
A Router Architecture for QoS Capable Clusters

by

Madhusudhanan Anantha Subramanian

A PROJECT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed OCTOBER 23, 2003
Commencement June 2002

AN ABSTRACT OF THE PROJECT OF

Madhusudhanan Anantha Subramanian for the degree of Master of Science in

Computer Science presented on OCTOBER 23, 2003.

Title: A Router Architecture for QoS Capable Clusters

Abstract approved: _ _ _ _ _ _ _ _ ______________ _

Bella Bose

Interconnection Networks have been used as a high performance communi

cation fabric in parallel processor architectures. Parallel processors built using

off-the-shelf components, called clusters, are becoming increasingly attractive

because of their high performance to cost ratio over parallel computers

Many web servers and database servers make efficient use of clustering from

cost , scalability and availability standpoints. The Design of high performa nce

cluster networks with QoS guarantees is becoming increasingly importan t .o

support a variety of multimedia applications, many of which have real time con

straints. Most commercial routers, which are based on the wormhole switching

paradigm, can deliver high performance, but lack QoS provisioning. A new

router architecture with support for QoS provisioning was introduced in [1]. In

this project we present a detailed analysis of the hardware complexity of the

router in [1] and propose some architectural modifications to reduce the hard

ware complexity of the router. We have also developed a simulator to compare

and anal yze the performance characteristics of the proposed router architecture.

Master of Science project of Madhusudhanan Anantha Subramanian presented

on OCTOBER 23, 2003

APPROVED:

Major Professor, representing Computer Science

Chair of the Department of Computer Science

Dean of the Graduate School

I understand that my project will become part of the permanent collection of

Oregon State University libraries . My signature below authorizes release of my

project to any reader upon request.

Madhusudhanan Anantha Subramanian , Author

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my major professor , Dr.

Bose, for his valuable ideas which put me in the right direction. He was also

instrumental in showing me how analyze and work with a research problem.

I would like to express my sincere gratitude to Dr. Minoura , for his valualble

help in solving some of the programming lssues with the simulator and serving

in my committee.

I would also like to express my sincere grat_itude to Dr. Cull , for serving in

my committee.

TABLE OF CONTENTS

Chapter 1: Introduction

Chapter 2: Background

2.1 Popular Network Topologies

2.2 Basic Switching Techniques

2.2.1 Circuit Switching ..
2.2.2 Packet Switching . .
2.2.3 Wormhole Switching
2.2.4 Comparison of Switching Techniques

2.3 Router Architectures . : . ·..

2.3.1 Generic Router Architecture
2.3.2 Baseline Router Model

Chapter 3: Previous Work

3.1 Rate-Based Scheduling for QoS Support

3.2 Router Design Alternatives

3.2.1 Preemption in the Input Buffer
3.2.2 A Flit Acceleration Mechanism

Chapter 4: Hard ware Cost Analysis

4.1 Cost Analysis of the Flit Preemption Unit

4.2 Cost Analysis of the Flit Acceleration Unit .

Chapter 5: Proposed Modifications

5.1 Buffer Status Aware Link Scheduling

5.1.1 Highe st Non N-Ack Flow ...

4

4

6

6
7
8

9

9

9
11

13

13

13

15

17

17

19

21

22

23

TABLE OF CONTENTS (Continued)

5.1.2 Modified Highest Non N-Ack Flow ..

5.2 Flexible Output Virtual Channel Allocation

5.3 Analysis

Chapter 6: An Analytical Model

6.1 Average Blocking Length in Stage 1 .

6.2 Average Blocking Length in Stage 3 .

6.3 Average Blocking Length in Stage 5 .

6.4 Deadline Missing Probability .

Chapter 7: Simulation Platform

7.1

7.2

7.3

Interconnection Network Simulator

Workload

Performance Results

7.3.1 Comparison of the Two Router Models
7.3.2 A (2 x 2) Mesh Network Results

Chapter 8: Conclusions and Future work

Bibliography

Page

24

26

27

29

31

32

3

33

36

36

7

38

38
40

41

42

LIST OF FIGURES
Figure

1.1 A generic node architecture

2.1 Strictly Orthogonal Network Topologies: (a) 2-D 3 x 3 mesh, (b)
2-D 3 x 3 torus and (c) 3-D hypercube 5

2.2 An example of blocked wormhole-switched message. 8

2.3 Generic router model.(LC = Link Controller) 10

2.4 A five-stage pipelined router model 11

3.1 A higher priority message (m3) is blocked and needs to preempt
a lower priority message (ml) in the input buffer using the extra
buffer . 15

3.2 When the header flit of m3 tries to reserve the Output VC, it
is alread y occupied by another lower priority message m2. The
accelerate flag of the Input VC of m2 is set to expedite the flow
of the remaining flits. 16

4.1 Flit Preemption Unit. This block is repeated for each input di
mension in the Interconnect

4.2 flit acceleration unit . .

18

19

5.1 Router Back End. (the multiplexors represent the link schedulers) 21

5.2 An example of an asynchronous physical channel flow control . 22

5.3 Hardware implementing Highest Non N-ACK Scheduling . . . 25

5.4 Hardware implementing the Modified Highest Non N-ACK Schedul-
1ng

5.5 Flexible channel allocation at the Output VC Buffer.

5.6 Modified Router Architecture . . .

7.1 Interconnection Network Simulator

26

27

28

36

Figure

7.2

7.3

7.4

8.1

8.2

LIST OF FIGURES (Continued)
Page

Deadline Missing Probability. 38

Deadline Missing Time . 39

Deadline Missing Probability . 40

Organization of the simulator 43

Class hierarchy . 44

-----• ----------------------• ---------------

A ROUTER ARCHITECTURE FOR QOS CAPABLE CLUSTERS

CHAPTER 1

INTRODUCTION

Parallel computers with multiple processors form the computational hard

ware which are able to deliver high performance (tera flops). In parallel comput

ers, several processors cooperate to solve a large problem. Parallel computer s

with direct interconnection networks provide scalable processing power.

other
Functional

Units

Input
Cha·nnels

• •

Processo r

Router • •

Loca l
Memory

Outpu t
Channels

FIGURE 1.1: A generic node architecture

A direct network consists of a set of nodes, each one directly connected to

a (usually small) subset of other nodes in the network. Each node is a pro-

-----• -------------------• -• -• ----• --------

2

grammable computer with its own processor, local memory and other support

ing devices. These nodes may have different functional capabilities . Figure 1.1

shows the architecture of a generic node. A common component of these nodes is

a router, which handles message communication between nodes. For this reason,

direct networks are also referred to as router-based networks. Each router has

direct connections to the routers of its neighbours. Usually two neighbouring

nodes are connected by a pair of unidirectional channels in opposite directions.

As the number of nodes in the system increases, the processing power, memory

bandwidth, and total communication bandwidth also increase.

Clusters are becoming increasingly popular because of their high perfor

mance to cost ratio over parallel computers. Cluster systems are thus becom

ing more attractive for designing scalable servers with switched network ar

chitectures that offer much higher bandwidth than broadcast-based networks.

Quality-of-Service (QoS) provisioning in such clusters is becoming a critical is

sue with the widespread use of these systems in diverse commercial applications.

For example, web servers and database servers make efficient use of clusterin g

technology from cost, scalability, and availability standpoints. However, there

has been a tremendous surge in dynamic web content, multimedia objects and

other web-enabled applications which require QoS guarantees in different con

notations. These demands in turn are passed on to the building blocks of the

interconnects, the switching fabrics or routers.

A router architecture with QoS capabilities is proposed in [1]. In this project

we study the hardware complexity of the proposed router and propose some ar

chitectural modifications to reduce the hardware complexity without sacrificing

performance. We use simulation to compare the performance characteristics of

the new architecture with that of the existing architecture .

3

In the next chapter we give some background on network toplogies , basic

switching mechanisms and routing fabrics. Then , in Chapter 3, we describe ar

chitecture of the QoS capable router presented in [1]. In Chapter 4 we analyze

the hardware complexity of the router presented in Chapter 3. Chapter 5 de

scribes the modifications to the router architecture. In chapter 6 we present an

analytical model to estimate the performance of the proposed router. Then, in

Chapter 7, we describe the simulation frame work and compare the performance

characteristics of the modified router with the existing router. We summarize

the conclusions and future work in the last chapter.

4

CHAPTER 2

BACKGROUND

2.1 Popular Network Topologies

Many network topologies have been proposed in terms of their· graph theoretical

properties. Most of the implemented networks have an orthogonal topo logy.

A network topology is orthogonal if and only if nodes can be arranged in an

orthogonal n-dimensional space, and every link can be arranged in such a way

that it produces a displacement in a single dimension. In a strictly orthogonal

topology, each node has at least one link crossing each dimension. In a weakly

orthogonal toplogy , some nodes may not have a link in some dimensions.

The most inter esting property of strictly orthogonal topologie s is tha t ·out

ing is very simple. Effectively, in a strictly orthogonal topology, nodes can be

numbered using their coordinates in the n-dimens ional space. Since each link

traverses a single dimension and every node has at least one link in each dimen

sion, the distance between two nodes can be comp uted as the sum of dimension

offsets.

The most popular networks are the n-dimensional mesh, the k-ary n-cube or

torus, and the hypercube. Formally, an n-dimensional mesh has kn- l x kn_ 2 x

· · · x k1 x k0 nodes with ki nodes in each dimension i, where ki 2:: 2 and O :::; i :::;

n -1. Each node is identified by n coordinates, (xn- i,Xn- 2, · · · ,x 1,x 0), where

0 :::; Xi :::; ki - l for O :::; i :::; n - l. Two nodes X and Y are neighbours if and

5

only if Yi = xi for all i, 0 ~ i ~ n - 1, except one, j, where Yj = Xj ± 1. Thus

the nodes have n to 2n neighbours, depending on their location in the mesh. A

topology in which each node has the same number of neighbours is said to be

regular. Therefore , this topology is not regular.

In a bidirectional k-ary n-cube, all nodes have the same number of neigh

bours. The definition of a k-ary n-cube differs from that of a n-dimensional

mesh in that all of the ki are equal to k and two nodes X and Y are neighbours

if and only if Yi = x i for all i , 0 ~ i ~ n - 1, except one, j, where yj = (xj ± 1)

mod k. The change to modular arithmetic in the definition adds the wraparound

channels to the k-ary n-cube, giving it ·regularity and symmetry . Every node

has n neighbours if k = 2, and 2n neighbours if k > 2. When n = 1 the k-ary

n-cube collapses to a bidirectional ring with k nodes.

Another topolog y with regularity and symmetry is the hypercube, which is

a special case of both n-dimensional meshes and k-ary n-cubes. A hypercube

is an n-dimensional mesh in which ki = 2 for O ~ i ~ n - 1, or a 2-ary n-cube.

Figure 2.l(a) depicts a 3 x 3 mesh , Figure 2.l(b) depicts a 3 x 3 torus an

Figure 2.1 (c) depicts a 3 dimensional hypercube.

EE - __ I tBl
(a) (b) (c)

FIGURE 2.1: Stri ctly Orthogonal Network Topologies: (a) 2-D 3 x.3 mesh , (b)
2-D 3 x 3 torus and (c) 3-D hypercub e

6

2.2 Basic Switching Techniques

Interprocessor communication can be viewed as a hierarchy of services starting

from the physical layer. We find it useful to distinguish between the three

layers in the operation of an interconnection network: the routing layer, the

switching layer and the physical layer. The physical layer refers to link-level

protocols for transferring messages. The switching layer utilizes the physical

layer protocols for implementing mechanisms for forwarding messages through

the network. Finally, the routing layer makes routing decisions to determine

candidate output channels at intermediate router nodes.

In order to compare different switching techniques we will consider the la

tency of an L-bit message in the absence of any traffic. The phit size and flit

size are equivalent and are equal to the physical channel bandwidth of W bits.

The routing header is 1 flit; thus the message size is L + W bits. A router can

make a routing decision in tr seconds. The physical channel operates at B Hz;

that is, the physical channel bandwidth is BW bits per second. We assun1 , Lhc •

the channel wires are short enough to complete transmission in 1 clock cycle.

Therefore, the propagation delay is denoted by tw = ½. Once a path has been

set up the intra-router delay is t8 • The source and destination processors are

assumed to be D links apart.

2. 2.1 Circuit Switching

In circuit switching, a physical path from the source to the destination is reserved

prior to the transmission of data. A routing header flit called a routing probe ,

which contains the destination addr ess and some control information, is sent.

Th e probe sets up the path at the intermediate routers. When it reaches the

7

destination the complete path is set up and an acknowledgement is sent back to

the source. The message contents can now be transmitted through the router

at full bandwidth of the hardware path. The circuit may be released by the

destination or the last few bits of the message.

The latency of transmission of a message in a network which uses circuit

switching can be calculated as follows:

tcircuit = ts etup + tdata

here ,

tsetup D[tr + 2(ts + tw)]

M!l

(2.1)

(2.2)

(2.3)

where tr = time to take the routing decision, ts= propagation delay through

the router and tw = propagation delay of an inter-router link.

2.2.2 Packet Switching

In circuit switching, the complete message is transmitted after the circuit has

been set up. Alternatively, the message can be partitioned and transmitted

as fixed-length packets. The first few bytes of a packet contain routing and

control information and are referred to as a packet header. Each packet is

individually routed from source to destination. This technique is referred to

as packet switching. A packet is buffered completely at each intermediate node

before it is forwarded to the next node. This is the reason why this switching

technique is referred to as store and forward (SAF) switching. The header

information is extracted by the intermediate router and used to determin e th e

output link over which the packet is to be forwarded.

8

El El
~A -

■ Header Flit

IE! Tatf Flit

FIGURE 2.2: An example of blocked wormhole-switched message.

The latency experienced by the packet is proportional to the distance be

tween the source and destination nodes. Thus the base latency of a packet can

be computed as follows:

(.4)

2.2.3 Wormhole Switching

The need to buffer complete packets within a router can make it difficult to

construct small, compact and fast routers. In wormhole switching , message

packets are pipelined through the network. A message is broken up into flits.

The flit is the unit of message flow control, and input and output buffers at

routers are typically large enough to store a few flits. The message is pipelined

through the network at flit level and is typically too large to be buffered within

a router. Thus, at any instant a blocked message occupies buffers in several

routers.

9

The base latency of a wormhole switched message can be computed as fol

lows:

twormhole = D(t, + t, + tw) + max(t,, tw) rt l (2.5)

2.2.4 Comparison of Switching Techniques

The evolution of switching techniques was influenced by the need for better

performance. Wormhole switching used techniques like reduced buffering and

fine-grained pipelining of message transmission to provide good performance

over circuit switching and store-and-forward switching. In wormhole switching

the message is buffered across routers, precluding access to network bandwidth

to other messages. Thus, while the average message latency can be low, the

network saturates at a fraction of the maximum available bandwidth , and the

variance of message latency can be high. In packet switching , messages are

completely buffered in the routers. As a result, the messages consum e n t vor

bandwidth proportional to the network load.

2.3 Router Architectures

2.3.1 Generic Router Architecture

The architecture of a generic router is shown in Figure 2.3 and is comprised of

the following major components.

• Buffers. These are the first-in first-out (FIFO) buffers for storing messages

in transit. In the model shown in Figure 2.3, a buffer is associated with an

input and output physical channel. The buffer size is an int egral number

of flow control units

FIGURE 2.3: Generic router model.(LC = Link Controller)

• Switch . This component is responsible for connecting router input buffc1s

to the output buffers. High speed routers will utilize crossbar networks

with full connectivity, while lower speed implementations may utilize net

works that do not provide full connectivity between the input and output

buffers.

• Routing and Arbitration unit. This component implements the routing

algorithms, selects the output link for an incoming message , and accord

ingly set the switch. It arbitrates multiple requests to the same output

link. If the requested buffer is busy the message waits in the input buffer

till it is free.

• Link Controllers(LCs) . The flow of messages across the physical channel

between adjacent routers is implem ented by the link controller. The link

controllers on either side co-ordinat e to tran sfer units of flow control.

---------------• -----------• ---------------

11

• Processor Interface. This component implements a physical channel inter

face to the processor rather than to the adjacent router. It consists of one

or more injection channels from the processor and one or more ejection

channels to the processor.

2.3.2 Baseline Router Model

n-1

Stage 1

mi-:ldle/tail flit

Routing

Decision

Stage2 Stage 3 Stage 4 Stage 5

FIGURE 2.4: A five-stage pipelined router model

Figure 2.4 shows the baseline router model used for the proposed modifications.

The router uses a pipelined design to minimize network cycle time. The router

has n(n is the number of dimensions in the ~.etwork) input ports and n output

ports.

• Stage 1 of the pipeline represents the functional units that synchronize an

incoming flit , de-multiplex the flit so that it can go to its corresponding

12

Virtual Channel (VC).

• Stage 2 represents the routing unit which makes decisions on forwarding

the flit to a specific output port. This stage is bypassed by data and tail

flits.

• Stage 3 represents the arbitration unit that reserves the Crossbar Ports

and the Output Virtual Channel Buffers. This stage is also bypassed by

data and tail flits.

• The crossbar in Stage 4 performs th e flit forwarding to the corresponding

output port. Stage 4 also contains a rate -based scheduler which selects

packets from flows for transmission each cycle.

• Stage 5 contains the output virtual channel buffer from which the output

link controller picks flits for transmission to the subsequent router

13

CHAPTER 3

PREVIOUS WORK

In this chapter we will discuss the modifications to the pipelined router

model presented in the last chapter to enable QoS provisioning.

3.1 Rate-Based Scheduling for QoS Support

The most intuitive way to support QoS prov1s10nmg, in wormhole switched

networks , is to add a rate based scheduling scheme and to attach a notion of

priority to flows on the basis of which the router selects flits for transmission in

a given clock cycle. In this case a Virtual Clock algorithm [5] based scheduler

is used, which picks flits from flows on the basis of flow priority and maximum

allowed bandwidth.

3.2 Router Design Alternatives

Traditional routers are called non-preemptive routers because they statically

divide the virtual channels (VC) among the traffic classes. This restricts the

flexibilty of the router to handle traffic changes. The proposed solution to this

problem is the development of a preemptive router, where several classes of

traffic with different priorities share the same VC, with the provision that a

higher priorit y message can preempt a lower priorit y message. The preemptive

-------------------------------------1------

14

model can dynamically allocate a given VC to any traffic class. Hence it is more

suitable for handling dynamic workloads.

3.2.1 Preemption in the Input Buffer

The additional hardware required for preemption at any input buffer (VC) in

clude an extra buffer (Figure 3.1) of size (s - 1) where s is the total number

of priority levels, and a history stack of the same size. The extra input buffer

is used for diverting higher priority messages when the regular VC is occupied

by a lower priority message. If the input buffer is occupied by a higher priority

message, a lower priority message is not allowed to use the extra buffer, and it

is blocked behind the higher priority message. On the other hand, if the input

buffer is used by a lower priority message, a higher priority message is sent to

the extra buffer so that it can subsequently preempt the lower priority message

, in stage 1 of the router.

The flit-preemption process is outlined as follows:

• In stage 1, when the extra buffer has a header flit from a higher priority

message, the input buffer preemption begins

• The router checks to see if the tail flit of the lower priority message has

passed through stage 1. If not, a dummy tail flit is created for the pre

empted message. A dummy tail flit does not carry any payload, but

behaves as a normal tail flit releasing all resources held by the low priority

message.

• The routing information of the message is stored in the history stack to

be used later for making a dummy header flit to resume transmission of

----------------------------------e· --------

15

Fl it Swi tch Co e•

Input Decode r ~--~ Flit Bufht r
F, iec,tf,, , m i

_Jnfoii~ ::::::rm-

ft04Jtth9 'f.t.bh: Asb iir.ation
Lool<up

FIGURE 3.1: A higher priority message (m3) is blocked and needs to preempt
a lower priority message (ml) in the input buffer using the extra buffer

the preempted message .

• During preemption, the remaining flits of the preempted message remain

in the input buffer.

3.2.2 A F.lit Acceleration Mechanism

When the input buffer preemption starts , there could be remaining flits of ml

between the flit decoder and the input port of the crossbar as shown in Figure

3.1. In addition, when the header flit of m3 tries to reserve the output VC, it

could be already occupied by another low priority message like m2 in Figure

3.2. In both cases the lower priorit y flits will slow down the progress of m3,

until these flits are pushed out of the output buffer.

FOt Sw itc.h C Qr.• O u tp4,1t

Decode ,- ..---- ----. Fti.t Buff ..-

Routing T.abht
L.f.><'l«u-p

16

FIGURE 3.2: When the header flit of m3 tries to reserve the Output VC, it is
already occupied by another lower priority message m2. The accelerate flag of
the Input VC of m2 is set to expedite the flow of the remaining flits.

Therefore, we use a flit acceleration mechanism that helps expedite the de

livery of flits of such lower priority messages (like ml and m2) by assigning a

low virtual clock value to them. This guarantees that these messages will be

selected in the next cycle unless there are other preempted messages at other

VCs. For this purpose a flag called accelerate is associated with each input VC.

This flag is set until the tail flit of the preempted message (ml) or expe · ed

message (m2) passes the cross bar.

17

CHAPTER4

HARDWARE COST ANALYSIS

The architectural modifications proposed in Chapter 3 incur a cost in im

plementation. In this section we will present the harware ·complexity analysis of

the flit preemption logic and the flit acceleration logic. We will use this analysis

to investigate the possibility of modifications to the architecture to reduce the

hardware cost without sacrificing performance. Throughout the analysis n is

the number of dimensions in the interconnect and s is the number of prioritized

flow classes. The comlexity is expressed in terms of number of gates used for a

typical implementation.

4.1 Cost Analysis of the Flit Preemption Unit

Figure 4.1 shows a schematic of the flit preemption unit. The flit preemption

unit has to do the following tasks in a clock cycle.

• check the extra buffer to see if there is a header flit.

• if there is a header flit, check whether this flit can preempt a flow in the

virtual channel buffer.

• if the tail flit of the preempted flow has already been received in which

case a dummy tail flit is not created.

-----• -------------------• -----------------

18

• it is clear that at any given clock cyle there is only one buffer with a

header flit in the extra buffer that needs to be processed.

The hardware complexity of the flit preemption logic scales in the order of

the number of prioritized flow classes. We will have to calculate the hardware

complexity of the flit preemption logic, the history stack and the extra buffer

to compute the effective growth in hardware complexity of the flit preemption

unit.

~~

~--= -! Hf'·· ~r:

FIGURE 4.1: Flit Preemption Unit. This block is repeated for each input
dimension in the Interconnect

We can compute the hardware complexity of each of these components as

follows.

• flit pr eemption logic =} n x s+c

• extra bu.fJer complexity =} n x s+c

-------------------------• ----------· -------

19

• history stack complexity ⇒ n x s+c

• flit preemption unit complexity ⇒ 3(n x s+c) ⇒ 0 (s) (because s ~ n)

where c is a constant.

4.2 Cost Analysis of the Flit Acceleration Unit

Figure 4.2 shows a schematic of the flit acceleration unit. The flit accelerarion

unit has to do the following.

• Check to see if any lower priority flow is occupying an output buffer.

There are (n x s) - 1 possible channels that have to be checked for a given

channel.

• if there exists such a buffer then the accelerate flag is set in the buffer.

r • (.

•
•
•
•
•

Input VC

FIG URE 4.2: flit acceleration unit

-------------------------• -----------------

20

The effective complexity in the Flit acceleration unit is in the flit acceleration

logic. Therefore it will suffice to compute the hardware complexity of the flit

acceleration logic.

flit unit complexity = (n x s) (n x s) ⇒ 0(s2
) (because s ~ n)

Thus we see that the effective complexity of the flit acceleration unit is higher

than that of the flit preemption unit. With this result we will propose some

modifications to the router to reduce the hardware complexity.

21

CHAPTER 5

PROPOSED MODIFICATIONS

From the previous chapter it can be seen that hardware complexity of the

·flit preemption unit is linear in the number of prioritized flow classes but the

hardware complexity of the flit acceleration unit is quadratic in the mber of

prioritized flow classes. In this section we will propose modifications to the

router architecture to replace the flit acceleration logic with lesser complexity

functional units which perform the same function. Figure 5.1 shows the location

of placement of the proposed functional units in the router.

Output VG buffer

Crossbar

Crossbar Output Ports

FIGURE 5.1: Router Ba ck End.(the multiplexors represent the link schedulers)

7

22

5.1 Buffer Status Aware Link Scheduling

Figure 5.2 shows the operation of an asynchronous flow control protocol between

two routers. The sequence of operations are as follows:

• Router 1 makes the request(RQ) line high to request permission to trans

mit a flit.

• Router 2 sets the acknowledge(ACK) line to represent buffer availability

and hence permission to transmit.

• Router 1 begins transmission if the ACK line has been set to allow trans

mission of a flit. In which case the flit is transmitted as a series of phits .

. R2

RQ

ACK

Data

Physical channel

Buffers

FIGURE 5.2: An example of an asynchronous physical channel flow coi:trol

A naive priority based link scheduler designed to transmit flits on the basis

of priority can waste bandwidth and hence increase the blocking time at the

23

output VC buffers if the buffer at the next router is full and remains so be

cause of the presence of higher priority flows in the neighbouring router. Better

utilization and hence a higher probability of buffer availability can be achieved

by sending flits from other flows whose buffers are not full. We will use this

reasoning to propose improved link scheduling algorithms. We will also present

the hardware complexity analysis for each algorithm. The main charateristic of

these algorithms is that they store the last received A CK status of each flow in

the output VC buffer.

5.1.1 Highest Non N-Ack Flow

The algorithm is as follows:

• Get the list of channels ready for transmission at a given clock cycle { S}

set of all channels which can be scheduled { R} set of ready channels

{S} +---{R}

• Pick the channel which has the

1. Highest Flow class.

2. Does not have an N-Ack (Negative Acknowledgement).

3. Choose the first such channel in case of a tie.

• Read the flit from this channel and record the ACK status for the next

iteration.

Discussion: Figure 5.3 shows a hardware implementation of the link scheduling

algorithm. The algorithm uses a tree shaped circuit to pick the "winner " channel

at a given clock when its starts flit transmission. At each clock cycle a flit from

24

the selected channel is transmitted and the ACK status of the transmission is

stored for use in a subsequent transmission.

Note that only one bit is added to the lowest level processing units because

this level "filters" all channels that are ready and the subsequent levels work

by picking a flow to highest priority among the ready channels. Thus the only

addition in hardware complexity is the O{s) bits.

The disadvantage of this algorithm is that a high priority flow class which

received an N-ACK might not be picked for a long time if there are enough

flits from other flows. In essence, a high priority flow might "starve". This

disadvantage becomes crucial in heavily loaded networks.

A simple fix to this problem lies in the introduction of new variables.

1. cycle_wait which keeps track of no. of cycles after receiving a N-ACK and

is updated each clock cycle.

2. max_count, maximum value after which cycle_wait update should st o

3. cycle_wait is initialized/reset after receiving a N-ACK after max_count

was reached and a re-transmission was tr ied.

5.1.2 Modified Highest Non N-Ack Flow

The modified Highest Non N-ACK sheduling algorithm is described as follows.

• Get the list of channels ready for transmission at a given clock cycle { S}

set of all channels which can be scheduled { R} set of ready channels

{S} +-- {R}

log s

1 2 3 4

Selected
Channel

Each Unit picks
lhe channel of
Highest flow: class &

/ Based ~ri Nack Label

~

/\
o a ~- ·-•· "'-

s Nack value
True
False

FIGURE 5.3: Hardware implementing Highest Non N-ACK Scheduling

25

• Pick the channel of the Highest Flow class, among Ready Channels, that

does not have a N-ACK or whose counter has reached max_count.

• Choose the first such channel in case of a tie.

• Read the flit from this channel and record the ACK status for the next

iteration.

Discussion: Figure 5.4 shows the hardware implementation of the modified

version of the algorithm.At each clock cycle a flit from the selected channel

is transmitted and the ACK status of the transmission is stored for use in a

subsequent transmission.

Note that one counter ari·d a register of size log{s) are added to the lowest

level processing units because this level "filters" all channels that are ready and

have the required counter constraints. The subsequent levels work by picking a

flow of the highest priority among the channels selected at level 1. Thus the only

26

addition in hardware complexity is the O{s.log(s)) bits. Therefore the hardware

addition is small.

logs \

2 3 4

Selected
Channel

Each Unit picks
The cti.,nnel of
Hlgt,est flow class &

/

Basedon ·NackLabel
&count

~

I
0 0

Count

.(

(logs)

. . "
Nack value
Tr_ue
False

FIGURE 5.4: Hardware implementing the Modified Highest Non N-ACK
Scheduling

5.2 Flexible Output Virtual Channel Allocation

In this section we discuss the next modification to the router. The scheduling

algorithms discussed above assure a free virtual channel with a high probability.

The main problem is that the algorithms do not guarantee whether a specific

virtual channel is free. The main disadvantage of using the link scheduling

algorithms in a configuration as shown in Figure 5.5 is that we might not be

able to allocate virtual channels even though there are other free virtual channe ls

in the VC buffer.

27

We therefore, propose a dynamic virtual channel allocation scheme which

can flexibly allocate a free virtual channel from the VC buffer. Figure 10 shows

a schematic of the proposed modification.

Output VC buffer

~} s d1

----~ ---·· ·· · · ·a2 ·· Crossbar

~ } '
____ / .

Decoders ofs ize log(log s)

FIGURE 5.5: Flexible channel allocation at the Output VC Buffer

The hardware addition to the router is a channel identifier at each crossbar

output port which contains the address of the channel allocated to this port.

Each output port is allocated a specific set of channels it can choose from and the

size of this identifier is log (logs) and there are multiplexer circuits of complexity

logs giving an overall gate complexity of s. logs.

5.3 Analysis

Figure 5.6 shows the rout er architecture with both of th e modifications in place.

Thes e changes are valid in the context of replacing the flit accelerat ion unit

28

because the main reason for introducing acceleration is to avoid the blocking of

high priority flows due to other lower priority flows. Since the link scheduling

algorithms work by maximizing the number of flits transmitted in a time frame

and since the probability of servicing high priority flows is high, the probability

of availability of a virtual channel is high. With a flexible channel allocation

scheme to take advantage of the high availability of free channels the probability

of blocking of a high priority flit is minimized. Therefore we can see that this

combination of modifications replaces the flit acceleration unit functionally.

/ Output VC buffer

I

d1
Cr.os.sf3ar ~--~~ --a2--

\
Link Scheduler

Th:coders of size log (logs)

FIGURE 5.6: Modified Router Architecture

The effective hardware complexity of the modifications is the total of the

hardware complexities of the proposed _modifications.

Total Complexity= O(s.log(s)) + O(s.log(s)) ===} O(s.log(s))

This hardware complexity bound is therefore better than that of the flit

acceleration unit (O(s2
)) we have replac ed_

29

CHAPTER 6

AN ANALYTICAL MODEL

In this section we will develop a mathematical model for deadline missing

probability in a single router and extend the model to calculate the deadline

missing probability of a message which traverses r routers to its destination.

As described in Chapter 2 , the router model assumes a pipelined architecture

with 5 stages and augmented with the modifications proposed in chapter 5. The

model is described for S classes consisting of (S -1) classes of real time traffic

and one class of best-effort traffic.

Note that a message entering the pipelined router (Figure 2.4) can experience

delay at stages 1, 3 and 5. If the input VC buffer is full in stage 1, the mess ge

must wait outside the router until adequate space is available. In stage 3, the

message again might be delayed because the destination crossbar ports are full.

Crossbar output port arbitration is performed at a message level granularity.

So the message has to wait until the required port is released by the message

already holding it. Finally in stage 5, multiple virtual channels compete for

the physical channel bandwidth. This is the delay experienced due to the link

scheduler. The model is based on the following assumptions:

1. The arrival Pattern of each class s follows a Poisson process with an

average arrival rate ,\f .

2. Message length is M flits long.

------·-------------------------------------

30

3. Message destination is uniformly distributed.

4. The input and output virtual channel buffers in stages 1 and 5 can hold

bs flits.

5. Each class is assigned separate injection/ejection queues outside the router,

and these have infinite capacity.

The average message latency of a message of class s (1 ::; s ::; S) is composed

of the average network latency , Ls, which is the time to traverse the router

(network), and the average waiting time, Ws, at the injection channel. Thus,

Latencys = Ls+ Ws (6.1)

In this project, we will only consider the network latency. The average network

latency of a message of class s consists of two parts. The first part is the

actual message transfer time, T. The second part is due to blocking caused

by the wormhole switching scheme, and due to sharing of the physical channel

bandwidth by multiple virtual channels at stage 5 (Figure 2.4). The actual

transmission time of a M flit message in a router with P pipe stages is M +

(P - 1).

In order to calculate the second part of the network latency , let us define

Bs as the average blocking length (in number of flits) seen by the header flit at

the input, output and arbitration stages of the router. Bs captures the message

blocking in a pipelined wormhole router. Then the effective length of the mes

sage becomes (M + Bs) flits . Let Ss be the average number of cycles required

to transfer one flit of a class s message. Ss represents the effect of bandwidth

sharing mechanism of the Virtual Clock Algorithm. Thus , the average nework

31

latency (Ls) for 1 :::; s :::; S is

Ls = P - 1 + (M + Bs)Ss (6.2)

Since blocking occurs in stages 1,3 and 5 as discussed above, the average block

ing length can be separated into three parts as

Input= P[input buffer is occupied].{M/2} (6.3)

Arbiter= P[Arbiter is busy).{M/2} (6.4)

LC= P[Ouput Buffer is full].{M/2} (6.5)

where Input, Arbiter and LC represent the corresponding blocking lengths at

stages 1,3 and 5. In expressions 6.3, 6.4 and 6.5, the first term represents the

probability that the corresponding buffer is not empty, and the second term is

the average message length that will be affected due to blocking. For example,

if the input buffer is not empty, the header flit will face an average delay of M /2

flits.

In order to calculate the average blocking length we will have to calculate

the probability that the input buffer is full, the probability that the output

buffer is full, and the delay due to bandwidth sharing. We can calculate these

terms as follows.

6.1 Average Blocking Length in Stage 1

The router uses a preemptive model of virtual channel allocation. The preemp

tive model can dynamically allocate any virtual channel to any traffic class.

Assuming a buffer size of bs, we have to consider the following situations when

a header flit of flow s reaches a router.

32

1. the input virtual channel buffer is not full, then there is no delay at the

input and any free channel can be assigned to this flow.

2. the input virtual channel buffer is full, but if there is at least one flow

which has a lower priority than this flow, then this flow can interrupt the

lower priority flow and no blocking occurs.

3. the input virtual channel buffer is full and there are no flows whose priority

is lesser than this flit. In this case the this flit will have to wait for channel

to be released and hence a delay is incurred.

we can clearly see that only in case 3 does the header incurs a blocking delay.

Therefore the blocking delay is

delay1 8 P[buffer is full with no flows priority< s].{M/2} (6.6)

P[each channel has a flow 2:: s] (6.7)
S-1S-l

ITLP[Xj] (6
i=O j=s

where, P8 [full] = P[buffer is full with no flows priority < s] and P[Xj] = prob

ability that a message is of flow class j.

6.2 Average Blocking Length in Stage 3

The header flit is blocked waiting at stage 3 if the arbiter has higher priority

flows in the arbitration slots which reserve all crossbar ports that this flow might

require or if all the crossbar ports are occupied. The blocking delay is :

delay2 8

P[arbiter busy]

P[Arbiter Busy].{M/2}
k S-1 l

IT L P[X1] + (1 - L Lci·Pi-i-i)
i= O j=s i=l

(6.9)

(6.10)

33

where M is the message length in flits, k is the number of arbitration slots, l is

the number of crossbar ports that could be assigned, p is the probability that a

given output VC is full and q = 1 - p.

6.3 Average Blocking Length in Stage 5

Since we are using a flexible virtual channel allocation scheme a flit is blocked

waiting at the last stage only if no virtual channels are empty in the output

virtual channel buffer.

delay3s

P(no VCs]

P(at least 1 free channel]

P(Ouput Buffer full].{M/2} (6.11)

1 - P(at least 1 free channel] (6.12)
S-1 L (S-l)ci.pi.qn-i (6.13)
i=l

S-1

P(no VCs] = 1 - L (S-l)ci.pi.qn-i (6.14)
i=l

where Mis the message length in flits and n is the number of virtu al cha11 1c s

in the VC buffer.

6.4 Deadline Missing Probability

We can now use the average blocking lengths at stages 1, 3 and 5 of the router

pipeline to calculate the probability of a packet of class s missing a deadline

D s · The average blocking length (delay) for a message in a router is

delays = delay ls + delay2 5 + delay3 5 (6.15)

Given a delay (delays) the actual time for transfer (/3s) of the message is

-----• -----• -------------• -----------------

34

given by:

(6.16)

where Ss is the Average No of Cycles to transmit a flit of class s.

Equation (6.15) gives the average delay for a message of class s through a

single router. The probability that the message misses its deadline is given by:

i=B1

Pm,s(Ds,fJs) = P{fJs > Ds} = 1 - P{fJs '.S Ds} = L Ps(i) (6.17)
i:::::O.

where P m,s is the probability of missing the deadline D s for a class s message

and f3s is the actual delay and P {fJs :S D s} is the probability that a class

s message traverses the router within the deadline Ds and Bt is the highest

blocking length such that f3s '.S D 8 •

If the message were to traverse r routers to its destination, the probability

that it misses its deadline can be calculated as the sum of the probabilities of a.11

combinations of delays at these routers such that the total delay is less t 1 · 11 1 ,
11

which the maximum total length such that the message reaches on or before its

deadline.

where

(6.19)

(6.20)

Equation (6.18) represents all possible combinations of delays at the routers

We need a solution to P8 (B) to calculate the deadline missing probability.

35

Since it is tough to exactly calculate this parameter, we approximate this prob

ability using operational behaviour of a router. Under the uniform distribution

assumption this probability can be calculated as follows.

B u

1- LA ,s/Bu, B=O
i=l

(6.21) Ps(B) ~
Pb,s/ Bu, 1 < B < Bu - -

0, otherwise

where, Bu represents the worst case blocking · length at a router and A,s is the

blocking probability of a class s message. The probabilit y of blocking of a class

s message can be calculated as follows.

S-1 S-1 S-1 k S-1 l

A,s = II L P[Xj] + (1 - L (S-l)ci.pi.qn-i) + II L P[Xj] + (1 - L tci.pi.ql-i)

i=O j=s i=l i=O j =s i=l

(6.22)

and worst case blocking length is given by

Bu= M +M +M ⇒ 3.M (6.23)

Therefore we can rougly estimate the deadline missing probability of a class s

message through a series of routers using Equations (6.18) , (6.21), (6.22) and

(6.23).

36

CHAPTER 7

SIMULATION PLATFORM

7.1 Interconnection Network Simulator

We have developed an interconnection network simulator in Java to compare

the performance characteristics of the modified router with the QoS enahled

architecture discussed in chapter 2 and a router with the modifications we have

proposed. For our experiments we simulat ed a 8-port Router and a 2 x 2 Mesh

Network with 8-port routers. We have used 16 VCs per physical channel. The

flit size is 128-bits and all the messages are 36 flits long. Physical link bandwidth

is 1.6 Gbps and the flit buffers are 36 flits deep. Figure 7.1 shows a schematic

of the simulator environment.

Network
ConfJgUiation

Paramete:rs

Interconnection
Network
Simulator

FIGURE 7.1: Interconnection Network Simulator

37

The main simulator components are as follows.

• traffic generation module generates traffic patterns with various packet

mixes to test the performance characteristics of the router.

• Network Configuration Parameters specify the topology of the network,

number of nodes and the type of connections (unidirectional or bi-directional).

• Interconnection Network Simulator uses the traffic used by the traffic gen

eration mod,ule to simulate the network topology specified by the network

configuration.

• Network Activity logs are ge~erated, which measure the latency , deadline

missing probability and average deadline missing time.

7.2 Workload

The workload includes messages from real time variable bit rate (VBR) traffic

and best-effort traffic. The real time traffic streams are generated as synthetic

MPEG streams at 30 frames/sec with different bandwidth requirements. Each

stream generates a frame of data which is fragmented into flits. Best effort traffic

is generated with a given injection rate,,\ and follows a poisson distribution. The

message destination is assumed to be uniformly distributed.

An important parameter that is varied is the input load which is expressed

as a fraction of the physical link bandwidth: · For a specific input load, we vary

the ratio of the two classes (x : y , where x / (x + y) is the fraction of load for

VBR traffic and y / (x + y) is the fraction of load for best effort component) to

generate mixed- mode traffic.

38

We vary the traffic ratio in 5 stages during the simulation to simulate dy

namic workload. The important output parameters we measured were the dead

line missing probability and deadline missing time. Deadline missing probability

is the ratio between the number of frames which missed their deadline out of the

total delivered frames. Deadline Missing time is the average time by which the

packets miss their deadline. The deadline was set to 33.3 msec after receiving

a frame from the flow. We have assum ed a core clock frequency of 100 MHz

and set the respective number of clock cycles for the deadline and the results

are .also expressed in term of clock cycles.

7.3 Performance Results

7.3.1 Comparison of the Two Router Models

Deadline Missing Probability

·20.ao· •3a 70" ·so 50" "70 30'

Proport10,i of Real Time-To-Best Effort Trattlc

·ao:20,

--+- PR(Preemptlve Router) at 80%

···• ·· MPR(Modlfled Router) at 80'4

PR(Preemptlve Router) at 85%

~ MPR(Modlflea Router) at 85%

FIGURE 7.2: Deadline Missing Probability

39

Deadti'ne Missing Time

35000

30000

25000

20000

15000

10000

5000

Proportion of R.ul-Time to Best Effort traffic

FIGURE 7.3: Deadline Missing Time

We used the simulation test bed to study the performance of the proposed router

model with that of the existing router model. We ran the simulation s at 80°/r

and 85% network load. Figure 7.2 shows the deadline missing prob abjlit y 1<'

proposed router model to the existing preemptive router model and Figure 7.3

shows the deadline missing time between the two router models.

Figure 7.2 shows that at 80% load and at 85% network loading the deadline

missing probabilities of the proposed router architecture and the existing router

architecture are very close . It is also seen that the number of frames missing

the deadline increases as the ratio of real time traffic increases. Figure 7.3 shows

the deadline missing times of the two router models at 80% and 85% loads are

very close. It is also seen that the average deadline missing time increases as

the ratio of real time traffic increases.

7.3.2 A (2 x 2} Mesh Network Results

Deadline Missing ProbabHlty In a (2 x 2) Mesh Network

"2080" "30: 70" ·so'.so· "70.30" ·so 20·

Proportion of Rea.I Tim• to a•st Effort Traffic

-+- PR(Preemptlve Route r) at 80

•··• ··· MPR(Mod1ffed Router) at 80%
PR(Preem ptive Route r) at 85

-- · MPR(Moa,neo Router) at 85%

FIGURE 7.4: Deadline Missing Probability

40

Figure 7.4 shows that at 80% load and at 85% network loading thP ut · 1 c

missing probabilities of the proposed router architecture and the existing router

architecture are very close. Like the single router results it is seen that the

number of frames missing the deadline increases as the ratio of real time traffic

mcreases.

41

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This project addresses the issue of hardware complexity in QoS capable

routers to enable faster switching. We studied the existing QoS capable router

architecture to identify sources of hardware complexity and used techniques

like Buffer Status Aware Link Scheduling and Dynamic Output VC allocation

to reduce the hardware complexity without sacrificing performance. We used

simulation to prove the performance of the proposed router architecture.We

have also proposed an analytical model for analyzing QoS capable clusters.

We are now studying the causes for performance losses in the proposed

router architecture to improve the model for higher performance. W are ls

studying the impact of adaptive routing algorithms on the QoS capabilities and

hardware complexity of the routing fabric. We also propose to validate the

analytical model using simulation.

42

BIBLIOGRAPHY

[1] Chi ta. R. Das, E. J. Kim, and K. H. Yum. QoS provisioning in clusters:
An investigation of Router and NIC design. Proceedings of the 28th Inter
national Symposium on Computer Architecture, ISCA 01, Sweden, 2001

[2] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection Net
works: An Engineering Approach. Morgan Kaufmann Publishers, second
edition, 2002.

[3] E. J. Kim, K. H. Yum, and C. R. Das , An Analytical Model for a QoS
Capable Cluster Interconnect , in Proceedings of 11th GI/ITG Conference
on Measuring, Modelling and Evaluation of Computer and Communication
Systems (MMB 2001), pp.9-24, September 2001, Germany

[4] E. J. Kim, K. H. Yum, and C. R. Das, Calculation of Deadline Missing
Probability in a QoS Capable Cluster Interconnect,in Proceedings of IEEE
International Symposium on Network Computing and Applications (NCA
'01), pp.34 -43, February 2002, Cambridge, MA.

[5] L.Zhang, VirtualClock: A New Traffic Control Algorithm for Packet
Switched Networks., ACM Transactions on Computer Systems, 9(2):101 -124,
May 1991.

[6] W. J. Dally, Performance Analysis of k-ary n-cube interconnection network s,
IEEE Transactions on Computers, vol. C-39, no. 6, pp. 775-785, June 1990.

[7] W. J. Dally, Virtual-channel flow control, IEEE Transactions on Parallel
and distributed systems, vol. 3, no. 2, pp. 194-205, March 1992.

[8] W. J. Dally and C. L. Seitz, Deadlock-free message routing in multiprocessor
interconnection networks, IEEE Transactions on Computers, vol. C-36, no.
5, pp. 547-553, May 1987.

[9] A. A. Chien, A cost and speed model for k-ary n-cube wormhole rotuers,
Proceedings of Hot Interconnects93 , August 1993.

[10] J. Duato, A necesary and sufficient for deadlock-free adaptive routing in
wormhole networks, IEEE Transactions on Parallel and distributed systems,
vol. 6, no. 10, pp. 1055-1067, October 1995.

43

Appendix

We developed a simulation testbed for analyzing the performance characteristics

of the proposed router architecture because of the lack of simulators which

simulate the functional aspects of the router accurately. In this chapter we will

describe the design aspects of the simulator. .

Simulator Design

The control module of the simulator is the SimulatorCore which controls the

simulation and sets up interconnect and instantiates the Interconnect object.

The simulator also keeps track of the number of clock cycles that have expired

since the start of the simulation and all performance statistics. Figure 8.1 shows

the high level organization of the simulator.

I
Simulator

Core

~ Interconnection
controls Network

I

writes

I amc~,~ I

FIGURE 8.1: Organization of the simulator

44

The simulator is written in the JAVA programming language and is or

ganized as a collection of interacting objects. All the classes derive from an

abstract base class called PipeStage, which includes two methods :

• compute method, which represents the work done by a functional unit

during a clock cycle.

• clock method, which represents the state updates at the pipe stage latches

and buffers.

All functional units derive from this base class to specialize their respective

functions. Figure 8.2 shows the class hierarchy of the simulator.

Object

//r ·~
I·~~ ['.,LI ~ ... 000 0

· Other
Functiohal

l)nits,

FIGURE 8.2: Class hierarchy

We have tested the simulator by comparing simulator output traces with

some verified traces derived from specific input patterns.

