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Abstract 

Since its introduction in 1995 by Sun Microsystems, the Java programming language has 

been widely accepted by the software development community. Besides being a natural 

fit for Internet and World Wide Web (WWW) based applications, Java is also being used 

in other diverse application areas due to its simplicity, reduced learning-curve, 

portability, and Object-Oriented features . Given this tremendous potential for Java as a 

development language, there is a pressing need for software measures or metrics with 

which to manage the process of software development in Java . A good set of metrics can 

be very useful especially in the post-coding phases of the software life-cycle , such as 

testing and maintenance, in identifying those classes which are likely to be hard to test or 

modify . This research addresses these needs through an investigation into an Object

Oriented metrics suite for Java. A set of metrics at the class-level is proposed, and a tool 

was developed to automate the collection of the metrics. Two experiments were 

conducted to determine which of the metrics were effective and useful measures of 

complexity . The experiments indicate that the number of non-static external references is 

a good complexity metric for Java. 
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1.0 Introduction 

Software development is a multi-faceted process that is yet to be completely understood 

and is very difficult to manage . This difficulty in managing software development arises 

out of the complexity of the application being developed, the ability of the personnel 

involved, the characteristics of the computer system on which the software system is to 

be installed, and the nature of the programming language or tool used to develop the 

software product. These difficulties have at least in part contributed to what has been 

termed as a software crisis, wherein software costs exceeding the estimate, unreliable and 

buggy software products and schedule slippage are the rule rather than the exception . To 

cope with this crisis, it has been proposed that the proper use of software metrics, 

measurement and models be used in the successful management of software 

development and maintenance [14] to provide greater visibility of these processes. 

Software metrics are used to characterize the essential features of software quantitatively, 

so that classification, comparison and mathematical analysis can be applied . Judicious 

use of these metrics can be a great aid to management in achieving management goals . 

) Java is a programming language developed and marketed by Sun Microsystems, Inc. Java 

is a new language for network programming : object-oriented ; it is secure and portable, 

which enables users to write new applications for the Internet and Intranets . Java is 

platform-independent , and comes bundled with a rich set of GUI, networking and other 

utility classes . For many, Java is known primarily as a tool to create applets for the World 

Wide Web . "Applet" is the term Java uses for a mini-application that runs inside a web 

page. An applet can perform tasks and interact with the user on their browser page 

without using resources from the web server after being downloaded . Apart from its 

obvious value to distributed network environments like the Web, Java is also a powerful 

general-purpose programming language suitable for building a variety of applications that 

may or may not necessarily depend on network features. There are also other groups that 

use Java as a general-purpose programming language where Java' s ease of programming 

and safety features help produce debugged code quickly . 

Java has gained broad acceptance by the software industry since its introduction , and is 
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widely considered a promising programming language for the future to develop secure 

and portable cross-platform applications for the Internet and the Web, as well as general 

purpose applications . Many leading software companies such as Apple Computers, 

Microsoft , Oracle etc . have licensed the Java technology from Sun Microsystems, thus 

recognizing its importance and potential to the software industry. Many software systems 

in diverse application areas are currently being developed in Java, and it is clear that 

Java is poised to be a very important programming language in the future of software 

development. 

Given this tremendous potential for software development using Java, it is very important 

to develop software metrics that will provide measures of the complexity of Java 

programs to better manage the process of software development in Java . Software 

complexity has often be defined as "a characteristic of the software interface which 

influences the resources another system will expend or commit while interacting with the 

software "[14]. In the context of performing maintenance activities on a software product, 

"complexity" would be the resources expended in performing testing or modification 

) tasks on the software. One large of class of complexity metrics are those which are 

measures or combination of measures of software attributes. The idea behind these 

metrics is that the degree of occurrence of these attributes is related to the complexity or 

difficulty of performing programming tasks, such as maintenance or testing . Java as a 

programming language is so new that many questions about programming techniques or 

standards and their influence on program testing, modification , or understanding are have 

not been studied. Further investigation of these questions is necessary for the sustained 

success and acceptance of the language in the software development community in the 

future. The availability of a set of validated complexity metrics for the language will be 

very useful in making decisions regarding resource allocation, during the testing and 

maintenance stages of a software project lifecycle . This research addresses this need, and 

investigates appropriate software metrics for the Java programming language. These 

metrics are based on object-oriented program attributes, such as inheritance, coupling etc. 

and are intended to provide measures of performing programming tasks such as 

maintenance or testing . We have studied and proposed a suite of complexity metrics for 
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Java which consist of metrics based on existing Object-Oriented metrics as well as new 

ones. We have also conducted two experiments to determine which of these metrics are 

useful indicators of complexity. We have proposed a suite of software complexity metrics 

for Java and developed a source code analyzer tool that computes the proposed metrics . 
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2.0 Background 

With the increasing adoption of the Object-Oriented programming paradigm as the 

dominant software development methodology in the past few years, there has been much 

interest in developing with ways to measures the complexity of Object-Oriented software 

systems . Software complexity is an area of software engineering concerned with the 

measurement of factors that affect the cost of developing and maintaining software . 

"Complexity" is a much overloaded term, and is used so often in so many different 

contexts in software research that it may be useful to discuss its various connotations . In 

theoretical contexts, it is common to classify algorithms as to their computational 

complexity, which refers to the efficiency of the algorithm in its use of machine 

resources . On the other hand, the perceived complexity of software is often called 

psychological complexity because it is concerned with those characteristics of the 

software that affect programmer performance in composing, comprehending, and 

modifying the software. Curtis [14] has suggested a definition that encompasses both 

types of complexity : 

"Complexity is a characteristic of the software interface which influences the resources 

another system will expend or commit while interacting with the software ." 

This definition implies that complexity is a function of both the software itself and its 

interactions with other systems including humans . Measurements of software 

characteristics can be useful throughout the software life cycle. Software metrics are 

often classified as either process metrics or product metrics, and are applied to either the 

development process or the software product developed . In this paper, we will be dealing 

with product metrics , which are based on the attributes of the software product as 

opposed to process metrics which quantify attributes of the development process and of 

the development environment . 

2. 1 Traditional software complexity metrics 
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Several metrics have been proposed and used in conjunction with the Procedural 

programming languages such as C, Fortran, Pascal , COBOL etc . They may be 

categorized as follows: 

Size Metrics: These metrics measure the size characteristics of a program . These metrics 

are based on the intuition that the "larger" a program, the more complex it is. Typical 

size metrics include lines of code, function count , token count etc. 

Data Structure Metrics: These metrics capture the amount of data input to , processed 

in, and output from software . These usually include the Amount of Data, the Usage of 

Data within a Module , the Sharing of Data among Modules etc . 

Logic Structure Metrics : These metrics are based on the logic structure or control flow 

of a program . They are based on the belief that the more the number of different 

execution paths in a program , the more complex the program . They include Decision 

Count, Minimum Number of Paths and Reachability Metrics , Nesting Levels , Transfer 

) Usage , Cyclomatic Complexity etc . Of these, probably the best known metric is the 

Cyclomatic Complexity number proposed by McCabe [21] . This metric was originally 

designed to measure the number of "linearly independent" paths through a program , 

which in tum is believed to relate to the testability and maintainability of the program . 

The Cyclomatic Complexity of a program is defined as the cyclomatic number of its 

control graph . The nodes of a program control graph represent the statements or basic 

blocks in the program , and the edges represent the flows of control between the nodes . 

For a program control graph withe edges and n nodes , cyclomatic complexity V(G) is 

given by: 

V(G) = e - n + 2. 

Composite Metrics: Composite metrics are based on the premise that software 

complexity has several dimensions, and can be represented better as a composite of 

several metrics . These metrics try to assess or provide a measure of the complexity of 

software by compositing several different metr ics (such as the ones described earlier). 
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The most significant composite metrics were proposed by Halstead, and are known as the 

Software Science Composite Metrics. The Software Science Complexity Metrics are 

based on counts of four basic tokens, which are basic syntactic units distinguishable by a 

compiler. A computer program is considered in Software Science to a collection of 

tokens that can be classified as either operators or operands. All Software science metrics 

are functions of the counts of these tokens. The basic metrics are defined as: 

nl = number of unique operators 

n2 = number of unique operands 

NI = total occurrences of operators 

N2 = total occurrences of operands 

Generally, any symbol or keyword in a program that specifies an action is considered an 

operator, while a symbol used to represent data is considered an operand. Based on the 

above four basic counts, several composite metrics such as the Estimated Program 

Length, the Program Volume, Potential Volume and difficulty etc. 

Another related metric is called function points, which defines productivity in terms of a 

J weighted sum of delivered functional units . Functional units are defined as the number of 

inputs, the number of outputs, the number of inquiries, and the number of files. This 

approach works well in commercial applications in which the functional units are mor or 

less clearly definable and fairly homogeneous. However, for system programs such as 

compilers and compilers and for other program types, function units are more difficult to 

define precisely . 

2.2 Extension of traditional metrics to the Object-Oriented 

paradigm 

Quite a few researchers have proposed extensions of traditional software complexity such 

as the above metrics to object-oriented programs. In this section, we describe some of 

the work that has been done in extending traditional complexity metrics to the Object

Oriented· paradigm . 
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D. Tegarden and S. Sheetz [ 1 J investigated traditional software metrics such as lines of 

code, software science, cyclomatic complexity etc . as possible indicators of complexity 

of object-oriented systems. They also investigated the effects of polymorphism and 

inheritance on the complexity of object-oriented systems as measured by the traditional 

metrics . They concluded that traditional metrics are applicable to the measurement of the 

complexity of object-oriented systems . However, they also stated in their conclusions that 

additional metrics are needed to fully measure all aspects of 00 systems. They suggested 

that these metrics should include those based on the complexiy of the messages being 

passed. 

C. Coppick and T. Cheatham [2} studied the extension ofHalstead's Software Sciences 

metrics and McCabes's Cyclomatic Complexity metric to objects . They concluded that 

software metrics can and should be applied within the Object-Oriented paradigm, and 

that their application ofHalstead's software science and McCabe's cyclomatic complexity 

to objects produced intuitively reasonable results . They also suggested a limit for the 

cyclomatic complexity of an object. 

MHamza and B. Lees [3 J studied the applicability of traditional metrics to object

oriented software using Quality Function Deployment (QFD) and Case Based Reasoning 

(CBR) . They proposed a model to explore the assurance of quality through a combination 

of QFD and BDR methods, and thus established a relationship between software quality 

metrics and the software quality criteria of QFD . 

2.3 Complexity metrics for Object-Oriented software 

Many research projects investigating complexity metrics for 00 software have pointed 

out that traditional metrics do not capture many aspects of the complexity of object

oriented software . Specifically, since traditional procedural programming metrics 

concentrate on either data structures or functions separately, they fail to capture the 

complexity in dealing with objects and classes, that encapsulate both data structures and 

algorithms that operate on those data structures. Hence, many researchers have proposed 
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new metrics that would be better indicators of the complexity of object-oriented 

software . This section describes some of the significant work that has been done in that 

area . 

2.3.1 The Chidamber-Kemerer Object-Oriented Metrics Suite: 

S. Chidamber and C. Kemerer [3] proposed a suite of six metrics for measuring 

complexity of object-oriented systems. This metric suite is probably the best-known 

among object-oriented metrics, and has a generated a lot of interest in the metrics 

community . The metrics they proposed are: 

Weighted Methods per Class (WMC) : Chidamber and Kemerer defined WMC of a class 

C1 with methods Ml, M2 etc. and their corresponding complexities cl , c2 etc. as 

WMC = sum of all CiS, where i = 1, 2 ... n. 

If all method complexities are considered to be unity, then WMC = the number of 

methods . 

The rationale for this metric may be stated as follows : 

• The greater the number of methods in a class, the greater the potential impact on 

children, since children will inherit all the methods defined in the class . 

• Classes with large numbers of methods are likely to be more application specific, 

limiting the possibility of reuse. 

Depth in Inheritance Tree (D/1): DIT of a class is the depth of the class in its 

inheritance tree . In cases involving multiple inheritance , the DIT will be the maximum 

length from the node to the root of the tree . 

The intuitions behind this metric may be stated as follows: 

• The deeper a class is in the hierarchy, the greater the number of methods it is 

likely to inherit, making it more complex to predict its behavior. 

• Deeper trees constitute greater design complexity, since more methods and 

classes are involved . 

• The deeper a particular class is in the hierarchy, the greater the potential use of 

inherited methods . 



Lack of Cohesion in Methods (LCOM): Consider a class C1 with n methods Ml, M2 .. . 

1 ) Mn. Let {Ij} = set of instance variables used by method Mi. There are n such sets {11} .. . 

{In}. Let P = {Ii , Ij} I Ii intersection Ij is empty} and Q = { (Ii, Ij) I Ii intersection Ij is not 

empty} 

LCOM = IPI - IQI, if IPI >IQI 
= 0 otherwise . 

The intuitions behind this metric are as follows : 

• Cohesiveness of methods within a class is desirable , since it promotes 

encapsulation . 

• Lack of cohesion implies classes should probably be split into two or more 

subclasses. 

• Low cohesion increases complexity , thereby increasing the likelihood of errors 

during the development process . 

Coupling Between Object Classes (CBO) : CBO for a class is a count of the number of 

couples with other classes . 

The rationale for this metric follow: 

• Excessive coupling between object classes is detrimental to modular design and 

prevents reuse . The more independent a class is, the less its coupling , and the 

easier it is to reuse it in another application . 

• In order to improve modularit y and promote encapsulation , inter-object class 

couples should be kept to a minimum . The larger the number of couples, the 

higher the sensitivity to changes in other parts of the design, and therefore 

maintenance is more difficult. 

• A measure of coupling is useful to determine how complex the testing of various 

parts of a design is likely to be. The higher the inter-object class coupling , the 

more rigorous the testing needs to be. 

Number of Children (NOC): NOC is the number of immediate sub-classes subordinated 

to a class in the class hierarchy . 

The intuitions behind the metric are : 
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• The greater the number of children, the greater the reuse, since inheritance is a 

form of reuse . 

• The greater the number of children, the greater the likelihood of improper 

abstraction of the parent class. If a class has a large number of children, it may be 

a case of misuse of sub-classing. 

Response For a Class (RFC) : RFC for a class is defined to be RFC = IRSI where RS is 

the response set for the class. The response set for the class is expressed as: 

RS = {M} Uan i {Ri} where {R} = set of methods called by method i and {M} = set of 

all methods in the class . 

The intuitions behind the metrics are: 

• If a large number of methods can be invoked in response to a message, the testing 

and debugging of the class becomes more complicated since it requires a greater 

level of understanding required on the part of the tester. 

• The larger the number of methods that can be invoked from a class, the greater the 

complexity of the class. 

• A worst case value for possible responses will assist in appropriate allocation of 

testing time. 

The authors proposed the six metrics on the premise that metrics must be both 

theoretically rigorous and practically useful. Each of the six metrics proposed were 

validated against the metrics evaluation criteria proposed by Weyuker [19]: Non

coarseness, non-uniqueness, monotonicity, non-equivalence of interaction , importance of 

design details, increase of complexity with interaction, permutation and granularity. We 

briefly describe some of these criteria here, the interested reader is urged to refer [19]. 

Non-coarseness is the ability of a metric to differentiate classes based on the value of a 

metric i.e. a non-coarse metric should be such that not every class will have the same 

value for the metric, otherwise it would have lost its value as a measure . Non-uniqueness 

refers to the property of a metric whereby there can exist two distinct classes such that 

their metric values can be equal. Monotonicity implies that the metric for a combination 

J of two classes can never be less than the metric for either of the component classes. 
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Granularity requires that there be a finite number of cases where classes have the same 

{) metric value. The C-K metrics suite satisfies most of these criteria. These metrics are 

probably the best known Object-Oriented metrics, and several of the metrics that we 

propose in this paper have been adapted from this suite specifically for Java . 

) 

) 

2.3.3 Other related work in the 00 metrics area: 

C. Cook and A. Lake [ 4] studied software complexity measures for C++ programs. Their 

metrics included numerous object-oriented metrics and also extensions of traditional 

metrics for C++. They also proposed an approach using factor analysis to reduce the large 

number of proposed 00 metrics to a small number of the complexity domains by 

identifying collinear metrics . 

F. Abreu andR . Carapuca [5] proposed the TAPROOT framework (TAxonomy PRecis 

for Object-Oriented meTrics) which has two axes, category and granularity. The 

categories are: design, size, complexity, reuse, productivity, and quality. The granularities 

are: methods, class and system. 

J. Bieman and S. Karunanithi [ 6] studied a method for deriving candidate reuse metrics. 

They presented a set of measurable reuse attributes and a metrics suite which quantify 

these attributes for object-oriented systems. They also introduced the concept of 

perspectives for reuse . 

C. Chung and M Lee [7] proposed a graph-theoretic metric for measuring the complexity 

of class hierarchy. They argued that inheritance has a close relationship with object

oriented software complexity . They also presented an algorithm to support this software 

metric . 

S. Henry and W Li [8] investigated maintenance metrics for the 00 paradigm. These 

metrics primarily targeted Ada design and source code. They built upon Chidamber's and 

Kemer's work and added a few metrics of their own. 
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R. Hudli and C. Hoskins [9] defined two kinds of metrics to evaluate the design and 

1 ) implementation of 00 software systems . One kind is class-based , and evaluates the 

design of classes . The second kind measures the class design structure of the program . 

) 

T. Korston and J. McGregor [ 10 J suggested a number of criteria for object -oriented class 

libraries . These criteria are categorised by their support for a set of desirable attributes. 

The attributes given are : completeness , consistence, ease of learning , ease of use , 

efficiency, extendability , integrability, intuitiveness , robustness and support . 

Y. Lee and B. Liang [ 11] presented a set of complexity metrics for object-oriented 

systems based on information flow models and evaluated them using Weyuker's meta

metrics for their validity . The entities measured by this set of metrics consisted of 

methods , classes , class hierarchies, and programs in an object-oriented system . 

H. Sneed [12] proposed a metric called object-points to express the size and complexity 

of object-oriented software . The main goal of this research was to propose an approach 

to accurately estimate the costs of developing object -oriented software . 

M Shumway [13] proposed a metric to measure class cohesion in object-oriented system 

written in Java . The measure counts the proportion of method pairs in a class exhibiting 

connectedness through the use of one or more common variables in that class . 

Thus , all of the work described in this section propose metrics based on the object

oriented attributes of programs . Also, none of the described work attempts to determine 

the utility of the proposed metrics through experiments or case studies . 

2.4 Empirical Studies, Metric Validation and Data Collection 

In this section , we describe research that has been done in validating metrics for Object 

Oriented programs , case studies in the development of large object-oriented programs , 

and comparisons of the object-oriented and traditional approaches to software 

) development. 
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S.Henry, J. Lewis et al [15] conducted an empirical study of the Object-Oriented 

-) paradigm and software reuse . This work attempted to validate the claim that the Object

Oriented paradigm promotes software reuse . From the controlled experiment they 

conducted, the authors generally concluded that the Object-Oriented paradigm does 

promote software reuse. 

S. Henry andM Humphrey (16] conducted a controlled experiment to evaluate the 

maintainability of object-oriented software. This experiment compared the 

maintainability of two functionally equivalent systems, in order to explore the claim that 

systems developed with Object-Oriented languages are more easily maintained than those 

programmed with procedural languages . They found supporting evidence that 

programmers produce more maintainable code with an Object-Oriented language than 

with a standard procedural language . 

J. Walsh (17] studied the data collected during the development of Rational Rose, a large 

(100 KLOC) program written in C++, and concluded that high product quality can be 

) achieved during a telescoped development schedule through the use of an iterative

development methodology . The author studied the data on defect density and discovery 

rate gathered on one phase of Rose development and deduced there was a low error rate 

in code delivered for functional test. According to the author, the data showed that 80% 

of the defects are found in 20% of the code, and 80% of the defects are critical while 20% 

are non-critical. The author also reports that there is an association between errors 

detected during functional testing and the depth of a class in its subsystem hierarchy . 

j 

V. Basili etal [18] conducted a study to experimentally investigate the suite ofObject

Oriented design metrics introduced by Chidamber and Kemerer . In order to do this, they 

assessed these metrics as predictors of fault-prone classes . They studied data from eight 

medium sized project developed in C++, and concluded from their study that the metrics 

are reasonable indicators of fault-proneness . 
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3.0 A metrics suite for object-oriented programs in Java 

In this chapter, we present a set of object-oriented metrics for Java. Java is a relatively 

new language, but has already proven very popular in the software industry. It seems very 

possible now that the Java technology will be deployed in the development of many 

different kinds of software applications and systems in the future . Given this potential, it 

is very important to develop software metrics that can help the successful management of 

Java software development and maintenance. The prudent use of useful complexity 

metrics for Java can increase the visibility and understanding of the software 

development process, and can provide intelligent decision support in the allocation of 

resources to the testing and maintenance stages of the software life cycle. 

3.1 Some background on the Java programming language 

Java is a programming language developed and marketed by Sun Microsystems, Inc. Java 

is a new language for network programming: portable, secure and object-oriented, which 

enables users to write new applications for the Internet and intranets . Java is platform

independent , and comes bundled with a rich set of GUI, networking and other utility 

classes . For many users , Java is known primarily as a tool to create applets for the World 

Wide Web . "Applet" is the term Java uses for a mini-application that runs inside a web 

page. An applet can perform tasks and interact with the user on their browser page 

without using resources from the web server after being downloaded . Apart from its 

obvious value to distributed network environments like the Web, Java is also a powerful 

general-purpose programming language suitable for building a variety of applications that 

may or may not necessarily depend on network features . There are also other groups that 

use Java as a general-purpose programming language where Java's ease of programming 

and safety features help produce debugged code quickly . 

Java has gained broad acceptance by the software industry since its introduction, and is 

widely considered a promising programming language for the future to develop secure 
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and portable cross-platform applications for the Internet and the Web, as well as general 

purpose applications. Many leading software companies such as Apple Computers, 

Microsoft, Oracle etc . have licensed the Java technology from Sun Microsystems, thus 

recognizing its importance and potential to the software industry . 

The main reasons for this confidence in Java's potential are : 

• Java's architecture neutrality, which makes it possible to write applications once and 

run them anywhere without recompilation. 

• Availability of a robust exception-handling mechanism, built-in support for 

multithreading, garbage collection etc . facilitate quick and bug-free development of 

modem network based and graphical user interface-based applications . 

Many software systems in diverse application areas are currently being developed in 

Java, and it is clear that Java is poised to be a very important programming language in 

the future of software development . The Sentry Group, an Information Systems 

consulting and market research company estimates that currently about 40% of the 

Fortune 1000 companies deploy Java in their application development, and this number is 

expected to double by the year 2000. 

3.1 .1 Salient features of Java 

Java is an object-oriented language from the ground up, and derives most of its syntax 

and form from C++ . Some of the salient features of Java are : 

• Java is an interpreted language; the code (called bytecodes) generated by the Java 

compiler is targeted towards a hypothetical machine called the Java Virtual 

Machine (JVM), which has been implemented on top of all major platforms . The 

Java interpreter written for a particular machine then interprets these "bytecodes" 

to run on that specific machine. This is how Java achieves its cross-platform 

compatibility . 

• One advantage that can derived directly from the above feature is that code can be 

"written once, run anywhere" . 
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• Java is a pure object-oriented language ; functions, or methods as they are called in 

Java, can only be defined classes . There is no concept of "stand-alone" methods in 

Java. 

• There are no pointers in Java. Hence programmers cannot manage memory 

directly . Java performs automated garbage collection, thereby relieving the 

programmer of a lot of effort which would otherwise be needed. 

• The basic data types of Java , such as int, char etc. are architecture-neutral. This 

again goes towards promoting the cross-platform nature of Java. Java comes 

bundled with a rich set of classes, thereby drastically reducing development time 

for companies . 

As mentioned earlier , Java derives most of its syntax from C++, but the following are 

some important differences between Java and C++ : 

• Java does not allow multiple inheritance , while C++ does. 

• Java is entirely object-oriented in that everything in Java is a class. On the other 

hand, C++ allows stand-alone functions as well as classes . 

• In Java, method dispatch is performed dynamically, at runtime , except for static 

method invocations . In C++, method dispatch can be both dynamic and static. 

3.2 Potential Uses for the Software Complexity Metrics for Java 

In this section we address the question of how software complexity metrics based on 

program attributes can be useful in the software life-cycle and maintenance . 

3.2. 1 Use of Complexity Metrics to Produce Less Complex Programs 

This particular use of metrics views metrics as a feedback tool ; a historic collection of 

complexity metrics could be fine-tuned to reflect the complexity properties of programs , 

and can then be used to improve program quality in future projects . In this context , 

"complexity " could be the difficulty in modifying or enhancing a program, testing a 

program , etc. Thus, an organization might use historic data collected over a period of 

time to establish some kind of a complexity threshold . This complexity threshold should 

be established based on historical data that shows problems with maintenance and 
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modification activities if complexity exceeds those threshold levels . If the complexity 

measurement for a particular class exceeds that threshold, then the programmer might 

take some actions to keep the complexity of the class under control. The following are 

some possible scenarios : 

• Seeing that the complexity measurements for a particular class exceed preset 

limits, a programmer might consider an alternative approach or algorithm to solve 

the problem . 

• The programmer could consider further dividing up the work among more classes 

etc . 

However , it should be recognized that it may not always be possible to keep the 

comple xity of classes under pre-established limits . Some problems and their solutions 

may be necessarily complex . In this case, complexity metrics could be used to identify 

classes that need more attention in terms of documentation, comments etc . Another 

important point to note is that standards of complexity or quality are highly dependent on 

the organization that develops the software, as well as the software itself. Hence, instead 

of coming up with some magic numbers for complexity, it is our hope that an 

organization should consider all possible relevant factors and should establish local 

criteria for complexity . · 

3.3.2 Use of Metrics in the Maintenance Phase 

Software metrics can also play a great role in managing the maintenance phase of the 

software life cycle . Metrics can be used to evaluate classes in terms of difficulty of 

understanding modification , to make estimates of the time and effort that may be needed 

to make modifications to a class etc . Often a software development organization would 

be better off rewriting a whole class rather than attempting to modify it, because the class 

is too complex . Metrics could be used as a tool to identify such classes . This kind of 

maintenance activity is often called preemptive rewriting . Another use of metrics in the 

maintenance phase could be in the allocation of classes to be maintained to programmers 

in such a fashion as to ensure an equitable distribution in terms of the complexity 
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encountered by each maintenance staff member , or to identify and assign more complex 

pieces of the software to more experienced people. 

3.3.3 Use of Metrics to Allocate Testing Resources 

Complexity metrics can be used as a tool to guide the allocation of resources for testing 

software . Typically, a large percentage of errors in software systems can be located in a 

small portion of the code. It is often said that 80% of the errors in a program can be found 

in 20% of the code. Judicious use of software complexity metrics can be a great aid in 

identifying and isolating portions of code which might need more rigorous testing in 

comparison with other portions of the program . 

Thus, we have described some of the possible uses of metrics . However , as we cautioned 

earlier , metrics should be viewed as one of several tools used to manage the software 

development process . Under all circumstances, common sense should be used to 

determine if the application of metrics seems reasonable . Another important fact to be 

remembered is that metrics will work best when applied to a large set of programs 

characteristic or representative of the organization using the metrics . Applying metrics in 

isolation to one or two classes may not always be sufficiently generalizable . Any activity 

concerning human creativity like software development cannot always be predicted with 

100% accuracy. This should always be kept in mind while deploying software 

complexity metrics . 

3.3 A taxonomy of the metrics 

Influenced by other metrics studies in 00 languages, we propose the following 

classification for product metrics for Java: 

• Complexity metrics at the project level 

• Complexity metrics at the inheritance tree level 

• Complexity metrics at the class level 

This research focuses on metrics at the class-level, and suggests a few size-related 

metrics at the project and inheritance tree levels. 
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3.3.1 Complexity metrics at the project level 

As we mentioned earlier, Java is a purely object-oriented language, meaning that 

everything in Java is a class, and there are no stand alone functions as in C++. 

The following is a suggested list of size-related metrics that might provide useful 

information regarding the complexity of a program at the project level : 

Number of classes: 

Intuitively , we would expect a program with a greater number of classes to be more 

complex than a program a fewer number of classes . Hence this number could be used as 

an index of the complexity of a program . 

Number of trees in the inheritance forest: 

This number would give us the number of classes in the program that other classes may 

inherit from. This information might be crucial to understanding the program, because the 

greater the number of distinct classes that need to be understood in order to comprehend 

the program, the greater the effort to understand the program. 

Average depth of the inheritance forest: 

This is another metric that could provide useful information about the complexity of a 

Java program. The inheritance forest would comprise all the inheritance trees in the given 

compilation unit, not taking into account the fact that all the Java classes derive from one 

common class, the Object. The intuition here is that the deeper the inheritance structure 

for the program, the greater the interdependence among the classes belonging to the 

inheritance tree. Hence, the average of the depths of all inheritance trees in the forest 

would be a measure of the overall complexity of the program, from inheritance 

perspective . 

Maximum depth of the inheritance forest: 

This metric is similar in spirit to the above, and provides a "worst case" perspective on 

inheritance for a forest of inheritance trees . 
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3.3.2 Complexity metrics at the inheritance tree level 

One of the most compelling features of a modern 00 programming language like Java is 

code reuse. The great advantage about code reuse in Java is that it is possible to reuse the 

code (classes) developed and debugged by other programmers without changing the code. 

This is made possible in Java through a mechanism called inheritance . Inheritance 

involves taking the code from an existing class and adding code to it, without modifying 

the existing class. Inheritance is considered one of the cornerstones of the OOP paradigm 

and has several important implications for a metrics suite attempting to capture the 

complexity or quality of a Java program. Unlike C++, where a class could potentially 

inherit from any number of classes, in Java, a class can only inherit from one other class. 

The class from which other classes inherit or derive is called a parent class or super 

class. The class that inherits, on the other hand, is referred to as a child class, derived 

class or subclass. We will use these terms interchangeably, and to denote the same thing 

throughout this paper. 

Since a subclass in Java can only have one super class (potentially), inheritance in Java 

programs gives rise to tree structures. A Java program could have several independently 

rooted inheritance trees, giving rise to an inheritance forest. These inheritance trees and 

forests have several important implications in terms of software complexity: these 

structures could greatly influence how easy or difficult a program is to understand, 

maintain or make enhancements to . We have designed a set of metrics that are very likely 

to provide valuable insights into the complexity of a program due to this feature : 

Number of classes in the inheritance tree: 

Looking at one inheritance tree in a Java program, the intuition behind this metric is 

obvious . The greater the number of classes in an inheritance tree, the greater the effort 

required to understand, and hence to maintain it. 

The maximum depth of the inheritance tree: 

The intuitions behind this metric are several. For one, the deeper a class is in the 

inheritance tree, the greater the number of methods it is likely to inherit, hence making it 

J more complex to predict its behavior. Deeper trees might constitute greater design 
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complexity, since more methods and classes are involved . The deeper a class is in the 

hierarchy, the greater the potential reuse of inherited methods, and so on. 

3.3.3 Complexity metrics at the class level 

As mentioned earlier, a class is the unit of development in Java. Hence it becomes very 

important to have a good set of metrics that would let us evaluate the quality or 

complexity of a Java class . The following sections describe a list of metrics that capture 

the complexity level of a Java program at the class level. Out of these metrics, NOC and 

Depth are directly adapted from the Chidamber-Kemerer metrics suite. Method Count 

(MC) is a special case ofWMC (Weighted Methods Per Class) in the C-K suite, where 

all methods are assumed to be have weights of unity . The External Reference metrics 

(NOR_NS, UNOR_NS, NOR_TOT and UNOR_TOT) are also derived from the CBO 

(Coupling among Object Classes) in the C-K suite, where coupling is defined in terms of 

the number of external methods invoked ( or messages passed, in 00 parlance) by a class. 

Number of children/subclasses for a class (NOC): 

) The greater the number of children or subclasses that inherit from a particular class, the 

greater its complexity. The intuition for this belief is that since a greater number of 

classes inherit from this class, this particular class probably encapsulates the data and 

behavior for a wide range of classes. Hence everything else remaining the same, we 

would expect this class to be more complex than one which has fewer children . In some 

cases, it might even be said that if a class has a large number of children , it could be a 

case of misuse of subclassing . 

) 

Method Count for a class (MC): 

In Object-Oriented programming languages, the behavior of a class is defined by the 

methods of a class . Hence, the number of methods defined in a class (Method Count) is a 

good indicator of the complexity of a class because a greater number of methods means 

that the class has a wider range of behavior and hence is more complex . 

Constructor Count for a class (CC): 
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Constructors are special methods which are used to initialize the state of an object when 

, ) it is first brought to life. From a client's point of view, a greater number of constructors 

represents more ways in which the object can be initialized and subsequently used . Hence 

the number of constructors could provide useful information regarding the perceived 

complexity of a class. 

) 

) 

Data Count for a class (DC): 

The member data for a class defines the state of the class, and hence the greater the data 

count for a class, the greater its complexity potentially. 

Depth of a class in the inheritance tree (Depth): 

The intuition for this metric is quite obvious . The deeper a class is in the hierarchy, the 

greater the number of methods it is likely to inherit, making it more complex to predict its 

behavior . Also, the deeper a particular class is in the inheritance hierarchy, the greater the 

potential reuse of inherited methods. 

External Reference Metrics 

Classes in Java communicate with other classes mainly through method invocations. 

Classes in Java can invoke methods defined in other classes, usually called message

passing in Object-Oriented terminology. We refer to such method (function) invocations 

as "external references". There are two different ways in which these method invocations 

are executed : they can be either bound at run-time ( dynamic binding), or at compile-time 

(static binding) . Static binding is the approach taken in Procedural programming 

languages, and Object-Oriented languages need dynamic binding to support 

polymorphism, a property that allows a variable to hold different object at run-time. 

Polymorphism enables a variable of a given class or type to hold either objects of its own 

class or type, or of any subclass or extended class. Java allows a subclass or extended 

class to override or replace the superclass's implementation of a method with one of its 

own. When a method is invoked on a polymorphic variable holding an object, the actual 

type of the object at run-time, as opposed to its static declared type, governs which 
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implementation is used . This is the reason why method invocations in Java are bound at 

run-time . The following example illustrates this concept . 

Let us consider an example of class called Shape , which represents the abstract idea of a 

geometric shape. This class has methods such as draw() , paint() etc. which are 

characteristic behaviors of a geometric shape. Concrete geometric shapes such as Circle, 

Triangle etc. can then be defined as subclasses of Shape . Since shape is still an abstract 

concept at the time that we define the class, usually the methods draw() paint() etc. will 

not have any implementation . The subclasses Circle, Triangle etc. inherit these abstract 

methods and override them to provide their own specific implementation . Let us consider 

the following declaration of class Shape : 

Shape aShape; 

This variable aShape is polymorphic , and can hold any object that is an instance of Shape 

or any subclass of Shape. Hence , aShape might very well hold a Triangle or a Circle at 

some point in time . A method invocation on aShape, such as aShape .draw() , will then 

either call the draw() method of a Triangle or a Circle, depending on what object aShape 

happens to hold at that point in time . 

) Java also has per-class (as opposed to per-instance) methods or static methods, 

invocations to which are bound at the time the Java classes or loaded in the virtual 

machine . As an example, the Math class in the JDK (Java Development Kit) core library 

has several static methods such as cos, sine, etc . that provide a useful collection of math

related methods . Such methods are invoked by prefixing the method name with the class 

name, for example, Math .sine(angle) is an invocation of the sine method defined in the 

Math class . These method calls are not bound dynamically , and hence are very similar to 

function calls in procedural programming languages . 

Since objects in Java are primarily coupled among themselves through these method 

invocations , this gives us a way to measure coupling . Also, the differences in the two 

types of method -invocations have an important effect on program understanding, because 

in the case of non-static method invocations , method selection happens at run-time, and 

can be one of several possible choices . Hence understanding non-static method calls can 

be more difficult than understanding non-static method invocations. Based on this, we 

propose the following external reference metrics for a class : 
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Number of References (NOR_TOT): This metric is a count of the total number of 

external references, both static and non-static . 

Unique Number of References (UNOR_TOT): This metric is a count of the unique 

number of references , both static and non-static included . 

Number of Non-Static References (NOR_NS): This metric is a count of the total 

number of non-static external references . 

Unique Number of Non-Static References (NOR_NS): This metric is a count of the 

unique number of non-static external references . 
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4.0 The Architecture and Design of JavaMetrics 

4. 1 The need for an automated metrics collection system 

The process of collecting metrics on large amounts Java source code over a period of 

time can become a very time-consuming task. Also, manual gathering of metrics can be 

quite error-prone and very expensive . For these reasons, the metrics collection effort 

needs the support of automated tools . As a step in this direction, we have designed and 

implemented JavaMetrics , a static metrics analyzer for Java. 

4.2 An overview of JavaMetrics 

JavaMetrics is a static metrics analyzer tool for Java which parses Java source code 

statically and computes all the class level metrics proposed in the earlier section. 

JavaMetrics has three essential functions : (i) parsing the input Java source file and 

extracting the required information ; (ii) storing the extracted information in a suitable 

format; (iii) and processing this information to compute the desired metrics. JavaMetrics 

has been written completely in Java, so any platform which supports Java should be able 

to run JavaMetrics without any recompilation . 

4.3 The Architectural Design and Implementation of JavaMetrics 

Figure 1 shows the architecture of JavaMetrics . JavaMetrics is composed of the following 

five classes : 

• Parser 

• MainTable 

• TableRow 

• Organizer 

• JavaMetrics 

The following subsection describes the responsibilities of each of the five classes, and 

how they collaborate and interact with each other to compute the specified set of metrics 

for a given Java source program . 
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Figure 1. 

4.3.1 MainTable class 

This class serves as the central repository for the raw information collected from the Java 

source file by the Parser class, and accessed later by the Organizer and Javalvfetrics 

classes. This class as such, is very crucial to the whole design, and in an effort to keep the 

system as scalable as possible , all the classes external to this class can only access the 

data stored in this class through the appropriate accessor and mutator methods provided 

by the class. More specifically , MainTable has a row corresponding to every Java class in 

the entire Java program , and has the following fields for each row in the table : 

1. A string containing the name of the class. (This is the primary key to the table) . 

2. A string containing the name of the class's parent , if any. 
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3. An integer for the method count for the class . 

4. An integer for the constructor count for the class . 

5. An integer for the data count for the class . 

6. A boolean field indicating whether the current class is a root of an inheritance 

tree . 

7. A boolean field indicating whether the parent of the class , if there is one, has been 

defined in the current program or if it is a library class . 

8. An integer for the number of direct children for the class . 

9. An integer for the depth of the current class in its inheritance tree. 

10. A vector of strings holding all the method names for the current class . 

11. A hash table of strings for all the external references in the current class . In this 

table , the key is the string representing the external reference , and the value is the 

number of times this particular reference appears for the class . 

12. A hash table of strings for all the static references in the class . Again , the key is 

the string representing the external reference, and the value is the number of times 

this particular reference appears for the class. 

The MainTable abstraction encapsulates this storage and access to the data, and serves 

the data on request through accessor and mutator methods . The actual manner in which 

MainTable is implemented is completely insulated from the user , hence MainTable can 

change its implementation sometime in the future without having to modify any of the 

other classes which use Main Table. At this point , Main Table has an instance of the 

Hashtable class which comes with the Java APL If it should be decided to store the data 

in a commercial Relational Database Management System (RDBMS) , for example, this 

can be done by localizing the changes only to the MainTable class, without impacting the 

rest of the class in any way . Thus the object-oriented design of JavaMetrics provides for a 

very flexible and open framework for future modifications and enhancements. 

4.3.2 TableRow class 

This class is a wrapper class for the various fields stored by Main Table , and provides 

access to them through get and set methods . This class is necessary because the class 

Hashtable provided by Java's standard library allows the storage of key-value pairs, and 
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in order to associate a particular class with all the information belonging to the class, we 

( l need to have a composite class which stores all the fields mentioned earlier. 

) 

4 .3.3 Parser class 

This class is the work horse class of JavaMetrics and does the important function of 

parsing the input Java source file to extract information from a given Java source file, and 

stores it in Main Table . This class makes use of a class provided by Java's standard library 

for lexical analysis, viz. StreamTokeni zer, to parse the Java source file. 

The following is the main loop which does the parsing : 

while there are more classes in the file 

{ 

} 

add the class name to MainTable; 

get the information for the class; 

store the information in the TableRow in Main Table corresponding to this class. 

The following are some interesting notes and observations regarding the parsing process : 

• The parser goes through three passes on the input source file before it finishes 

parsing . This is necessary due to the following reasons: 

1. Java, as a typical Object-Oriented programming language, permits 

programmers to define new data types which can be declared and 

used just as though they were primitive data types provided by the 

language. For example, consider the data type int, which is a 

primitive data type provided by the Java language . To declare a 

variable of type int, the programmer just needs to say 

int i; 

and can then go on and use this variable i in his/her program . 

However , now suppose that the programmer needs a data type 

complex which would allow him/her to operate on complex 

numbers. There is no such primitive data type provided by the Java 

language, but this is where the power of an 00 programming 
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language comes in: the programmer can now define a new data 

type called complex, and go on and use this just as if it were 

provided by the language . The philosophy behind this approach is 

that instead of trying to foresee all possible data structures that 

may be needed by the programmer and provide them as part of the 

language, provide the programmer with the facility to define new 

data types and use them freely . 

This factor has a very important implication for our metrics 

analysis purposes , since one of the metrics we compute for a class 

is the number of member data that it has. Since in Java it is 

possible for the programmer himself to define new data types and 

use them in other classes , there is no way for us to know 

beforehand what the set of data types is. Hence , in JavaMetrics, we 

go through the entire program in the first pass and and collect all 

information about the new data types defined by the programmer, 

and then during subsequent passes, identify the data members for a 

particular class. 

2. For a very similar reason , a second pass through the source code is 

needed to collect the external references. Since all the information 

about the methods defined in a particular class is necessary before 

we can start analyzing the external references for the classes, 

information about all the methods defined for a particular class is 

collected during the second phase . The actual metrics collection for 

external references is done in the third pass. 

To make this more clear, let us consider a simple example . Let us 

suppose that there are two classes, class A and class B in a Java 

program being analyzed by JavaMetrics. Let us suppose that A has 

a method foo() defined in it, which is referenced from B. Now 

when we actually locate the external reference from B to A, 
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through the method foo(), we need to know where the method 

foo() is defined (class A in this case) . Information regarding where 

( or in which class ) a method has been defined is essential before 

the external references metrics can be computed, so during the 

second pass, we create a database of all method definitions for 

each class in the project . Using this database during the third pass 

we can external refernces in a particular class, and hence compute 

our metrics . 

4.3.4 Organizer Class 

The Organizer class performs the function of analyzing and organizing the "raw 

information" collected from the Java source and stored into the MainTable. The 

information collected by the Parser class by parsing the input source does not contain 

the information needed to compute the metrics, so the Organizer class performs the 

additional computation needed to compute all the metrics, by accessing the information 

) available in the MainTable . In p~rticular, the Organizer class sifts through the 

information collected during the parse stage and identifies the inheritance tree structures 

for the given source program being analyzed. The following algorithm is used for this 

process by the Organizer class: 

J 

• Algorithm for computation of metrics involving inheritance tree structures: 

One interesting problem that needed to be solved while computing the metrics 

suite is that of identifying the inheritance tree structure in a given Java source 

program to be analyzed by JavaMetrics . The situation in Java is less complicated 

compared with a language like C++ because, unlike C++, Java does not allow 

multiple -inheritance, meaning that a class cannot be a subclass of more than one 

other class . Hence, inheritance structures in Java are trees, and not graphs, as 

would have been the case with a language allowing multiple inheritance . 

We use the following algorithm to identify the inheritance structures in a given 

Java source program : 
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Input: The MainTable containing the "raw information" regarding the classes in 

the given Java source file. This data structure is the output of the Parser. We call 

this "raw information" , because it is information that can be directly gleaned from 

the source without any additional processing, such as the name of a class, the 

name of the parent of a class etc. 

Algorithm: 

1. Walk through the MainTable and identify all "roots" in the program, i.e. 

all classes which do not derive from any other class. For the purpose of 

computing inheritance trees, we classify the classes as follows: 

• classes which do not inherit from anything else; These are the 

"roots" of the inheritance trees in the Java program . 

• classes which inherit from other library classes which are not part 

of the current Java program bering analyzed . JavaMetrics always 

considers those classes that are not available for analysis, mostly 

library classes supplied by vendors, as black boxes . Hence, classes 

which derive from library classes are also regarded as "roots". 

• classes which derive from some other class which is part of the 

Java program being analyzed, and hence a "non-root" . 

2. For each root identified in the previous step: 

{ 

Push the root into a stack. 

while the stack is not empty { 

Pop the top class off the stack. 

Determine all classes which have this particular class as their 

immediate parent and push them into the stack. 

} 

} 

The above algorithm is constructs the tree in a breadth-first fashion . 

4.3.5 Class JavaMetrics 

34 

f 



) 

The JavaMetrics class is the starting point for the whole metrics analysis process, and is 

the manager of all the other classes and modules in the system . It also implements a 

simple graphical user interface (GUI) through which the user can select files for analysis, 

initiate the metrics analysis process and quit the metrics analysis system. When the user 

clicks the appropriate buttons and chooses a Java source file for analysis, the class 

JavaMetrics first activates the class Parser, and when parsing is done and the MainTable 

has all the "raw information", activates the Organizer class which then performs the 

additional processing described earlier. Once everything is done, the JavaMetrics class 

again takes over and writes the results of the analysis into a file which can be opened and 

read by the user. The files storing the metrics analysis results are generated by adding a 

.metrics suffix to the source file name. For example, for a Java source file with the name 

JavaMetricsSource.java submitted for analysis to JavaMetrics, a file named 

JavaMetricsSource .java.metrics is generated with the results of the metrics analysis. The 

following page shows a sample metrics report generated by JavaMetrics. 
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5.0 Experimental Validation of the Class-Level Metrics 

for Java 

In this chapter, we describe two experiments that were conducted to determine the utility 

of the class-level metrics proposed for Java as part of this research. 

5. 1 The need for a scientific validation process 

The main goal of the experimental validation is to determine which, if any, of the 

proposed metrics are good indicators of the complexity of Java programs. This allows us 

to 

• Determine whether our intuitions regarding the complexity about Java programs 

are experimentally supported. 

• Filter out the metrics which are experimentally suggested as being useful from 

those that are not. These metrics could then be used to identify classes most likely 

to be difficult to test or to modify . 

5.2 The Experiments 

With these goals in mind, two experiments were done to validate the proposed set of class 

level metrics for Java . In order to validate our metrics suite, we considered two different 

possible approaches: (1) small-scale controlled experiments using small or contrived Java 

programs, (2) real-life large scale industrial case studies. In this project , we took a hybrid 

approach , in that the programs that were studied were real applications , and not contrived 

or trivial. However, the programs are not exceptionally large; two of the programs 

studied in experiment I are parts of a commercial software system but these programs are 

not currently being shipped to customers. Experiment II was conducted entirely in a 

combined graduate/undergraduate Computer Science course in compiler construction at 

) Oregon State University 
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) The design of the experiments, the data collected and the results from the experiments are 

discussed in the following subsections. 

5.2.1 Experiment I 

Background. 

In this experiment, the subjects are professional Java programmers. They were asked to 

select a Java program that they have worked with, either as developers or testers, or in 

any other capacity which gave them sufficient familiarity with the programs so they 

could evaluate the complexity of the Java classes . Then, the candidates were requested 

to rate the complexity for each class - difficulty in performing both testing and 

modification tasks for the classes in the programs on a 4 point scale, with the following 

meaning assigned for each level of difficulty: 

) 1 - very easy/trivial 

2 - easy 

3 - difficult 

4 - very difficult 

There were two main stages in the experiment: 

• Data Collection stage, where we collect metrics and subject rating data for a set 

of classes 

• Analysis stage, where we use statistical methods to analyze the metrics using the 

data collected in the previous stage . 

Data Collection 
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The main goals of this step in the experiment were : 

• to gather metrics data for the sample of Java classes 

• to collect complexity level ratings for the different from a "reliable agent" . The 

reliable agent could be the programmer who actually wrote the code, or any other 

person who is in a legitimate position to evaluate the complexity of the code, like 

testers etc . 

In the following subsections, we provide some background on each of three subjects and 

their programs , and the data collected from each subject. 

Subject A: 

Subject A is a software engineer in a software development company with one year of 

experience in the field . The subject chose a Java program developed entirely by himself 

for the purpose of the evaluation. This program is a Java applet and is the front-end to a 

) commercial Object-Oriented Database Management System (OODBMS) . The main goal 

of this program was to demonstrate the web and Java access features of the OODBMS . 

His ratings and the metrics values computed for all the ten classes are shown in Table 1. 

Subject B: 

The subject is a senior software engineer in a software development company with over 7 

years experience in the field. The subject holds a BS degree in computer science. 

The program chosen by the subject is a part of a Java library that provides Java proxies 

for a recently released commercial Object-Oriented Database Management System 

(OODBMS) . These classes act as proxies for the multimedia class library provided by the 

OODBMS, and as such reflect the same inheritance hierarchy as the original classes in 

the database . The various metrics computed by the tool for the programs, and the 

subject's ratings of the complexity of the classes in the program on a scale of 1-4, is as 

shown in table 2. 
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Subject C: 

..,.._) The subject is a MS graduate in Computer science. The subject has more than two years' 

experience programming in Java. The program chosen by the subject is a game 

application which can be played over the web as a Java applet . As such, the program to a 

great extent , consists of code that deals with user interface . The metrics for the program, 

and the rating of the complexities of the various classes in the project are shown in Table 

3. 

) 

) 

Acknowledment 
AddTest 

lmageCanvas 
Invalid ID 

Main Frame 
PatFrame 

Patl nfoF rame 
Physician Info 

TestDetail 
TestShort 

Table 1. 

Legend : 

Depth 

0 
0 
0 
0 
0 
0 
0 
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0 
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D.C. M.C c.c NOC 

2 6 3 0 
7 7 3 0 
7 4 1 0 
2 5 0 0 
15 12 2 0 
7 9 2 0 

51 14 2 0 
9 5 2 0 
9 7 3 0 
8 8 2 0 

Depth : Depth of a class in inheritance tree 
DC : Data Count 
MC : Method Count 
CC: Constructor Count 
NOC : Number of Children 

NOR_TO 
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60 
64 

273 
26 
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39 

NOR_TOT: Total number of References (non-unique) 
UNOR TOT: total number of References (unique) 

UNOR_TO 
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21 
5 
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26 
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NOR_TOT : Total number of Non-static References (non-unique) 
UNOR_TOT: total number ofNon-static References (unique) 
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58 52 
62 56 
267 146 
26 26 
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Depth D.C M.C C.C NOC NOR_TOT UNOR_ NOR_NS UNOR_NS Rating 
TOT 

MMData 3 5 1 1 1 0 0 0 0 1 
MMFile 4 9 10 2 2 44 15 32 14 3 

MMlmageFile 5 0 1 1 4 0 0 0 0 1 
MMJavaAudioFile 7 0 2 2 0 0 0 0 0 1 
Mmjavalmagefile 6 3 7 4 0 18 8 11 7 4 

MMPixmapFile 6 3 5 4 0 7 6 5 5 4 
MMProperty 0 5 1 1 0 0 0 0 0 1 

MMSoundFile 5 0 1 1 1 0 0 0 0 1 
MMSunAudioFile 6 3 4 3 1 6 3 2 2 4 

MMTiffFile 6 3 5 4 0 14 7 9 6 4 
Mmedia 2 0 1 1 1 0 0 0 0 1 
Video 6 0 0 0 0 0 0 0 0 3 

Image Viewer 0 0 12 3 0 26 17 25 16 3 
JpRoot 0 3 0 0 1 0 0 0 0 2 

RootClass 0 4 8 1 1 6 5 4 4 2 

Table 2. 

Depth D.C M.C C.C NOC NOR_TOT UNOR_ NOR_NS UNOR_NS Rating 
TOT 

DropEvent 0 0 2 1 0 0 0 0 0 3 
Grid 0 10 10 1 2 11 6 11 6 3 

) 
ShipGrid 1 6 11 1 0 12 8 11 7 3 
FireGrid 1 4 8 1 0 8 8 8 8 2 

lnfoDialog 0 1 2 1 0 7 7 7 7 2 
Label Canvas 0 6 7 1 0 7 6 7 5 2 

lnfoFrame 0 1 3 2 0 8 7 8 7 2 
Login 0 7 5 1 0 33 23 33 23 2 
Ship 0 6 6 1 5 4 4 4 4 2 

BattleShip 1 3 1 1 0 0 0 0 0 2 
Destroyer 1 3 1 1 0 0 0 0 0 2 

Submarine 1 3 1 1 0 0 0 0 0 2 
Cannon Cruiser 1 3 1 1 0 0 0 0 0 2 

Sea Harrier 1 3 1 1 0 0 0 0 0 2 
ToolbarButton 0 2 11 1 0 10 8 10 8 3 
ToolbarPanel 0 5 6 1 0 20 12 20 12 3 

LogoPanel 0 1 2 1 0 5 5 5 5 2 
BattleConnection 0 2 1 0 0 0 0 0 0 1 

BattleApplet 0 36 24 0 0 109 62 89 60 4 
BattleClientlmp 0 1 9 2 0 7 7 7 7 2 

BattleServer 0 5 8 3 0 45 24 37 22 3 
ChallengeDialog 0 3 2 1 0 7 7 7 7 2 

Table 3. 

_J 
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Data Analysis. 

The subject ratings indicate the perceived difficulty in performing testing or modification 

tasks. We used Spearman's Rank Correlation coefficient to investigate the relationship 

between each of the metrics and the subject ratings . 

Spearman's Rank Correlation Coefficient [20] is a number between -1 and+ 1, and 

quantifies the similarity between two different sets of ranks. Spearman's rank correlation 

coefficient takes into account only the rankings of entities on the basis of the values of 

some property of that entity, and not the numerical value of the property itself. Ties in 

ranks are resolved by assigning the means in rank values to the entities that have the ties . 

When the two sets of rankings being compared match perfectly, the value of Spearman' s 

rank correlation is + 1 and there is perfect positive correlation between the two . On the 

other end of the spectrum, if the two sets of ranking are the exact opposite of each other, 

there is perfect negative correlation between the two sets of rankings and the value of 

Spearman's rank correlation coefficient is -1. If the value of Spearman ' s rank correlation 

) is near 0, there is no relationship between the two sets of rankings . 

_) 

For each subject, the different classes that the subject rated were ranked according to the 

subject ratings and according to the different metrics. For each metric, Spearman's rank 

correlation coefficient was computed between the set of rankings obtained using the 

subject ratings and the set of rankings based on the metric . This was done for all the three 

subjects . Table 4 summarizes the results of this study : 

Depth DC MC cc NOC 

Subject A NIA .827** .570 .252 NIA 
Subject B .384 .185 .520* .659* -.360 
Subject C -.199 .356 .669** .036 .104 

Table 4. 

*Correlation is significant at the 5% level (2-tailed) 

**Correlation is significant level at the 1 % level (2-tailed) . 

NOR UNOR NOR 
TOT TOT NS 
.663* .745* .682* 
.767** .754** .754** 
.620** .533** .620** 
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NIA Not applicable because metric is O throughout 

A discussion of the results: 

As can be observed from table 4 of the above study, the following metrics have 

significant correlations with subjective ratings of complexity, for all of the subjects: 

• NOR TOT 

• UNOR TOT 

• NOR NS 

• UNOR NS 

In addition, the metrics CC, MC and DC have significant correlations with subjective 

impressions of complexity with at least one subject, but not all of them. It might also be 

observed that the metrics NOR_TOT and UNOR_TOT highly correlated (0.954 for 

subject A, 0.995 for subject Band 0.962 for subject C). Similarly, NOR_NS and 

UNOR_NS are highly correlated between themselves (0.976 for subject A, 0.996 for 

subject B, and 0.946 for subject C) and do not differ very greatly from each other in their 

correlations with the ratings . Hence we use one of the two metrics in each case for 

analysis purposes instead of considering both. 

5.3.1 Experiment II 

Experiment Goal. 

The goal of this experiment was to investigate the relation between subjective ratings of 

difficulty in performing testing or modification tasks, and metrics values in a larger group 

of subjects. 
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Subjects and Materials . 

In this experiment, the subjects consisted of a set of 27 undergraduate (CS480) and 17 

(CS580) graduate students taking a senior/graduate level course in compilers at Oregon 

State University . The students developed a compiler for a small programming language 

using Java. The compiler development was done in several stages , and this experiment 

was conducted in the middle of that development process . At the time this experiment 

was conducted, the software system consisted of 33 Java classes , and was partly 

functional. The two main classes developed entirely by the students included the Lexer 

and the Parser. The Lexer class provides a stream of tokens on demand by the Parser. The 

Parser performs syntax analysis , and uses the SymbolTable related classes, Symbol 

related classes and Type related classes. These supporting classes were written by the 

professor , and provided to the students for use in developing their Lexer and Parser . The 

students had to read and understand the supporting classes, and use them in their code. 

Experiment Design and Data collection. 

) The 44 subjects were asked to rate the 33 Java classes on a 1-4 scale (1- very easy, 2-

easy, 3- difficult, 4- very difficult) , for each of the two tasks i.e. testing and modification. 

Tables 5 and 6 show the frequency of each rating level for the modification task and for 

the testing task. 

) 
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very easy easy Difficult very difficult 
cs580 cs480 Comb cs580 cs480 Comb. cs580 cs480 comb. cs580 cs480 comb. 

Symbol 3 5 8 13 13 26 1 7 8 0 2 2 
ConstantSymbol 4 4 8 10 18 28 3 4 7 0 1 1 

TypedSymbol 3 0 3 11 20 31 3 6 9 0 1 1 
TypeSymbol 3 0 3 10 20 30 4 6 10 0 1 1 

GlobalSymbol 3 0 3 11 16 27 3 10 13 0 1 1 
Offset Symbol 2 0 2 10 14 24 5 12 17 0 1 1 

FunctionSymbol 3 0 3 8 13 21 6 13 19 0 1 1 
NestedFunctionSymbol 2 0 2 6 11 17 7 14 21 2 2 4 

MethodSymbol 2 0 2 8 14 22 6 10 16 1 3 4 
SimpleSymbolTable 2 0 2 9 10 19 5 14 19 1 3 4 
RecordSymbolTable 0 . 1 1 7 11 18 10 12 22 0 3 3 

ArgumentSymbolTable 1 0 1 7 11 18 7 11 18 3 4 7 
NestedSymbolTable 1 0 1 8 9 17 7 13 20 2 4 6 

FunctionSymbolTable 1 0 1 5 9 14 9 14 23 2 4 6 
ClassSymbolTable 2 1 3 8 9 17 4 13 17 2 5 7 

Simple Type 4 4 8 12 14 26 1 8 9 0 1 1 
Primitive Type 3 3 6 13 13 26 1 9 10 0 2 2 
PointerType 2 1 3 7 11 18 6 11 17 2 4 6 

) Address Type 3 2 5 4 12 16 9 9 18 1 4 5 
Record Type 3 1 4 6 12 18 7 11 18 1 3 4 
ArrayType 3 1 4 6 13 19 7 10 17 1 3 4 

Functiontype 3 2 5 6 12 18 8 12 20 0 1 1 
Class Type 2 1 3 11 13 24 4 11 15 0 2 2 

Ast 5 5 10 8 6 14 3 12 15 1 4 5 
FramePointer 3 2 5 7 6 13 7 14 21 0 5 5 

UnaryNode 5 1 6 10 10 20 2 14 16 0 2 2 
BinaryNode 4 3 7 6 12 18 7 12 19 0 0 0 
GlobalNode 3 1 4 9 17 26 4 7 11 1 2 3 
lntegerNode 3 6 9 13 16 29 1 5 6 0 0 0 

RealNode 2 6 8 12 15 27 3 6 9 0 0 0 
String Node 4 6 10 9 15 24 4 5 9 0 1 1 

Lexer 3 3 6 9 17 26 4 3 7 1 4 5 
Parser 2 2 4 4 4 8 6 15 21 5 6 11 

Table 5: 
~ 

Modification Task : Subject Responses 

_) 
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-
very easy easy Difficult very difficult 

cs580 cs480 Comb cs580 cs480 Comb. cs580 cs480 comb. cs580 cs480 comb. 

Symbol 3 2 5 10 10 20 4 14 18 0 1 1 
ConstantSymbol 4 2 6 11 15 26 2 9 11 0 1 1 

TypedSymbol 2 1 3 12 15 27 3 9 12 0 2 2 
TypeSymbol 1 1 2 11 15 26 5 9 14 0 2 2 

GlobalSymbol 3 1 4 10 12 22 4 14 18 0 0 0 
OffsetSymbol 1 1 2 11 8 19 5 17 22 0 1 1 

FunctionSymbol 1 1 2 8 6 14 8 14 22 0 6 6 
NestedFunctionSymbol 1 2 3 4 4 8 10 14 24 2 7 9 

Method Symbol 1 2 3 9 6 15 5 16 21 2 3 5 
SimpleSymbolTable 4 1 5 6 6 12 5 16 21 2 4 6 
RecordSymbolTable 1 1 2 9 5 14 6 17 23 1 4 5 

ArgumentSymbolTable 2 2 4 6 4 10 6 18 24 3 3 6 
NestedSymbolTable 2 1 3 6 5 11 7 15 22 3 5 8 

FunctionSymbolTable 1 1 2 5 5 10 9 15 24 2 6 8 
ClassSymbolTable 1 1 2 6 6 12 8 14 22 2 6 8 

Simple Type 2 4 6 12 15 27 3 8 11 0 0 0 
Primitive Type 2 3 5 13 15 28 2 9 11 0 0 0 
PointerType 2 2 4 10 10 20 4 10 14 1 5 6 

) 
Address Type 1 3 4 10 8 18 5 10 15 1 6 7 
RecordType 1 3 4 9 5 14 6 18 24 1 1 2 
ArrayType 2 2 4 7 9 16 7 13 20 1 3 4 

Functiontype 2 3 5 11 5 16 7 16 23 0 0 0 
Class Type 2 3 5 8 7 15 8 16 24 0 0 0 

Ast 6 5 11 8 8 16 2 11 13 1 3 4 
FramePointer 2 3 5 8 8 16 6 15 21 1 1 2 
UnaryNode 3 5 8 9 10 19 5 10 15 1 1 2 
BinaryNode 1 5 6 9 10 19 6 10 17 1 1 2 
Global Node 2 4 6 11 14 25 3 7 10 1 2 3 
lntegerNode 2 7 9 13 13 26 1 7 8 1 0 1 
RealNode 1 7 8 13 13 26 2 7 9 1 0 1 

String Node 4 7 11 11 13 24 1 6 7 1 1 2 
Lexer 3 3 6 9 13 22 4 9 13 1 2 3 
Parser 3 2 5 5 4 9 6 13 19 3 8 11 

Table 6: 
Testing Task: Subject Responses 

_) 
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In addition to collecting the responses from the students, the metrics were also computed 

') for each class . The following table shows the metrics for the different classes: 

Depth DC MC cc NOC NOR_tot UNOR_tot NOR NS UNOR t 
Simple Type 0 0 5 1 5 0 0 0 0 

Primitive Type 1 5 3 1 2 0 0 0 0 
PointerType 2 1 5 1 1 4 4 4 4 

Address Type 3 0 2 1 0 1 1 1 1 
RecordType 1 1 3 1 0 2 2 2 2 
ArrayType 1 3 4 1 0 3 3 3 3 

Functiontype 1 2 4 1 0 1 1 1 1 
Class Type 1 1 4 1 0 1 1 1 1 

SimpleSymbolTable 0 2 12 1 2 8 6 5 5 
RecordSymbolTable 1 1 5 2 1 2 2 1 1 

Arg u mentSymbolTable 3 0 3 1 0 5 5 4 4 
NestedSymbolTable 2 2 3 1 3 4 4 3 3 

FunctionSymbolTable 3 2 4 1 0 4 4 4 4 
ClassSymbolTable 3 1 5 2 0 5 5 5 5 

Symbol 0 1 4 1 2 0 0 0 0 
ConstantSymbol 1 1 2 1 0 0 0 0 0 

TypedSymbol 1 1 2 1 4 0 0 0 0 
TypeSymbol 2 0 1 1 0 0 0 0 0 

) GlobalSymbol 2 1 3 1 0 0 0 0 0 
OffsetSymbol 2 1 2 1 0 0 0 0 0 

FunctionSymbol 2 1 2 1 2 0 0 0 0 
NestedFunctionSymbol 3 0 2 1 0 1 1 1 1 

Ast 0 1 4 1 8 2 2 2 2 
FramePointer 1 0 2 1 0 1 1 0 0 
UnaryNode 1 6 2 1 0 6 2 1 1 
BinaryNode 1 12 2 1 0 15 3 2 1 
GlobalNode 1 1 2 1 0 1 1 0 0 
lntegerNode 1 1 3 2 0 2 2 1 1 
RealNode 1 1 3 2 0 2 2 1 1 

StringNode 1 1 2 1 0 1 1 0 0 
Lexer 0 9 7 1 0 38 8 30 6 
Parser 0 2 29 1 0 241 36 229 35 

Table 7: Metrics Data 

_) 
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Analyzing the Data. 

The goal of conducting this experiment was to investigate the relationship between the 

perceptions of difficulty in performing testing and modification tasks by the subjects, 

compared with the different metrics. Again, we use Spearman's Rank Correlation 

Coefficient to investigate the relationship between the two. 

For the purpose of analyzing the data, we computed a weighted difficulty index for each 

class, for the testing and for the modification task . This weighted difficulty index for a 

class is computed by multiplying the number of respondents in each of the four rating 

levels by the corresponding weights for that level : 1 for very easy, 2 for easy, 3 for 

difficult and 4 for very difficult. For example, if a class X had 5, 10, 15 and 14 

respondents rating X as very easy, easy, difficult and very difficult respectively , the 

weighted difficulty index would be computed as 1 *5 + 2*10 + 3*15 + 4*14 = 126. 

The weighted difficulty indices for each class for each task, provided a basis for ranking 

) the classes that reflects a a consensus among the subjects . The classes were also ranked 

according to the metric values. For each metric, we then computed Spearman's rank 

correlation coefficient between the ranking for that metric and the ranking of the classes 

using the weighted difficulty . Table 8 shows Spearman 's correlation coefficient values 

obtained for the different metrics for each group of students ( cs480 and cs580), and all 

students for both the modification and testing tasks . 
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Modification Task 
Depth DC MC cc NOC 

CS580 .454** -.12 .247 .024 -0 .21 
CS480 .376* .06 .251 -.112 -.17 
Combi .435* -.003 .280 -.073 - .066 
ned 

Testing Task : 
Depth DC MC cc NOC 

CS580 .528** .060 .081 -.049 -.303 
CS480 .451 ** -.034 .269 .152 .012 
Combi .493** -.045 .212 -.005 .-.054 
ned 

Table 8 

*correlation significant at 5% level in two-tailed test 
**correlation significant at 1 % level in two-tailed test 

A discussion of the results 

NOR T UNOR NOR 
OT TOT NS 
.508 ** .599** .641 ** 
.496** .536** .566** 
.486** .552** .603** 

NOR T UNOR NOR 
OT TOT NS 
.481 ** .510** .556** 
.256 .338 .469** 
.328 .395* .495** 

From an examination of the above results, the following observations can be made : 

UNOR 
NS 

.646** 

.581 ** 

.161 ** 

UNOR 
NS 

.548** 

.489** 

.504** 

• It is clear that three of the metrics , Depth , NOR _ NS and UNOR _ NS have significant 

correlations with subjective rankings , for both the testing and modification tasks . 

These three metrics are significantly correlated with the rankings of cs580 students, 

cs480 students, and all students , for both testing and modification tasks. Also , 

NOR_NS and UNOR _NS are strongly correlated between themselves (Spearman ' s 

correlation coeffiecient O. 994) and do not differ from each other greatly in their 

correlations with subject rankings . 

• The metrics NOR_ TOT and UNOR _ TOT have significant correlations for the 

modification task with subjective rankings . But for testing, there is significant 

correlation only with the ranking of cs580 students . 
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• In table 8, the CS580 graduate students' rankings have the largest number of 

significant correlations (significant at the 1 % level), with the various metrics (Depth, 

NOR_TOT, UNOR_TOT, NOR_NS and UNOR_NS) for both modification and 

testing tasks. 

Modification task 
NOR NS Depth 

Combined 6/9(67%) 6/9(67%) 
CS580 6/9(67%) 7/9(78%) 
CS480 6/9(67%) 6/9(67%) 

Testing task: 
NOR NS Depth 

Combined 5/9(56%) 6/9(67%) 
CS580 5/9(56%) 6/9(67%) 
CS480 6/9(67%) 5/9(56%) 

Table 9 

• Looking at the top few most difficult classes as picked by the subjects for the testing 

and modification tasks, it would be interesting see how many of those classes are also 

picked by the metrics. In the ideal case, there would be a perfect match between the 

set of classes picked by the metrics and that picked by the subjects. Table 9 shows the 

results of this line of inquiry for the 9 classes rated most difficult for the metrics 

NOR_ NS and Depth . A practical use of metrics is identifying and then allocating 

resources to classes that are very likely to be hard to test or modify. Of the 9 classes 

identified as most complex by the metrics, about two-thirds of them were among the 

rated as most difficult to test or modify by the subjects . 

• The metrics seem to do a slightly better job of identifying the most difficult classes 

for modification than for testing . More specifically, if we look at the classes that are 

identified as the most difficult by the NOR_ NS and UNOR _ NS metrics , 3 classes 

consistently fail to appear in the list suggested by the weighted difficulty index. These 

classes are : Lexer, ArrayType and SimpleSymbolTable . The class Lexer has the 

second highest value for NOR_NS and UNOR_NS, but a Depth of 0. This low depth, 

coupled with the fact that Lexer was the first Java class to be developed by the 

subjects, and hence probably quite familiar to the subjects at the time they answered 
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the questionnaire, suggests a reason why Lexer is not being perceived to be difficult 

for, testing or modification tasks by the subjects. The classes SimpleSymbolTable and 

ArrayType have low depths O and 1 respectively , which could be a reason why they 

are not considered to be difficult by the subjects . 

Since the metric NOR_NS had significant correlations with subject rankings of 

complexity in the first experiment, we compared the top few most difficult classes as 

selected by the subjects, with the classes picked by NOR_ NS . Table 10 shows the 

results . Column 3 in table 10 is the number of classes rated very difficult by the 

subject that were also ranked among the most difficult by NOR_NS. Column 5 in the 

table shows the number of classes that were ranked either difficult or very difficult by 

the subjects and also picked as the most difficult by NOR_NS . For example, subject 

B rated seven classes as being very difficult or difficult to test and modify, and two of 

these classes were also picked as most difficult by NOR_NS. As can be observed 

from the table, the percentage of agreement is often about 60-70%, sometimes as 

high as 85%. Hence NOR_ NS seems to do a reasonable job of identifying those 

classes that are likely to be difficult to modify or test. 

No . of NOR NS No. of NOR NS 
classes rated rated classes rated Rated 
very difficult difficult or 
by subject very difficult 

by subject 
Subject A 1 1 4 2 
Subject B 4 2 7 6 
Subject C 1 1 7 6 

Table 10 

50 



) 

) 

6.0 Conclusions and Future Directions 

6.1 Summary 

In this research, we have investigated Objected-Oriented metrics for the Java 

programming language and proposed a set of metrics at the class level. A static metrics 

analyzer tool was developed to automate the metrics collection process. To validate the 

metrics, two experiments were conducted. The results of the experiments showed that 

NOR_ NS is a good metric. NOR_ NS also proved to be useful in identifying those classes 

which are likely to be hard to modify or test. 

6.2 Conclusions 

From the results of the two experiments conducted to validate the metrics suite proposed 

for Java, suggest the following: 

• There is strong evidence that the external references metric (NOR_ NS), which 

provides a measure of the degree of coupling or interaction a class has with other 

classes, is a good indicator of difficulty in testing or modifying a Java class. In the 

Object-Oriented paradigm, computation is done primarily through these interactions 

between classes, and that could be the reason why this metric seems to work well . 

• The Depth of a class in its inheritance tree is another metric which received strong 

support from the data collected in the second experiment. The programs considered in 

the first experiment did not make heavy use of inheritance, and hence could not 

provide evidence in support of this metric . So again, it would seem that this metric 

can be useful in picking classes in a Java program that could be difficult to test or 

maintain . 

• There are certain other metrics such as DC (member data count), MC (method count) 

etc . which showed significant correlation with subjective impressions of complexity 

for at least one subject. However, since these metrics do not have consistent support 
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in the experiments conducted, it may be safe to assume that these metrics are not very 

useful unless proved otherwise . 

• The results of the experiments suggest that metrics can be used as predictors of 

difficulty in performing testing or modification tasks on Java classes. Hence metrics 

can be potentially very useful in the testing and maintenance stages of the software 

life-cycle . 

6.3 Suggestions for Future Work 

6.3.1 Further improvements to the Metrics Analyzer Tool. 

• Modifying the tool to handle multiple-file inputs . Currently, the tool can only parse 

and generate metrics report one file at a time. In the future, the tool can be enhanced 

to support multiple-file inputs . 

• Improving the User-Interface of the tool. Currently , the tool has a simple Graphical 

User Interface implemented using Java Development Kit (JDK) version 1.0.2. The 

user interface can be enhanced and made more sophisticated using the new JDK 

version 1.1 or other later versions . 

• Storing the metrics data in a Relational Database Management System. Currently, all 

the metrics data obtained by parsing a Java source program is held and operated on in 

the main memory . This does not affect the performance of the tool for small 

programs . But with large programs, this could adversely affect the performance of the 

tool. Hence it would be a good idea to store this information in a Relational Database 

Management System (RDBMS) with sophisticated query facilities . In an industrial 

setting, the long-term collection of historic metrics data will definitely need a scalable 

and robust technology such as an RDMBS . 
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6.3.2 Further Investigation and Refinement of the Metrics Suite 

As the validation experiments indicate, the external references metrics seem to be very 

good indicators of the complexity of Java programs. Hence, it would be rewarding to 

further investigate and refine these metrics. Since these metrics provide a measure of the 

degree of interaction or coupling that a class has with other classes, it would be very 

useful to explore other metrics that provide a more comprehensive measure of this metric. 

As an example, the current metrics only capture the fan-out, or the number of references 

of messages that go out of a class. For each class, it would also be interesting to know the 

number of incoming messages or references, the fan-in . 

The experiments also indicate that an inheritance metric, the Depth of a class in its 

inheritance tree, has strong significant correlations with subjective impressions of 

complexity . Hence, it would be interesting to further investigate composite metrics based 

on inheritance and external references . 

Finally, in this research, we only conducted experiments to validate the class-level 

metrics for Java. Further work could involve defining and experimentally validating 

metrics at the inheritance hierarchy level or project level. 
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