
)

Calendaring Specification

Interoperability of Web-based Calendar and Palm pilot

MS Project

Major Professor: Dr. Kai Toth

Madhuri Gourishetty

SID 930-30-6546

Dept. of Computer Science

osu

)

)

CONTENTS

1.0 Abstract ... 3

2.0 Introduction .. 3

3.0 Standards for Calendaring and Scheduling Interoperability 5
3.1 iCalendar•...........•......•.•..•.••........................... 5
3. 2 iTIP 11 ■ •• 111 ••••••• 5

4.0 Conduit Development Kit •.•.•....••...•..•.. 6

5.0 Palm TWN Address Synchronization {PTAS) : 7
5.1 Design Flow .•...••.•.•.•.••..•...•.•.•.••.••...•..•.•.•..•.••..•...••.•.•...••..................•.. 7

5.1.1 Low Level Architecture .••.•••..•.•.•..•.•••••••.••.••.•...•.......•............• 7
5.1.2 High Level Architecture ..•...•..•..•.•.•.•...•.•.•.............................. 8

5.2 Database Schema ...••.....•...•...•....•.•..•...... 10
5.3 Class diagram ...•..•....•.•.••.•.•..•.••...... 11
5.4 Implementation Details ..••....•..•....•• 13

5.4.1 Synchronization process•......•..•.•. 16
5.4.2 Data Structure ...•.•..•....•...•..•.•..•.•....•......•.............................. 18
5.4.3 Assumptions •.......................•..........•.•...•.••...•••.•.•...........•....... 19
5.4.4 Failure cases••.•...••..•......•....•.. 20

6.0 Palm TWN Calendar Synchronization (PTCS) ..•........•......•.......................... 23
6.1 Calendar database structure ..•.....•.........•....•...•.•......•.••.................... 23
6.2 Implementation Details ..•.....•....•.•....••. 28

6.2.1 Sequence Diagram ...••.......•......•.........•.•......•.•.•.••.•...•.•....•... 29
6.2.2 Class Diagram ...••.......• 29

6.3 Testing•.......•....••.....•......••....•..•.........•.......................... 30
6.4 Results•.......•....••...•..•.....••.. 30
6.5 Future Work .••..••.•.•..•..•••.......•.•.•...•............••••..•.•.•...•••.•....•...•....•.••.•• 30

Appendix A: Calendar Specification - iCal supported ..•.•••.••.•.••.••••.••...•••.•........ 31
A.1 Variables in iTIP ... 31
A.2 VEVENT Component •.••..•...•.•.•..•.•.•••..••.•.•••.•••••..••••..•.•..•..•.••..•........... 35
A.3 VFREEBUSY Component.. 40
A.4 VTODO Component .•..•..•...•.•.•...••..•...•....••..••.••.•.•.•..•.•..•.•.....••..•.•...... 41
A.5 VJOURNAL Component ... 42
A.6 VALARM Component•..•...•...•...••..•.•.•...•.....••.•.•....•....•............. 42
A. 7 Use Cases•.•.•.•.•••.•.......•.•.•...................•....•..............•..............• 43

A.7.1 Request for a meeting•...• 43
A.7.2 Reply for a meeting ..•..••.•......••........•..•...•.•..•.•.•.•..•..•........•.. 44
A.7.3 Publish a TODO ... 45

References•.........•...........................•.....•........•.•....................•............•....... 46

2

J

1.0 Abstract

Interoperability is the ability to enable different systems to work together and exchange data.

Interoperability between different systems is achieved by using common standards and

specifications. This paper talks about our research work on interoperability in Calendaring and

Scheduling. There are many calendaring and scheduling software products on the market but only

few of them are interoperable. The goal of my research was to make an existing web-based

calendaring system ("The Wise Net" or TWN for short) interoperable with other calendaring

systems, in particular, the Palm Pilot. A framework is developed for web based TWN calendar after

understanding the interoperability issues that are dealt in other systems like Outlook, iPlanet

calendar etc. After a complete understanding of the systems it was found that Outlook and other

such popular calendaring systems are based on iCal and iTIP protocol standards. My aim was to

discover how to make The Wise Net Calendar support these two protocols and develop a common

specification for calendaring and scheduling that would support interoperability of TWN and Palm

Pilot calendaring systems.

An initial working prototype is built to make the TWN calendar interoperable with palm pilot. This

application synchronizes TWN calendar with the palm pilot calendar. A prototype is also built for

synchronizing address book. TWN users can have a mirror image of their web based calendars on

their palm pilots. Conduit Development Kit (CDK403) is used to develop the application. Conduits

) are software plug-ins for the HotSync Manager application. They exchange and synchronize data

between a desktop computer and a Palm OS platform handheld computer.

)

2.0 Introduction

The Wise Net (TWN) product supports web-enabled information services for the real estate

industry. It provides a real estate database, search tools, user accounts, email, contacts,

calendaring and other work group services. The TWN Calendar is a customizable Internet-based

calendaring solution that enables group scheduling and personal calendaring for real estate agents

and their customers. Through a web browser, subscribers can insert and update appointments,

publish their calendars for viewing by others and establish reminders and other notices.

The TWN calendar is designed to perform Group Scheduling. In particular, this calendar, allows a

user to create an event to which other attendees are invited. The attendees can accept or decline

invitations. Attendees are typically people on the same calendar server. So it means that it is not

interoperable with other calendaring systems. If the calendar can interact with other calendars on

different servers using standard messaging and protocols, it is considered interoperable.

Standards like iCal, iTIP and iMIP are already defined for calendars. If all the calendars are

designed according to these standards, then they can be interoperable. Outlook and iPlanet are

interoperable. So the user of Outlook can send invitations to the user of iPlanet.

3

)

)

TWN was not implemented according to the iCal standards, so a specification has been written to

map the existing calendaring system to make it interoperable.

Interoperability, according to dictionary meaning is "The ability of software and hardware on

multiple machines from multiple vendors to communicate". So a calendar talking to the calendar

of other devices like Palm Pilot, Pocket PC etc. is also interoperability. By including this feature, all

the users of TWN can communicate with their Palm Pilots and synchronize their web based

calendar with their Palm Pilots. The users need not be online to check their appointments.

TWN provides the following benefits:

• Simplified system management, online backup/restore, entire database backup/restore

• Powerful search agent

• Login facility for all the users

• Individuals can store their personal contacts in an address book and store tasks and

appointments in a calendar

• Automatic e-mail notification of appointments and appointment reminders sent to selected

recipients.

•
•
•

•
•

Daily, weekly, monthly, yearly, and comparison views

Web-based Group Scheduling

Ability to delegate calendar ownership to others who may act on behalf of the primary

owner.

To-do management through task lists

Instant messaging system. According to the preferences given by the users, a message is

sent to others through different channels like email, cell, palm etc. So the user need not

be online to get the messages.

In order for online calendar information to be useful, it must be readily available. Though users

may have access to a web browser much of the time, there will be times when the information

must be available on other devices: a cellular phorie, a pager, a PDA. The diagram below shows

the different devices with which the TWN calendar interacts. If there is a new event then the

message is sent to any one of the channels. All the messages are by default seen on the TWN

calendar.

4

)

Reminder:
10min for
Meetio.g at
3om

Instant Messaging Email Wireless Handheld

TWN
Web
.Site

TWN

3.0 Standards for Calendaring and Scheduling Interoperability

Standards are important for interoperability. If all the systems follow these standards then

communication between them will be easy. We will see some important calendaring standards

here.

3.1 Internet Calendaring and Scheduling Core Object Specification (iCalendar)

) This memo has been defined to provide the definition of a common format for openly exchanging

calendaring and scheduling information across the internet. This memo defines the format for

specifying iCalendar object methods. An iCalendar object method is a set of usage constraints for

the iCalendar object. For example, these methods might define scheduling messages that request

an event be scheduled, reply to an event request, send a cancellation notice for an event, modify

or replace the definition of an event, provide a counter proposal for an original event request,

delegate an event request to another individual, request free or busy time, reply to a free or busy

time request, or provide similar scheduling messages for a to-do or journal entry calendar

component . Basically this standard gives the variables involved in calendaring and scheduling

process. The iCalendar format is suitable as an exchange format between applications or systems.

This will enable the calendar object to be exchanged using several transports, including but not

limited to SMTP, HTTP, a file system, desktop interactive protocols such as the use of a memory­

based clipboard or drag/drop interactions, wired-network transport, or some form of unwired

transport such as infrared might also be used.

For details of this standard, see Appendix A

5

)

3.2 iCalendar Transport-Independent Interoperability Protocol(iTIP}

Scheduling Events, BusyTime, To-dos and Journal Entries: This standard is different from the

above one. iCalendar specifies the variables, whereas this standard gives the methods involved in

scheduling. This document specifies how calendaring systems use iCalendar objects to

interoperate with other calendar systems. It does so in a general way so as to allow multiple

methods of communication between systems. The standard outlines a model for calendar

exchange that defines both static and dynamic event, to-do, journal and free/busy objects. Static

objects are used to transmit information from one entity to another without the expectation of

continuity or referential integrity with the original item . Dynamic objects are a superset of static

objects and will gracefully degrade to their static counterparts for clients that only support static

objects.

For details of this standard, see reference Appendix A.

Based upon these standards, a requirements specification is made for TWN to make it

interoperable with other calendaring systems like Outlook, iPlanet etc. The requirements document

can be seen in Appendix A.

The next part of this report describes the implementation of interoperability of TWN and palm

pilot. For communicating between palm and browser, Conduit Development Kit (CDK) is installed

on the client PC. Next section explains the CDK and how it is used in our project.

4.0 Conduit Development

There are six software components involved in using a hand held:

• Desktop applications, which are developed by a developer, run on a desktop computer and

operate on data that is sent to or retrieved from a handheld.

• Palm OS applications are developed to run on any Palm Powered handheld . These are also

referred to as handheld applications.

• The HotSync Manager application runs on a desktop computer and communicates with a

handheld. When the user presses the HotSync button, HotSync Manager awakens and calls each

of the conduits that are properly installed and configured on the user's desktop computer.

• The HotSync client launches on the handheld when the user presses the HotSync button on the

cradle. This handheld application wakes up HotSync Manager and responds to Sync Manager

requests to access databases on the handheld.

• Conduits are the programs that HotSync Manager runs to interact with specific data on the

handheld. You use the Conduit Development Kit to create conduits. Generally, when a handheld

application is written, a conduit is written to synchronize its data with data on the desktop .

6

)

)

Conduits also transfer, import/export data, or cause Palm OS applications to be installed. Conduits

reside on the desktop computer and are run by the HotSync Manager program when the user

places a handheld into the cradle and presses the HotSync button.

• The Sync Manager API provides a programmat ic interface that conduits use for communicating

with a handheld. This communications API allows the conduit to remain independent of the

connection type between a handheld and a desktop computer.

A conduit is nothing but a simple program which communicates with the desktop computer. A

conduit can be written in any language - C, C++, Java, and COM. For our project, Java is chosen

as the language of communication.

Conduits synchronize data for a specific application on the handheld with the desktop computer.

Conduits perform the following tasks - open and close databases on the handheld and add, delete,

and modify records on the handheld and desktop computer, converting formats as required. There

are different databases on the handheld like address database and calendar database, to-do list

and memo database.

The next section gives the design of the whole system.

5.0 Palm TWN Address Synchronization (PTAS)

5.1 Design Flow

Objective is to synchronize the palm address database with TWN contacts table.

5.1.1 Low Level Architecture

Palm PC TWN

LJ-----r_PTAs-,----__L_:w

AddressDB Address DB

Three components are involved in this architecture. Each component is explained in

detail here.

• Palm: Palm pilot stores all the contacts in Address database (AddressDB).

• TWN: The TWN server has address table (AddressDB) to store the contacts for every user

like the palm.

• PTAS - Palm TWN Address Synchronization: This is a java based program used to

synchronize the two databases - palm and TWN. After the synchronization is performed

7

)

these two databases are the same. They are the mirror images of each other. PTAS is

compiled to get an executable and this connects to the two databases - details are given

in later sections .

5.1.2 High Level Architecture

The high level architecture is shown in figure 2. This shows the basic architecture of the

synchronization process. There are different blocks in the diagram. Explanation is given for each

block.

CDK (Conduit Development Kit): CDK4.0 is installed from the palm source website. This kit is

very useful for developing conduits. The CDK provides a standard library, which has all the java

files and class files. This library is very useful for writing conduits. This gives a basic idea how to

access the palm databases. Along with the library, few sample programs are provided which

synchronize the palm databases with the desktop databases, which come with palm SDK. A

custom java file is created using the sample programs. This idea is called as PTAS (Palm TWN

Address Synchronization).

TWN: Mysql server is installed on owl machine (TWN server). A table called as 'ADDRESS' is

created in a database, which is on owl server. This table is synchronized with the contacts table in

the palm.

Palm: Palm has a database called as AddressDB to store the contacts of a user. This database is

accessed (read and write) using the API's provided by CDK.

Developer: The conduit developer uses Windows OS. Mysql client is installed on this computer

(this is just for testing). Java is used as a tool for all the applications. JDKl.3 is installed. The

applications are compiled and executed in Code Warrior which is a Windows based IDE. Mysql

JDBC driver is installed to connect the application to the database. The application is nothing but a

conduit. CDK is also installed on the developer PC. PTAS (Palm TWN Address Synchronization) is a

java conduit, which synchronizes the palm AddressDB and TWN contacts table. PTAS is developed

using the Java API's provided by the CDK. Implementation details are explained in the later

sections.

User (Client): The user is assumed to have a windows OS which supports JVM. The user desktop

should also have Palm software, which helps in connecting to a palm pilot. PTAS conduit is

installed on the client side (user side). This will basically be a class or an executable.

8

User (Cl ient)

Windows

Palm HotSvnch

AddressDB Palm Pilot

)

TWN

Mysql
Contacts

TWN Database

I
I

I
I

I

(" .. -/ 1
i / i

CDK API's

Java Samples

Client
for
testing

CDK

► 1 Code .___w_i_nd_o_w_s_o_s~---+----..i... warrior

··· Developer's PC · ······· ..

9

)

5.2 Database Schema

Address table

This table exists on both the palm and TWN.

r'Nain~ , . / -;. Type,, f Null' 11:Default

~ ID i int(3J unsigned Yes ! 0

'![A ff~ORYINDEXl intf5J},lnSigned_ Yes ! 0
·~ NAME __ ~ i varchar(25J Yes null
'i "'FIRST _NAME ,, . varchar(2oj'""""· "ye;·--,--~~'ii ...
i rirLE ······. •··· ·····•········· ~~;~h~;ffo) . Y~s ' ~~i1

[♦ COMPANY varchar(10J Yes null
; -♦ PHONE1 varchar(1 OJ Yes null
~ PHONE2 varchar(12J Yes null
~ PHONE3 varchar(12J Yes null
·~ PHONE4 varchar(12J Yes null
~ PHONE5 varchar(12) ' Yes i null

1-~ --PHONELABEL 1 [int(1?J ~n~igned ~.x~s:· i o .. :

i ·~ p~gN~LC\B~~?- • int(12J~nsign~d • Yes 1 ,- ...

i -~ ·-~!:!.Q.~ELABEL3 int(12J unsigned Yes 2
Yes 3

.......

Yes 4
.~ pHq~~LA~~~~········· . int11?Jyn~ign~d
~ PHONELABEL5 int(12) unsigned _ _,__.._____,._-+----1----

·~ ADDRESS
~ CITY

Yes ---+- v_ar_c_ha_r(~2~5J_~-­
varchar(12) Yes

~ STATE y archar(10) Yes
r -~ COUNTRY varchar(1 OJ Yes
♦ ZIPCODE v archar(10J Yes
~ CUSTOM1 varchar(10J .. Yes
~ CUSTOM2 varchar(1 OJ Yes
+ CUSTOM3 varchar(10J Yes
~ CUSTOM4 varchar(1 OJ Yes
~ NOTE varchar(255) Yes

Yes ,..,,♦_•· _I_SA_R_C_H_IV_E_D_--+_ v_a_rc_ha_,r(_§,,._l ---+---
: ~ ISDELETED varchar(5J Yes

null
null -~.,, :
null
null
null
null
null
null

i null
null
false
false

[~ ISNEW --+-- va_rc_har(5J '(~s . tr~~

l.~ ISMODIFIED ;: .. ······.:;····'' .. c ''., c.1 .. ,r.,[,t.5_, ... L.l .. Ye.s , ... f .. a 1.s e
: ~ ISPRIVATE . \l<=l!char(5j , Yes false

Description of the database

• Every record has a unique record ID

• There are different categories provided in palm like public/private/confidential. Each

category has a unique index.

• Each address record stores all the contact information of a person like name, company,

address, phone etc.

• isDeleted, isNew and isModified are called as status flags. These flags are there in both the

databases. These are used for synchronization.

• For example, if the palm contact has isNew as true then this record is copied into the TWN

DB. This is explained more clearly in the next section.

10

)

• By comparing the status flags, synchronization takes place.

• Fast synchronization is considered for our research. There is also slow synchronization.

• Archive records are not considered.

• If palm has a record where isNew is true and also isDeleted true then this record is not

added to the TWN during synchronization

• So we have to check all the deleted records first

• If palm has a record where isNew is true and isModified is true then only the modified

record is copied.

• If the palm has a record where isModified is true and isDeleted is true then this record is

not copied. These are explained in the table.

5.3 Class diagram

Addi'Cond . '

+ conduitNamer ~tfing
.,

+ openPC()
+ openPalm()
+ configure()

' ,

' r
•·

·'
L.'ocalDB RecordMgr

.. + hhrecords: vector
··. + • u~MM

+ gefDBConneclion() .
..

I . + readRecqr(;ls() .+ slowSyn<:Data()

+ wrlteRecprd~() + syn<:hronizePCRecord()
+ synchronizeHHRecord()
+ handleModified()
+ handleDeleted()
+ copyPCRecords()
+ copyHHRecords()
- writeHHRecords()

Description of the classes:

AddrCond is the main class, which interacts with the other classes

• Connection to TWN database is made using the JDBC driver using the following command.

Class. forName("org .gjt. mm. mys qi. Driver");

connection=DriverManager.getConnection("jdbc: mysql: 128.193.40 .80", "user", "password");

• Connection to Palm address database is made using the API's provided by CDK403.

db= SyncManager.openDB("Add ressDB" ,0 ,SyncMa nager.OPEN_READ I
SyncMa nager . OPEN_ WRITE);

• All the handheld records are read into a Java Vector - hhRecords

• All the TWN records are also read into a Java Vector - pcRecords (using LocalDB class)

11

• The program checks whether to perform fast synchronization or slow synchronization.

Slow Synchrnization: SlowSync performs slow mirror synchronization of records . SlowSync is used

when the statusFlags can not be relied on for accuracy because they could have been reset during

a previous synchronization with a different PC. Therefore, the slowSync method must read and

process all the records from the device regardless of their status values. If the HH is HotSynced

with another PC, then the statusFlags are wiped out. SlowSync uses the Backup file, which is a

copy of the file after the last HotSync, to determine which records have been added, changed, or

deleted on the HH since the last HotSync. To perform a SlowSync, every record must be read in

from the HH, as opposed to the FastSync which reads only the modified records.

Fast Synchronization: Performs fast synchronization of records by reading and writing only the

modified records to and from the Handheld. It relies on the statusFlags for each record to be

accurate.

• In this case, a user will always connect to the same database (TWN). So fast

synchronization makes more sense for this project.

• The two vectors (hhRecords and pcRecords) are synchronized in the RecordManager class

• The records are written back to their respective databases.

RecordManager Class: This class compares the two vectors (records) which are from different

databases.

• Each record is compared one by one

• The records are compared using the statusflags- isNew(N), isModified(M) and

isDeleted(D). Statusflags are the fields in the database. Initially all the flags are set to

false.

• First it checks whether the record Id of handheld is there in TWN DB or not. If the record

Id is same it means that we have to check the M and D bits. Otherwise the handheld

records are checked for D bits. If the D bit is true then the record is not copied into the

DB.

• The details of the algorithm and implementation are described in the later sections

• These two vectors are updated after comparing

• hhRecords vector is copied into the palm database

• pcRecords vector is copied into the TWN database

LocalDB class: This class is used to read the records from the TWN database. This has two main

methods - one method to read the records and the other to write the records.

• Read method: This method just reads all the records and copies into a Java vector -

pcRecords. This method is invoked in the AddrCond class.

• Write method: Updated pcRecords (newRecords) is obtained after synchronization (after

comparing with hhRecords)

• This newRecords is different from the pcRecords vector. Now the TWN should reflect the

changes. The newRecords vector is compared with the pcRecords vector and only the

modified records are copied into another vector (newDBRecords)

12

)

• This new vector is then checked for isNew, isModified and isDeleted statusflags and then

added or copied or deleted accordingly.

5.4 Implementation Details

The records in palm and TWN are compared using the status flags - isNew, isModified and

isDeleted fields. These bits are checked on each side for synchronization. Say for example, if the

record in the palm has isNew bit as 1 then it means that it is a new record and obviously there will

not be a same record on the other side for the same record ID. So the palm bits will be 1, 0, O and

the TWN bits will be 0, 0, 0. Initially all the bits are 0, 0, 0. So all the cases are considered here

in the table and all the cases are analysed.

The following notation is used in the table.

N - isNew D - isDelete M - isModified

D - Delete A-Add

P - Palm

True -1

C - Copy/overwrite

T-TWN

False - 0

Action - 3types of actions - A, C, D according to the bits

Null - 0

No: Palm TWN

1 N D M N D M Action Where to

where

/ 2 _')':t 0 ic"Q,, 0 w
=·:Tm,f~

· 0 1,:0 . 0 ·oo noth,in'g ·. ·:::
'. ,.\, . . :'',· .i .. ;.,

"""""""""···
3 1 0 0 0 0 0 Not possible -

··•······•'(_fl:,lOi'

4 ~o
, ...•

:., 1 ' 0
.-,

0 0 0 "D "' . :.p •·.

''
, .. ·, \ . , ,;:

5 0 0 1 0 0 0 C P-T
~1'7,,-"VW'j,,'t"

6 ; ·o .. 0 . 0 1 0 0 Not possible ·. ~ . ..
', j . i,s .. " ,,,

7 0 0 0 0 1 0 D T

:·a 0 ·o 1,Q
..

0 0 1 ,C ·' T7P "16'' .
,. -, ..

" .'., ' ·•. li.~.d
9 1 1 0 0 0 0 Not possible -
10 ?, 0 ,, ' 1 1 .·. l~:-v ,

,Q 0 !;' Q· D . ~:,·; p ... ·-,rt ,.,.. ., . •,;;.
_m,l;o,:;i,;;;;J! .•

·•·
11 0 0 1 1 0 0 Not possible

12 0 0 ·a
I".•· ---1 1 0 Not ·possible -..

13 0 0 0 0 1 1 D T

14 . ,.1 l•·,o 1 . ·. ,:,,·
,,

0 'O 0 ~pt possible -I:
•! ' .i.n;o.<,.;nkao< ··: ·,,

15 1 0 0 1 0 0 Not possible

16 ' t · J ,, 0 0
..,~·r•·"··~·~-<

0 1 o .. • Not possible
·•

"'--~

17 1 0 0 0 0 1 Not possible

I 18 ';i 0 , 1 , 0
·•;'"<%,;(~~,-

1 0 0 Not possible
,. . ·, '· 1·, , . . ,,. ·, .· '{. ·.l .,.

19 0 1 0 0 1 0 D P,T

20 0 . 1 0 --~· 0 0 1 Check time(D) P,T /

......... , .. < .. ' '' '
21 0 0 1 1 0 0 Not possible

;n 0 0 1 0 1 0 Check time P,T "

..

13

23 0 0 1 0 0 1 C P-T

2~ 0 ;Q O ' 1, . 1 0 Not pos~ible ·-
'.(; ••!

25 0 0 0 1 0 1 Not possible

•'~6 .0 ;';[0 .,. 0
, ·-~·

0 ' ·1 .? l b »., .. ;! P,T , '''" >''·•· '! :.~t -· •·

27 1 0 1 1 0 0 Not possible

\~_8 ;,,; 1' ' 0 'j o· ; .1 " f Qi;i, •Not possil:ile ·, \'' •,y,., ;

.. .. . '!· '· ; . i, ,}', .,
' ' '

29 1 0 0 0 1 1 Not possible

30 i •.· WO · O'
'7(t:-Pl."lf~ ··1 ···· 0 •[t 1 '· Not possible

cC••

I•+. ' > ;':?;>. ... ✓·

31 1 0 1 0 0 1 Not possible

1,32 ·Q,, 1 /'. 1 ·. z..~' , 1,. 0 0 · :Not possi~ .l~r· · l "
.. ,· " ·• (j i . ,,;,,, •L .>'•. ·, ' ,,; ,, > . ,; :.,(,•

33 0 1 0 1 1 0 Not possible

>34,?; r O'' · . L "f,'
,,..

. ' 1 :_\p,r, ,, .
f'• '• > o·· 0 . ·,},_ ,'.'Q .

,., 'ii; "' :.&:~. . ;. ;}4 '}.
·:..:,

35 0 1 1 0 1 0 D P,T

·36 ll,· l. ':·:t ' 'i\ .O·), 'Z,'''?"'"' ·1 9 . ·.o Not possible ; II'\. "A~.•
.h ·,

h
.. ' :,: . , '

..
· :·.» ,, . ' , ..

37 1 1 0 0 1 0 Not possible

,.c3a. •· ·1''' ; "1 0
. ·;c

Q ',o 1 'Not •possible 'Vii}
,;: .. '

39 0 0 1 1 1 0 Not possible

"40 , ··o •. ·o /;t 1 '' ,· 1,0 1 ·+ .·1 :.:• Check time I.'
.

; i'
'

. ,,

41 0 0 1 1 0 1 Not possible

' 42 ·o.·· ., ' 0 .Q -·· 1" 1, . 1 ,: Not possibl~ ,.
,}\:., ' ,;, .; . I

)
f;\ .. •,-1 .•,', ••-'-"' ":~M;.),.,

.,_,. -ii, i.

43 0 1 0 1 0 1 Not possible

. .44
·,·,

,1 ·'· . Pl ··, •1 1, 0 · 0 r:,Jot poss5iple i ·y _i; ,, .
. ,.:;.\..:..!.1w<'U.

45 1 0 1 1 1 0 Not possible

·'46 ' ;1 0 ·, O ,.. 1"' 1 · 1 Not possible . ·
.,

'J·',;·
'/? -.

•. ''.': ; ,. ; ,..

47 1 0 1 0 1 1 Not possible

;,ta: . ' l• '{i 1< 0 =-·:-; '''1 1 " _.()' Not possible ·" .
X ,,

'"' :f
•'f r

' ' :,
. ,, ,,, "

49 1 1 0 0 1 1 Not possible

so··,.,, 1 ''1
·,.,

0 'T J 0 1 · "Not possible
.,. ,'' ' . , . i c¾•. \~ '

51 1 1 1 0 0 1 Not possible

52 . i 1 1"'
,- .o ·1 0 . Not possible

It;,_~, ·, f ' :i; .,,_,,_,' . ' .''1.· ... ~~ '>:...i.

53 0 1 1 1 1 0 Not possible

54 0 ,i :J:
'mz~• o· ' ~ ,J, l D.

{ ,,.. ' ,, ,;
''

•;. ·'
'c ''• ' ' ,Ji .·_ i,,
' ... '

55 0 1 0 1 1 1 Not possible

}56 .O',,_ ,, ·(j 1 " '-:, t• 1 . ··1 'Not possible ' ·'· ;,, ; _-,,,:=al'ri.: ' "
57 0 1 1 1 0 1 Not possible

:,58 () 1 1
. ... _ $', ~

1 ·f ',u. 1 Not possible ·
.,

.. , .
59 1 1 1 1 1 0 Not possible

60 r q, 1 ' 1 1 ' 1 Not possible
. ~.;

,·,\ '),

61 1 1 0 1 1 1 Not possible

62 1 ·1 1 1 0 :, 1 Not possible ·"
--'~-IL

14

)

63 1 1 1 1 1 1 Not possible

64 0 0 0 10 0 A
l---+---'"--------l-------l----l ·"¼i,..i,~ .. ,.l-'----+~-+---+---- ·•-··-----1-----""-- " --a--f

65 1 0 0 0 0 0 A P-T

,__.'"'6_6 __ · __ 1~- -1-+-'- 0.__. ... ""'"··l---'-0--+_0 __ 0_ 1,.'-o~· -~-'--- ·"....,,""". _ ,,+-'-'P'---~-' ----'-I
67 0 0 0 1 1 0 D T

1---+---'-----+-------1----I ••··,··,,., -+- --+--+...:..c---,---,f---------+------~
Ii 68- l: 0 L 0 0 0 C ;,;' P-T

11'.,' ;Y " -,~ ~, , .. ,_ <: ',

69 0 1 1 0 0 0 D p
,__ _______ ---t ·':lt"' '1'1----+--+---+-------+-------

: ,?O 0,. 1 .. 0 > ""' 0 0 0 D .• i:\. ', , ,.P .):
-~----0--+-0""--'-l r-'---+--+-~-+--~--~-----1---------,

71 0 1 0 1 A T-P

72 . 0 . (ZI .0 -~--,, '·'1 1 1,.. ..D .. , .,--, . /"c"-';;y,,-, h, .• , ·., ,.... ,,
73 0 1 1 0 0 0 Not possible

75 0 0 0 0 0 0 Not possible
.,:,·;;;/ .''i" ..

77 0 0 0 0 1 1 Not possible

' O · {a, .Q < Not possible ')

79 0 0 0 0 0 0 Not possible

0 . 0 1 Not possible

The above table shows all the 80 possible combinations of 0, 1 and 0. But all these 80 cases are

not valid ones. As explained earlier, if the bits on one side are 1, 0, 0 then the bits on other side

should 0, 0, 0. No other combinations are possible except for this . So, many cases become 'Not

possible' cases as shown above. The table below shows only the possible cases and they come out

to be 24.

Palm TWN

No N D M N D M Action Where to where

1 1 0 0 0 0 0 A P-T

2 1 ' :< 1.cQ 1
,.

'T ''.12!
.. ,,0 ' 0 A ,1

" P-T
;,, ·y }\

,J:.,,."'8t'.,d'l.:,.1=:. , .
3 0 0 0 1 0 0 A T-P

..,,..,,.-·-·

4
... ,

0 ' '~0 .0 1 .J'·· 0
,.

l A T-.P
:,. ·,, .' ·,".. .· •: i,

5 0 0 1 0 0 0 C P-T
. , , . 'r!"",.f'.'!lt<·-yi·,•·~, ... 1 ·c;;. "''''C. ', ., T-P· • ..

6 ,0 0 ' ,0 q, . 1-10
' "·•=

7 0 1 0 0 0 0 D P-T

,3 o' 0 0 0 1 0 D · P,T
'. .,

9 0 1 1 0 0 0 D P,T
,:,:~,=v"C«,w_.,- ·

. 10 0 0 0 0 i 1' D ·P,T
= ·-·

15

,.

,,

)

)

5.4.1 Synchronization process

There are 3 status flags in the address database of palm and TWN - isNew, isDeleted and

isModified. These bits are very important in the synchronization process, because a decision is

made only after checking the bits.

Since there are 3 bits on each side, all together they make 6bits. And each bit can be

either true or false or null.

All the possible cases should be analyzed to get an optimistic algorithm. If only l's and O's are

considered on both sides, then the total possible cases will be 26, which is equal to 64. All the

cases are shown in the tablel. There are also cases where the records are null (0).

I have come up with a notation to represent all the above cases in a general format. If null cases

are taken into consideration in addit ion to the 64 cases, the total number of cases will be

64+ 16 = 80 cases. But all these 80 cases are not considered for synchronization.

Example:

If the handheld record bits are 1 0 0 and the TWN bits are 1 1 0. This is not possible, because the

records are compared with respect to the record ID. And the record ID on palm is different from

the record ID on the TWN. So a record which has 1 0 0 as its bits means that that is new record .

So there should not be a record with the same ID on the other side. The bits on the other should

be all null, because there is no record. So there are number of cases like this which are removed

from the tablel because they don't happen.

16

The second table shows all the possible cases. So only these cases are considered for

synchronization. There are 24 possible cases. Since the table looks a bit long it is reduced to a

general notation.

Let x be O or 1.

All not possible cases are shown below

1 X X X X X 24 cases

X X X 1 X X 24 cases

0 X X 0 0 0 4 cases

0 0 0 0 X X 4 cases

56 cases

Total there are 80 cases where 56 are not possible cases. We will see the possible cases below.

This is a generalization of table2. These are sorted according to the functionality. There are 5

possible things that can occur during synchronization.

• Add (inserting a new record)

• Delete (deleting a record)

• Copy (overwriting the already existing record)

• Do nothing (if there is no change in the bits on either side then do nothing. Example O's on

both sides like O O O and O O 0).

• Check time (if the record is modified on both sides then a decision should be made

according to the time or priority should be given to either palm or TWN)

There are altogether 24 possible cases. The order is as follows

4 -Add

12 - Delete

2 - Copy

6 - Check time

Again x is 1 or 0. The above order can be written as

Add

Delete

1

0

0

0

0

1

X

0

X

0

0

0

0

X

X

0

X

0

2 cases

2 cases

4 cases

17

0 X 0 0 1 X 4 cases

1 1 X 0 0 0 2 cases

0 0 0 1 1 X 2 cases

Copy

0 0 1 0 0 0 1 case

0 0 0 0 0 1 1 case

Checktime

0 0 1 0 0 1 1 cases

0 0 1 0 1 X 2 cases

0 1 X 0 0 1 2 cases

Do nothing

0 0 0 0 0 0 1 case

24 cases

This algorithm is used for synchronization. All the 24 cases are taken into consideration.

5.4.2 Data Structure

There are records in the palm database and there are records in the TWN database. These two

databases are compared for synchronizing. While programming, connecting to the TWN database ·

is time consuming. And if the connection has to be made more times then more time will be

wasted . Instead of connecting to the TWN database each time, all the records from TWN are

copied into a vector data type. Similarly all the records from the palm are copied to a vector which

is already explained earlier. Now these two vectors are compared and updated after

synchronization. These vectors after synchronization are copied back to their respective

databases.

So now the problem is 'what is the efficient way to copy the updated vector to TWN database'.

There are 2ways to do this. We will name the synchronized (updated) vector as ' newRecords' and

the database records vector as 'pcRecords' (initial vector which is not updated).

1. All the pcRecords can be deleted and all the newRecords can be added to TWN. But in this case,

all the saved TWN records are also deleted. Deleting in this case means not marking the record as

deleted but completely removing the record from the database. So this is not the best way to do.

2. There is one more method to do this. This needs a small step wise procedure. The pcRecords

and newRecords are compared and the action is taken. Say newRecords has a new record which is

18

)

)

not there in pcRecords. Then this new record is added to the TWN database. Similarly if a record is

deleted in the newRecords then the TWN record should be deleted. For the modified records, if the

record is marked as modified in newRecords then delete the record in the TWN and copy this new

modified record. So this will be done in 2 steps - deleting the old record and copying the new

record.

Second method is used in the implementation because it is more efficient one. Steps are given

below.

• pcRecords and newRecords are compared

• only changed / modified records are copied into a new vector - newDBRecords

• Each newDBRecords is checked for isDeleted bit and if it is true then the records from the

TWN database are deleted

• Each newDBRecords is checked for isModified bit and if it is true then the record from the

TWN is deleted and this new modified record from the palm is inserted into the TWN

• Each newDBRecords is checked for isNew bit and if it is true then this is inserted into the

TWN address table.

5.4.3 Assumptions

The main assumption made in the entire process is that the records are not lost and records are

not accidentally deleted by administrator or hacker or faulty code.

Normally if a record is deleted, then it is marked as isDeleted = true in TWN. Only after the

synchronization, the records are expunged from the database. But if someone deletes (expunges)

the record in TWN accidentally then it will be a problem. After synchronization also the record will

still exist in the palm database. And it is not deleted at all. This may cause memory flow after

certain amount of time. In order to avoid this problem, slow synchronization is used.

For this project, we are assuming that these kinds of problems never occur.

19

)

)

5.4.4 Failure cases

Palm and TWN are updated in parallel.

Palm Records TWN Records

Update PalmVector

Synchronize palm Synchronize TWN

ic Transaction

Monitor

Atomic Transaction

Success

All the palm address records are copied into a vector data structure. Similarly TWN records are

copied into a different vector. These two vectors are compared and the status flags are checked.

According to the status flags, isNew, isModified and isDelete, specified action is taken according to

the table given above. So if the palm bits are 0,1,0 and if the TWN bits are 0,0,0, then TWN

record (vector) is updated to 0,1,0. Similarly all the records are compared.

20

)

From the above discussion it is very clear that the synchronization process is not a single step

process. In this section we will discuss more on the failure of the system

What happens if a system fails during synchronization?

The system can fail at three levels.

1. While copying the vectors from the respective DB's

2. While comparing vectors or while updating vectors

3. While synchronizing palm

4. While synchronizing TWN

5. Both fa il

The most possible thing that can happen when the system fails is one DB is updated while other is

not. We will see how the failure affects the two DB's.

A detailed explanation of the above failures and their consequences are described below.

1. While copying the vectors from the respective DB's

Then no problem, the two databases remain same after the failure also. But synchronization

doesn't occur. So the user has to perform this process again.

2. While comparing vectors or while updating vectors

This type of failure also doesn't have much effect on the synchronization process. Both the DB's

will be the same and the user should once again perform the synchronization.

3. While synchronizing palm

If a failure takes place while synchronizing the palm, then the palm system roll backs so

synchronization is not completed. But if the TWN is synchronized then there will be a problem. Say

for example, if there is a new record on TWN (1,0,0) and it has to be copied to palm(0,0,0), but

during synchronization say if the palm synch failed. Since the palm synch failed the handheld is

not updated. But on the TWN side the updated TWN record for 1,0,0 will become 0,0,0. So when

the user again synchronizes, this new record is not copied to palm. If the TWN has a record with

status flags 0,1,0 and if the process fails, then TWN updated record will be 0,0,0. But on the other

side, the record on the palm will be still 0,0,0 and it is not deleted at all.

4. While synchronizing TWN

This is similar to the above case. Memory will be wasted if records are not deleted and they will be

there for ever . New records will not be copied whenever there is an error. The data will not be

consistent.

5. Both fail

If both fa il then also the synchronization process is fully altered.

21

)

)

Steps to be taken:

1. Each transaction can be assumed as an atomic transaction. If there is any failure then the

system should completely roll back on both sides. Because if one side rolls back and the

other gets updated then it is again the same problem. So both the systems should roll

back.

2. The user should be informed about the failure

3. Use a monitor to check if the transactions are successfully completed or not.

Palm synchronization is written such that it rolls back whenever it gets interrupted. But we have to

make the TWN system roll back if there is any problem. The system should be locked from the

user so that it is not disturbed while performing synchronization. And it becomes easy to roll back

the system.

Palm and TWN are updated one after the other. Palm is synchronized first. TWN synchronized if

and only if palm synchronization is successful. The diagram which is given below shows the

sequential synchronization of palm and TWN. A monitor is provided to check the status of the

synchronization. If palm synchronization fails then all the transactions are rolled back and the user

is informed about the same.

If TWN fails, then synchronization should be performed only to the TWN records recursively as

shown below. It comes out of the loop only if TWN is successfully completed.

Palm

,

Monitor

Failure

TWN Success
~

~

-~
r

Monitor

Failure

/
✓

I Success I

22

)

6.0 Palm TWN Calendar Synchronization (PTCS)

Calendar synchronization is similar to the Address synchronization. So the details of the

synchronization algorithm are not discussed here. Only the table structure and variables are

explained in this section.

Synchronization software is used to keep two or three different calendars in agreement. For

example, if you use a Palm PDA, the synchronization software will compare appointments in your

Palm with appointments in the central database, and keep them in agreement. It uses the most

recent data from each. Thus if you add an appointment in your PDA, next time you sync that

appointment will be added to the central database. Similarly, if someone puts an appointment on

your calendar in the central database, next time you sync it will be loaded into your Palm's

datebook.

6.1 Calendar database structure

Entry EntryID Entry Properties

EntryID GroupID 1--------{ Groups

Associations WiseID Users

This is the existing database structure at thewisenet. One more table is added to this database

called as PalmAttributes, which is used for handheld operations.

There are all together four tables.

• Entry

• Associations

• EntryProperties

• PalmAttributes

Description of each table is given below.

23

1. Table: Entrv

)
This table represents scheduled calendar entries across all TWN domain applications.

Field Type Description

*EntryID Int Every calendar entry has a unique id to make it distinct.

Description Varchar A brief text description of the entry.

TargetDate Datetime
The scheduled beginning of an appointment or the due date of a

task.

This is the amount of time in minutes between the start and the

Duration Int end of the appointment. If the entry is a task, this is the expected

duration of the task.

A semicolon delimited list of user defined category strings to

Category Varchar
classify the entry's context. This is defined by the organizer of the

entry and is copied to the Category field of each association bound

to the entry.

The current state of the entry could be:

"Tentative", "Confirmed", "Cancelled", "Pending", and "Completed"

) Status Varchar
and possibly more states will be identified as we develop. Any

special state related flags that we need that are not mutually

exclusive from other values of the Status field can be placed in the

EntryProperties table.

Notes Varchar A more detailed text description of the entry.

Creation Date Datetime The date and time of when an entry was first created.

An id representing a group to which the entry belongs. Possibly an

EntryGroup Int index to a GroupEntry table or, for now, a simple integer where 0

implies ungrouped.

Represents which Wise Net application this calendar entry belongs

to. This doesn't really have anything to do with calendaring other
DomainID Int

than to separate calendar entries created in different TWN

contexts.

An integer between O and 9 that specifies the priority level of the

Priority Int entry. A value of O means the priority is undefined. 1 is highest

priority and 9 is lowest.

)
Type Varchar

The type of entry could be an 'Appointment', 'Task', or perhaps

eventually some other entry type.

Location Varchar A location where the appointment is to take place.

24

)

)

Area

Organizer

Varchar An area where the appointment is to take place. RE specific.

Varchar The WiseID of the entry's creator.

C\f EntrylD

, -~ Description varchar(64)

<➔ Duration bigint(4)

1_¾_• _C_a_te_g_o_rY _ __,. y archar(64)
· ~ Type varchar(15)

Yes

Yes
Yes

. <➔ Priority int(11) Yes
· ¾ Notes varchar(255) , Yes

' ~ Entr~yG_r_o~up_,_ i_nt~(1_1~) ____ , Yes
-~ DomainlD int(11) Yes

, . ·"~;J9r~etDate datetime
¾ CreationD ate datetime

~ Status i varchar(64)

Yes

Yes

Yes
· <➔ Location 1 varchar(64) Yes

¾ Area varchar(15) Yes
¾ Organizer

2. Table: EntryProperties

This table represents a dynamic set of properties that can be unique to an individual calendar

entry. It can be used, for example, to association 'Location' with an entry.

Field Type Description

The id corresponding to the entry in the Entry table for which this
*EntryID Int

property-value pair is assigned.

*Property Varchar The name of the property associated with the calendar entry.

Value Varchar The value of the property associated with the calendar entry.

'::r:iarr,e: ! tvoe i Null,
i EntrylD,_

.,..,_,,, M.W.,VW,,;, •-hV ··-
int(11) No

C\f Property varchar(64) No

!
~ Value varchar(255) Yes

3. Table: Associations

This table represents user and group specific information that is relative to a particular calendar

entry. When a user is associated with an entry, that user can see the entry in their calendar and

25

'

)

)

possibly modify it depending on their Role. When a group is associated with an Entry, the

associations parameters apply to all the members of that group.

Field

* EntryID

* WiseID

*GroupID

Role

Status

Category

View

Delegator

Watch

Type Description

Int The id of the Entry that a user or group is to be associated with.

This field contains a WiseID that represents a user to be
Int

associated with the entry.

Specifies a group of users that are to be associated with the
Int

entry. Not to be confused with EntryGroup.

Possible role
Varchar

The role of the user or group relative to the entry.

values are outlined below this table.

Varchar
Represents the user or group's participation level relative to the

entry. Possible status values are outlined below this table.

This field can be used to allow individual attendee's to sort their

calendar entries according to their own categorization method.

When an attendee is first associated with an entry, this category

Varchar is directly copied from the original category field of the entry.

Attendee's can then change their personal categorization of the

entry if they want to. Multiple categories can be stored here,

separated by semicolons .

This boolean variable determines if the attendee is visible
Int

privately or publicly .

Used for task associations
Varchar

to reference the delegator of the

Int

association.

A flag specifying that the user would like to set a watch on the

entry so that it is displayed in their daily calendar view.

t;Name' ';,,,, ITvoe't,, .: .. "K rNull' ·, I
liJ Entr}IID j int(11) No
~; WiselD j varchar(64) No

~ fuouplD : int(1 l)_ ...)'!o "
• -z~ Role • varchar(15)
.. '! ... ?t<3.t_ll~ .,. ' ;~;~h;;J,51··
:~ Category varchar(64)
~ View varchar(7)
~ Delegator varchar(64)

~ Watch int(11)

l Yes
: Yes
Yes
Yes

Yes
Yes

26

)

4. Table: PalmAttributes

This table represents a dynamic set of properties that can be unique to an individual calendar

entry. It can be used, for example, to association 'Location' with an entry.

Field Type Description

The id corresponding to the entry in the Entry table for which this
* EntryID Int

property-value pair is assigned.

The id corresponds to the palm record. This id is present in the palm
PalmID Int

Calendar database also.
J

isNew Varchar A Boolean variable which tells whether the record is new or not

A Boolean variable which tells whether the record is modified or not after
isModified Varchar

its creation

is Deleted Varchar A Boolean variable which tells whether the record is deleted or not

isPrivate Varchar A Boolean variable which tells whether the record is private or not

Organizer Varchar The WiseID and also the PalmID of the entry's creator.

/'Null '

+ u Entr~ID .. irit[11) !H?
~ PalmlD irit(}) i Yes
~ isNew \larchar@ I Yes
~ isModified varchar(5) ' YE
<-} isDeleted varchar(5) Yes
~ isPrivate varchar(5) No
~ Organizer varchar(65) Yes

All the above four tables are dependant on each other. So modifying one record in one table is not

so easy, because we may need to modify in other table also. If a new record is added in 'Entry'

table then new record should be added to 'Associations', 'EntryProperties' and 'PalmAttributes '.

Palm pilot also has the calendar database and it is called as DateBook. This DB stores all the

information related to the tasks of a user . This is similar to the Entry table on TWN server.

27

)

Palm DateBook Database Schema.

int(1 0) unsigned I Yes
-~ Co. TEGORYINDEX int(5) unsigned I Yes
~ STARTDATE datetime Yes
~ ENDDATE datetime Yes

Yes ~ ISUNTIMED varchar(5J

; ~ ISALARM~Q. _ y c:1rc,hc1r(?J __ -+-Y_e_s~

: : :~:~:~~:~~:~I~~ :~:1~: ~~::~~:~ ~:: i _..,, __ ,,,'-----1--~

-~ ISREPEATING varchar(5J Yes ;

~ REPEAT TYPE .. ·-· j,t(5J ~~stgneo !_S,es = 1
~ REPEATENDDATE date Yes

~· ~~~r

~ REPEA TFREQUENCY int(5J unsigned Yes
~ RE PEA TON _ varchar(1 OJ Yes
~ REPEAT ST AR_!WE __ ~ .. K. in\(?]
~ DESCRIPTION ----., varchar(22J _ , --!
~ NOTE i varchar(255J I Yes '
~ ISMODIFIED i varchar(5J i Yes l

-•-,• • • . ., M,·--,V,~-, *"'"'f---•-·-·•·Nt

<-➔ I SAR CHIVED f y c1rc:hc:1r(?L . ! Yes !

11-~----_ IS_P_R_IV_A_TE___ j varchar(5J "_ Yes '
~ EXCEPTIONS v archar(1 OJ Yes
~ ISDELETED varchar(5J Yes

,1--~_,: _ IS_N_E_W _____ --+--v_a_rc_ha......,r(§J Yes
· -~ CURRENTTIME timestamp(l4J Yes

There are number of variables in the above table. Many of the variables describe a recurrence

event. If the event is recurrent then information like repeat day, time etc. are stored. For now we

are not considering recurring events. So these variables are not seen in TWN database.

Variables considered for synchronization:

Id, Categorylndex, Startdate, Enddate, Description, Note, isNew, isModified, isDeleted, and

isPrivate. Enddate is actually not used. Instead duration is specified in the TWN database.

The comparison and synchronization process is already described for PTAS. The only difference is

PTAS had only one table in TWN. Though there are four tables for calendar only 'Entry' and

'PalmAttributes' tables are used for most of the purposes.

Entry table is the main one, because it stores all the information related to a task. And

PalmAttributes stores all the information related to a record in Entry. PalmAttributes table

describes the status of the record, whether it is newly added, or deleted or mod ified. These status

bits are important as we saw for PTAS.

28

6.2 Implementation Details

The datecond java conduit is written similar to the addresscond which is described above.

Sequence diagram and class diagram for date conduit are given below.

6.2.1 Sequence Diagram

t-1--,.-D..,..a....,.te_c..,..o_,.n_,.d,.....· .,.,....,1 I LocalDB

I
readPCRecords()

Return ()

Return ()

writePCRecords()

Return/ l

·RecordMgr

I readPalmRecords()

1 synchornize()

I

•
•

DateCond class is the active class and creates an instance of both LocalDb class and RecordMgr

class.

Sequence of actions:

• Opens a connection with the local database

• Reads the records from the local database and writes into a vector

• Opens a connection with the palm database

• Reads the records from palm and writes into a vector

• Compares the two vectors using the status bits

• Synchronizes the two vectors

• Writes the records to palm and local database

29

)

6.2.2 Class Diagram

The class diagram gives a clear picture regarding the interaction between the objects and the

methods involved . HH represents the handheld and pc represents local database.

DateCond

· ..
+ co~duitName: string

+ + openPC()
.<. ,,

+ openfl.;ilm·()
+ .configure()

,.

,.
'

LocalDB .' RecordMgr

: ~

,. + hhrecords: Vector
+ • uo,-lnr

+ getDBConnect(o,n()
+ slqwSyncData() . . , + teadRecords(} ',+ synchronizePCRecord() ,. + writeRecords() ,

" .' + synchronize8HRecord() '
,'

I + handleModified()
+ handleDeleted()
+ copyPCRecqrds.()
+ copyHHRecords()
- writeHHRecords()

6.3 Testing

Extensive testing is performed to make sure that there are no logical errors in the program .

Testing also included boundary testing, stress testing, functional testing and performance testing.

6.4 Results

Synchronization is performed perfectly for address book and calendar. Code details can be

available in Appendix B and java docs are attached in Appendix C.

6.5 Future Work

• To make the TWN calendar compatible with iCal specifications

• To make the web based calendar interoperable with Outlook and other standard

calendaring systems

• Right now the clients need the java code to synchronize their calendars with palm. But

in future, they should be supplied with a java executable which automatically does

everything.

• The process can be made more user friendly by providing a button on the webpage to

synchronize the web based calendar and palm datebook.

• Recurring events are not considered at this point. Implementation of recurring events

and its synchronization will be a very good future work.

• Performance can be improved by making use of different data structures. The

) algorithm described above takes O(n2) execution time. This is can be improved by

making use of Hash Tables.

30

APPENDIX A - Calendar Specification - iCal supported

) All the variables in iCal are represented with capital letters.

)

)

A.1 Variables in iCal

BINARY - pre-defined data type

BOOLEAN - pre-defined data type

CAL-ADDRESS (CALENDAR USER ADDRESS) this value type is used to identify properties that

contain a calendar user address. This is an URI.

DATE - this is used to identify values that contain a calendar date. (yyyymmdd). ISO 8601 Date

string can be used.

DATE-TIME - this is used to identify values that contain a calendar date and also accurate time .

The text format is a concatenation of the "date", followed by the CAPITAL LETTER T time

designator, followed by the "time" format. ISO 8601 DateTime string can be used.

Date can be specified in three different ways

-Local time: this is simple local time; there is no conversion to the standard time

-UTC time: this is the standard time. Local time is converted to the standard time and the events

are sent. This is identified by the time value appended by Z.

-Date with local time and time zone reference: Date along with the name of the t ime zone is

mentioned.

DURATION - The format can represent durations in terms of weeks, days, hours, minutes, and

seconds. ISO 8601 Duration string can be used.

FLOAT - pre-defined data type

INTEGER - pre-defined data type

PERIOD: This defines period of time. It can be start time/end time or start time/duration . ISO

8601 Period string can be used .

RECUR (RECURRENCE RULE): This defines lot of variables. This rule is a combination of different

parts in any order. Same recurrence relation can be specified in different forms. We will see how a

recurrence relation like - Meeting on every Tuesday for 2months . We will see what are the

variables defined first .

FREQ -YEARLY/MONTHLY/WEEKLY/HOURLY/MINUTELY/SECONDLY

We can create a variable freq,

Eg: if freq = 1 YEARLY

= 2 MONTHLY

= 3 WEEKLY

= 4 HOURLY

= 5 MINUTELY

= 6 SECONDLY

INTERVAL - contains a positive integer representing how often the recurrence rule repeats

UNTIL - defines a date time value (until this time, which is inclusive)

COUNT - Number of occurrences of the event

31

)

)

BYDAY - MO/TU/WE/TH/FR/SA/SU. This can be preceded by a +ve or -ve accordingly. It

represents the nth occurrence of the specific day within the MONTHLY and YEARLY RRULE.

BYMONTHDAY - value lies between -31 to -1 and 1 to 31. -10 represents the tenth to the last day

of the month .

BYYEARDAY - value lies between -366 to -1 and 1 to 366.

BYWEEKNO - value lies between -53 to -1 and 1 to 53.

BYMONTH - value lies between -12 to -1 and 1 to 12.

WKST - This specifies the day on which the workweek starts. Valid values are

MO/TU/WE/TH/FR/SA/SU

BYSETPOS - value lies between -366 to -1 and 1 to 366. If the RRULE contains BYMONTHLY and

BYSETPOS = -1 then it represents the last day of the month

STRING: to specify a set of characters

TIME: This defines the time (hhmmss). This can also be represented in three forms like DATE­

TIME. ISO 8601Time string can be used.

URI (Uniform Resource Identifier): This data type is defined by any IETF RFC.

UTC-OFFSET: This data type is used to identify properties that contain an offset from UTC to local

time.

These are the variables which are used to describe some of the information related to other

variables like attendee, organizer etc. PARTSTAT variable can be used to describe the status of the

attendee, so it goes with ATTENDEE variable.

CN (Common Name) - String: To specify the common name to be associated with the calendar

user.

CUTYPE (calendar User Type) - Integer: To specify the type of calendar user. CUTYPE can be

Individual/Group/Resource/Room etc.

DELEGATED-FROM - email address: This variable is used when the delegator sends requests on

behalf of the organizer.

DELEGATE-TO - email address: This variable us used when the organizer delegates his work to

someone else.

FBTYPE - Integer: Valid values are FREE/BUSY/BUSY-UNAVAILABLE/BUSY-TENTATIVE

LANGUAGE - String: This specifies language for the text values

PARTSTAT-lnteger: NEEDS-ACTION / ACCEPTED /DECLINED /TENTATIVE /DELEGATED /

COMPLETED / IN-PROCESS

RANGE - Integer: To specify the effective range of recurrence instances from the instance

specified by the recurrence identifier. Valid values are THISANDPRIOR / THISANDFUTURE

RELATED - integer: To specify the relationship of the alarm trigger with respect to the start or end

of the calendar component. Valid values are START/END.

ROLE - Integer: To specify the participation role for the calendar user specified by the property.

CHAIR/ REQ-PARTICIPANT / OPT-PARTICIPANT/ NON-PARTICIPANT

RSVP - Boolean: To specify whether there is an expectation of a favor of a reply from the calendar

user

32

)

SENT-BY - email address: To specify the calendar user that is acting on behalf of the calendar

user

TZID (Time Zone Identifier): To specify the identifier for the time zone definition for a time

component. Eg: US-Eastern.

Parameters:

METHOD - Integer: This property defines the iCalendar object method associated with the

calendar object. If this property is not present in the iCalendar object, then a scheduling

transaction MUST NOT be assumed. In such cases, the iCalendar object is merely being used to

transport a snapshot of some calendar information; without the intention of conveying a

scheduling semantic.

If method = 1 PUBLISH

= 2 REQUEST

= 3 REPLY

= 4 ADD

= 5 CANCEL

= 6 COUNTER

= 7 DECLINE-COUNTER

PRODID - String: This specifies the identifier for the product that created the iCalendar object.

VERSION - String: This specifies the identifier corresponding to the highest version number or the

minimum and maximum range of the iCalendar specification that is required in order to interpret

the iCalendar object.

ATTACH - semicolon-separated list of strings . The strings are URLs. This is for sending

attachments.

CATEGORY - String: Defines the categories for a calendar component.

Eg: APPOINTMENT/ EDUCATION/ MEETING

CLASSIFICATION - String : Defines the access classification for a calendar component.

Eg: PUBLIC/ PRIVATE/ CONFIDENTIAL

GEO (Geographic Position) - Float: specifies information related to the global position for the

activity specified by a calendar component.

PERCENT-COMPLETE - Integer: used by an assignee or delegatee of a to-do to convey the percent

completion of a to-do to the Organizer.

RESOURCES - String: Defines the equipment or resources anticipated for an activity specified by a

calendar entity.

Eg: LAPTOP, PROJECTOR, VCR

SUMMARY - String: Specifies a brief description for the activity.

COMMENT - String: Specifies a comment along with the event. This cane be a sentence or so.

DESCRIPTION - String: This gives a more description about the event than the SUMMARY variable .

LOCATION - String: Specifies the location of the event that is going to take place.

33

}

PRIORITY - Integer: Priority is given from O - 9. 0 = lowest priority and 9 = highest priority

STATUS - String: defines the overall status or confirmation for the calendar component.

Valid values are TENTATIVE / CONFIRMED / CANCELLED / NEEDS-ACTION / COMPLETED

/ IN-PROCESS / DRAFT/ FINAL.

·cLASS (Classification) - String: Defines the access classification for a calendar component.

DTSTAMP - Date-Time: Defines the date and time that a to-do was actually completed.

DTSTART - Date-Time: Specifies the date and time that a calendar component starts.

DTEND - Date-Time: Specifies the date and time that a calendar component ends.

COMPLETED - Date-Time: Defines the date and time that a to-do was actually completed.

DUE - Date-Time: Defines the date and time that a to-do is expected to be completed.

DURATION - Duration: Specifies a positive duration of time.

FREE BUSY - Period: Defines one or more free or busy time intervals. FBTYPE is also specified here.

FREEBUSY gives the time and FBTYPE specifies whether the user is busy or not.

TRANSP (Time Transparency) - String: defines whether an event is transparent or not to busy

time searches. Time Transparency is the characteristic of an event that determines whether it

appears to consume time on a calendar. Events that consume actual time for the individual or

resource associated with the calendar should be recorded as OPAQUE, allowing them to be

detected by free-busy time searches. Other events which do not take up the individual's (or

resource's) time should be recorded as TRANSPARENT, making them invisible to free-busy time

searches.

ATTENDEE - CAL-ADDRESS: Defines the attendee. This can be an email address. Parameters

include language, calendar user type, group or list membership, participation role, participation

status, RSVP expectation, delegatee, delegator, sent by, common name etc.

CONTACT - String: This is used to represent contact information or alternately a reference to

contact information associated with the calendar component.

ORGANIZER - Cal-Address: Defines the organizer. This can be an email address. Parameters

include language, common name, sent by parameters can be specified on this.

RECURRENCE-ID - Date-Time: This property is used in conjunction with the "UID" and

"SEQUENCE" variables to identify a specific instance of a recurring "VEVENT", "VTODO" or

"VJOURNAL" calendar component. The ID value is the effective value of the "DTSTART" variable of

the recurrence instance.

RELATED-TO - String: This is used to represent a relationship or reference between one calendar

component and another.

URL - URI: defines a Uniform Resource Locator (URL) associated with the iCalendar object.

UID (Unique Identifier) - String: Defines the persistent, globally unique identifier for the calendar

component. Each event has a unique identifier. The primary key for referencing a particular

iCalendar component is the "UID" property value.

EXDATE (Exception Date) - Date-Time: defines the list of date/time exceptions for a recurring

calendar component.

34

EXRULE (Exception Rule) - RECUR: This is a rule, so other parameters can be used to define a

rule. This defines a rule or repeating pattern for an exception to a recurrence set . All rules related

J to RECUR could be used here.

)

RRULE - RECUR: Defines a rule or repeating pattern for recurring events, to-dos, or time zone

definitions.

PRODID: This gives information related to the product.

VERSION: This gives the version of the calendar

DTSTAMP - Date-Time: Indicates the date/time that the instance of the iCalendar object was

created.

LAST-MODIFIED - Date-Time: Specifies the date and time that the information associated with the

calendar component was last revised in the calendar store.

SEQUENCE - Integer: This specifies the number of times the event changed after creating it. The

latest changed event has a higher sequence number than the initially created instance.

A.2 VEVENT: (This is for group scheduling)

Vevent component is basically used for scheduling purposes. It is very useful in small

organizations. The Calendar User (CU) who initiates an exchange takes on the role of ORGANIZER

according to the iCal spec. For example, the CU who proposes a group meeting is the ORGANIZER.

He is responsible for posting the events and scheduling the meetings. No one other than

ORGANIZER can post messages to the group. Only he can schedule meetings. The CUs asked to

participate in the group meeting by the "Organizer" take on the role of "Attendee". Delegating is

another important aspect of Vevent, which is mentioned in iTip.

Following are the methods related to the VEVENT component.

1. PUBLISH: Post notification of an event. Used primarily as a method of advertising the

existence of an event. There is no interactivity between the publisher and any other calendar user.

The events can be published in three ways - 1. Embedding the event as an object in a web page

2. Emailing an event to a distribution list 3. Posting an event to a newsgroup .

Variables involved in publishing an event .

prodid and version are common for all events.

Publishing an event

method= 1

prodid

version

organizer

UJD

dtstamp

dtstart

dtend

summary

sequence

35

)

)

description

priority

rrule optional

status

class

location

Updating a Published event

This is an extension of publishing event. Changes are made to the before event. Changes can be

made to location, start time or end time etc. Sequence number is incremented but UID is the

same and method = 4.

Canceling the Published event

method= 5

organizer

comment

description

dtstamp

uid

sequence

2. REQUEST: Whenever a request is made by the organizer to the attendees, then the attendee

list also contains organizer as one of the attendee with the PARTSTAT value as ACCEPTED. This

means that the organizer is making a request to himself with the status, ACCEPTED. This is true

for all the users who send the request.

The "REQUEST" method in a "VEVENT" component provides the following scheduling functions:

2.1 Invite "Attendees" to an event: Only Organizer can send a request to the attendees. No

other user except for the delegator can send a Request.

The Attendee parameter can also include other parameters, which give information about the

Attendee. The organizer can mention these while sending the Request. Here is an example.

method= 2

organizer

attendee (email) [role, partstat, CN, RSVP, category]

dtstamp

dtstart

dtend

summary

uid

sequence

36

)

)

status

location

2.2 Reschedule an existing event: The "REQUEST" method may be used to reschedule an

event. A rescheduled event involves a change to the existing event in terms of its time or

recurrence intervals and possibly the location or description. If the recipient of a "REQUEST"

method finds that the "UID" property value already exists on the calendar, but that the

"SEQUENCE" (or "DTSTAMP") property value in the "REQUEST" method is greater than the value

for the existing event, then the "REQUEST" method describes a rescheduling of the event.

method= 4

sequence - incremented

UID - unchanged

Other parameters may change compared to 2.1.

2.3 Update the details of an existing event, without rescheduling it: The "REQUEST"

method may be used to update or reconfirm an event. An update to an existing event does not

involve changes to the time or recurrence intervals, and might not involve a change to the location

or description for the event. If the recipient CU of a "REQUEST" method finds that the "UID"

property value already exists on the calendar and that the "SEQUENCE" value in the "REQUEST" is

the same as the value for the existing event, then the "REQUEST" method describes an update of

the event details, but no rescheduling of the event.

The update "REQUEST" method is the appropriate response to a "REFRESH" method sent from an

"Attendee" to the "Organizer" of an event.

The "Organizer" of an event may also send unsolicited "REQUEST" methods. The unsolicited

"REQUEST" methods may be used to update the details of the event without rescheduling it, to

update the "partstat" parameter of "Attendees", or to reconfirm the event.

2.4 Forward a "VEVENT" to another uninvited CU: An "Attendee" invited to an event may

invite another uninvited CU to the event. This kind of CU is referred as 'party crasher'. The invited

"Attendee" accomplishes this by forwarding the original "REQUEST" method to the uninvited CU.

But the decision whether the new Attendee is to be added or not depends on the Organizer. So

updates of the event may not reach the 'party crasher'.

2.5 For an existing "VEVENT" calendar component, delegate the role of "Attendee" to

another CU: If A is the organizer and scheduling a meeting with B, C and D. C wants to delegate

the event to E, then C sends a REPLY to A and sends a REQUEST to E. C is called the delegator

and E is called the delegatee.

C sends REPLY to A

method= 3

organizer

37

)

)

attendee (email id of CJ [partstat = delegated; delegated-to(email id of E)J

uid

sequence

dtstamp

request-status

C sends REQUEST to E

method= 2

organizer

attendee (email id of CJ [partstat = delegated; delegated-to (email id of E)J

attendee (email id of E) [RSVP= true; delegated-from (email id of CJ]

other variables

Next step: E can accept or decline the REQUEST of C for delegating the event. E can send a REPLY

to C by setting his partstat to ACCEPTED or DECLINED accordingly.

3.REPLY: This can be of any type. Attendee can send a REPLY to the organizer. When replying the

Attendee sends the reply to himself. The attributes related to this method are given below.

method= 3

organizer (email id)

attendee (email id of the sender) [partstat]

uid

sequence

dtstamp

comment

4.ADD: This is mainly used when recurrence events occur. Sometimes the location/duration/time/

description have to be changed for recursive events. So the Organizer edits the event with proper

information. This is discussed later.

S.CANCEL: The "CANCEL" method in a "VEVENT" calendar component is used to send a

cancellation notice of an existing event request to the "Attendees". The message is sent by the

Organizer" of the event. For a recurring event, either the whole event or instances of an event

may be cancelled. To cancel the complete range of recurring event, the "UID" property value for

the event MUST be specified and a "RECURRENCE-ID" MUST NOT be specified in the "CANCEL"

method. In order to cancel an individual instance of the event, the "RECURRENCE-ID" property

value for the event MUST be specified in the "CANCEL" method. method= 4.

6. REFRESH: The "REFRESH" method in a "VEVENT" calendar component is used by "Attendees"

of an existing event to request an updated description from the event "Organizer". The "REFRESH"

method must specify the "UID" property of the event to update. The "Organizer" responds with

38

)

the latest description and version of the event. This is also used when the user wants to confirm

the location/time of the meeting.

7. COUNTER: The "COUNTER" method for a "VEVENT" calendar component is used by an

"Attendee" of an existing event to submit to the "Organizer" a counter proposal to the event

description. The "Attendee" sends this message to the "Organizer" of the event. This can be

requesting a change of time/location etc. The attendee can include a comment saying what to

change.

8. DECLINE-COUNTER: The "Organizer" can decline the counter proposal using this method.

Comment can include saying that the change cannot be made.

9. Removing Attendees: Organizer can send a CANCEL message to the attendee to be removed.

Then the organizer can send the updated event to others on the list except the one removed.

10. Replacing the organizer: Changed organizer can send the same event with incremented

sequence number.

Recurrence Events: This also comes under VEVENT.

REQUEST for a recurrence event

method= 2

uid

sequence

rrule [freq = monthly; bymonthday = 1; until (time)]

organizer

attendee list

Recurence-id may be the dtstart of the event. dtstart changes for every instance of the event

because dtstart is different for every event.

Update a recurrence event: To make some changes to the recurrence event, add a recurrence-id,

which is the dtstart of the already existing event (to differentiate between different recurrence

events). Mention the parameters to be changed.

recurrence-id

sequence - incremented by 1

CANCEL an instance of the recurrence event

method= 5

recurrence-id (dtstart of the instance of the event to be cancelled)

sequence - increment

39

)

)

Change all the future instances of the recurrence event. Give new dtstart and dtend or any other

information related to the change.

method= 2

recurrence-id (range = thisandfuture)

sequence - increment

dtstart

dtend

Add a new instance to the recurring event

method= 4

sequence - incremented

give new dtstart and dtend and information related

Counter proposal for a recurrence event

method= 6

recurrence-id - of the instance

comment

new time or other parameters that has to be changed

Attendee can also give a REPLY if there is anything wrong in the RRULE sent by the organizer.

A.3 VFREEBUSY COMPONENT

Free busy times should be sorted in ascending order based on the start time and end time, with

the earliest periods first. VFREEBUSY has three methods.

1. PUBLISH: Publish unsolicited busy time data.

The "PUBLISH" method in a "VFREEBUSY" calendar component is used to publish busy time data.

The method may be sent from one CU to any other. The purpose of the method is to provide a

message for sending unsolicited busy time data. That is, the busy time data is not being sent as

a "REPLY" to the receipt of a "REQUEST" method. FREEBUSY and FBTYPE are mentioned here.

These parameters are already discussed in the beginning.

method= 1

dtstart

dtend

freebusy (specify time) [fbtype]

dtstamp

uid

40

2. REQUEST: Request busy time data.

The "REQUEST" method in a "VFREEBUSY" calendar component is used to ask a CU for their busy

time information. The request may be for busy time information bounded by a specific date and

time interval. The request can be send to more than one CU at a time.

If the originator of the "REQUEST" method is not authorized to make a busy time request on the

recipient's calendar system, then an exception message SHOULD be returned in a "REPLY"

method, but no busy time data need to be returned.

The start and end times should be mentioned in the freebusy Request and also the attendee list.

3. REPLY: Reply to a busy time request.

The "REPLY" method in a "VFREEBUSY" calendar component is used to respond to a busy time

request. The method is sent by the recipient of a busy time request to the originator of the

request and also to himself.

A.4 VTODO Component

VTODO can be a group task. If some work is allotted to a group then they can discuss among

themselves how much work is completed. Whoever sends the Request will be the organizer. A

todo can be completion of a project specification, designing a component etc.

It represents an action item or assignment. It can also be used to represent an item of work

) assigned to an individual, such as turn in travel expense today. Example: Income Tax Preparation

due tomorrow at 3pm.

)

If the method parameter is not there then it is not a scheduling todo.

REQUEST a todo

method= 2

organizer

attendee [rsvp = true]

dtstart

due

uid

sequence

summary

status - NEEDS-ACTION

priority

Other methods are similar to the VEVENT. Organizer can Request for the updated status of the

attendees like how much percent of the work is completed. The attendees reply with the

parameter specifying percent-complete and the partstat as in-process or completed.

Recurrence todos can also be there. All the methods for VEVENT can be applied here.

41

)

A.5 VJOURNAL COMPONENT

This component represents one or more descriptive text notes associated with a particular

calendar date. It does not take up time on a calendar. So it does not play a role in free or busy

time searches.

1. PUBLISH: Post a journal entry. Used primarily as a method of advertising the existence of a

journal entry. This is similar to a task. No Attendees are involved here.

2. ADD: The "ADD" method in a "VJOURNAL" calendar component is used to add one or more

instances to an existing "VJOURNAL" entry. If the "UID" property value in the "ADD" is not found

on the recipient's calendar, then the recipient MAY treat the "ADD" as a "PUBLISH".

3. CANCEL: The "CANCEL" method in a "VJOURNAL" calendar component is used to send a

cancellation notice of an existing journal entry. For a recurring journal entry, either the whole

journal entry or instances of a journal entry may be cancelled. To cancel the complete range of a

recurring journal entry, the "UID" property value for the journal entry MUST be specified and a

"RECURRENCE-ID" property MUST NOT be specified in the "CANCEL" method. In order to cancel

an individual instance of the journal entry, the "RECURRENCE-ID" property value for the journal

entry MUST be specified in the "CANCEL" method.

A.6 VALARM COMPONENT: This is a remainder or alarm for an event or a todo. Attributed

involved here are described below.

ACTION - String: Valid values are AUDIO / DISPLAY/ EMAIL. This specifies what action has to

take place when an alarm is triggered.

AUDIO should be an attachment (ATTACH), which points to the sound resource, which is rendered

when the alarm is triggered.

DISPLAY can be a description of the event that has to take place. It may be very brief or

elaborated it depends on the event.

EMAIL can be sent to the Attendee regarding the meeting or any other important todo. Email may

contain an attachment or a brief description or summary.

REPEAT (Repeat Count): Defines the number of times the alarm should be repeated, after the

initial trigger.

TRIGGER - Duration/ Date-Time: Specifies when an alarm will trigger. This may be just 5 minutes

before the event or the time specified.

42

)

)

A. 7 Use Cases

Here are the use cases for the above requirements. Use cases are UML based.

A.7.1 Request for a meeting

Actors

Organizer, Attendees

Pre Conditions

User is logged in

Post Condition

The appointment becomes associated with each recipient. Email is sent to all the

Attendees selected.

Flow of events

Basic flow

1. The calendar user wants to schedule a meeting with other calendar users.

2. The user selects one or more CU's from the directory listing.

3. The CU enters the duration/time, location, description for the meeting

4. CU also mentions the participation status of the other CU's, whether it is compulsory

to attend the meeting or not.

5. Then he clicks the invite button.

Secondary Scenario

Alternative paths

If the organizer doesn't find the required CU then he will make an extended search

using the Wisenet search engine.

Subordinate Use Case

Search Engine

Organizer

Fig1 . Request for
a meeting

User Login
Request for
meeting

Details
Group ID
Participant Status
Location
Start time
Duration
Description

Invite

43

The automated scheduling is not mentioned in the iCal specification. But we can build our own

scheduling engine like Outlook and iPlanet. The Attendee through the email views the invitation

) and then he sends a reply "Accept/Decline". All the group members will have same id (not the

calendar user name)

)

A.7.2 Respond to an Invitation

Actors

Organizer, Attendees

Pre Conditions

User is logged in

Post Condition

Accepted/Tentatively Accept/ d eel i ned

Flow of events

Basic flow

1. The calendar user wants to accept/decline/tentatively accept a meeting with the

organizer.

2. The status changes when he accepts or declines

Secondary Scenario

Alternative paths

An alternative path is possible after step2.

Subordinate Use Case

The user can send an email back to the organizer explaining the reason for

declining

Attendee

User Login

Fig2. Reply for a
meeting

Accept

Reply for a
meeting

Tentatively
Accept

Decline

44

)

\

A.7.3 Publish a TODO

Actors

Calendar user

Pre Conditions

User is logged in

Post Condition

A Todo is posted on the user's calendar.

Flow of events

Basic flow

1. The calendar user wants to create a todo.

2. The CU enters the SUMMARY of the todo, due date of the todo or the duration

3. CU can also enter the PRIORITY (number), CLASS (Confidential, Public, Private) and

CATEGORY (family, finance etc.) for the todo.

4. The STATUS of the todo is always "NEEDS-ACTION".

Secondary Scenario

Alternative paths

Subordinate Use Case

Cancel the todo.

Add one or more instances to an existing todo.

Calendar
User

User Login

Fig3. Publish
aTODO

.-----------...
Publisha '\
TODO _____,/

Summary
Due date
D_uration
Priority

NEEDS ACTION

45

References

1. http://www. imc.org/pdi/vcaloverview.html - VCalendar overview

2. http://docs.sun.com/db/doc/816-5520-10 - iPlanet Calendar Server 5.1 Programmer's Manual

3. http://systems.microlink .ee/failid/SCS 5.1.pdf - iPlanet Calendar Server paper

4. http://itadmin.sapp .auckland.ac .nz/APPFAeX/iPlanet/wp calendarS.pdf

5. http://wwws .sun.com/software/products/calendar srvr/wp calendars.html -

Web Based Scheduling, white paper by iPlanet

6. http://www.ietf .org/rfc/rfc2446.t xt - iTIP protocol

7. http://www. ietf.org/rfc/rfc2447.txt - iCal protocol

8. http://wwws.sun.com/software/ - Sun One Software

46

