1

ion 
)2

Onion (cwt) 6.00 650 (drip) 
Russet Potato (cwt) 3.30 15 (fur4 row) 
Sugar B et (T 39.00 1 (furre ) 3 ow) 
Winter Whea ) 3.20 30 (furt (bu 1 row) 
Alfalfa Establishment (T) 79.00 6 (furrow) 
Alfalfa Estab d (T) 79.00 6 (furrolishe  w) 
Grain Corn ( 2.70 70 (furbu) 1 row) 
Silage C rn ( 19.00 8 (furro T)  2 ow) 
Barley (bu) 2.15 00 (fur1 row) 

1 Ten-year historical a rag ce (1995 04) as re ed by th heur C y 
Extension Service (20 a). aximum
Service (2 versations with producers in the study a

ve e pri -20 port e Mal ount
04   2 M  yield based on Malheur County Extension 

004a) and con rea. 
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2004/acre) of crop production under alternative irrigation 
chnologies.   

Fall Cos Spring Cost Opp Cost 
f $1 2

Table A.2.  Cost ($
te

Crop/Irrigation t o
Econ 
Cost

Onion     
Furrow 600 400 210 3210 2

Reuse furrow 6 216 329600 2480  
Drip 600 750 235 3585 2

Russet Potato     
Furrow 100 350 102 1552 1

Reuse furrow 1 109 165900 1450  
Solid set sprinkler 1 121 184600 1625  

Sugar Beet     
Furrow 150 820 68 1038 

Reuse furrow 1 920 75 11450 5 
Wheel-line sprinkler 1 940 76 11650 6 

Center pivot sprinkler 150 940 76 1166 
Winter Wheat     

Furrow 1 105 19 284 60 
Reuse furrow 1 145 21 326 60 

Wheel-line sprinkler 1 190 25 3760 5 
Center pivot sprinkler 1 190 25 3760 5 
Alfalfa Establishmen    t  

Furrow 185 295 34 514 
Reuse furrow 1 330 36 551 85 

Wheel-line sprinkler 1 380 40 6085 5 
Center pivot sprinkler 1 380 40 6085 5 
Alfalfa Established     

Furrow 0 295 21 316 
Reuse furrow 330 23 350 3 

Wheel-line sprinkler 380 27 407 0 
Center pivot sprinkler 380 27 407 0 
Grain Corn     

Furrow -- 425 30 455 
Reuse furrow 465 33 49-- 8 

Center pivot sprinkler 510 36 54-- 6 
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st in O E

Table A.2 (Cont.)  
 

Crop/Irrigation Fall Co  Spr g Cost pp Cost1 con Cost2

Silage Corn     
Furrow 600 42 642 -- 

Reuse furrow 640 45 68-- 5 
Center pivot sprinkler 685 48 73-- 3 
Barley     

Furrow -- 245 17 262 
Reuse furrow 285 20 30-- 5 

Wheel-line sprinkler -- 330 23 353 
Center pivot sprinkler -- 330 23 353 
Fallow 0 0 0 -- 

 
1Equals 1.07 times the sum of  and Sp g Cost . 7% is t te earned on 
own funds if saved rather than spent, or the interest rate on borrowed funds).  
2Equals the sum of “Fall Cost,” “Spring C t,” and p Cost.”
 
Enterpri iled f alheur County crops were the primary source of 
cost data.  S fol wing: ( ell et al 5; Malh
County Extension Service 2004b; Malheur County Extension Service 2004c; 
Malheur County Extension Service 2004d alheu unty Ext n Service
2000; Malheur County Extension Service 2002; Malheur County Extension 
Service 2004e; Malheur County Extensio
All cost data were adjusted for inflation to 2004$ using the Prices Paid Index 
(Crop Sect odities & Service Interes xes & W ates.  T
following sources were used to adapt ente rise bu or alte e irriga
technologies: (Hinman et al. 1997; Klauze 2005; P son, Kin d Smathe
1996a; Patterson, King and Sm ers 1996b; Smathers, King, and Patterson 
1995).   

Fall rin s (i.e he ra

os  “Op    

se budgets comp
pecific sources include the 

or M
lo Bosw . 199 eur 

; M r Co ensio  

n Service 2003; Turner and Bohle 1995).  

or) for Comm s, t, Ta age R he 
rp dgets f rnativ tion 
r atter g, an rs 

, ath
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ater requirements. 

C p eq

Table A.3.  Crop w

rop Cro  Water R
(inches)

uirement 
*

Onion 29.0 
Russet Potato 27.2 
Sugar Beet  34.1
Winter Wheat  24.1
Alfalfa Establis  hment 41.8
Alfalfa Established 41.8 
Grain Corn  27.5
Silage Corn 27.5 
Barley 26.1 
Fallow 0 

 
*Crop water requirement is assumed equal to the 13-year average (1992-2004) 
seasonal evapotranspiration for the respective crop at the Ontario, Oregon Agrimet 
station (Bureau of Reclamation 2006).  Average ET reflects the crop water 
requirement that must be met to produce  averag ld obser n the st
area. 

 the e yie ved i udy 
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cal efficiency (%) of alternative irrigation technologies.   

ion ical 
*

Table A.4.  Techni

Irrigat
Technology 

 Techn
efficiency

Furrow 50 
Reuse furrow  80
Solid set sprinkler  65
W eel-line sprinkler  h  65
Center pivot sprinkler  75
Subsurface drip 90 

 
*Technical efficiency is defined as the pr rtion o ter delive to the c
that reaches the crop root zone (i.e. the proportion of delivered water that does not 
runoff, evaporate or percolate out of the root zone).  Sources: (Hoffman and 
Willett 1998; Neibling 1997; Oregon State University Water Resources 
Engineering Team 1992, p1

opo f wa red rop 

79) 
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Table A.5.  Assumed yield response factor (ky) for alternative crops.   

Crop Yield Response 
Factor (ky)*

Onion 1.10 
Russe to 1.10 t Pota
Sugar Beet 0.80 
Winter Wheat 1.00 
Alf ta 0.90 alfa Es blishment 
Alfa 0.90 lfa Established 
Grain Corn 1.25 
Silage Corn 1.25 
Barley 1.00 

 
*Yield r e s indicate i ield to a water deficit
proporti  the grow contrast to a water defi  a 
particular growth stage).  ky > 1 indicate relatively drought intolerant  ≤ 1 
indicate e ght tole

espons  factor  sensit vity of y  of equal 
on throughout ing season (in cit during

 crops; ky
 relativ ly drou rant crops.  Source: Doorenbos and Kassam (1979, 

table 24). 

 



 
 
 
 

221

ield (units/acre), total revenue ($/acre), total cost ($/acre), and 
net revenue ($/acre) for alternative combinations of crop, irrigation technology, 
and defic at ve

Crop/Irrigation Defic 1 Yield Tot Rev Tot Cost2 Net Rev

Table A.6.  Crop y

it irrig ion le l.   

it
Onion (cwt)      

Furrow D1 550 321 903300 0 
 D2 498 2987 321 230 -2
 D3 446 2674 321 360 -5
 D4 394 2361 3210 -849
 D5 341 2048 321 620 -11
 D6 289 1735 3210 -1475

Reuse 3296 4Furrow D1 550 3300
 D2 498 2987 329 096 -3
 D3 446 2674 329 216 -6
 D4 394 2361 329 346 -9
 D5 341 2048 329 476 -12
 D6 289 1735 329 606 -15

Drip D1 650 3900 358 165 3
 D2 588 3530 3585 -54
 D3 527 3160 358 245 -4
 D4 465 2791 358 945 -7
 D5 403 2421 358 645 -11
 D6 342 2051 358 345 -15

Russet Potato (cwt)   
Furrow D1 415 1370 1552 -182

Reuse Furrow D1 415 1370 1659 -289
Solid Set Sprinkler D1 450 1485 1846 -361

Sugar Beet (T)   
Furrow D1 31 1209 1038 171

 D2 29 1124 1038 86
 D3 27 1038 1038 0
 D4 24 953 1038 -85
 D5 22 867 1038 -171
 D6 20 782 1038 -256

1Represents the proportion of irrigation water requirement provided (D1=100%, 
D2=90%,…, D6=50%,D7=0%).  2Includes a 7% opportunity cost of money; 
excludes opportunity cost of land and management. 
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Table A.6 (Cont.) 

p at it iel T  C
 

Cro /Irrig ion Defic  Y d ot Rev Tot ost Net Rev 

Sugar Beet (T)  
Reuse F  31 114 64urrow D1 1209 5 

 114D2 29 1124 5 -21
 D3 27 1038 114 075 -1
 D4 24 953 114 925 -1
 D5 22 867 114 785 -2
 D6 114 63 20 782 5 -3

Wheel Line D1 31 1209 116 436 
 D2 29 1124 1166 -43
 116 28D3 27 1038 6 -1
 D4 24 953 116 146 -2
 D5 22 867 116 996 -2
 D6 20 782 1166 -384

Cente 1166 r Pivot D1 26 1014 -152
 D2 24 116 24942 6 -2
 D3 22 871 116 956 -2
 D4 20 799 116 676 -3
 D5 19 728 1166 -439
 116 10D6 17 656 6 -5

Winter Wheat (bu)   
Furrow D1 130 416 28 324 1

 D2 119 381 28 984 
 D3 108 347 28 634 
 D4 97 312 28 284 
 D5 87 277 284 -6
 D6 76 243 284 -41

Reuse Furrow D1 130 416 326 90
 D2 119 381 326 55
 D3 108 347 326 20
 D4 97 312 326 -14
 D5 87 277 326 -49
 D6 76 243 326 -84
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Crop/Irrigation Deficit Yield Tot Rev Tot Cost Net Rev 

Table A.6 (Cont.) 
 

W u)     inter Wheat (b  
Wheel Line D1 130 416 375 42

 D2 119 381 375 7
 D3 108 347 375 -28
 D4 97 312  375 -63
 D5 87 277  375 -97
 D6 76 243  375 -132

Center Pivot D1 110 352  375 -23
 D2 101 323  375 -52
 D3 92 293  375 -81
 D4 82 264 375 -111
 D5 73 235  -375 140
 D6 64 205  375 -169

Alfalfa-1st yr   (T) 
Furrow D1 6 474  514 -40

 D2 6 435  514 -78
 D3 5 397  514 -117
 D4 5 359 514 -155
 D5 4 320  514 -194
 D6 4 281  514 -232

Reuse Furrow D1 6 474  551 -77
 D2 6 435  551 -116
 D3 5 397  551 -154
 D4 5 359  -192551
 D5 4 320 551 -231
 D6 4 281 551 -270

Whe ne D1 7 553  el Li  605 -52
 D2 6 508 605 -97
 D3 6 463  605 -142
 D4 5 418 605 -187
 D5 5 373 605 -232
 D6 4 328 605 -277
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Table A.6 (Cont.) 
 

Crop/Irrigation Deficit Yield Tot Rev Tot Cost Net Rev 

Alfalfa-1st yr (T)      
Center Pivot D1 7 514 605 -91

 D2 6 472 605 -133
 D3 5 430 605 -175
 D4 5 388 605 -217
 D5 4 346 605 -259
 D6 4 304 605 -300

Alfalfa-yrs 2-4 (T)  
Furrow D1 6 474 316 158

 D2 6 435 316 120
 D3 5 397 316 81
 D4 5 359 316 43
 D5 4 320 316 4
 D6 4 281 316 -34

Reuse Furrow D1 6 474 353 121
 D2 6 435 353 82
 D3 5 397 353 43
 D4 5 359 353 6
 D5 4 320 353 -33
 D6 4 281 353 -72

Wheel Line D1 7 553 407 146
 D2 6 508 407 101
 D3 6 463 407 56
 D4 5 418 407 11
 D5 5 373 407 -34
 D6 4 328 407 -79

Center Pivot D1 7 514 407 107
 D2 6 472 407 65
 D3 5 430 407 23
 D4 5 388 407 -19
 D5 4 346 407 -61
 D6 4 304 407 -102
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Table A.6 (Cont.) 
 

Crop/Irrigation Deficit Yield Tot Rev Tot Cost Net Rev 

Grain Corn (bu)  
Furrow D1 170 459 455 4

 D2 152 410 455 -45
 D3 134 361 455 -94

Reuse Furrow D1 170 459 498 -39
 D2 152 410 498 -88
 D3 134 361 498 -137

Center Pivot D1 180 486 546 -60
 D2 161 434 546 -112
 D3 142 382 546 -164

Silage Corn (T)  
Furrow D1 28 532 642 -110

 D2 25 475 642 -167
 D3 22 418 642 -224

Reuse Furrow D1 28 532 685 -153
 D2 25 475 685 -210
 D3 22 418 685 -266

Center Pivot D1 30 570 733 -163
 D2 27 509 733 -224
 D3 24 448 733 -285

Barley (bu)  
Furrow D1 100 215 262 -47

 D2 92 197 262 -65
 D3 83 179 262 -84
 D4 75 160 262 -102
 D5 66 142 262 -120
 D6 58 124 262 -138

Reuse Furrow D1 100 215 305 -90
 D2 92 197 305 -108
 D3 83 179 305 -126
 D4 75 160 305 -145
 D5 66 142 305 -163
 D6 58 124 305 -181
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Table A.6 (Cont.) 
 

Crop/Irrigation Deficit Yield Tot Rev Tot Cost Net Rev 

Barley (bu)  
Wheel Line D1 100 215 353 -138

 D2 92 197 353 -156
 D3 83 179 353 -174
 D4 75 160 353 -193
 D5 66 142 353 -211
 D6 58 124 353 -229

Center Pivot D1 90 194 353 -160
 D2 82 177 353 -176
 D3 75 161 353 -192
 D4 67 144 353 -209
 D5 60 128 353 -225
 D6 52 112 353 -242

Fallow  
Furrow D7 0 0 0 0
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Table A.7.  Discounted and undiscounted profit (i.e. returns to land and 
management) ($2004) for each water supply scenario in the binary base case 
solution.  Scenarios are grouped by the number of years of drought experienced, 
and then sorted within each group by discounted profit (in ascending order). 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Discounted π Undiscounted π

6 Years of Drought      
DRY DRY DRY DRY DRY DRY 408,273 594,431 

5 Years of Drought      
FULL DRY DRY DRY DRY DRY 437,473 630,416 
DRY DRY DRY DRY FULL DRY 443,160 642,622 
DRY DRY DRY DRY DRY FULL 445,155 646,684 
DRY DRY DRY FULL DRY DRY 452,224 654,089 
DRY FULL DRY DRY DRY DRY 462,412 664,657 
DRY DRY FULL DRY DRY DRY 468,926 674,699 

4 Years of Drought      
FULL DRY DRY DRY DRY FULL 462,219 665,474 
DRY DRY DRY FULL DRY FULL 466,120 673,775 
DRY DRY DRY DRY FULL FULL 467,906 677,680 
DRY FULL DRY DRY DRY FULL 476,308 684,343 
FULL DRY DRY DRY FULL DRY 477,091 684,755 
DRY DRY DRY FULL FULL DRY 477,820 689,196 
DRY DRY FULL DRY DRY FULL 481,535 692,563 
FULL DRY DRY FULL DRY DRY 482,531 691,477 
DRY DRY FULL DRY FULL DRY 484,284 695,764 
DRY FULL DRY DRY FULL DRY 486,918 698,269 
FULL DRY FULL DRY DRY DRY 495,857 706,903 
FULL FULL DRY DRY DRY DRY 501,189 712,094 
DRY FULL DRY FULL DRY DRY 505,119 722,246 
DRY DRY FULL FULL DRY DRY 523,732 748,328 
DRY FULL FULL DRY DRY DRY 525,277 746,712 
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Table A.7 (Cont.) 
 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Discounted π Undiscounted π

3 Years of Drought      
FULL DRY DRY FULL DRY FULL 486,863 697,613 
DRY DRY DRY FULL FULL FULL 491,716 708,882 
DRY DRY FULL DRY FULL FULL 496,893 713,628 
FULL DRY FULL DRY FULL DRY 500,644 713,469 
DRY FULL DRY DRY FULL FULL 500,814 717,955 
FULL DRY DRY DRY FULL FULL 501,836 719,813 
DRY FULL DRY FULL DRY FULL 506,878 724,738 
FULL DRY DRY FULL FULL DRY 509,880 728,989 
DRY FULL DRY FULL FULL DRY 519,054 741,360 
FULL DRY FULL DRY DRY FULL 520,603 741,961 
FULL FULL DRY FULL DRY DRY 523,933 742,845 
DRY DRY FULL FULL DRY FULL 524,205 748,998 
FULL FULL DRY DRY DRY FULL 525,935 747,152 
DRY DRY FULL FULL FULL DRY 526,112 751,548 
FULL FULL DRY DRY FULL DRY 528,539 749,606 
FULL FULL FULL DRY DRY DRY 531,460 751,204 
DRY FULL FULL DRY FULL DRY 536,474 762,236 
DRY FULL FULL DRY DRY FULL 537,886 764,575 
DRY FULL FULL FULL DRY DRY 546,214 774,853 
FULL DRY FULL FULL DRY DRY 554,160 785,537 
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Table A.7 (Cont.) 
 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Discounted π Undiscounted π

2 Years of Drought      
FULL DRY DRY FULL FULL FULL 514,212 735,126  
DRY DRY FULL FULL FULL 520,813 743,852  FULL 
FULL DRY L FULL ,390 748,527FUL DRY  FULL 525  
DRY DRY L  FUL LL 529,157 55,862FUL FULL L FU 7  
FULL FULL   DRY LL ,542 760,709DRY FULL  FU 536  
DRY FULL FULL DRY FUL LL ,806 68,373L FU 540 7  
FULL FULL FULL DRY FUL RY ,149 68,607L D 544 7  
FULL FULL   FUL RY ,436 80,575DRY FULL L D 551 7  
D LL FU L DRY FULL 552,818 84,209 RY FULL FU L 7
FULL FULL  FULL 553,284 84,664DRY DRY  FULL 7  
DRY FULL FULL FULL FUL RY 554,124 785,907L D  
FULL DRY L  DRY LL 554,633 786,207FUL FULL  FU  
FULL FULL FULL DRY DRY LL 556,206 86,262 FU 7  
FULL DRY L  FUL RY ,526 90,154FUL FULL L D 557 7  
FULL FULL FULL FULL DRY RY ,205 11,60 D 576 8 9 

1 Years of Drought      
DRY FULL FULL FULL FULL ,597 86,577 FULL 554 7  
FULL DRY L  FUL LL ,998 90,823FUL FULL L FU 557 7  
FULL FULL   FUL LL ,045 98,439DRY FULL L FU 564 7  
FULL FULL FULL DRY FUL LL 568,894 03,665L FU 8  
FULL FULL FULL FULL FUL RY ,658 16,54L D 579 8 9 
FULL FULL FULL FULL DRY LL ,100 831,29 FU 590 5 

0 Years of Drought      
FULL FULL FULL FULL FUL LL ,703 820,863L FU 582  
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ter 

Crop, 
Irri

Irrig Propor- 

Table A.8.  Irrigation water requirement and net revenue ($) per acre-inch of wa
requirement for alternative crop-irrigation-deficit combinations.  

g Tech & 
Deficit Level 

Water 
Req1

tion 
Provided2

Irrig 
Efficiency3

Irrig 
Delivery4

Net Rev/ 
acre-inch 

Onion (cwt)      
Furrow      

D1 25 1 0.5 50.00 1.80
D2 25 0.9 0.5 45.00 -4.95
D3 25 0.8 0.5 40.00 -13.40
D4 25 0.7 0.5 35.00 -24.25
D5 25 0.6 0.5 30.00 -38.72
D6 25 0.5 0.5 25.00 -58.99

Reuse Furrow     
D1 25 1 0.8 31.25 0.14
D2 25 0.9 0.8 28.13 -10.97
D3 25 0.8 0.8 25.00 -24.86
D4 25 0.7 0.8 21.88 -42.72
D5 25 0.6 0.8 18.75 -66.52
D6 25 0.5 0.8 15.63 -99.86

Drip     
D1 25 1 0.9 27.78 11.36
D2 25 0.9 0.9 25.00 -2.17
D3 25 0.8 0.9 22.22 -19.09
D4 25 0.7 0.9 19.44 -40.83
D5 25 0.6 0.9 16.67 -69.83
D6 25 0.5 0.9 13.89 -110.42

Rus. Potato (cwt)     
Furrow     

D1 23.2 1 0.5 46.40 -3.92
Reuse Furrow     

D1 23.2 1 0.8 29.00 -9.97
1Crop water requirement less 4” of effective precipitation.  2Proportion of 
requirement supplied.  3Proportion of delivered water that reaches crop root zone.  
4Actual water delivery required to meet water requirements, given the proportion 
provided (i.e. deficit level) and irrigation efficiency. 
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/ 
h 

Table A.8 (Cont.) 
 

Crop, 
Irrig Tech & 
Deficit Level 

Irrig 
Water 

Req 

Propor-
tion 

Provided 
Irrig 

Efficiency 
Irrig 

Delivery 
Net Rev
acre-inc

Rus. Potato (cwt)      
Solid Set     

D1 23.2 1 0.65 35.69 -10.11

Sugar Beet (T)      
Furrow      

D1 30.1 1 0.5 60.20 2.84
D2 30.1 0.9 0.5 54.18 1.58
D3 30.1 0.8 0.5 48.16 0.01
D4 30.1 0.7 0.5 42.14 -2.02
D5 30.1 0.6 0.5 36.12 -4.72
D6 30.1 0.5 0.5 30.10 -8.50

Reuse Furrow     
D1 30.1 1 0.8 37.63 1.70
D2 30.1 0.9 0.8 33.86 -0.63
D3 30.1 0.8 0.8 30.10 -3.55
D4 30.1 0.7 0.8 26.34 -7.29
D5 30.1 0.6 0.8 22.58 -12.29
D6 30.1 0.5 0.8 18.81 -19.29

Wheel Line     
D1 30.1 1 0.65 46.31 0.92
D2 30.1 0.9 0.65 41.68 -1.02
D3 30.1 0.8 0.65 37.05 -3.46
D4 30.1 0.7 0.65 32.42 -6.59
D5 30.1 0.6 0.65 27.78 -10.76
D6 30.1 0.5 0.65 23.15 -16.60

Center Pivot     
D1 30.1 1 0.75 40.13 -3.79
D2 30.1 0.9 0.75 36.12 -6.20
D3 30.1 0.8 0.75 32.11 -9.20
D4 30.1 0.7 0.75 28.09 -13.07
D5 30.1 0.6 0.75 24.08 -18.21
D6 30.1 0.5 0.75 20.07 -25.43
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Crop, 
Irrig Tech & 
Deficit Level 

Irrig 
Water 

Req 

Propor-
tion 

Provided 
Irrig 

Efficiency 
Irrig 

Delivery 
Net Rev/ 
acre-inch 

Table A.8 (Cont.) 
 

Winter Wheat (bu)     
Furrow      

D1 20.1 1 0.5 40.20 3.29
D2 20.1 0.9 0.5 36.18 2.70
D3 20.1 0.8 0.5 32.16 1.96
D4 20.1 0.7 0.5 28.14 1.01
D5 20.1 0.6 0.5 24.12 -0.26
D6 20.1 0.5 0.5 20.10 -2.04

Reuse Furrow     
D1 20.1 1 0.8 25.13 3.57
D2 20.1 0.9 0.8 22.61 2.43
D3 20.1 0.8 0.8 20.10 1.01
D4 20.1 0.7 0.8 17.59 -0.82
D5 20.1 0.6 0.8 15.08 -3.26
D6 20.1 0.5 0.8 12.56 -6.67

Wheel Line     
D1 20.1 1 0.65 30.92 1.34
D2 20.1 0.9 0.65 27.83 0.24
D3 20.1 0.8 0.65 24.74 -1.13
D4 20.1 0.7 0.65 21.65 -2.89
D5 20.1 0.6 0.65 18.55 -5.24
D6 20.1 0.5 0.65 15.46 -8.54

Center Pivot     
D1 20.1 1 0.75 26.80 -0.84
D2 20.1 0.9 0.75 24.12 -2.15
D3 20.1 0.8 0.75 21.44 -3.79
D4 20.1 0.7 0.75 18.76 -5.89
D5 20.1 0.6 0.75 16.08 -8.70
D6 20.1 0.5 0.75 13.40 -12.63
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Table A.8 (Cont.) 
 

Crop, 
Irrig Tech & 
Deficit Level 

Irrig 
Water 

Req 

Propor-
tion 

Provided 
Irrig 

Efficiency 
Irrig 

Delivery 
Net Rev/ 
acre-inch 

Alfalfa-1st yr (T)      
Furrow      

D1 37.8 1 0.5 75.60 -0.52
D2 37.8 0.9 0.5 68.04 -1.15
D3 37.8 0.8 0.5 60.48 -1.93
D4 37.8 0.7 0.5 52.92 -2.93
D5 37.8 0.6 0.5 45.36 -4.27
D6 37.8 0.5 0.5 37.80 -6.15

Reuse Furrow     
D1 37.8 1 0.8 47.25 -1.63
D2 37.8 0.9 0.8 42.53 -2.72
D3 37.8 0.8 0.8 37.80 -4.09
D4 37.8 0.7 0.8 33.08 -5.82
D5 37.8 0.6 0.8 28.35 -8.15
D6 37.8 0.5 0.8 23.63 -11.42

Wheel Line     
D1 37.8 1 0.65 58.15 -0.89
D2 37.8 0.9 0.65 52.34 -1.85
D3 37.8 0.8 0.65 46.52 -3.04
D4 37.8 0.7 0.65 40.71 -4.58
D5 37.8 0.6 0.65 34.89 -6.64
D6 37.8 0.5 0.65 29.08 -9.52

Center Pivot     
D1 37.8 1 0.75 50.40 -1.81
D2 37.8 0.9 0.75 45.36 -2.93
D3 37.8 0.8 0.75 40.32 -4.34
D4 37.8 0.7 0.75 35.28 -6.14
D5 37.8 0.6 0.75 30.24 -8.55
D6 37.8 0.5 0.75 25.20 -11.92
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Table A.8 (Cont.) 
 

Irr
Deficit Lev

ev/ 
Crop, 
ig Tech & 

el 

Irrig 
Water 
Req 

Propor-
tion 

Provided 
Irrig 

Efficiency 
Irrig 

Delivery 
Net R
acre-inch 

Alfalfa-yrs 2-4 (T)      
Furrow      

D1 37.8 1 0.5 75.60 2.09
D2 37.8 0.9 0.5 68.04 1.76
D3 37.8 0.8 0.5 60.48 1.34
D4 37.8 0.7 0.5 52.92 0.81
D5 37.8 0.6 0.5 45.36 0.09
D6 37.8 0.5 0.5 37.80 -0.91

Reuse Furrow     
D1 37.8 1 0.8 47.25 2.56
D2 37.8 0.9 0.8 42.53 1.93
D3 37.8 0.8 0.8 37.80 1.15
D4 37.8 0.7 0.8 33.08 0.17
D5 37.8 0.6 0.8 28.35 -1.17
D6 37.8 0.5 0.8 23.63 -3.04

Wheel Line     
D1 37.8 1 0.65 58.15 2.52
D2 37.8 0.9 0.65 52.34 1.94
D3 37.8 0.8 0.65 46.52 1.21
D4 37.8 0.7 0.65 40.71 0.28
D5 37.8 0.6 0.65 34.89 -0.97
D6 37.8 0.5 0.65 29.08 -2.71

Center Pivot     
D1 37.8 1 0.75 50.40 2.12
D2 37.8 0.9 0.75 45.36 1.43
D3 37.8 0.8 0.75 40.32 0.57
D4 37.8 0.7 0.75 35.28 -0.53
D5 37.8 0.6 0.75 30.24 -2.00
D6 37.8 0.5 0.75 25.20 -4.07
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ech & 
Deficit Level 

Water 
Req 

tion 
 

Irrig 
 

Irrig 
Delivery 

Net Rev/ 
acre-inch 

Table A.8 (Cont.) 
 

Crop, 
Irrig T

Irrig Propor-

Provided Efficiency

Grain Corn (bu)      
Furrow      

D1 23.5 1 47.00 0.090.5 
D2 2   42.30 -1.063.5 0.9 0.5
D3 2 37.60 -2.503.5 0.8 0.5 

Reuse Furrow     
D1 23.5 29.38 -1.311 0.8 
D2 23. 26.44 -3.315 0.9 0.8 
D3 23. 0.8 23.50 -5.815 0.8 

Center Pivot     
D1 23.5 1  31.33 -1.910.75
D2 23. 0.9  28.20 -3.965 0.75
D3 23.   25.07 -6.525 0.8 0.75

Silage Corn (T)     
Furrow     

D1 23. 1  47.00 -2.345 0.5
D2 23. 0.9  42.30 -3.945 0.5
D3 23.5 0.8  37.60 -5.950.5

Reuse Furrow     
D1 23.5 1 0.8 29.38 -5.20
D2 23.5 0.9 0.8 26.44 -7.93
D3 23 23.50 -11.34.5 0.8 0.8 

Center Pivot     
D1 23 0.75 31.33 -5.20.5 1 
D2 23 0.75 28.20 -7.93.5 0.9 
D3 23 8 0.75 25.07 -11.36.5 0.

 

 



 
 
 
 

236

Table A.8 (Cont.) 
 

Crop, 
Irrig Tech & 
Deficit Lev

Irrig 
Water 

Req 

Propor-
tion 

Provided 
Irrig 

Efficiency 
Irrig 

 
Net Rev/ 

el Delivery acre-inch 

Barley (bu)      
Furrow      

D1 22.1 1 0 44.20 .07.5  -1
D2 22.1 0.9 0 39.78 .64.5  -1
D3 22.1 0.8 0 35.36 .36.5  -2
D4 22.1 0.7 0 30.94 .29.5  -3
D5 22.1 0.6 0.5 26.52 .52 -4
D6 . 0 22.10 .2522.1 0 5 .5  -6

Reuse Furro  w    
D1 0 27.63 .2622.1 1 .8  -3
D2 22.1 0.9 0 24.86 .35.8  -4
D3 22.1 0.8 0 22.10 .72.8  -5
D4 22.1 0.8 19.34 .480.7  -7
D5 22.1 6 0 16.58 -9.820. .8 
D6 22.1 0. 0 13.81 .105 .8  -13

Wheel Line     
D1 0. 34.00 .0622.1 1 65  -4
D2 22.1 0. 0.65 30.60 -5.119 
D3 22.1 0.8 0.65 27.20 .42 -6
D4 22.1 0.7 0. 23.80 .1065  -8
D5 22.1 0.6 0. 20.40 .3465  -10
D6 5 0. 17.00 .4822.1 0. 65  -13

Cen t ter Pivo     
D1 1 0. 29.47 .4222.1 75  -5
D2 9 0. 26.52 -6.6422.1 0. 75 
D3 22.1 0. 0. 23.57 .168 75  -8
D4 22.1 0. 0.75 20.63 .127  -10
D5 22.1 0.6 0. 17.68 .7375  -12
D6 22.1 0. 14.73 -16.390.5 75 

Fallow     
Furrow     

D7 0 0 0 0.00 .00.5  0
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ription of the Gaussian quadrature procedure used to assign 
water quantities and probabilities (and onion prices and probabilities) to each state 
o re

a show that approxim ntinuous ion 

 g h ined as the midpoint als 

t tr s hi ents.  They suggest an 

t i  us ian quad his 

approach is gen  ut  accurat e 

d midpoint appr , rac aussian 

  Preckel and De 992) also demonstrate

t  tive methods mend it

e g n

a e ) t roaches.  One approach is for cases 

a u tribution and moments are thought 

n    whi tribution

. r  illu ing histo r 

 a

Appendix B.  Desc

f natu . 

Miller nd Rice (1983) ating a co  distribut

with a discrete number of cate ories t at are def s of interv

of interest underestimates the rue dis ibution’ gher mom

alterna ive way to define the d screte categories, ing Gauss rature.  T

erally able to maintain the distrib ions more ely than th

standar oach; however  the accu y of the G approximation 

varies by distribution. Vuyst (1  that this 

approach performs bet er than alterna and recom s use in 

discret  stochastic pro rammi g models.  

Miller nd Ric  (1983 presen  two app

in which the random v riable’s contin ous dis

to be k own; the other approach is for cases in ch the dis  is not 

known  Each approach is desc ibed briefly and strated us rical wate

allocation data from the study rea.   

B.1 Distribution Known:   

Cases in d r

e  u e  distr r a chose  the 

esired number of discrete categories with which to represent the continuous 

distribution.  The statistical software package R can perform Gaussian quadrature 

calculations.  Output from the Gaussian quadrature includes N pairs of values and 

probabilities, which respectively define and assign probabilities to each category.  

The random variable, water allotment, is naturally censored below by zero 

and above by the maximum reservoir storage capacity.  The beta distribution is the 

only distribution, to the author’s knowledge, that allows censoring on both ends, 

so it was considered as a possible distribution for the random variable.  The fit of 

 which the ran om va iable’s distribution is thought to be known 

involv  taking the Gaussian q adratur  of the ibution fo n N.  N is

d

 



 
 
 
 

238

e study 

 

the beta distribution is typically expressed with bounds of [0,1]; data has to be 

ad  t  sc efo plying the b e

(Haa 141).  Th

was tructed a id 

e l relativ ogram (figu he degr as 

y e aracteris  

  on the assumption that the data 

comes f uadr e param eta 

erforme  3.  The suggested values and probabilities 

 % e sug lues and ties 

, 35

the beta distribution needed to be tested first.  Water allotment data for th

area from 1981-2004 was used to create a relative frequency histogram.  Note that

justed o this ale b re ap  distri ution.  Paramet rs for the beta 

distribution were first estimated from the data n 2002, p e beta 

distribution’s probability distribution function  then cons nd overla

on the mpirica e frequency hist re B.1).  T ee of fit w

visuall  judged.  The beta distribution captures th  major ch tics of the

histogram.  Proceeding, for illustrative purposes,

rom the beta distribution, a Gaussian q ature of th eterized b

distribution is p d for N = 2 and

for N = 2 are (16”, 40%), and (39”, 60 ).  Th gested va  probabili

for N = 3 are (10”, 16%), (27”, 49%), and (43” %).     

   

Bin

Fr
eq

ue
nc

y

Frequency
f(x)beta

 

t lity n functi
e s lotm om the s ), 

 of the data. 

Figure B.1.  Be a distribution’s probabi distributio on 
(param terized with hi torical water al ent data fr tudy area
overlaid on a relative frequency histogram
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UnknownB.2 Distribution  

C  w  th o ia i

  dist nction ( st 

 i  Rice (1983) is then used as follows: 

  F with e 3;  iden  in 

p d n e en

g n   Pro  the ass hat 

i  a cd mated fr

e ues bilities f re 

0   3 are %), (36” 2”, 

ases in hich e rand m var ble’s d stribution is completely unknown 

require an alternative approach.  A cumulative ribution fu cdf) is fir

estimated from the data.  Table 3 in M ller and

choose the desired N; find the (x) associated  N in tabl tify the x

the em irical c f that correspo d to th  recomm ded F(x); assign to each x the 

probability sug ested i  table 3 for each F(x). ceeding on umption t

the water allotment’s d stribution is unknown, f was esti om the 

historical data (figure B.2).  The sugg sted val and proba or N = 2 a

(24”, 50%) and (41”, 5 %), and those for N =  (12”, 25 , 50%), (4

50%). 
1.1

1

0.7

0.8

0.9

0.5F(
x)

0.6

0.4

0
0

0.1

0.2

0.3

0.5 1 1.5 2 2.5 3.5 4.5

p hes
 

m e ncti random 
s t al w ent data  

3 4

Water Su ply (acre-inc  per acre)

Figure B.2.  Cu ulativ  distribution fu on for the variable 
“water upply,” estima ed with historic ater allotm  from the
study area. 
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Prior to being aware of this approach, interviews with producers were used 

d “dry”.  

i f n , ti o th

t ppr o ien g d nearly values, r 

probabilities.  Prior analyses had been 60% probabilities.  

as e h 5 ities in  the res ot 

 dif   cos

eig e benefit e inal va robabil

r a ro  perfec e all m he 

ar beta  (param s 

 ted n a =2) tes var

res  by undere rtosis b

ance is better, however, than the stand int app ch 

es e 1. imates 00%, a

es 0.1 e  of i nt varies, however, 

n. 

te C r th

to select economically meaningful values for the categories, “FULL” an

Those values were identified as 24” and 40”.  Historical data was used to assign 

probab lities o 40% a d 60% respec vely, t e categories.  The Gaussian 

quadra ure a oach c nven tly sug este  the same  and simila

conducted at the 40 and 

One model w  resolv d wit 0% probabil  place, and ults were n

significantly ferent. The t of re-running all analyses with 50% probabilities 

in place outw hed th s, so th  orig lues and p ities were 

kept.    

Mille nd Rice’s app ach does not tly preserv oments of t

distribution.  They report that for a particul distribution eter value

are not repor ) the Gaussia pproach (for N overestima iance by 

10.5%, unde timates skew  100%, and stimates ku y 48.3%.  

This perform ard midpo roach, whi

underestimat varianc  by 3 5%, underest  skew by 1 nd 

underestimat kurtosis by 8 %.  Th  degree mproveme

by distributio   

B.3 Discre ategories fo e Onion Price 

Proceeding on the assumption that onion price’s distribution is unknown, a 

at ist ure B uggest nd 

 for 2.8  ($8.75 d those are 

 , ($ 1 .  N = 3 n; how se 

5.5 l o onions plant rice wa  

$6. i  cted pr d in the base case 

cat    orpo uncertainty are ‘hi’ = 

’ = , ’

cdf was estim ed from the h orical data (fig .3).  The s ed values a

probabilities  N = 2 are ($ 0, 50%) and , 50%), an  for N = 3 

($2.50, 25%) 5.50, 50%), ($ 2.25, 50%)  was chose ever, the u

of the price $ 0 resu ted in n  being ed.  The p s therefore

increased to 00, wh ch matches the expe ice assume

model.  The egories used in models that inc rate price 

$12.25, ‘med  $6.00 and ‘lo  = $2.50.    
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ented planting model’s parameters and profit. 

 C p  y us th lat e
n

sure
ield

roved
Per Acre 

Appendix C.  Prev
 
Table .1.  A proved ields ed in e calcu ion of a prevent d planting 
payme t. 

In d Crop
(y

App  Yield
 Unit) 

Onion 550 (cwt)  
Potato 415 (cwt)  
Sugar 31 beet (T)
Wheat 130 (bu)  

 

Table C c ge f ulti-  insurance contract. 

Ins r Cover
vels

.2.  Available overa  levels or the m peril crop

ured C op age 
Le  (%)

Oni 50 on  
 65 
 75 
Pot 75 ato  
Sugar beet  50 
 65 
 75 
 85 
Wh 55 eat  
 65 
 75 
 85 

  

Table C.3.  Pric i /un ) ass each ins . 

su rice El

e elect on ($ it of production umed for ured crop

In red Crop P ected
Onion (cwt) 3.25
Potato (cwt) 3.34
Sugar beet (T) 39.00
Wheat (bu) 3.22

 

Table C.4.  Prevented planting assum ch insur

PP Covera

coverage level ed for ea ed crop. 

Insured Crop ge (%)
Onion  45 
Potato 25  
Sugar b 45 eet  
Wheat 60 

 



 
 
 
 

243

nted and undiscounted profit (i.e. returns to land and 
anagement) ($2004) by scenario for the “subsidized prevented planting” model’s 

o narios are d b co  pro

Discounted π Undiscounted π 

 

Table C.5.  Discou
m
soluti n.  Sce  sorte y dis unted fit (in ascending order). 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 
FULL FULL FULL FULL DRY FULL 577,023 818,768 
FULL  L FULL FULL FULL FULL FUL 577,719 819,723 
FULL FULL FULL FULL DRY DRY 587,111 833,060 
FULL   587,808 FULL FULL FULL FULL DRY 834,016 
FULL  FULL DRY FULL FULL FULL 591,589 837,423 
FULL FULL FULL DRY FULL FULL 593,457 841,405 
DRY DRY FULL FULL FULL DRY 594,659 840,008 
DRY DRY FULL FULL FULL FULL 599,603 847,012 
DRY FULL FULL FULL FULL DRY 600,244 846,666 
FULL DRY FULL FULL DRY FULL 601,013 850,348 
FULL FULL DRY  L FULL FULL FUL 601,431 851,304 
FULL  601,678 DRY FULL FULL FULL DRY 851,715 
FULL FULL FULL DRY DRY FULL 601,814 852,820 
FULL FULL FULL DRY FULL DRY 601,959 853,450 
DRY FULL FULL FULL FULL FULL 602,003 849,158 
FULL DRY FULL DRY FULL FULL 603,967 854,431 
DRY FULL FULL FULL DRY FULL 609,294 859,062 
FULL  DRY FULL FULL DRY DRY 611,101 864,641 
FULL FULL  DRY FULL FULL DRY 611,520 865,596 
FULL DRY FULL DRY FULL DRY 612,469 866,476 
FULL FULL FULL DRY DRY DRY 613,307 869,103 
FULL DRY FULL  L DRY FULL FUL 614,424 867,800 
FULL  FULL FULL DRY DRY FULL 616,081 871,564 
DRY FULL DRY FULL  FULL DRY 616,675 868,343 
FULL FULL DRY DRY  L FULL FUL 616,859 872,351 
DRY FULL FULL L  FUL DRY DRY 617,820 871,141 
DRY FULL DRY FULL  FULL FULL 618,435 870,835 
FULL DRY FULL  L DRY DRY FUL 619,111 875,154 
DRY DRY DRY FULL   FULL DRY 619,604 873,681 
DRY DRY FULL DRY  FULL FULL 619,649 874,457 
DRY DRY FULL FULL DRY FULL 620,381 875,893 
DRY DRY DRY FULL L FULL FUL 621,557 876,448 
FULL L DRY DRY FUL FULL DRY 624,513 882,093 
DRY FULL FULL DRY FULL FULL 625,018 880,865 
FULL  FULL L DRY DRY DRY FUL 625,595 883,016 
FULL FULL DRY FULL  DRY DRY 627,574 887,846 
DRY DRY FULL DRY  886,502 FULL DRY 628,151 
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Table C.5 (Cont.) 

Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Discounted π Undiscounted π 
FULL FULL DRY DRY  FULL DRY 628,352 888,634 
DRY DRY FULL FULL  DRY DRY 628,883 887,938 
FULL DRY FULL  DRY DRY DRY 630,447 891,214 
FULL FULL DRY DRY DRY FULL 632,737 894,129 
DRY FULL FULL DRY L DRY FUL 633,375 892,280 
DRY   892,910 FULL FULL DRY FULL DRY 633,520 
DRY DRY DRY DRY FULL FULL 634,088 893,306 
DRY DRY FULL DRY DRY FULL 634,943 895,393 
FULL DRY DRY FULL L DRY FUL 636,389 898,094 
FULL DRY  DRY DRY FULL DRY 636,931 899,076 
DRY FULL L DRY FUL DRY FULL 638,649 899,085 
FULL FULL DRY DRY  DRY DRY 644,230 910,412 
DRY FULL   FULL DRY DRY DRY 644,868 908,563 
DRY DRY  DRY 645,424 DRY DRY FULL 909,366 
FULL Y  L DR DRY DRY DRY FUL 645,814 910,748 
DRY DRY  DRY DRY DRY 646,278 FULL 911,452 
FULL DRY L DRY DRY 647,882 DRY FUL 914,377 
DRY Y L 914,816 DR DRY FUL DRY FULL 649,461 
DRY FULL DRY FULL  DRY DRY 649,985 915,144 
DRY FULL  DRY DRY FULL FULL 652,880 918,021 
FULL Y  DR DRY DRY DRY DRY 657,150 926,808 
DRY DRY L  931,099 DRY FUL DRY DRY 660,955 
DRY FULL   664,374 DRY DRY FULL DRY 934,304 
DRY FULL  DRY FULL DRY DRY 665,583 935,444 
DRY DRY DRY DRY DRY FULL 666,034 937,123 
DRY FULL DRY DRY 677,076 DRY DRY 951,727 
DRY DRY DRY DRY DRY DRY 677,370 953,182 
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Table C.6.  Discounted and undiscounted profit (i.e. returns to land and 
anagement) ($2004) by scenario for the “unsubsidized prevented planting” 

l’s solutio narios are d cou  a

Yr1 Yr2 Yr6 Discounted  Undiscounted π 

m
mode n.  Sce  sorte  by dis nted profit (in scending order). 

Yr3 Yr4 Yr5 π
DRY L FULL DRY 574,026 FUL FULL FULL 814,098 
FULL FULL  DRY L FULL FULL FUL 575,409 816,760 
DRY FULL  FULL FULL FULL 816,590 FULL 575,785 
DRY DRY FULL FULL  FULL DRY 576,854 819,004 
DRY DRY FULL L FULL FULL FUL 577,639 820,115 
DRY FULL  FULL FULL DRY DRY 577,914 819,431 
FULL FULL FULL FULL DRY DRY 578,314 820,876 
FULL FULL L FULL FULL FULL FUL 578,775 821,377 
DRY FULL FULL FULL DRY FULL 579,673 821,923 
DRY DRY FULL DRY DRY FULL 581,487 825,358 
FULL FULL FULL  FULL FULL DRY 581,680 825,493 
DRY DRY L FULL FULL DRY FUL 582,272 826,470 
DRY DRY  828,296 DRY FULL FULL DRY 583,858 
FULL DRY  FULL FULL FULL FULL 584,039 828,177 
DRY DRY DRY FULL FULL FULL 584,642 829,408 
FULL FULL L FULL DRY FULL FUL 585,681 831,086 
FULL DRY FULL FULL FULL DRY 585,816 830,694 
FULL DRY FULL  FULL DRY DRY 587,404 832,836 
FULL DRY DRY L FULL FULL FUL 589,230 835,319 
FULL FULL DRY FULL DRY FULL 589,569 836,419 
FULL DRY L FULL FULL DRY FUL 589,630 835,988 
DRY FULL DRY FULL FULL DRY 589,963 835,693 
DRY DRY   FULL FULL DRY FULL 589,976 837,086 
FULL FULL    838,203 FULL DRY FULL DRY 590,704 
DRY FULL L L DRY FUL FULL FUL 591,722 838,186 
DRY FULL   FULL DRY FULL FULL 592,892 840,295 
FULL FULL L L DRY FUL FULL FUL 593,546 841,374 
DRY DRY    FULL DRY FULL DRY 593,713 842,380 
FULL DRY   FULL DRY FULL DRY 594,253 842,436 
FULL FULL    FULL DRY DRY DRY 594,592 843,535 
DRY DRY FULL DRY DRY FULL 594,941 843,895 
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Yr1 Yr2 Yr3 Yr4 Yr5 Yr6 Discounted π Undiscounted π 

Table C.6 (Cont.) 
 

DRY      FULL FULL DRY FULL DRY 595,343 843,767 
FULL Y Y L DR FULL DR DRY FUL 595,613 844,074 
FULL Y L  DR DRY FUL FULL FULL 595,758 843,981 
DRY FULL Y L FULL DR DRY FUL 595,795 844,231 
DRY DRY Y LL DRY DR DRY FU 596,147 844,989 
FULL DRY L   DRY FUL FULL DRY 596,248 844,675 
FULL FULL DRY FULL FULL DRY 596,452 845,490 
FULL FULL L DRY FUL DRY FULL 596,616 845,799 
DRY FULL FULL L DRY DRY FUL 596,859 845,586 
FULL FULL L  847,890 DRY FUL DRY DRY 598,092 
DRY FULL L DRY FUL DRY DRY 598,335 847,677 
DRY DRY FULL DRY DRY DRY 598,678 849,190 
DRY DRY Y L DRY DR FULL FUL 598,940 849,132 
DRY DRY L FULL DRY FUL DRY 599,841 850,492 
FULL DRY Y DRY  FULL DR DRY 600,636 851,190 
FULL DRY DRY DRY FULL FULL 600,690 850,811 
DRY FULL FULL DRY DRY DRY 600,818 851,348 
FULL DRY DRY FULL DRY FULL 601,383 851,630 
FULL DRY DRY DRY FULL DRY 603,140 854,283 
FULL FULL DRY DRY FULL FULL 603,735 855,622 
DRY DRY DRY DRY FULL DRY 603,963 856,249 
DRY DRY DRY FULL DRY DRY 604,864 857,609 
FULL DRY DRY FULL DRY DRY 605,420 857,350 
FULL FULL DRY DRY FULL DRY 606,185 859,094 
DRY FULL DRY DRY FULL FULL 606,327 858,414 
FULL FULL DRY DRY DRY FULL 606,443 859,337 
FULL DRY DRY DRY DRY FULL 607,783 860,540 
DRY DRY DRY DRY DRY DRY 608,093 861,913 
FULL FULL DRY DRY DRY DRY 608,894 862,809 
FULL DRY DRY DRY DRY DRY 610,233 864,012 
DRY FULL DRY DRY FULL DRY 611,351 865,531 
DRY FULL DRY DRY DRY FULL 614,406 869,540 
DRY FULL DRY DRY DRY DRY 616,857 873,011 
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nted profit (i.e. returns to land and 

Discounted π Undiscounted π

Appendix D.  Price uncertainty model’s profit. 

Table D1.  Discounted and undiscou
management) ($2004) by scenario for the “price uncertainty” model’s solution. 

Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 
DRY LO DRY LO DRY HI -755,400 -797,514 
DRY LO DRY LO DRY MED -755,400 -797,514 
DRY LO DRY LO DRY LO -755,400 -797,514 
FULL LO DRY LO DRY HI -743,135 -784,220 
FULL LO DRY LO DRY MED -743,135 -784,220 
FULL LO DRY LO DRY LO -743,135 -784,220 
DRY LO DRY LO FULL HI -726,754 -762,456 
DRY LO DRY LO FULL MED -726,754 -762,456 
DRY LO DRY LO FULL LO -726,754 -762,456 
DRY LO FULL LO DRY HI -708,212 -741,604 
DRY LO FULL LO DRY MED -708,212 -741,604 
DRY LO FULL LO DRY LO -708,212 -741,604 
FULL LO DRY LO FULL HI -700,439 -731,967 
FULL LO DRY LO FULL MED -700,439 -731,967 
FULL LO DRY LO FULL LO -700,439 -731,967 
FULL LO FULL LO DRY HI -694,109 -726,062 
FULL LO FULL LO DRY MED -694,109 -726,062 
FULL LO FULL LO DRY LO -694,109 -726,062 
DRY LO FULL LO FULL HI -679,566 -706,546 
DRY LO FULL LO FULL MED -679,566 -706,546 
DRY LO FULL LO FULL LO -679,566 -706,546 
FULL LO FULL LO FULL HI -651,414 -673,809 
FULL LO FULL LO FULL MED -651,414 -673,809 
FULL LO FULL LO FULL LO -651,414 -673,809 
DRY LO DRY MED DRY HI -539,224 -541,368 
DRY LO DRY MED DRY MED -539,224 -541,368 
DRY LO DRY MED DRY LO -539,224 -541,368 
FULL LO DRY MED DRY HI -527,306 -528,499 
FULL LO DRY MED DRY MED -527,306 -528,499 
FULL LO DRY MED DRY LO -527,306 -528,499 
DRY LO DRY MED FULL HI -509,271 -504,711 
DRY LO DRY MED FULL MED -509,271 -504,711 
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Table D1 (Cont.) 

Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π
 
Yr1 
DRY LO DRY MED FULL LO -509,271 -504,711 
DRY LO FULL MED DRY HI -492,384 -485,884 
DRY LO FULL MED DRY MED -492,384 -485,884 
DRY LO FULL MED DRY LO -492,384 -485,884 
FULL LO DRY MED FULL HI -484,611 -476,247 
FULL LO DRY MED FULL MED -484,611 -476,247 
FULL LO DRY MED FULL LO -484,611 -476,247 
FULL LO FULL MED DRY HI -480,118 -472,589 
FULL LO FULL MED DRY MED -480,118 -472,589 
FULL LO FULL MED DRY LO -480,118 -472,589 
DRY LO FULL MED FULL HI -463,738 -450,825 
DRY LO FULL MED FULL MED -463,738 -450,825 
DRY LO FULL MED FULL LO -463,738 -450,825 
FULL LO FULL MED FULL HI -437,422 -420,336 
FULL LO FULL MED FULL MED -437,422 -420,336 
FULL LO FULL MED FULL LO -437,422 -420,336 
DRY LO DRY HI DRY HI -154,164 -85,150 
DRY LO DRY HI DRY MED -154,164 -85,150 
DRY LO DRY HI DRY LO -154,164 -85,150 
FULL LO DRY HI DRY HI -140,062 -69,607 
FULL LO DRY HI DRY MED -140,062 -69,607 
FULL LO DRY HI DRY LO -140,062 -69,607 
DRY LO DRY HI FULL HI -125,518 -50,091 
DRY LO DRY HI FULL MED -125,518 -50,091 
DRY LO DRY HI FULL LO -125,518 -50,091 
DRY LO FULL HI DRY HI -106,976 -29,239 
DRY LO FULL HI DRY MED -106,976 -29,239 
DRY LO FULL HI DRY LO -106,976 -29,239 
FULL LO DRY HI FULL HI -97,366 -17,354 
FULL LO DRY HI FULL MED -97,366 -17,354 
FULL LO DRY HI FULL LO -97,366 -17,354 
FULL LO FULL HI DRY HI -92,873 -13,697 
FULL LO FULL HI DRY MED -92,873 -13,697 
FULL LO FULL HI DRY LO -92,873 -13,697 
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Table D1 (Cont.) 
 
Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π 
DRY LO FULL HI FULL HI -78,330 5,819 
DRY LO FULL HI FULL MED -78,330 5,819 
DRY LO FULL HI FULL LO -78,330 5,819 
FULL LO FULL HI FULL HI -50,178 38,556 
FULL LO FULL HI FULL MED -50,178 38,556 
FULL LO FULL HI FULL LO -50,178 38,556 
DRY MED DRY LO DRY HI 204,266 305,192 
DRY MED DRY LO DRY MED 204,266 305,192 
DRY MED DRY LO DRY LO 204,266 305,192 
FULL MED DRY LO DRY HI 227,071 331,393 
FULL MED DRY LO DRY MED 227,071 331,393 
FULL MED DRY LO DRY LO 227,071 331,393 
DRY MED FULL LO DRY HI 229,836 335,251 
DRY MED FULL LO DRY MED 229,836 335,251 
DRY MED FULL LO DRY LO 229,836 335,251 
DRY MED DRY LO FULL HI 237,197 345,494 
DRY MED DRY LO FULL MED 237,197 345,494 
DRY MED DRY LO FULL LO 237,197 345,494 
FULL MED FULL LO DRY HI 258,731 368,905 
FULL MED FULL LO DRY MED 258,731 368,905 
FULL MED FULL LO DRY LO 258,731 368,905 
FULL MED DRY LO FULL HI 260,002 371,695 
FULL MED DRY LO FULL MED 260,002 371,695 
FULL MED DRY LO FULL LO 260,002 371,695 
DRY MED FULL LO FULL HI 272,531 387,503 
DRY MED FULL LO FULL MED 272,531 387,503 
DRY MED FULL LO FULL LO 272,531 387,503 
FULL MED FULL LO FULL HI 291,662 409,207 
FULL MED FULL LO FULL MED 291,662 409,207 
FULL MED FULL LO FULL LO 291,662 409,207 
DRY MED DRY MED DRY HI 420,094 560,913 
DRY MED DRY MED DRY MED 420,094 560,913 
DRY MED DRY MED DRY LO 420,094 560,913 
FULL MED DRY MED DRY HI 438,008 581,128 
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Table D1 (Cont.) 
 
Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π 
FULL MED DRY MED DRY MED 438,008 581,128 
FULL MED DRY MED DRY LO 438,008 581,128 
DRY MED FULL MED DRY HI 448,894 594,924 
DRY MED FULL MED DRY MED 448,894 594,924 
DRY MED FULL MED DRY LO 448,894 594,924 
DRY MED DRY MED FULL HI 453,025 601,215 
DRY MED DRY MED FULL MED 453,025 601,215 
DRY MED DRY MED FULL LO 453,025 601,215 
FULL MED FULL MED DRY HI 474,560 624,626 
FULL MED FULL MED DRY MED 474,560 624,626 
FULL MED FULL MED DRY LO 474,560 624,626 
FULL MED DRY MED FULL HI 479,504 631,912 
FULL MED DRY MED FULL MED 479,504 631,912 
FULL MED DRY MED FULL LO 479,504 631,912 
DRY MED FULL MED FULL HI 484,686 638,727 
DRY MED FULL MED FULL MED 484,686 638,727 
DRY MED FULL MED FULL LO 484,686 638,727 
FULL MED FULL MED FULL HI 507,491 664,928 
FULL MED FULL MED FULL MED 507,491 664,928 
FULL MED FULL MED FULL LO 507,491 664,928 
DRY MED DRY HI DRY HI 797,574 1,007,855 
DRY MED DRY HI DRY MED 797,574 1,007,855 
DRY MED DRY HI DRY LO 797,574 1,007,855 
FULL MED DRY HI DRY HI 828,307 1,043,758 
FULL MED DRY HI DRY MED 828,307 1,043,758 
FULL MED DRY HI DRY LO 828,307 1,043,758 
DRY MED FULL HI DRY HI 830,434 1,046,835 
DRY MED FULL HI DRY MED 830,434 1,046,835 
DRY MED FULL HI DRY LO 830,434 1,046,835 
DRY MED DRY HI FULL HI 840,270 1,060,107 
DRY MED DRY HI FULL MED 840,270 1,060,107 
DRY MED DRY HI FULL LO 840,270 1,060,107 
FULL MED FULL HI DRY HI 852,040 1,071,568 
FULL MED FULL HI DRY MED 852,040 1,071,568 
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Table D1 (Cont.) 
 
Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π 
FULL MED FULL HI DRY LO 852,040 1,071,568 
FULL MED DRY HI FULL HI 861,238 1,084,060 
FULL MED DRY HI FULL MED 861,238 1,084,060 
FULL MED DRY HI FULL LO 861,238 1,084,060 
DRY MED FULL HI FULL HI 871,930 1,097,620 
DRY MED FULL HI FULL MED 871,930 1,097,620 
DRY MED FULL HI FULL LO 871,930 1,097,620 
FULL MED FULL HI FULL HI 894,735 1,123,820 
FULL MED FULL HI FULL MED 894,735 1,123,820 
FULL MED FULL HI FULL LO 894,735 1,123,820 
DRY HI DRY LO DRY HI 1,891,187 2,242,553 
DRY HI DRY LO DRY MED 1,891,187 2,242,553 
DRY HI DRY LO DRY LO 1,891,187 2,242,553 
FULL HI DRY LO DRY HI 1,920,276 2,276,128 
FULL HI DRY LO DRY MED 1,920,276 2,276,128 
FULL HI DRY LO DRY LO 1,920,276 2,276,128 
DRY HI DRY LO FULL HI 1,933,882 2,294,806 
DRY HI DRY LO FULL MED 1,933,882 2,294,806 
DRY HI DRY LO FULL LO 1,933,882 2,294,806 
DRY HI FULL LO DRY HI 1,934,116 2,293,302 
DRY HI FULL LO DRY MED 1,934,116 2,293,302 
DRY HI FULL LO DRY LO 1,934,116 2,293,302 
FULL HI FULL LO DRY HI 1,953,773 2,315,888 
FULL HI FULL LO DRY MED 1,953,773 2,315,888 
FULL HI FULL LO DRY LO 1,953,773 2,315,888 
FULL HI DRY LO FULL HI 1,962,971 2,328,380 
FULL HI DRY LO FULL MED 1,962,971 2,328,380 
FULL HI DRY LO FULL LO 1,962,971 2,328,380 
DRY HI FULL LO FULL HI 1,976,811 2,345,555 
DRY HI FULL LO FULL MED 1,976,811 2,345,555 
DRY HI FULL LO FULL LO 1,976,811 2,345,555 
FULL HI FULL LO FULL HI 1,996,469 2,368,140 
FULL HI FULL LO FULL MED 1,996,469 2,368,140 
FULL HI FULL LO FULL LO 1,996,469 2,368,140 



 
 
 
 

 

252

Table D1 (Cont.) 
 
Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π
DRY HI DRY MED DRY HI 2,107,015 2,498,274 
DRY HI DRY MED DRY MED 2,107,015 2,498,274 
DRY HI DRY MED DRY LO 2,107,015 2,498,274 
FULL HI DRY MED DRY HI 2,136,104 2,531,848 
FULL HI DRY MED DRY MED 2,136,104 2,531,848 
FULL HI DRY MED DRY LO 2,136,104 2,531,848 
DRY HI DRY MED FULL HI 2,149,711 2,550,526 
DRY HI DRY MED FULL MED 2,149,711 2,550,526 
DRY HI DRY MED FULL LO 2,149,711 2,550,526 
DRY HI FULL MED DRY HI 2,149,944 2,549,023 
DRY HI FULL MED DRY MED 2,149,944 2,549,023 
DRY HI FULL MED DRY LO 2,149,944 2,549,023 
FULL HI FULL MED DRY HI 2,169,601 2,571,609 
FULL HI FULL MED DRY MED 2,169,601 2,571,609 
FULL HI FULL MED DRY LO 2,169,601 2,571,609 
FULL HI DRY MED FULL HI 2,178,800 2,584,101 
FULL HI DRY MED FULL MED 2,178,800 2,584,101 
FULL HI DRY MED FULL LO 2,178,800 2,584,101 
DRY HI FULL MED FULL HI 2,192,640 2,601,275 
DRY HI FULL MED FULL MED 2,192,640 2,601,275 
DRY HI FULL MED FULL LO 2,192,640 2,601,275 
FULL HI FULL MED FULL HI 2,212,297 2,623,861 
FULL HI FULL MED FULL MED 2,212,297 2,623,861 
FULL HI FULL MED FULL LO 2,212,297 2,623,861 
DRY HI DRY HI DRY HI 2,490,586 2,952,670 
DRY HI DRY HI DRY MED 2,490,586 2,952,670 
DRY HI DRY HI DRY LO 2,490,586 2,952,670 
FULL HI DRY HI DRY HI 2,529,439 2,998,195 
FULL HI DRY HI DRY MED 2,529,439 2,998,195 
FULL HI DRY HI DRY LO 2,529,439 2,998,195 
DRY HI DRY HI FULL HI 2,533,282 3,004,922 
DRY HI DRY HI FULL MED 2,533,282 3,004,922 
DRY HI DRY HI FULL LO 2,533,282 3,004,922 
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Table D1 (Cont.) 
 

Yr1 Yr1 Yr2 Yr2 Yr3 Yr3 Discounted π Undiscounted π 
DRY HI FULL HI DRY HI 2,544,996 3,017,470 
DRY HI FULL HI DRY MED 2,544,996 3,017,470 
DRY HI FULL HI DRY LO 2,544,996 3,017,470 
FULL HI FULL HI DRY HI 2,555,009 3,028,253 
FULL HI FULL HI DRY MED 2,555,009 3,028,253 
FULL HI FULL HI DRY LO 2,555,009 3,028,253 
FULL HI DRY HI FULL HI 2,562,370 3,038,497 
FULL HI DRY HI FULL MED 2,562,370 3,038,497 
FULL HI DRY HI FULL LO 2,562,370 3,038,497 
DRY HI FULL HI FULL HI 2,573,642 3,052,528 
DRY HI FULL HI FULL MED 2,573,642 3,052,528 
DRY HI FULL HI FULL LO 2,573,642 3,052,528 
FULL HI FULL HI FULL HI 2,597,705 3,080,505 
FULL HI FULL HI FULL MED 2,597,705 3,080,505 
FULL HI FULL HI FULL LO 2,597,705 3,080,505 
 
 



 
 
 
 

 

254

Appendix E.  List of electronic files provided. 

Computer Program Files (GAMS): 

Base case model (binary):  ip_base.gms 
Base case model (continuous):  cont_base.gms 
 
Model Solution Files (Excel) 
Base case solution (binary):  ip_base.xcl 
Base case solution (continuous):  cont_base.xcl 
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