
;

. Object-Oriented Complexity Metrics for
the Java Programming Language

Submitted by

Hari Narayanan

In partial fulfillment of the requirements for the Master of Science
Degree

under the supervision of

Dr. Curt Cook
Department of Computer Science

Oregon State University

ABSTRACT ... 2

1.0 INTRODUCTION ... 3

2.0 BACKGROUND ... · 6

2.1 TRADITIONAL SOFTWARE COMPLEXITY METRICS 6
2.2 ExrENSION OF TRADITIONAL METRICS TO THE OBJECT-ORIENTED PARADIGM 8
2.3 COMPLEXITY METRICS FOR OBJECT-ORIENTED SOFTWARE 9

2.3.1 The Chidamber-Kemerer Object-Oriented Metrics Suite: 10
2.3.3 Other related work in the 00 metrics area: 13

2.4 EMPIRICAL STIJDIES, METRIC VALIDATION AND DATA COLLECTION 14

3.0 A METRICS SUITE FOR OBJECT-ORIENTED PROGRAMS IN JA V A 16

3 .1 SOME BACKGROUND ON THE JAVA PROGRAMMING LANGUAGE 16
3.1.1 Salient features of Java 17

3.2 POTENTIAL USES FOR THE SOFTWARE COMPLEXITY METRICS FORJAVA 18
3.2.1 Use of Complexity Metrics to Produce Less Complex Programs 18

3.3.2 Use of Metrics in the A1aintenance Phase ·· :······ 19
3. 3. 3 Use of Metrics to Allocate Testing Resources .. 20

3.3 A TAXONOMY OF THE METRICS 20
3.3.1 Complexity metrics at the project level .. 21
3.3.2 Complexity metrics at the inheritance tree level 22
3.3.3 Complexity metrics at the class level 23

4.0 THE ARCHITECTURE AND DESIGN OF JA VAMETRICS 28

)
4.1 THE NEED FOR AN AUTOMATED METRICS COLLECTION SYSTEM 28

4.2 AN OVERVIEW OF JAV AMETRICS ······ ···· ·············· ············ ··············· · ·· · ···· ········ ·········· ···· · ··· ··········· ···· 28
4.3 THE ARCHITECTURAL DESIGN AND IMPLEMENTATION OF JAVAMETRICS 28

4.3.1 Main Table class 29
4.3.2 TableRow class 30
4.3.3 Parser class 31
4.3.4 Organizer Class : 33
4.3.5 ClassJavaMetrics 34

5.0 EXPERIMENTAL VALIDATION OF THE CLASS-LEVEL METRICS FOR

JAVA .. 36

5.1 THE NEED FOR A SCIENTIFIC VALIDATION PROCESS 36
5.2 THE EXPERIMENTS ·········· · ···· · ············· ·· ·· ··· · ··· ······· · ·· ········ ·· ···························· ········ ·· ··· ······· · ············ 36

5.2. 1 Experiment 1 37
5.3.1 Experiment 11. 42

6.0 CONCLUSIONS AND FUTURE DIRECTIONS .. 51

6.1 SUMMARY·········· ······· ···· ··· .. · · ····· · ·· ···· ····· · ··· ·· ·· ·· 51
6.2 CONCLUSIONS 51
6.3 SUGGESTIONS FOR FUTURE WORK 52

6.3.1 Further improvements to the Metrics Analyzer Tool 52
6.3.2 Further Investigation and Refinement of the Metrics Suite 53

1

)

Abstract

Since its introduction in 1995 by Sun Microsystems, the Java programming language has

been widely accepted by the software development community. Besides being a natural

fit for Internet and World Wide Web (WWW) based applications, Java is also being used

in other diverse application areas due to its simplicity, reduced learning-curve,

portability, and Object-Oriented features . Given this tremendous potential for Java as a

development language, there is a pressing need for software measures or metrics with

which to manage the process of software development in Java . A good set of metrics can

be very useful especially in the post-coding phases of the software life-cycle , such as

testing and maintenance, in identifying those classes which are likely to be hard to test or

modify . This research addresses these needs through an investigation into an Object

Oriented metrics suite for Java. A set of metrics at the class-level is proposed, and a tool

was developed to automate the collection of the metrics. Two experiments were

conducted to determine which of the metrics were effective and useful measures of

complexity . The experiments indicate that the number of non-static external references is

a good complexity metric for Java.

2

1.0 Introduction

Software development is a multi-faceted process that is yet to be completely understood

and is very difficult to manage . This difficulty in managing software development arises

out of the complexity of the application being developed, the ability of the personnel

involved, the characteristics of the computer system on which the software system is to

be installed, and the nature of the programming language or tool used to develop the

software product. These difficulties have at least in part contributed to what has been

termed as a software crisis, wherein software costs exceeding the estimate, unreliable and

buggy software products and schedule slippage are the rule rather than the exception . To

cope with this crisis, it has been proposed that the proper use of software metrics,

measurement and models be used in the successful management of software

development and maintenance [14] to provide greater visibility of these processes.

Software metrics are used to characterize the essential features of software quantitatively,

so that classification, comparison and mathematical analysis can be applied . Judicious

use of these metrics can be a great aid to management in achieving management goals .

) Java is a programming language developed and marketed by Sun Microsystems, Inc. Java

is a new language for network programming : object-oriented ; it is secure and portable,

which enables users to write new applications for the Internet and Intranets . Java is

platform-independent , and comes bundled with a rich set of GUI, networking and other

utility classes . For many, Java is known primarily as a tool to create applets for the World

Wide Web . "Applet" is the term Java uses for a mini-application that runs inside a web

page. An applet can perform tasks and interact with the user on their browser page

without using resources from the web server after being downloaded . Apart from its

obvious value to distributed network environments like the Web, Java is also a powerful

general-purpose programming language suitable for building a variety of applications that

may or may not necessarily depend on network features. There are also other groups that

use Java as a general-purpose programming language where Java' s ease of programming

and safety features help produce debugged code quickly .

Java has gained broad acceptance by the software industry since its introduction , and is

3

f

widely considered a promising programming language for the future to develop secure

and portable cross-platform applications for the Internet and the Web, as well as general

purpose applications . Many leading software companies such as Apple Computers,

Microsoft , Oracle etc . have licensed the Java technology from Sun Microsystems, thus

recognizing its importance and potential to the software industry. Many software systems

in diverse application areas are currently being developed in Java, and it is clear that

Java is poised to be a very important programming language in the future of software

development.

Given this tremendous potential for software development using Java, it is very important

to develop software metrics that will provide measures of the complexity of Java

programs to better manage the process of software development in Java . Software

complexity has often be defined as "a characteristic of the software interface which

influences the resources another system will expend or commit while interacting with the

software "[14]. In the context of performing maintenance activities on a software product,

"complexity" would be the resources expended in performing testing or modification

) tasks on the software. One large of class of complexity metrics are those which are

measures or combination of measures of software attributes. The idea behind these

metrics is that the degree of occurrence of these attributes is related to the complexity or

difficulty of performing programming tasks, such as maintenance or testing . Java as a

programming language is so new that many questions about programming techniques or

standards and their influence on program testing, modification , or understanding are have

not been studied. Further investigation of these questions is necessary for the sustained

success and acceptance of the language in the software development community in the

future. The availability of a set of validated complexity metrics for the language will be

very useful in making decisions regarding resource allocation, during the testing and

maintenance stages of a software project lifecycle . This research addresses this need, and

investigates appropriate software metrics for the Java programming language. These

metrics are based on object-oriented program attributes, such as inheritance, coupling etc.

and are intended to provide measures of performing programming tasks such as

maintenance or testing . We have studied and proposed a suite of complexity metrics for

4

[

)

Java which consist of metrics based on existing Object-Oriented metrics as well as new

ones. We have also conducted two experiments to determine which of these metrics are

useful indicators of complexity. We have proposed a suite of software complexity metrics

for Java and developed a source code analyzer tool that computes the proposed metrics .

5

[

)

2.0 Background

With the increasing adoption of the Object-Oriented programming paradigm as the

dominant software development methodology in the past few years, there has been much

interest in developing with ways to measures the complexity of Object-Oriented software

systems . Software complexity is an area of software engineering concerned with the

measurement of factors that affect the cost of developing and maintaining software .

"Complexity" is a much overloaded term, and is used so often in so many different

contexts in software research that it may be useful to discuss its various connotations . In

theoretical contexts, it is common to classify algorithms as to their computational

complexity, which refers to the efficiency of the algorithm in its use of machine

resources . On the other hand, the perceived complexity of software is often called

psychological complexity because it is concerned with those characteristics of the

software that affect programmer performance in composing, comprehending, and

modifying the software. Curtis [14] has suggested a definition that encompasses both

types of complexity :

"Complexity is a characteristic of the software interface which influences the resources

another system will expend or commit while interacting with the software ."

This definition implies that complexity is a function of both the software itself and its

interactions with other systems including humans . Measurements of software

characteristics can be useful throughout the software life cycle. Software metrics are

often classified as either process metrics or product metrics, and are applied to either the

development process or the software product developed . In this paper, we will be dealing

with product metrics , which are based on the attributes of the software product as

opposed to process metrics which quantify attributes of the development process and of

the development environment .

2. 1 Traditional software complexity metrics

6

I

Several metrics have been proposed and used in conjunction with the Procedural

programming languages such as C, Fortran, Pascal , COBOL etc . They may be

categorized as follows:

Size Metrics: These metrics measure the size characteristics of a program . These metrics

are based on the intuition that the "larger" a program, the more complex it is. Typical

size metrics include lines of code, function count , token count etc.

Data Structure Metrics: These metrics capture the amount of data input to , processed

in, and output from software . These usually include the Amount of Data, the Usage of

Data within a Module , the Sharing of Data among Modules etc .

Logic Structure Metrics : These metrics are based on the logic structure or control flow

of a program . They are based on the belief that the more the number of different

execution paths in a program , the more complex the program . They include Decision

Count, Minimum Number of Paths and Reachability Metrics , Nesting Levels , Transfer

) Usage , Cyclomatic Complexity etc . Of these, probably the best known metric is the

Cyclomatic Complexity number proposed by McCabe [21] . This metric was originally

designed to measure the number of "linearly independent" paths through a program ,

which in tum is believed to relate to the testability and maintainability of the program .

The Cyclomatic Complexity of a program is defined as the cyclomatic number of its

control graph . The nodes of a program control graph represent the statements or basic

blocks in the program , and the edges represent the flows of control between the nodes .

For a program control graph withe edges and n nodes , cyclomatic complexity V(G) is

given by:

V(G) = e - n + 2.

Composite Metrics: Composite metrics are based on the premise that software

complexity has several dimensions, and can be represented better as a composite of

several metrics . These metrics try to assess or provide a measure of the complexity of

software by compositing several different metr ics (such as the ones described earlier).

7

'

I

f

The most significant composite metrics were proposed by Halstead, and are known as the

Software Science Composite Metrics. The Software Science Complexity Metrics are

based on counts of four basic tokens, which are basic syntactic units distinguishable by a

compiler. A computer program is considered in Software Science to a collection of

tokens that can be classified as either operators or operands. All Software science metrics

are functions of the counts of these tokens. The basic metrics are defined as:

nl = number of unique operators

n2 = number of unique operands

NI = total occurrences of operators

N2 = total occurrences of operands

Generally, any symbol or keyword in a program that specifies an action is considered an

operator, while a symbol used to represent data is considered an operand. Based on the

above four basic counts, several composite metrics such as the Estimated Program

Length, the Program Volume, Potential Volume and difficulty etc.

Another related metric is called function points, which defines productivity in terms of a

J weighted sum of delivered functional units . Functional units are defined as the number of

inputs, the number of outputs, the number of inquiries, and the number of files. This

approach works well in commercial applications in which the functional units are mor or

less clearly definable and fairly homogeneous. However, for system programs such as

compilers and compilers and for other program types, function units are more difficult to

define precisely .

2.2 Extension of traditional metrics to the Object-Oriented

paradigm

Quite a few researchers have proposed extensions of traditional software complexity such

as the above metrics to object-oriented programs. In this section, we describe some of

the work that has been done in extending traditional complexity metrics to the Object

Oriented· paradigm .

8

)

)

D. Tegarden and S. Sheetz [1 J investigated traditional software metrics such as lines of

code, software science, cyclomatic complexity etc . as possible indicators of complexity

of object-oriented systems. They also investigated the effects of polymorphism and

inheritance on the complexity of object-oriented systems as measured by the traditional

metrics . They concluded that traditional metrics are applicable to the measurement of the

complexity of object-oriented systems . However, they also stated in their conclusions that

additional metrics are needed to fully measure all aspects of 00 systems. They suggested

that these metrics should include those based on the complexiy of the messages being

passed.

C. Coppick and T. Cheatham [2} studied the extension ofHalstead's Software Sciences

metrics and McCabes's Cyclomatic Complexity metric to objects . They concluded that

software metrics can and should be applied within the Object-Oriented paradigm, and

that their application ofHalstead's software science and McCabe's cyclomatic complexity

to objects produced intuitively reasonable results . They also suggested a limit for the

cyclomatic complexity of an object.

MHamza and B. Lees [3 J studied the applicability of traditional metrics to object

oriented software using Quality Function Deployment (QFD) and Case Based Reasoning

(CBR) . They proposed a model to explore the assurance of quality through a combination

of QFD and BDR methods, and thus established a relationship between software quality

metrics and the software quality criteria of QFD .

2.3 Complexity metrics for Object-Oriented software

Many research projects investigating complexity metrics for 00 software have pointed

out that traditional metrics do not capture many aspects of the complexity of object

oriented software . Specifically, since traditional procedural programming metrics

concentrate on either data structures or functions separately, they fail to capture the

complexity in dealing with objects and classes, that encapsulate both data structures and

algorithms that operate on those data structures. Hence, many researchers have proposed

9

)

new metrics that would be better indicators of the complexity of object-oriented

software . This section describes some of the significant work that has been done in that

area .

2.3.1 The Chidamber-Kemerer Object-Oriented Metrics Suite:

S. Chidamber and C. Kemerer [3] proposed a suite of six metrics for measuring

complexity of object-oriented systems. This metric suite is probably the best-known

among object-oriented metrics, and has a generated a lot of interest in the metrics

community . The metrics they proposed are:

Weighted Methods per Class (WMC) : Chidamber and Kemerer defined WMC of a class

C1 with methods Ml, M2 etc. and their corresponding complexities cl , c2 etc. as

WMC = sum of all CiS, where i = 1, 2 ... n.

If all method complexities are considered to be unity, then WMC = the number of

methods .

The rationale for this metric may be stated as follows :

• The greater the number of methods in a class, the greater the potential impact on

children, since children will inherit all the methods defined in the class .

• Classes with large numbers of methods are likely to be more application specific,

limiting the possibility of reuse.

Depth in Inheritance Tree (D/1): DIT of a class is the depth of the class in its

inheritance tree . In cases involving multiple inheritance , the DIT will be the maximum

length from the node to the root of the tree .

The intuitions behind this metric may be stated as follows:

• The deeper a class is in the hierarchy, the greater the number of methods it is

likely to inherit, making it more complex to predict its behavior.

• Deeper trees constitute greater design complexity, since more methods and

classes are involved .

• The deeper a particular class is in the hierarchy, the greater the potential use of

inherited methods .

Lack of Cohesion in Methods (LCOM): Consider a class C1 with n methods Ml, M2 .. .

1) Mn. Let {Ij} = set of instance variables used by method Mi. There are n such sets {11} .. .

{In}. Let P = {Ii , Ij} I Ii intersection Ij is empty} and Q = { (Ii, Ij) I Ii intersection Ij is not

empty}

LCOM = IPI - IQI, if IPI >IQI
= 0 otherwise .

The intuitions behind this metric are as follows :

• Cohesiveness of methods within a class is desirable , since it promotes

encapsulation .

• Lack of cohesion implies classes should probably be split into two or more

subclasses.

• Low cohesion increases complexity , thereby increasing the likelihood of errors

during the development process .

Coupling Between Object Classes (CBO) : CBO for a class is a count of the number of

couples with other classes .

The rationale for this metric follow:

• Excessive coupling between object classes is detrimental to modular design and

prevents reuse . The more independent a class is, the less its coupling , and the

easier it is to reuse it in another application .

• In order to improve modularit y and promote encapsulation , inter-object class

couples should be kept to a minimum . The larger the number of couples, the

higher the sensitivity to changes in other parts of the design, and therefore

maintenance is more difficult.

• A measure of coupling is useful to determine how complex the testing of various

parts of a design is likely to be. The higher the inter-object class coupling , the

more rigorous the testing needs to be.

Number of Children (NOC): NOC is the number of immediate sub-classes subordinated

to a class in the class hierarchy .

The intuitions behind the metric are :

11

)

• The greater the number of children, the greater the reuse, since inheritance is a

form of reuse .

• The greater the number of children, the greater the likelihood of improper

abstraction of the parent class. If a class has a large number of children, it may be

a case of misuse of sub-classing.

Response For a Class (RFC) : RFC for a class is defined to be RFC = IRSI where RS is

the response set for the class. The response set for the class is expressed as:

RS = {M} Uan i {Ri} where {R} = set of methods called by method i and {M} = set of

all methods in the class .

The intuitions behind the metrics are:

• If a large number of methods can be invoked in response to a message, the testing

and debugging of the class becomes more complicated since it requires a greater

level of understanding required on the part of the tester.

• The larger the number of methods that can be invoked from a class, the greater the

complexity of the class.

• A worst case value for possible responses will assist in appropriate allocation of

testing time.

The authors proposed the six metrics on the premise that metrics must be both

theoretically rigorous and practically useful. Each of the six metrics proposed were

validated against the metrics evaluation criteria proposed by Weyuker [19]: Non

coarseness, non-uniqueness, monotonicity, non-equivalence of interaction , importance of

design details, increase of complexity with interaction, permutation and granularity. We

briefly describe some of these criteria here, the interested reader is urged to refer [19].

Non-coarseness is the ability of a metric to differentiate classes based on the value of a

metric i.e. a non-coarse metric should be such that not every class will have the same

value for the metric, otherwise it would have lost its value as a measure . Non-uniqueness

refers to the property of a metric whereby there can exist two distinct classes such that

their metric values can be equal. Monotonicity implies that the metric for a combination

J of two classes can never be less than the metric for either of the component classes.

12

t

Granularity requires that there be a finite number of cases where classes have the same

{) metric value. The C-K metrics suite satisfies most of these criteria. These metrics are

probably the best known Object-Oriented metrics, and several of the metrics that we

propose in this paper have been adapted from this suite specifically for Java .

)

)

2.3.3 Other related work in the 00 metrics area:

C. Cook and A. Lake [4] studied software complexity measures for C++ programs. Their

metrics included numerous object-oriented metrics and also extensions of traditional

metrics for C++. They also proposed an approach using factor analysis to reduce the large

number of proposed 00 metrics to a small number of the complexity domains by

identifying collinear metrics .

F. Abreu andR . Carapuca [5] proposed the TAPROOT framework (TAxonomy PRecis

for Object-Oriented meTrics) which has two axes, category and granularity. The

categories are: design, size, complexity, reuse, productivity, and quality. The granularities

are: methods, class and system.

J. Bieman and S. Karunanithi [6] studied a method for deriving candidate reuse metrics.

They presented a set of measurable reuse attributes and a metrics suite which quantify

these attributes for object-oriented systems. They also introduced the concept of

perspectives for reuse .

C. Chung and M Lee [7] proposed a graph-theoretic metric for measuring the complexity

of class hierarchy. They argued that inheritance has a close relationship with object

oriented software complexity . They also presented an algorithm to support this software

metric .

S. Henry and W Li [8] investigated maintenance metrics for the 00 paradigm. These

metrics primarily targeted Ada design and source code. They built upon Chidamber's and

Kemer's work and added a few metrics of their own.

13

t

r

R. Hudli and C. Hoskins [9] defined two kinds of metrics to evaluate the design and

1) implementation of 00 software systems . One kind is class-based , and evaluates the

design of classes . The second kind measures the class design structure of the program .

)

T. Korston and J. McGregor [10 J suggested a number of criteria for object -oriented class

libraries . These criteria are categorised by their support for a set of desirable attributes.

The attributes given are : completeness , consistence, ease of learning , ease of use ,

efficiency, extendability , integrability, intuitiveness , robustness and support .

Y. Lee and B. Liang [11] presented a set of complexity metrics for object-oriented

systems based on information flow models and evaluated them using Weyuker's meta

metrics for their validity . The entities measured by this set of metrics consisted of

methods , classes , class hierarchies, and programs in an object-oriented system .

H. Sneed [12] proposed a metric called object-points to express the size and complexity

of object-oriented software . The main goal of this research was to propose an approach

to accurately estimate the costs of developing object -oriented software .

M Shumway [13] proposed a metric to measure class cohesion in object-oriented system

written in Java . The measure counts the proportion of method pairs in a class exhibiting

connectedness through the use of one or more common variables in that class .

Thus , all of the work described in this section propose metrics based on the object

oriented attributes of programs . Also, none of the described work attempts to determine

the utility of the proposed metrics through experiments or case studies .

2.4 Empirical Studies, Metric Validation and Data Collection

In this section , we describe research that has been done in validating metrics for Object

Oriented programs , case studies in the development of large object-oriented programs ,

and comparisons of the object-oriented and traditional approaches to software

) development.

14

S.Henry, J. Lewis et al [15] conducted an empirical study of the Object-Oriented

-) paradigm and software reuse . This work attempted to validate the claim that the Object

Oriented paradigm promotes software reuse . From the controlled experiment they

conducted, the authors generally concluded that the Object-Oriented paradigm does

promote software reuse.

S. Henry andM Humphrey (16] conducted a controlled experiment to evaluate the

maintainability of object-oriented software. This experiment compared the

maintainability of two functionally equivalent systems, in order to explore the claim that

systems developed with Object-Oriented languages are more easily maintained than those

programmed with procedural languages . They found supporting evidence that

programmers produce more maintainable code with an Object-Oriented language than

with a standard procedural language .

J. Walsh (17] studied the data collected during the development of Rational Rose, a large

(100 KLOC) program written in C++, and concluded that high product quality can be

) achieved during a telescoped development schedule through the use of an iterative

development methodology . The author studied the data on defect density and discovery

rate gathered on one phase of Rose development and deduced there was a low error rate

in code delivered for functional test. According to the author, the data showed that 80%

of the defects are found in 20% of the code, and 80% of the defects are critical while 20%

are non-critical. The author also reports that there is an association between errors

detected during functional testing and the depth of a class in its subsystem hierarchy .

j

V. Basili etal [18] conducted a study to experimentally investigate the suite ofObject

Oriented design metrics introduced by Chidamber and Kemerer . In order to do this, they

assessed these metrics as predictors of fault-prone classes . They studied data from eight

medium sized project developed in C++, and concluded from their study that the metrics

are reasonable indicators of fault-proneness .

15

)

3.0 A metrics suite for object-oriented programs in Java

In this chapter, we present a set of object-oriented metrics for Java. Java is a relatively

new language, but has already proven very popular in the software industry. It seems very

possible now that the Java technology will be deployed in the development of many

different kinds of software applications and systems in the future . Given this potential, it

is very important to develop software metrics that can help the successful management of

Java software development and maintenance. The prudent use of useful complexity

metrics for Java can increase the visibility and understanding of the software

development process, and can provide intelligent decision support in the allocation of

resources to the testing and maintenance stages of the software life cycle.

3.1 Some background on the Java programming language

Java is a programming language developed and marketed by Sun Microsystems, Inc. Java

is a new language for network programming: portable, secure and object-oriented, which

enables users to write new applications for the Internet and intranets . Java is platform

independent , and comes bundled with a rich set of GUI, networking and other utility

classes . For many users , Java is known primarily as a tool to create applets for the World

Wide Web . "Applet" is the term Java uses for a mini-application that runs inside a web

page. An applet can perform tasks and interact with the user on their browser page

without using resources from the web server after being downloaded . Apart from its

obvious value to distributed network environments like the Web, Java is also a powerful

general-purpose programming language suitable for building a variety of applications that

may or may not necessarily depend on network features . There are also other groups that

use Java as a general-purpose programming language where Java's ease of programming

and safety features help produce debugged code quickly .

Java has gained broad acceptance by the software industry since its introduction, and is

widely considered a promising programming language for the future to develop secure

16

)

)

and portable cross-platform applications for the Internet and the Web, as well as general

purpose applications. Many leading software companies such as Apple Computers,

Microsoft, Oracle etc . have licensed the Java technology from Sun Microsystems, thus

recognizing its importance and potential to the software industry .

The main reasons for this confidence in Java's potential are :

• Java's architecture neutrality, which makes it possible to write applications once and

run them anywhere without recompilation.

• Availability of a robust exception-handling mechanism, built-in support for

multithreading, garbage collection etc . facilitate quick and bug-free development of

modem network based and graphical user interface-based applications .

Many software systems in diverse application areas are currently being developed in

Java, and it is clear that Java is poised to be a very important programming language in

the future of software development . The Sentry Group, an Information Systems

consulting and market research company estimates that currently about 40% of the

Fortune 1000 companies deploy Java in their application development, and this number is

expected to double by the year 2000.

3.1 .1 Salient features of Java

Java is an object-oriented language from the ground up, and derives most of its syntax

and form from C++ . Some of the salient features of Java are :

• Java is an interpreted language; the code (called bytecodes) generated by the Java

compiler is targeted towards a hypothetical machine called the Java Virtual

Machine (JVM), which has been implemented on top of all major platforms . The

Java interpreter written for a particular machine then interprets these "bytecodes"

to run on that specific machine. This is how Java achieves its cross-platform

compatibility .

• One advantage that can derived directly from the above feature is that code can be

"written once, run anywhere" .

17

1-

r

)

• Java is a pure object-oriented language ; functions, or methods as they are called in

Java, can only be defined classes . There is no concept of "stand-alone" methods in

Java.

• There are no pointers in Java. Hence programmers cannot manage memory

directly . Java performs automated garbage collection, thereby relieving the

programmer of a lot of effort which would otherwise be needed.

• The basic data types of Java , such as int, char etc. are architecture-neutral. This

again goes towards promoting the cross-platform nature of Java. Java comes

bundled with a rich set of classes, thereby drastically reducing development time

for companies .

As mentioned earlier , Java derives most of its syntax from C++, but the following are

some important differences between Java and C++ :

• Java does not allow multiple inheritance , while C++ does.

• Java is entirely object-oriented in that everything in Java is a class. On the other

hand, C++ allows stand-alone functions as well as classes .

• In Java, method dispatch is performed dynamically, at runtime , except for static

method invocations . In C++, method dispatch can be both dynamic and static.

3.2 Potential Uses for the Software Complexity Metrics for Java

In this section we address the question of how software complexity metrics based on

program attributes can be useful in the software life-cycle and maintenance .

3.2. 1 Use of Complexity Metrics to Produce Less Complex Programs

This particular use of metrics views metrics as a feedback tool ; a historic collection of

complexity metrics could be fine-tuned to reflect the complexity properties of programs ,

and can then be used to improve program quality in future projects . In this context ,

"complexity " could be the difficulty in modifying or enhancing a program, testing a

program , etc. Thus, an organization might use historic data collected over a period of

time to establish some kind of a complexity threshold . This complexity threshold should

be established based on historical data that shows problems with maintenance and

18

modification activities if complexity exceeds those threshold levels . If the complexity

measurement for a particular class exceeds that threshold, then the programmer might

take some actions to keep the complexity of the class under control. The following are

some possible scenarios :

• Seeing that the complexity measurements for a particular class exceed preset

limits, a programmer might consider an alternative approach or algorithm to solve

the problem .

• The programmer could consider further dividing up the work among more classes

etc .

However , it should be recognized that it may not always be possible to keep the

comple xity of classes under pre-established limits . Some problems and their solutions

may be necessarily complex . In this case, complexity metrics could be used to identify

classes that need more attention in terms of documentation, comments etc . Another

important point to note is that standards of complexity or quality are highly dependent on

the organization that develops the software, as well as the software itself. Hence, instead

of coming up with some magic numbers for complexity, it is our hope that an

organization should consider all possible relevant factors and should establish local

criteria for complexity . ·

3.3.2 Use of Metrics in the Maintenance Phase

Software metrics can also play a great role in managing the maintenance phase of the

software life cycle . Metrics can be used to evaluate classes in terms of difficulty of

understanding modification , to make estimates of the time and effort that may be needed

to make modifications to a class etc . Often a software development organization would

be better off rewriting a whole class rather than attempting to modify it, because the class

is too complex . Metrics could be used as a tool to identify such classes . This kind of

maintenance activity is often called preemptive rewriting . Another use of metrics in the

maintenance phase could be in the allocation of classes to be maintained to programmers

in such a fashion as to ensure an equitable distribution in terms of the complexity

19

L

)

j

encountered by each maintenance staff member , or to identify and assign more complex

pieces of the software to more experienced people.

3.3.3 Use of Metrics to Allocate Testing Resources

Complexity metrics can be used as a tool to guide the allocation of resources for testing

software . Typically, a large percentage of errors in software systems can be located in a

small portion of the code. It is often said that 80% of the errors in a program can be found

in 20% of the code. Judicious use of software complexity metrics can be a great aid in

identifying and isolating portions of code which might need more rigorous testing in

comparison with other portions of the program .

Thus, we have described some of the possible uses of metrics . However , as we cautioned

earlier , metrics should be viewed as one of several tools used to manage the software

development process . Under all circumstances, common sense should be used to

determine if the application of metrics seems reasonable . Another important fact to be

remembered is that metrics will work best when applied to a large set of programs

characteristic or representative of the organization using the metrics . Applying metrics in

isolation to one or two classes may not always be sufficiently generalizable . Any activity

concerning human creativity like software development cannot always be predicted with

100% accuracy. This should always be kept in mind while deploying software

complexity metrics .

3.3 A taxonomy of the metrics

Influenced by other metrics studies in 00 languages, we propose the following

classification for product metrics for Java:

• Complexity metrics at the project level

• Complexity metrics at the inheritance tree level

• Complexity metrics at the class level

This research focuses on metrics at the class-level, and suggests a few size-related

metrics at the project and inheritance tree levels.

20

)

J

3.3.1 Complexity metrics at the project level

As we mentioned earlier, Java is a purely object-oriented language, meaning that

everything in Java is a class, and there are no stand alone functions as in C++.

The following is a suggested list of size-related metrics that might provide useful

information regarding the complexity of a program at the project level :

Number of classes:

Intuitively , we would expect a program with a greater number of classes to be more

complex than a program a fewer number of classes . Hence this number could be used as

an index of the complexity of a program .

Number of trees in the inheritance forest:

This number would give us the number of classes in the program that other classes may

inherit from. This information might be crucial to understanding the program, because the

greater the number of distinct classes that need to be understood in order to comprehend

the program, the greater the effort to understand the program.

Average depth of the inheritance forest:

This is another metric that could provide useful information about the complexity of a

Java program. The inheritance forest would comprise all the inheritance trees in the given

compilation unit, not taking into account the fact that all the Java classes derive from one

common class, the Object. The intuition here is that the deeper the inheritance structure

for the program, the greater the interdependence among the classes belonging to the

inheritance tree. Hence, the average of the depths of all inheritance trees in the forest

would be a measure of the overall complexity of the program, from inheritance

perspective .

Maximum depth of the inheritance forest:

This metric is similar in spirit to the above, and provides a "worst case" perspective on

inheritance for a forest of inheritance trees .

21

r

)

3.3.2 Complexity metrics at the inheritance tree level

One of the most compelling features of a modern 00 programming language like Java is

code reuse. The great advantage about code reuse in Java is that it is possible to reuse the

code (classes) developed and debugged by other programmers without changing the code.

This is made possible in Java through a mechanism called inheritance . Inheritance

involves taking the code from an existing class and adding code to it, without modifying

the existing class. Inheritance is considered one of the cornerstones of the OOP paradigm

and has several important implications for a metrics suite attempting to capture the

complexity or quality of a Java program. Unlike C++, where a class could potentially

inherit from any number of classes, in Java, a class can only inherit from one other class.

The class from which other classes inherit or derive is called a parent class or super

class. The class that inherits, on the other hand, is referred to as a child class, derived

class or subclass. We will use these terms interchangeably, and to denote the same thing

throughout this paper.

Since a subclass in Java can only have one super class (potentially), inheritance in Java

programs gives rise to tree structures. A Java program could have several independently

rooted inheritance trees, giving rise to an inheritance forest. These inheritance trees and

forests have several important implications in terms of software complexity: these

structures could greatly influence how easy or difficult a program is to understand,

maintain or make enhancements to . We have designed a set of metrics that are very likely

to provide valuable insights into the complexity of a program due to this feature :

Number of classes in the inheritance tree:

Looking at one inheritance tree in a Java program, the intuition behind this metric is

obvious . The greater the number of classes in an inheritance tree, the greater the effort

required to understand, and hence to maintain it.

The maximum depth of the inheritance tree:

The intuitions behind this metric are several. For one, the deeper a class is in the

inheritance tree, the greater the number of methods it is likely to inherit, hence making it

J more complex to predict its behavior. Deeper trees might constitute greater design

22

r

complexity, since more methods and classes are involved . The deeper a class is in the

hierarchy, the greater the potential reuse of inherited methods, and so on.

3.3.3 Complexity metrics at the class level

As mentioned earlier, a class is the unit of development in Java. Hence it becomes very

important to have a good set of metrics that would let us evaluate the quality or

complexity of a Java class . The following sections describe a list of metrics that capture

the complexity level of a Java program at the class level. Out of these metrics, NOC and

Depth are directly adapted from the Chidamber-Kemerer metrics suite. Method Count

(MC) is a special case ofWMC (Weighted Methods Per Class) in the C-K suite, where

all methods are assumed to be have weights of unity . The External Reference metrics

(NOR_NS, UNOR_NS, NOR_TOT and UNOR_TOT) are also derived from the CBO

(Coupling among Object Classes) in the C-K suite, where coupling is defined in terms of

the number of external methods invoked (or messages passed, in 00 parlance) by a class.

Number of children/subclasses for a class (NOC):

) The greater the number of children or subclasses that inherit from a particular class, the

greater its complexity. The intuition for this belief is that since a greater number of

classes inherit from this class, this particular class probably encapsulates the data and

behavior for a wide range of classes. Hence everything else remaining the same, we

would expect this class to be more complex than one which has fewer children . In some

cases, it might even be said that if a class has a large number of children , it could be a

case of misuse of subclassing .

)

Method Count for a class (MC):

In Object-Oriented programming languages, the behavior of a class is defined by the

methods of a class . Hence, the number of methods defined in a class (Method Count) is a

good indicator of the complexity of a class because a greater number of methods means

that the class has a wider range of behavior and hence is more complex .

Constructor Count for a class (CC):

23

r

Constructors are special methods which are used to initialize the state of an object when

,) it is first brought to life. From a client's point of view, a greater number of constructors

represents more ways in which the object can be initialized and subsequently used . Hence

the number of constructors could provide useful information regarding the perceived

complexity of a class.

)

)

Data Count for a class (DC):

The member data for a class defines the state of the class, and hence the greater the data

count for a class, the greater its complexity potentially.

Depth of a class in the inheritance tree (Depth):

The intuition for this metric is quite obvious . The deeper a class is in the hierarchy, the

greater the number of methods it is likely to inherit, making it more complex to predict its

behavior . Also, the deeper a particular class is in the inheritance hierarchy, the greater the

potential reuse of inherited methods.

External Reference Metrics

Classes in Java communicate with other classes mainly through method invocations.

Classes in Java can invoke methods defined in other classes, usually called message

passing in Object-Oriented terminology. We refer to such method (function) invocations

as "external references". There are two different ways in which these method invocations

are executed : they can be either bound at run-time (dynamic binding), or at compile-time

(static binding) . Static binding is the approach taken in Procedural programming

languages, and Object-Oriented languages need dynamic binding to support

polymorphism, a property that allows a variable to hold different object at run-time.

Polymorphism enables a variable of a given class or type to hold either objects of its own

class or type, or of any subclass or extended class. Java allows a subclass or extended

class to override or replace the superclass's implementation of a method with one of its

own. When a method is invoked on a polymorphic variable holding an object, the actual

type of the object at run-time, as opposed to its static declared type, governs which

24

implementation is used . This is the reason why method invocations in Java are bound at

run-time . The following example illustrates this concept .

Let us consider an example of class called Shape , which represents the abstract idea of a

geometric shape. This class has methods such as draw() , paint() etc. which are

characteristic behaviors of a geometric shape. Concrete geometric shapes such as Circle,

Triangle etc. can then be defined as subclasses of Shape . Since shape is still an abstract

concept at the time that we define the class, usually the methods draw() paint() etc. will

not have any implementation . The subclasses Circle, Triangle etc. inherit these abstract

methods and override them to provide their own specific implementation . Let us consider

the following declaration of class Shape :

Shape aShape;

This variable aShape is polymorphic , and can hold any object that is an instance of Shape

or any subclass of Shape. Hence , aShape might very well hold a Triangle or a Circle at

some point in time . A method invocation on aShape, such as aShape .draw() , will then

either call the draw() method of a Triangle or a Circle, depending on what object aShape

happens to hold at that point in time .

) Java also has per-class (as opposed to per-instance) methods or static methods,

invocations to which are bound at the time the Java classes or loaded in the virtual

machine . As an example, the Math class in the JDK (Java Development Kit) core library

has several static methods such as cos, sine, etc . that provide a useful collection of math

related methods . Such methods are invoked by prefixing the method name with the class

name, for example, Math .sine(angle) is an invocation of the sine method defined in the

Math class . These method calls are not bound dynamically , and hence are very similar to

function calls in procedural programming languages .

Since objects in Java are primarily coupled among themselves through these method

invocations , this gives us a way to measure coupling . Also, the differences in the two

types of method -invocations have an important effect on program understanding, because

in the case of non-static method invocations , method selection happens at run-time, and

can be one of several possible choices . Hence understanding non-static method calls can

be more difficult than understanding non-static method invocations. Based on this, we

propose the following external reference metrics for a class :

25

I
t

)

)

Number of References (NOR_TOT): This metric is a count of the total number of

external references, both static and non-static .

Unique Number of References (UNOR_TOT): This metric is a count of the unique

number of references , both static and non-static included .

Number of Non-Static References (NOR_NS): This metric is a count of the total

number of non-static external references .

Unique Number of Non-Static References (NOR_NS): This metric is a count of the

unique number of non-static external references .

26

r

)

)

27

4.0 The Architecture and Design of JavaMetrics

4. 1 The need for an automated metrics collection system

The process of collecting metrics on large amounts Java source code over a period of

time can become a very time-consuming task. Also, manual gathering of metrics can be

quite error-prone and very expensive . For these reasons, the metrics collection effort

needs the support of automated tools . As a step in this direction, we have designed and

implemented JavaMetrics , a static metrics analyzer for Java.

4.2 An overview of JavaMetrics

JavaMetrics is a static metrics analyzer tool for Java which parses Java source code

statically and computes all the class level metrics proposed in the earlier section.

JavaMetrics has three essential functions : (i) parsing the input Java source file and

extracting the required information ; (ii) storing the extracted information in a suitable

format; (iii) and processing this information to compute the desired metrics. JavaMetrics

has been written completely in Java, so any platform which supports Java should be able

to run JavaMetrics without any recompilation .

4.3 The Architectural Design and Implementation of JavaMetrics

Figure 1 shows the architecture of JavaMetrics . JavaMetrics is composed of the following

five classes :

• Parser

• MainTable

• TableRow

• Organizer

• JavaMetrics

The following subsection describes the responsibilities of each of the five classes, and

how they collaborate and interact with each other to compute the specified set of metrics

for a given Java source program .

28

t
r

)

)

Java Source
Code

l
StreamTokenizer

Raw

i Information Main Table Organizer ...
~

Parser ...
r

~.,
Metrics
Report
File

Figure 1.

4.3.1 MainTable class

This class serves as the central repository for the raw information collected from the Java

source file by the Parser class, and accessed later by the Organizer and Javalvfetrics

classes. This class as such, is very crucial to the whole design, and in an effort to keep the

system as scalable as possible , all the classes external to this class can only access the

data stored in this class through the appropriate accessor and mutator methods provided

by the class. More specifically , MainTable has a row corresponding to every Java class in

the entire Java program , and has the following fields for each row in the table :

1. A string containing the name of the class. (This is the primary key to the table) .

2. A string containing the name of the class's parent , if any.

29 l

)

)

)

3. An integer for the method count for the class .

4. An integer for the constructor count for the class .

5. An integer for the data count for the class .

6. A boolean field indicating whether the current class is a root of an inheritance

tree .

7. A boolean field indicating whether the parent of the class , if there is one, has been

defined in the current program or if it is a library class .

8. An integer for the number of direct children for the class .

9. An integer for the depth of the current class in its inheritance tree.

10. A vector of strings holding all the method names for the current class .

11. A hash table of strings for all the external references in the current class . In this

table , the key is the string representing the external reference , and the value is the

number of times this particular reference appears for the class .

12. A hash table of strings for all the static references in the class . Again , the key is

the string representing the external reference, and the value is the number of times

this particular reference appears for the class.

The MainTable abstraction encapsulates this storage and access to the data, and serves

the data on request through accessor and mutator methods . The actual manner in which

MainTable is implemented is completely insulated from the user , hence MainTable can

change its implementation sometime in the future without having to modify any of the

other classes which use Main Table. At this point , Main Table has an instance of the

Hashtable class which comes with the Java APL If it should be decided to store the data

in a commercial Relational Database Management System (RDBMS) , for example, this

can be done by localizing the changes only to the MainTable class, without impacting the

rest of the class in any way . Thus the object-oriented design of JavaMetrics provides for a

very flexible and open framework for future modifications and enhancements.

4.3.2 TableRow class

This class is a wrapper class for the various fields stored by Main Table , and provides

access to them through get and set methods . This class is necessary because the class

Hashtable provided by Java's standard library allows the storage of key-value pairs, and

30

in order to associate a particular class with all the information belonging to the class, we

(l need to have a composite class which stores all the fields mentioned earlier.

)

4 .3.3 Parser class

This class is the work horse class of JavaMetrics and does the important function of

parsing the input Java source file to extract information from a given Java source file, and

stores it in Main Table . This class makes use of a class provided by Java's standard library

for lexical analysis, viz. StreamTokeni zer, to parse the Java source file.

The following is the main loop which does the parsing :

while there are more classes in the file

{

}

add the class name to MainTable;

get the information for the class;

store the information in the TableRow in Main Table corresponding to this class.

The following are some interesting notes and observations regarding the parsing process :

• The parser goes through three passes on the input source file before it finishes

parsing . This is necessary due to the following reasons:

1. Java, as a typical Object-Oriented programming language, permits

programmers to define new data types which can be declared and

used just as though they were primitive data types provided by the

language. For example, consider the data type int, which is a

primitive data type provided by the Java language . To declare a

variable of type int, the programmer just needs to say

int i;

and can then go on and use this variable i in his/her program .

However , now suppose that the programmer needs a data type

complex which would allow him/her to operate on complex

numbers. There is no such primitive data type provided by the Java

language, but this is where the power of an 00 programming

31

)

)

language comes in: the programmer can now define a new data

type called complex, and go on and use this just as if it were

provided by the language . The philosophy behind this approach is

that instead of trying to foresee all possible data structures that

may be needed by the programmer and provide them as part of the

language, provide the programmer with the facility to define new

data types and use them freely .

This factor has a very important implication for our metrics

analysis purposes , since one of the metrics we compute for a class

is the number of member data that it has. Since in Java it is

possible for the programmer himself to define new data types and

use them in other classes , there is no way for us to know

beforehand what the set of data types is. Hence , in JavaMetrics, we

go through the entire program in the first pass and and collect all

information about the new data types defined by the programmer,

and then during subsequent passes, identify the data members for a

particular class.

2. For a very similar reason , a second pass through the source code is

needed to collect the external references. Since all the information

about the methods defined in a particular class is necessary before

we can start analyzing the external references for the classes,

information about all the methods defined for a particular class is

collected during the second phase . The actual metrics collection for

external references is done in the third pass.

To make this more clear, let us consider a simple example . Let us

suppose that there are two classes, class A and class B in a Java

program being analyzed by JavaMetrics. Let us suppose that A has

a method foo() defined in it, which is referenced from B. Now

when we actually locate the external reference from B to A,

32

I
I-

)
through the method foo(), we need to know where the method

foo() is defined (class A in this case) . Information regarding where

(or in which class) a method has been defined is essential before

the external references metrics can be computed, so during the

second pass, we create a database of all method definitions for

each class in the project . Using this database during the third pass

we can external refernces in a particular class, and hence compute

our metrics .

4.3.4 Organizer Class

The Organizer class performs the function of analyzing and organizing the "raw

information" collected from the Java source and stored into the MainTable. The

information collected by the Parser class by parsing the input source does not contain

the information needed to compute the metrics, so the Organizer class performs the

additional computation needed to compute all the metrics, by accessing the information

) available in the MainTable . In p~rticular, the Organizer class sifts through the

information collected during the parse stage and identifies the inheritance tree structures

for the given source program being analyzed. The following algorithm is used for this

process by the Organizer class:

J

• Algorithm for computation of metrics involving inheritance tree structures:

One interesting problem that needed to be solved while computing the metrics

suite is that of identifying the inheritance tree structure in a given Java source

program to be analyzed by JavaMetrics . The situation in Java is less complicated

compared with a language like C++ because, unlike C++, Java does not allow

multiple -inheritance, meaning that a class cannot be a subclass of more than one

other class . Hence, inheritance structures in Java are trees, and not graphs, as

would have been the case with a language allowing multiple inheritance .

We use the following algorithm to identify the inheritance structures in a given

Java source program :

33

)

)

Input: The MainTable containing the "raw information" regarding the classes in

the given Java source file. This data structure is the output of the Parser. We call

this "raw information" , because it is information that can be directly gleaned from

the source without any additional processing, such as the name of a class, the

name of the parent of a class etc.

Algorithm:

1. Walk through the MainTable and identify all "roots" in the program, i.e.

all classes which do not derive from any other class. For the purpose of

computing inheritance trees, we classify the classes as follows:

• classes which do not inherit from anything else; These are the

"roots" of the inheritance trees in the Java program .

• classes which inherit from other library classes which are not part

of the current Java program bering analyzed . JavaMetrics always

considers those classes that are not available for analysis, mostly

library classes supplied by vendors, as black boxes . Hence, classes

which derive from library classes are also regarded as "roots".

• classes which derive from some other class which is part of the

Java program being analyzed, and hence a "non-root" .

2. For each root identified in the previous step:

{

Push the root into a stack.

while the stack is not empty {

Pop the top class off the stack.

Determine all classes which have this particular class as their

immediate parent and push them into the stack.

}

}

The above algorithm is constructs the tree in a breadth-first fashion .

4.3.5 Class JavaMetrics

34

f

)

The JavaMetrics class is the starting point for the whole metrics analysis process, and is

the manager of all the other classes and modules in the system . It also implements a

simple graphical user interface (GUI) through which the user can select files for analysis,

initiate the metrics analysis process and quit the metrics analysis system. When the user

clicks the appropriate buttons and chooses a Java source file for analysis, the class

JavaMetrics first activates the class Parser, and when parsing is done and the MainTable

has all the "raw information", activates the Organizer class which then performs the

additional processing described earlier. Once everything is done, the JavaMetrics class

again takes over and writes the results of the analysis into a file which can be opened and

read by the user. The files storing the metrics analysis results are generated by adding a

.metrics suffix to the source file name. For example, for a Java source file with the name

JavaMetricsSource.java submitted for analysis to JavaMetrics, a file named

JavaMetricsSource .java.metrics is generated with the results of the metrics analysis. The

following page shows a sample metrics report generated by JavaMetrics.

35 [

t

)

5.0 Experimental Validation of the Class-Level Metrics

for Java

In this chapter, we describe two experiments that were conducted to determine the utility

of the class-level metrics proposed for Java as part of this research.

5. 1 The need for a scientific validation process

The main goal of the experimental validation is to determine which, if any, of the

proposed metrics are good indicators of the complexity of Java programs. This allows us

to

• Determine whether our intuitions regarding the complexity about Java programs

are experimentally supported.

• Filter out the metrics which are experimentally suggested as being useful from

those that are not. These metrics could then be used to identify classes most likely

to be difficult to test or to modify .

5.2 The Experiments

With these goals in mind, two experiments were done to validate the proposed set of class

level metrics for Java . In order to validate our metrics suite, we considered two different

possible approaches: (1) small-scale controlled experiments using small or contrived Java

programs, (2) real-life large scale industrial case studies. In this project , we took a hybrid

approach , in that the programs that were studied were real applications , and not contrived

or trivial. However, the programs are not exceptionally large; two of the programs

studied in experiment I are parts of a commercial software system but these programs are

not currently being shipped to customers. Experiment II was conducted entirely in a

combined graduate/undergraduate Computer Science course in compiler construction at

) Oregon State University

36

) The design of the experiments, the data collected and the results from the experiments are

discussed in the following subsections.

5.2.1 Experiment I

Background.

In this experiment, the subjects are professional Java programmers. They were asked to

select a Java program that they have worked with, either as developers or testers, or in

any other capacity which gave them sufficient familiarity with the programs so they

could evaluate the complexity of the Java classes . Then, the candidates were requested

to rate the complexity for each class - difficulty in performing both testing and

modification tasks for the classes in the programs on a 4 point scale, with the following

meaning assigned for each level of difficulty:

) 1 - very easy/trivial

2 - easy

3 - difficult

4 - very difficult

There were two main stages in the experiment:

• Data Collection stage, where we collect metrics and subject rating data for a set

of classes

• Analysis stage, where we use statistical methods to analyze the metrics using the

data collected in the previous stage .

Data Collection

37

The main goals of this step in the experiment were :

• to gather metrics data for the sample of Java classes

• to collect complexity level ratings for the different from a "reliable agent" . The

reliable agent could be the programmer who actually wrote the code, or any other

person who is in a legitimate position to evaluate the complexity of the code, like

testers etc .

In the following subsections, we provide some background on each of three subjects and

their programs , and the data collected from each subject.

Subject A:

Subject A is a software engineer in a software development company with one year of

experience in the field . The subject chose a Java program developed entirely by himself

for the purpose of the evaluation. This program is a Java applet and is the front-end to a

) commercial Object-Oriented Database Management System (OODBMS) . The main goal

of this program was to demonstrate the web and Java access features of the OODBMS .

His ratings and the metrics values computed for all the ten classes are shown in Table 1.

Subject B:

The subject is a senior software engineer in a software development company with over 7

years experience in the field. The subject holds a BS degree in computer science.

The program chosen by the subject is a part of a Java library that provides Java proxies

for a recently released commercial Object-Oriented Database Management System

(OODBMS) . These classes act as proxies for the multimedia class library provided by the

OODBMS, and as such reflect the same inheritance hierarchy as the original classes in

the database . The various metrics computed by the tool for the programs, and the

subject's ratings of the complexity of the classes in the program on a scale of 1-4, is as

shown in table 2.

38

Subject C:

..,.._) The subject is a MS graduate in Computer science. The subject has more than two years'

experience programming in Java. The program chosen by the subject is a game

application which can be played over the web as a Java applet . As such, the program to a

great extent , consists of code that deals with user interface . The metrics for the program,

and the rating of the complexities of the various classes in the project are shown in Table

3.

)

)

Acknowledment
AddTest

lmageCanvas
Invalid ID

Main Frame
PatFrame

Patl nfoF rame
Physician Info

TestDetail
TestShort

Table 1.

Legend :

Depth

0
0
0
0
0
0
0
0
0
0

D.C. M.C c.c NOC

2 6 3 0
7 7 3 0
7 4 1 0
2 5 0 0
15 12 2 0
7 9 2 0

51 14 2 0
9 5 2 0
9 7 3 0
8 8 2 0

Depth : Depth of a class in inheritance tree
DC : Data Count
MC : Method Count
CC: Constructor Count
NOC : Number of Children

NOR_TO
T
6

27
5
5

60
64

273
26
23
39

NOR_TOT: Total number of References (non-unique)
UNOR TOT: total number of References (unique)

UNOR_TO
T
5

21
5
5

53
57
147
26
22
37

NOR_TOT : Total number of Non-static References (non-unique)
UNOR_TOT: total number ofNon-static References (unique)

NOR_N UNOR_NS
s
6 5

26 20
4 4
5 5

58 52
62 56
267 146
26 26
21 21
36 36

39

Rating

1
2
1
1
2
2
4
3
3
3

Depth D.C M.C C.C NOC NOR_TOT UNOR_ NOR_NS UNOR_NS Rating
TOT

MMData 3 5 1 1 1 0 0 0 0 1
MMFile 4 9 10 2 2 44 15 32 14 3

MMlmageFile 5 0 1 1 4 0 0 0 0 1
MMJavaAudioFile 7 0 2 2 0 0 0 0 0 1
Mmjavalmagefile 6 3 7 4 0 18 8 11 7 4

MMPixmapFile 6 3 5 4 0 7 6 5 5 4
MMProperty 0 5 1 1 0 0 0 0 0 1

MMSoundFile 5 0 1 1 1 0 0 0 0 1
MMSunAudioFile 6 3 4 3 1 6 3 2 2 4

MMTiffFile 6 3 5 4 0 14 7 9 6 4
Mmedia 2 0 1 1 1 0 0 0 0 1
Video 6 0 0 0 0 0 0 0 0 3

Image Viewer 0 0 12 3 0 26 17 25 16 3
JpRoot 0 3 0 0 1 0 0 0 0 2

RootClass 0 4 8 1 1 6 5 4 4 2

Table 2.

Depth D.C M.C C.C NOC NOR_TOT UNOR_ NOR_NS UNOR_NS Rating
TOT

DropEvent 0 0 2 1 0 0 0 0 0 3
Grid 0 10 10 1 2 11 6 11 6 3

)
ShipGrid 1 6 11 1 0 12 8 11 7 3
FireGrid 1 4 8 1 0 8 8 8 8 2

lnfoDialog 0 1 2 1 0 7 7 7 7 2
Label Canvas 0 6 7 1 0 7 6 7 5 2

lnfoFrame 0 1 3 2 0 8 7 8 7 2
Login 0 7 5 1 0 33 23 33 23 2
Ship 0 6 6 1 5 4 4 4 4 2

BattleShip 1 3 1 1 0 0 0 0 0 2
Destroyer 1 3 1 1 0 0 0 0 0 2

Submarine 1 3 1 1 0 0 0 0 0 2
Cannon Cruiser 1 3 1 1 0 0 0 0 0 2

Sea Harrier 1 3 1 1 0 0 0 0 0 2
ToolbarButton 0 2 11 1 0 10 8 10 8 3
ToolbarPanel 0 5 6 1 0 20 12 20 12 3

LogoPanel 0 1 2 1 0 5 5 5 5 2
BattleConnection 0 2 1 0 0 0 0 0 0 1

BattleApplet 0 36 24 0 0 109 62 89 60 4
BattleClientlmp 0 1 9 2 0 7 7 7 7 2

BattleServer 0 5 8 3 0 45 24 37 22 3
ChallengeDialog 0 3 2 1 0 7 7 7 7 2

Table 3.

_J

40

Data Analysis.

The subject ratings indicate the perceived difficulty in performing testing or modification

tasks. We used Spearman's Rank Correlation coefficient to investigate the relationship

between each of the metrics and the subject ratings .

Spearman's Rank Correlation Coefficient [20] is a number between -1 and+ 1, and

quantifies the similarity between two different sets of ranks. Spearman's rank correlation

coefficient takes into account only the rankings of entities on the basis of the values of

some property of that entity, and not the numerical value of the property itself. Ties in

ranks are resolved by assigning the means in rank values to the entities that have the ties .

When the two sets of rankings being compared match perfectly, the value of Spearman' s

rank correlation is + 1 and there is perfect positive correlation between the two . On the

other end of the spectrum, if the two sets of ranking are the exact opposite of each other,

there is perfect negative correlation between the two sets of rankings and the value of

Spearman's rank correlation coefficient is -1. If the value of Spearman ' s rank correlation

) is near 0, there is no relationship between the two sets of rankings .

_)

For each subject, the different classes that the subject rated were ranked according to the

subject ratings and according to the different metrics. For each metric, Spearman's rank

correlation coefficient was computed between the set of rankings obtained using the

subject ratings and the set of rankings based on the metric . This was done for all the three

subjects . Table 4 summarizes the results of this study :

Depth DC MC cc NOC

Subject A NIA .827** .570 .252 NIA
Subject B .384 .185 .520* .659* -.360
Subject C -.199 .356 .669** .036 .104

Table 4.

*Correlation is significant at the 5% level (2-tailed)

**Correlation is significant level at the 1 % level (2-tailed) .

NOR UNOR NOR
TOT TOT NS
.663* .745* .682*
.767** .754** .754**
.620** .533** .620**

41

UNOR
NS

.739*

.754**

.493**

)

NIA Not applicable because metric is O throughout

A discussion of the results:

As can be observed from table 4 of the above study, the following metrics have

significant correlations with subjective ratings of complexity, for all of the subjects:

• NOR TOT

• UNOR TOT

• NOR NS

• UNOR NS

In addition, the metrics CC, MC and DC have significant correlations with subjective

impressions of complexity with at least one subject, but not all of them. It might also be

observed that the metrics NOR_TOT and UNOR_TOT highly correlated (0.954 for

subject A, 0.995 for subject Band 0.962 for subject C). Similarly, NOR_NS and

UNOR_NS are highly correlated between themselves (0.976 for subject A, 0.996 for

subject B, and 0.946 for subject C) and do not differ very greatly from each other in their

correlations with the ratings . Hence we use one of the two metrics in each case for

analysis purposes instead of considering both.

5.3.1 Experiment II

Experiment Goal.

The goal of this experiment was to investigate the relation between subjective ratings of

difficulty in performing testing or modification tasks, and metrics values in a larger group

of subjects.

42

)

Subjects and Materials .

In this experiment, the subjects consisted of a set of 27 undergraduate (CS480) and 17

(CS580) graduate students taking a senior/graduate level course in compilers at Oregon

State University . The students developed a compiler for a small programming language

using Java. The compiler development was done in several stages , and this experiment

was conducted in the middle of that development process . At the time this experiment

was conducted, the software system consisted of 33 Java classes , and was partly

functional. The two main classes developed entirely by the students included the Lexer

and the Parser. The Lexer class provides a stream of tokens on demand by the Parser. The

Parser performs syntax analysis , and uses the SymbolTable related classes, Symbol

related classes and Type related classes. These supporting classes were written by the

professor , and provided to the students for use in developing their Lexer and Parser . The

students had to read and understand the supporting classes, and use them in their code.

Experiment Design and Data collection.

) The 44 subjects were asked to rate the 33 Java classes on a 1-4 scale (1- very easy, 2-

easy, 3- difficult, 4- very difficult) , for each of the two tasks i.e. testing and modification.

Tables 5 and 6 show the frequency of each rating level for the modification task and for

the testing task.

)

43

r

very easy easy Difficult very difficult
cs580 cs480 Comb cs580 cs480 Comb. cs580 cs480 comb. cs580 cs480 comb.

Symbol 3 5 8 13 13 26 1 7 8 0 2 2
ConstantSymbol 4 4 8 10 18 28 3 4 7 0 1 1

TypedSymbol 3 0 3 11 20 31 3 6 9 0 1 1
TypeSymbol 3 0 3 10 20 30 4 6 10 0 1 1

GlobalSymbol 3 0 3 11 16 27 3 10 13 0 1 1
Offset Symbol 2 0 2 10 14 24 5 12 17 0 1 1

FunctionSymbol 3 0 3 8 13 21 6 13 19 0 1 1
NestedFunctionSymbol 2 0 2 6 11 17 7 14 21 2 2 4

MethodSymbol 2 0 2 8 14 22 6 10 16 1 3 4
SimpleSymbolTable 2 0 2 9 10 19 5 14 19 1 3 4
RecordSymbolTable 0 . 1 1 7 11 18 10 12 22 0 3 3

ArgumentSymbolTable 1 0 1 7 11 18 7 11 18 3 4 7
NestedSymbolTable 1 0 1 8 9 17 7 13 20 2 4 6

FunctionSymbolTable 1 0 1 5 9 14 9 14 23 2 4 6
ClassSymbolTable 2 1 3 8 9 17 4 13 17 2 5 7

Simple Type 4 4 8 12 14 26 1 8 9 0 1 1
Primitive Type 3 3 6 13 13 26 1 9 10 0 2 2
PointerType 2 1 3 7 11 18 6 11 17 2 4 6

) Address Type 3 2 5 4 12 16 9 9 18 1 4 5
Record Type 3 1 4 6 12 18 7 11 18 1 3 4
ArrayType 3 1 4 6 13 19 7 10 17 1 3 4

Functiontype 3 2 5 6 12 18 8 12 20 0 1 1
Class Type 2 1 3 11 13 24 4 11 15 0 2 2

Ast 5 5 10 8 6 14 3 12 15 1 4 5
FramePointer 3 2 5 7 6 13 7 14 21 0 5 5

UnaryNode 5 1 6 10 10 20 2 14 16 0 2 2
BinaryNode 4 3 7 6 12 18 7 12 19 0 0 0
GlobalNode 3 1 4 9 17 26 4 7 11 1 2 3
lntegerNode 3 6 9 13 16 29 1 5 6 0 0 0

RealNode 2 6 8 12 15 27 3 6 9 0 0 0
String Node 4 6 10 9 15 24 4 5 9 0 1 1

Lexer 3 3 6 9 17 26 4 3 7 1 4 5
Parser 2 2 4 4 4 8 6 15 21 5 6 11

Table 5:
~

Modification Task : Subject Responses

_)

44

r

-
very easy easy Difficult very difficult

cs580 cs480 Comb cs580 cs480 Comb. cs580 cs480 comb. cs580 cs480 comb.

Symbol 3 2 5 10 10 20 4 14 18 0 1 1
ConstantSymbol 4 2 6 11 15 26 2 9 11 0 1 1

TypedSymbol 2 1 3 12 15 27 3 9 12 0 2 2
TypeSymbol 1 1 2 11 15 26 5 9 14 0 2 2

GlobalSymbol 3 1 4 10 12 22 4 14 18 0 0 0
OffsetSymbol 1 1 2 11 8 19 5 17 22 0 1 1

FunctionSymbol 1 1 2 8 6 14 8 14 22 0 6 6
NestedFunctionSymbol 1 2 3 4 4 8 10 14 24 2 7 9

Method Symbol 1 2 3 9 6 15 5 16 21 2 3 5
SimpleSymbolTable 4 1 5 6 6 12 5 16 21 2 4 6
RecordSymbolTable 1 1 2 9 5 14 6 17 23 1 4 5

ArgumentSymbolTable 2 2 4 6 4 10 6 18 24 3 3 6
NestedSymbolTable 2 1 3 6 5 11 7 15 22 3 5 8

FunctionSymbolTable 1 1 2 5 5 10 9 15 24 2 6 8
ClassSymbolTable 1 1 2 6 6 12 8 14 22 2 6 8

Simple Type 2 4 6 12 15 27 3 8 11 0 0 0
Primitive Type 2 3 5 13 15 28 2 9 11 0 0 0
PointerType 2 2 4 10 10 20 4 10 14 1 5 6

)
Address Type 1 3 4 10 8 18 5 10 15 1 6 7
RecordType 1 3 4 9 5 14 6 18 24 1 1 2
ArrayType 2 2 4 7 9 16 7 13 20 1 3 4

Functiontype 2 3 5 11 5 16 7 16 23 0 0 0
Class Type 2 3 5 8 7 15 8 16 24 0 0 0

Ast 6 5 11 8 8 16 2 11 13 1 3 4
FramePointer 2 3 5 8 8 16 6 15 21 1 1 2
UnaryNode 3 5 8 9 10 19 5 10 15 1 1 2
BinaryNode 1 5 6 9 10 19 6 10 17 1 1 2
Global Node 2 4 6 11 14 25 3 7 10 1 2 3
lntegerNode 2 7 9 13 13 26 1 7 8 1 0 1
RealNode 1 7 8 13 13 26 2 7 9 1 0 1

String Node 4 7 11 11 13 24 1 6 7 1 1 2
Lexer 3 3 6 9 13 22 4 9 13 1 2 3
Parser 3 2 5 5 4 9 6 13 19 3 8 11

Table 6:
Testing Task: Subject Responses

_)

45

r

In addition to collecting the responses from the students, the metrics were also computed

') for each class . The following table shows the metrics for the different classes:

Depth DC MC cc NOC NOR_tot UNOR_tot NOR NS UNOR t
Simple Type 0 0 5 1 5 0 0 0 0

Primitive Type 1 5 3 1 2 0 0 0 0
PointerType 2 1 5 1 1 4 4 4 4

Address Type 3 0 2 1 0 1 1 1 1
RecordType 1 1 3 1 0 2 2 2 2
ArrayType 1 3 4 1 0 3 3 3 3

Functiontype 1 2 4 1 0 1 1 1 1
Class Type 1 1 4 1 0 1 1 1 1

SimpleSymbolTable 0 2 12 1 2 8 6 5 5
RecordSymbolTable 1 1 5 2 1 2 2 1 1

Arg u mentSymbolTable 3 0 3 1 0 5 5 4 4
NestedSymbolTable 2 2 3 1 3 4 4 3 3

FunctionSymbolTable 3 2 4 1 0 4 4 4 4
ClassSymbolTable 3 1 5 2 0 5 5 5 5

Symbol 0 1 4 1 2 0 0 0 0
ConstantSymbol 1 1 2 1 0 0 0 0 0

TypedSymbol 1 1 2 1 4 0 0 0 0
TypeSymbol 2 0 1 1 0 0 0 0 0

) GlobalSymbol 2 1 3 1 0 0 0 0 0
OffsetSymbol 2 1 2 1 0 0 0 0 0

FunctionSymbol 2 1 2 1 2 0 0 0 0
NestedFunctionSymbol 3 0 2 1 0 1 1 1 1

Ast 0 1 4 1 8 2 2 2 2
FramePointer 1 0 2 1 0 1 1 0 0
UnaryNode 1 6 2 1 0 6 2 1 1
BinaryNode 1 12 2 1 0 15 3 2 1
GlobalNode 1 1 2 1 0 1 1 0 0
lntegerNode 1 1 3 2 0 2 2 1 1
RealNode 1 1 3 2 0 2 2 1 1

StringNode 1 1 2 1 0 1 1 0 0
Lexer 0 9 7 1 0 38 8 30 6
Parser 0 2 29 1 0 241 36 229 35

Table 7: Metrics Data

_)

46

r

)
Analyzing the Data.

The goal of conducting this experiment was to investigate the relationship between the

perceptions of difficulty in performing testing and modification tasks by the subjects,

compared with the different metrics. Again, we use Spearman's Rank Correlation

Coefficient to investigate the relationship between the two.

For the purpose of analyzing the data, we computed a weighted difficulty index for each

class, for the testing and for the modification task . This weighted difficulty index for a

class is computed by multiplying the number of respondents in each of the four rating

levels by the corresponding weights for that level : 1 for very easy, 2 for easy, 3 for

difficult and 4 for very difficult. For example, if a class X had 5, 10, 15 and 14

respondents rating X as very easy, easy, difficult and very difficult respectively , the

weighted difficulty index would be computed as 1 *5 + 2*10 + 3*15 + 4*14 = 126.

The weighted difficulty indices for each class for each task, provided a basis for ranking

) the classes that reflects a a consensus among the subjects . The classes were also ranked

according to the metric values. For each metric, we then computed Spearman's rank

correlation coefficient between the ranking for that metric and the ranking of the classes

using the weighted difficulty . Table 8 shows Spearman 's correlation coefficient values

obtained for the different metrics for each group of students (cs480 and cs580), and all

students for both the modification and testing tasks .

47

r

)

)

Modification Task
Depth DC MC cc NOC

CS580 .454** -.12 .247 .024 -0 .21
CS480 .376* .06 .251 -.112 -.17
Combi .435* -.003 .280 -.073 - .066
ned

Testing Task :
Depth DC MC cc NOC

CS580 .528** .060 .081 -.049 -.303
CS480 .451 ** -.034 .269 .152 .012
Combi .493** -.045 .212 -.005 .-.054
ned

Table 8

*correlation significant at 5% level in two-tailed test
**correlation significant at 1 % level in two-tailed test

A discussion of the results

NOR T UNOR NOR
OT TOT NS
.508 ** .599** .641 **
.496** .536** .566**
.486** .552** .603**

NOR T UNOR NOR
OT TOT NS
.481 ** .510** .556**
.256 .338 .469**
.328 .395* .495**

From an examination of the above results, the following observations can be made :

UNOR
NS

.646**

.581 **

.161 **

UNOR
NS

.548**

.489**

.504**

• It is clear that three of the metrics , Depth , NOR _ NS and UNOR _ NS have significant

correlations with subjective rankings , for both the testing and modification tasks .

These three metrics are significantly correlated with the rankings of cs580 students,

cs480 students, and all students , for both testing and modification tasks. Also ,

NOR_NS and UNOR _NS are strongly correlated between themselves (Spearman ' s

correlation coeffiecient O. 994) and do not differ from each other greatly in their

correlations with subject rankings .

• The metrics NOR_ TOT and UNOR _ TOT have significant correlations for the

modification task with subjective rankings . But for testing, there is significant

correlation only with the ranking of cs580 students .

48

)

)

_)

• In table 8, the CS580 graduate students' rankings have the largest number of

significant correlations (significant at the 1 % level), with the various metrics (Depth,

NOR_TOT, UNOR_TOT, NOR_NS and UNOR_NS) for both modification and

testing tasks.

Modification task
NOR NS Depth

Combined 6/9(67%) 6/9(67%)
CS580 6/9(67%) 7/9(78%)
CS480 6/9(67%) 6/9(67%)

Testing task:
NOR NS Depth

Combined 5/9(56%) 6/9(67%)
CS580 5/9(56%) 6/9(67%)
CS480 6/9(67%) 5/9(56%)

Table 9

• Looking at the top few most difficult classes as picked by the subjects for the testing

and modification tasks, it would be interesting see how many of those classes are also

picked by the metrics. In the ideal case, there would be a perfect match between the

set of classes picked by the metrics and that picked by the subjects. Table 9 shows the

results of this line of inquiry for the 9 classes rated most difficult for the metrics

NOR_ NS and Depth . A practical use of metrics is identifying and then allocating

resources to classes that are very likely to be hard to test or modify. Of the 9 classes

identified as most complex by the metrics, about two-thirds of them were among the

rated as most difficult to test or modify by the subjects .

• The metrics seem to do a slightly better job of identifying the most difficult classes

for modification than for testing . More specifically, if we look at the classes that are

identified as the most difficult by the NOR_ NS and UNOR _ NS metrics , 3 classes

consistently fail to appear in the list suggested by the weighted difficulty index. These

classes are : Lexer, ArrayType and SimpleSymbolTable . The class Lexer has the

second highest value for NOR_NS and UNOR_NS, but a Depth of 0. This low depth,

coupled with the fact that Lexer was the first Java class to be developed by the

subjects, and hence probably quite familiar to the subjects at the time they answered

49

I
t

)

_)

the questionnaire, suggests a reason why Lexer is not being perceived to be difficult

for, testing or modification tasks by the subjects. The classes SimpleSymbolTable and

ArrayType have low depths O and 1 respectively , which could be a reason why they

are not considered to be difficult by the subjects .

Since the metric NOR_NS had significant correlations with subject rankings of

complexity in the first experiment, we compared the top few most difficult classes as

selected by the subjects, with the classes picked by NOR_ NS . Table 10 shows the

results . Column 3 in table 10 is the number of classes rated very difficult by the

subject that were also ranked among the most difficult by NOR_NS. Column 5 in the

table shows the number of classes that were ranked either difficult or very difficult by

the subjects and also picked as the most difficult by NOR_NS . For example, subject

B rated seven classes as being very difficult or difficult to test and modify, and two of

these classes were also picked as most difficult by NOR_NS. As can be observed

from the table, the percentage of agreement is often about 60-70%, sometimes as

high as 85%. Hence NOR_ NS seems to do a reasonable job of identifying those

classes that are likely to be difficult to modify or test.

No . of NOR NS No. of NOR NS
classes rated rated classes rated Rated
very difficult difficult or
by subject very difficult

by subject
Subject A 1 1 4 2
Subject B 4 2 7 6
Subject C 1 1 7 6

Table 10

50

)

)

6.0 Conclusions and Future Directions

6.1 Summary

In this research, we have investigated Objected-Oriented metrics for the Java

programming language and proposed a set of metrics at the class level. A static metrics

analyzer tool was developed to automate the metrics collection process. To validate the

metrics, two experiments were conducted. The results of the experiments showed that

NOR_ NS is a good metric. NOR_ NS also proved to be useful in identifying those classes

which are likely to be hard to modify or test.

6.2 Conclusions

From the results of the two experiments conducted to validate the metrics suite proposed

for Java, suggest the following:

• There is strong evidence that the external references metric (NOR_ NS), which

provides a measure of the degree of coupling or interaction a class has with other

classes, is a good indicator of difficulty in testing or modifying a Java class. In the

Object-Oriented paradigm, computation is done primarily through these interactions

between classes, and that could be the reason why this metric seems to work well .

• The Depth of a class in its inheritance tree is another metric which received strong

support from the data collected in the second experiment. The programs considered in

the first experiment did not make heavy use of inheritance, and hence could not

provide evidence in support of this metric . So again, it would seem that this metric

can be useful in picking classes in a Java program that could be difficult to test or

maintain .

• There are certain other metrics such as DC (member data count), MC (method count)

etc . which showed significant correlation with subjective impressions of complexity

for at least one subject. However, since these metrics do not have consistent support

51

l

I

)

J

in the experiments conducted, it may be safe to assume that these metrics are not very

useful unless proved otherwise .

• The results of the experiments suggest that metrics can be used as predictors of

difficulty in performing testing or modification tasks on Java classes. Hence metrics

can be potentially very useful in the testing and maintenance stages of the software

life-cycle .

6.3 Suggestions for Future Work

6.3.1 Further improvements to the Metrics Analyzer Tool.

• Modifying the tool to handle multiple-file inputs . Currently, the tool can only parse

and generate metrics report one file at a time. In the future, the tool can be enhanced

to support multiple-file inputs .

• Improving the User-Interface of the tool. Currently , the tool has a simple Graphical

User Interface implemented using Java Development Kit (JDK) version 1.0.2. The

user interface can be enhanced and made more sophisticated using the new JDK

version 1.1 or other later versions .

• Storing the metrics data in a Relational Database Management System. Currently, all

the metrics data obtained by parsing a Java source program is held and operated on in

the main memory . This does not affect the performance of the tool for small

programs . But with large programs, this could adversely affect the performance of the

tool. Hence it would be a good idea to store this information in a Relational Database

Management System (RDBMS) with sophisticated query facilities . In an industrial

setting, the long-term collection of historic metrics data will definitely need a scalable

and robust technology such as an RDMBS .

52

)

)

6.3.2 Further Investigation and Refinement of the Metrics Suite

As the validation experiments indicate, the external references metrics seem to be very

good indicators of the complexity of Java programs. Hence, it would be rewarding to

further investigate and refine these metrics. Since these metrics provide a measure of the

degree of interaction or coupling that a class has with other classes, it would be very

useful to explore other metrics that provide a more comprehensive measure of this metric.

As an example, the current metrics only capture the fan-out, or the number of references

of messages that go out of a class. For each class, it would also be interesting to know the

number of incoming messages or references, the fan-in .

The experiments also indicate that an inheritance metric, the Depth of a class in its

inheritance tree, has strong significant correlations with subjective impressions of

complexity . Hence, it would be interesting to further investigate composite metrics based

on inheritance and external references .

Finally, in this research, we only conducted experiments to validate the class-level

metrics for Java. Further work could involve defining and experimentally validating

metrics at the inheritance hierarchy level or project level.

53

)

References

[1] D. Tegarden, S. Sheetz and D. Monarchi , "Effectiveness of Traditional Software

Metrics for Object-Oriented Systems", Proceedings of the 25th HICSS , 1992.

[2] A Lake and C. Cook, 11 Use of factor analysis to develop OOP software complexity

metrics" , in Proc . 6th Annual Oregon Workshop on Software Metrics . Silver Falls,

Oregon, 1994.

[3] M. Hamza , B . Lees et al., "The Extension of Software Metrics in Object-Oriented

Development", in Proceedings of the 3rd International Conference of Software Quality

Management, Seville, Spain, 1995.

[5] F. Abreu and R. Carapuca , "Candidate Metrics for Object-Oriented Software within a

Taxonomy Framework" , Journal of Systems and Software, 26, pp87-96 , 1994.

) [6] J. Bieman and S. Karunanidhi , "Candidate Reuse Metrics for Object-Oriented and

Ada Software", IEEE Transactions on Software Engineering , pp120-128, 1993.

[7] C. Chung and M . Lee, "Inheritance-Based metric for complexity analysis in object

oriented design", Journal oflnformation Science and Engineering, 8(3), pp-431-447 ,

1992.

[8] S. Henry and W. Li, "Maintenance metrics for the Object-Oriented Paradigm", in

Proc. First International Software Metrics Symposium , Baltimore , MD, IEEE Computer

Science press,, 1993.

[9] R. Hudli, C. Hopkins et al., "Software Metrics for Object-Oriented Design" , in Proc .

IEEE international Conference on Computer Design , VLSI in Computers and Processors ,

Los Alamitos , CA,, USA, IEEE, 1994.

[10] T. Korson and J. McGregor , "Technical criteria for the specification and evaluation

of object-oriented libraries . 11, Software Engineering Journal , 7(3), pp85-94, 1992.

[11] Y. Lee, B. Liang, et al., "Some Complexity Metrics for Object-Oriented Programs

based on Information Flow : a Study of C++ Programs" , Journal oflnformation and

_) Software Engineering , 1994 (10) , pp2 l-50 , 1994.

54

)

[12] H. Sneed, "Estimating the Costs of Object-Oriented Software", in Proc. Evolving

Sys!ems, Durham 1995, 9th European Workshop on Software Maintenance, Durham,

UK, 1995.

[13] M . Shumway, "Measuring Class Cohesion in Java", TR CS-97-113, Colorado State

University, Colorado, USA, 1997.

[14] B. Curtis, "The Measurement of Software Quality and Complexity", " Software

Metrics: An Analysis and Evaluation", Cambridge, MA: The MIT Press, 1981.

[15] J. Lewis, S. Henry, D. Kafura,"An Empirical Study of Object-oriented Paradigm and

Software Reuse", in proc. OOPSLA, pp. 184-196, 1991.

[16] S. Henry, M. Humphrey "A Controlled Experiment to Evaluate Maintainability of

Object-Oriented Software", IEEE, 1990

[17] J. Walsh, "Preliminary Defect Data from the Iterative Development of a Large C++

Program", in proc. OOPSLA 1992, pp. 178-183

[18] V. Basili, L. Briand, W. Melo, "A Validation of Object-Oriented Design Metrics as

Quality Indicators", CS-TR 3443.0824, University of Maryland, Maryland, USA

[19] E. Weyuker, "Evaluating Software Complexity Measures", IEEE Transactions on

Software Engineering, 14, 9, pp .1357-1365, 1988.

[20] S. Conte, H. Dunsmore, V. Shen, "Software Engineering Metrics and Models",

Benjamin Cummins Publishing Company, 1986.

[21] T. McCabe, "A Complexity Measure", IEEE Transactions on Software Engineering,

SE-2, 4, pp . 308-320, 1976.

55

