
lJil~UEAS~TY

VIGRAM
A Program· Understanding and {omp l exity Metric Ana iysi s tool for Pa seal Programs.

38-60-16

Kritawan Kruatrachue
Dr. Ted G. Levii s

Department of Computer Sci~nce
Oregon State University
Corvallis, Oregon 9733-1

..

VIGRAl\1

JZL Program <"llnderstandit19 and Complexity
JJ1etric JZLnalysis tool for Pascal Programs.

by

<J(ritawan <J(ruatrachue

A Research Paper Submitted to Partially Fulfil the
Requirements for the Degree of Master of Science

Major Professor : Dr. Ted G. Lewis

Department of Computer Science

Oregon State University

Corvallis, OR 97331

July, 1988

Acknowledgements

I am deeply grateful to my advisor, Professor Ted Lewis, for

his help, guidance, understanding and encouragement. Also, I would

like to thank my teachers : Professor Timothy A. Budd, Professor

Bruce D. D'Ambrosio, Professor Toshimi Minoura,

Professor Charles Swart who taught and guided me through out my

Master's pro gram.

I thank my friend Thit Siriboon, Sherry Yang and

Visith Chavasit for their help and suggestion.

I would like to express my gratitude to my parent and my

aunts for their love, support and encouragement throughout my life.

Finally, I thank my brothers for all their love and support.

TABLEOFC01\11ENTS

ABSTRACT ... I

1. Introduction ... 2

1.1 O.S.U. Project : ... 2

1.2 VIGRAM and O.S.U .. 4

2. Background : Plum Diagram Editor .. 5

3 . VIGRAM ... 1 1

3 .1 What is VI GRAM ? ... 1 1

3.2 WhyVIGRAM? ... 11

3 .2.1 Program understanding ... 11

3. 2. 2 Complexity Analysis .. 1 2

3 .3 VIGRAMs Three Main Functions ... I 2

3 .4 Program Understanding .. 1 3

3 .5 Complexity Metric Analysis ... 1 5

3 .5 .1 Weight of Difficulty ... 1 5

3 .5 .2 Halstead complexity metrics ... 1 6

3 .5 .3 Berry-Meekings program characteristics 1 7

3 . 5. 4 Other counts .. 1 7

4. Using VIGRAM ... ~ ... 1 8

4 .1 11enu Reference .. 1 8

4.2 Tutorial ... 21

5 lmplementation .. 3 2

5.1 Data Structure .. 32

5 .2 Possible Extensions .. 3 4

5. 3 Requirements and limitations ... 3 4

5 .4 Application Statistics ... 3 5

6 . S ummaI)'. • . 3 6

6 .1 Program Understanding .. 3 6

6 .2 Complexity Metrics .. 3 6

7. Bibliography ... 40

Figure 2.1

Figure 2.2a

Figure 2.2b

Figure 2.3

Figure 2.4a

Figure 2.4b

Figure 2.5

TABLE OF FIGURES

The Plum Diagram Editor Visual Building Blocks

(Plums). From left to right, these plums

represent constant definition, . type definition,

variable declaration, assignment, if, repeat,

while, case, for, with, Macintosh toolbox routine,

procedure or function call, read(ln) or write(ln),

and ExitToShell Macintosh toolbox routine 5

A piece of Pascal code ... 6

The plum diagram representing the piece of

Pascal code in Figure 2.2a .. 6

Double mouse-clicking on a plum reveals its

hidden detailed information. The arrow-line

indicates the · first plum in Figure 2.2b 7

A Pascal procedure ... 8

The first level plum diagram of the Pascal

procedure in Figure 2.4a .. 9

Double mouse-clicking on a plum's "next level"

icon reveals the hidden next level. The arrow

lines indicate the next levels of the while-loop

plum diagram in Figure 2.4b .. 9

Figure 3.1

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Hierarchical slicing of the Pascal procedure in

Figure 2.4a on variables : "count" and "average" 1 4

Overall menu items for VIGRAM 1 8

Source file window and procedure & function list

window ... 21

Selecting a procedure or function to analyze 2 2

Plum Diagram for procedure "FindAverage" in

Figure 2.4a ... 2 3

Heading, Definition & Declaration Weight Setting

Dialog . .. 2 5

Statement Weight Setting Dialog 25

Constant Weight Setting Dialog 2 6

Variable Weight Setting Dialog 2 6

Operator Weight Setting Dialog 2 7

Sample complexity metric report 2 7

Description of a complexity metric report under

"About Quality Metrics ... " item of "apple" menu 2 8

Description of a complexity metric report under

"About Quality Metrics ... " item of "apple" menu 2 9

Slice-criterion dialog ... 3 0

Figure 4.14 A hierarchical sliced plum · diagram obtained

from settings shown in Figure 4.13 31

Figure 5.1 The main data structure .. 3 3

Figure 6.1 Difficulty Comparison Table ... 3 8

Figure 6.2 Total words is a factor of "Weight of Difficulty" 3 8

Figure 6.3 Scatter Graph showing relation between "Weight

of Difficulty" and "Halstead's Difficulty" 3 9

ABSTRACT

This report describes "VIGRAM" (Visual Programming)

which is a program understanding and complexity metric analysis

tool for Pascal programs. VIGRAM is implemented on the Macintosh

as one part of the "O.S.U." (Q_regon .[peedcode Universe) project.

With VIGRAM, the source code of a Pascal procedure can be

displayed as a visual program; program slicing on variables and

control & I/O statements is permitted, and Berry-Meekings, Halstead,

Weight of Difficulty, McCabe complexity metrics as well as a variety

of counts i.e. the number of comment words, number of comment

lines in initial block, number of tabs per line, percentage of

indentation tabs, number of simple type variables and number of

structure type variables are computed, automatically.

.;

1. Introduction

1.1 O.S.U. Project

O.S.U. (0 regon Speedcode Universe) 1s a software

development environment for design, implementatj on, and

maintenance of large software systems. It is an experimental

programming system designed for Macintosh programmers who

2

want to rapidly produce applications. The aim of O.S.U. is to increase

programmer productivity by combining rapid prototyping, reusable

units, program generation, and expert systems technology under an

integrated environment called "speedcode universe" [YANG 88].

O.S.U . now consists of 6 main components : RezDez, Graphical

Sequencer, Code Generator, Structure Chart Editor, Plum Diagram

Editor and VIGRAM. The first three components are for design and

implementation of a Macintosh Pascal user interface i.e. for

displaying windows, menus, dialogs, alerts and icons . Structure Chart

Editor is for modular design. Plum Diagram Editor and VIG RAM are

for detailed design and maintenance.

The following are brief descriptions of each component of O.S.U.

[YANG 88]:

RezDez : RezDez is a tool for designing Macintosh resources

through direct manipulation of graphical objects. RezDez allows

a designer to construct windows, menus , dialogs, alerts and

icons.

3

Graphical Sequencer : Once the user interface resources are

created from RezDez, Graphical Sequencer is used to specify the

sequence of these resources. A sequence specifies the order

and conditions in which to display user interface resources.

Code Generator Code Generator generates Macintosh Pascal

source code for the resources produced from RezDez and

specified sequences and conditions produced from Graphical

Sequencer.

Structure Chart Editor .: Structure Chart Editor is a modular

design tool for Pascal procedures based -on hierarchical modular

decomposition. Applications can be designed by combining the

user interface and its sequencing with procedures defined by

the Structure Chart Editor.

Plum Diagram Editor : Plum Diagram Editor (P.D. Editor) is a

graphical detailed design tool for editing Pascal procedures. A

programmer can design a procedure from building blocks

called plums.

1. 2 VIG RAM and O.S.U.

"VIGRAM" (Visual Programming) 1s a program

understanding and complexity metric analysis tool for Pascal

programs. It is integrated with Plum Diagram Editor to do detailed

design and maintenance m O.S.U ..

VIGRAM's aim is to reduce maintenance cost. Since

maintenance cost is a major factor in the software lifecycle, reducing

maintenance effort leads to increased programmer productivity

[LEWI 87].

VIGRAM:

Draws a graphical or visual version of a Pascal source

code procedure.

Parts of the visual program can be suppressed by a

technique called "slicing"

4

Computes : Berry-Meekings, Halstead, Weight of

Difficulty, McCabe complexity metrics as well as a variety

of counts i.e. the number of comment words, number of

comment lines in initial block, number of tabs per line,

percentage of indentation tabs, number of simple type

variables and number of structure type variables.

5

2. Background : Plum Diagram Editor

P.D. Editor (The Plum Diagram Editor) is a graphical tool

for designing a Pascal procedure from building blocks called plums.

Plums are graphical elements (icons) representing the abstractions of

statements in Pascal. Figure 2.1 lists the plums used in the Plum

Diagram Editor.

Figure 2.1 The Plum Diagram Editor Visual

Building Blocks (Plums). From left to

right, these plums represent constant

definition, type definition, variable

declaration, assignment, if, repeat,

while, case, for, with, Macintosh toolbox

routine, procedure or function call ,

read(ln) or write(ln), and ExitToShell

Macintosh toolbox routine.

A new procedure is created by choosing these blocks (plums)

and supplying the necessary information for each block. The plum

diagram in Figure 2.2b graphically represents a piece of Pascal code

drawn from Figure 2.2a.

Figure 2.2a

Count := Count + 1;

Sum := Sum+ Number;

A piece of Pascal code.

Figure 2.2b The plum diagram representing the

piece of Pascal code in Figure 2.2a .

6

7

Each plum hides the detailed information by usmg a pictorial

form to abstract a verbal form. Double mouse-clicking each plum

reveals the hidden information. Figure 2.3 shows how the hidden

information is revealed by double-clicking on the first plum in Figure

2 .2b.

Assignment Stetement

left lJBriBble right VBIUe

'count := 1 c_o_u_nt_+_1 ____________ ---'

OK Cencel

Figure 2.3 Double mouse-clicking on a plum reveals its

hidden detailed information. The arrow-line

indicates the first plum in Figure 2.2b.

A plum diagram also draws a source program m hierarchical

manner. Each plum may have associated with it, a "next-level"

plum(s) which hides the details below it in the hierarchy. Figure

2.4b shows the first level plum diagram of the Pascal procedure

shown in Figure 2.4a. Figure 2.5 shows one branch of the hierarchy

of Figure 2.4b.

PROCEDURE FindAverage;
VAR

Count : integer;
Sum, Average, Number real;
Continue : boolean;

BEGIN
Count:= O;
Sum:= O;
Continue := true;
Writeln ('Please input a number and hit return.');
Writeln ('To quit, enter any negative number.');
WHILE Continue DO

BEGIN
Readln (Number);
IF Number< 0 THEN

Continue := false
ELSE

E1\TD;

BEGIN
Count := Count + 1;
Sum := Sum + Number;

E1\TD;

Average := Sum / Count;
Writeln (Average);

END;

Figure 2.4a A Pascal procedure.

8

Plum Diegrnm

Procedure FindR11ercge.:

Figure 2.4b · The first level plum diagram of the

Pascal procedure in Figure 2.4a.

Figure 2.5 Double mouse-clicking on a plum's

"next level" icon reveals the hidden next

level. The arrow-lines indicate the next

levels of the while-loop plum diagram

in Figure 2.4b.

9

Once plums have been built, they can be deleted or changed .

The Plum diagram can be saved as a file to be loaded and used for

the next session. Also the Pascal source code representation of the

plum diagram can be generated and saved.

10

3. VIGRAl\1

3 .1 What is VIG RAM ?

"VIGRAl\1" (Visual Programming) is a complexity metric

analysis and program understanding . CASE (Computer-Aided

1 1

~oftware Engineering) tool for a Pascal program. VIGRAM is one part

of the "O.S.U." (Oregon Speedcode Universe) project . VIGRAM can

also be a stand-alone application.

3. 2 Why VIG RAM ?

3.2.1 Program understanding

One very important step in software maintenance 1s the task of

program understanding . . In the application to program

understanding, VIGRAM uses graphical icons to visualize source code

for these reasons.

1. Pictures are visual and multidimensional [PAGE 80].

2. Pictures are natural to humans [PAGE 80].

3. Human brain assimilates pictorial information very fast

[PAGE 80].

4 . Glinert and Tanimoto report that 95 percent of the

programmers in a comparison test preferred the iconic

representation to the conventional textual representation of

programs [HSIE 88].

1 2

3.2.2 Complexity Analysis

Since program understandability and program complexity are

parallel concepts, researchers have attempted to measure program

complexity. VIGRAM computes some of these complexity metrics,

but we make no claims as to the validity of these metrics.

3. 3 VIGRAM's Three . Main Functions

VIGRAM has three main functions. The first two functions are

for program understanding, the latter is for complexity analysis.

1) From a Pascal textual source program generate a visual

"Plum Diagram" representing that source program. The

plum diagram is more compact and layered for ease of

comprehension.

2) Slice the plum diagram generated from 1) by suppressing all

but a certain control structure(s), variable(s) and/or some

input/output statements. This permits greater

understanding of the program by showing selected visual

traces through the program.

3) Perform complexity analysis of the Pascal source program

Berry-Meekings, Halstead, Weight of Difficulty, McCabe

complexity metrics as well as a variety of counts i.e. the

number of comment words, number of comment lines rn

initial block, number of tabs per line , percentage of

indentation tabs, number of simple type variables, and

number of structure type variables.

3. 4 Program Understanding

1 3

The more difficult a program is, the more difficult it is to

maintain, hence understanding a program is a very important task of

software maintenance. Graphical techniques are effective ways to

understand a program. The reason is that the part of the human

brain that assimilates pictorial information is much faster, and much

older in evolutionary terms, than the part that interprets verbal

information. Therefore, a graphic tool is more "readable" than a

verbal one [PAGE 80]. VIGRAM augments the Pascal textual source

program with a pictorial form called a "Plum Diagram". This provides

a graphical view of a program, in addition to the textual one.

Some users may prefer the textual form of source code due to

its familiarity. Because of this, VIGRAM allows a textual source

program to be visible along with its pictorial form.

Moreover, a user can emphasize selected parts of code that

contain certain object(s) and suppress the less interesting parts.

These parts of code are called "slices". VIGRAM allows slicing on the

control structure(s), variable(s), and/or some input/output

statements.

VIGRAM makes the slices distinguishable by dimming the

unsliced part. The idea is to isolate ponions of pro gram according to

their behavior. This abstracting method allows the observation of

the specified slicing objects to be much faster, easier and clearer to

understand.

14

Figure 3 .1 shows hierarchical slicing of the Pascal procedure in

Figure 2.4a on variables : "count" and "average". Note that "while"

and "if-else" plums contain variable "count", therefore, they are also

sliced.

Slicing can also be viewed as an "index" to rapidly find

interesting object(s).

Slicing is a very powerful feature which also uses the

advantage of pictures over text. Program is easier to understand and

maintain when broken into smaller pieces [WEIS 81].

Figure 3.1 Hierarchical slicing of the Pascal

procedure in Figure 2.4a on variables

"count" and "average".

I 5

3.5 Complexity l\1etric Analysis

VIGRAM computes the software complexity metrics of Berry

Meekings [HARR 86], Halstead [KEAR 86], weight of difficulty [BERN

84], McCabe [REDI 86], and a variety of counts i.e. the number of

comment words, number of comment lines in initial block, number of

tabs per line, percentage of indentation tabs, number of simple type

variables and number of structure type variables.

The following describes the complexity metrics and counts that

VIGRAM computes .

3.5.1 Weight of Difficulty

. Berns [BERN . 84] presented a . technique tO·- measure . program

difficulty, where he defines program difficulty as the sum of

difficulties of its constituent elements. These elements can be

quantified by the use of carefully selected weights and factors.

He implemented this idea by assigning weights to the program

elements of the FORTRAN language i.e. symbolic names,

constant elements, operator elements, statement-type

elements, etc. He reports results for FORTRAN programs,

" ... good · scores are now considered to be less than 1,200". But

people do not agree on the relative difficulties of

unders tanding programs, i.e., there is no standard. "In the

absence of a standard, we traditionally rely pragmatically on

what we and our co-workers believe to be correct based upon

our knowledge, experience, and intuition" [BER._N 84].

1 6

Therefore, VIGRAM permits each user to assign weights to each

construct found in Pascal. The default weights are all equal to

one. The significance of the resulting score is not known.

3. 5. 2 Halstead complexity metrics

The following are Halstead measurement formulas [KEAR 86]

Volume (V)

Program Difficulty (D) =

Effort (E) = DxV

where n1 = number of unique operators

n 2 = number of umque operands

N 1 = total number of operators

N 2 = total number of operands

The validity of Halstead's metrics have been disputed by many

researchers, hence we make no claims as to the significance of

the volume, difficulty and effort metrics.

I 7

3.5.3 Berry-l\1eekings program characteristics

Percentage of comment lines, percentage of indentation spaces

to all characters, percentage of blank lines, average number of

nonblank characters per line, average number of spaces per

line, number of symbolic constants used, symbolic constants

and number of reserved words used are interesting metrics

because they summarize the documentation quality of a

program. Again, we make no claims about these metrics.

3. 5. 4 Other counts

The other counts are number of comment words, number of

comment lines in initial block, number of tabs per line,

percentage of indentation tabs, number of simple type

variables, number of structure type variables and McCabe's

total 'IF' count. See [REDI 86] . These counts, like other counts,

are subjective and we make no claims to their validity.

However, it is interesting to examine these metrics.

1 8

4. Using VIGRAl\1

4 .1 Menu Reference

Figure 4.1 shows the overall menu items for VI GRAM.

a File Ed1t Code Source File Anelyze

About Plum Dlegrem ... Open ... Celculete Quality Metrics
Close Generete Full Chert

About Visuel Progremming ...
About Quelity Metrics ... Slice Chert

Alerm Clock Heeding Weights
Chooser Statement Weights
Control Penel Constant Weights

Verieble Weights
Operetor Weights

Figure 4.1 Overall menu items for VIGRAM.

Apple Menu

About Visual Programming ...

Display the author name and VIGRAM's version.

About Quality Metrics ...

Display a brief description of each complexity report

produced from "Calculate Quality Metrics" item under

"Analyze" Menu.

I 9

Source File Menu

Open ...

Allow user to open an existing Pascal text file and select its

procedures or functions to :

- Calculate Quality Metrics

- Draw a Full Chart

- Draw a Sliced Chart

Close

Close the current file .

Analvze Menu

Calculate Quality Metrics

Display : Berry-Meekings, Halstead, Weight of Difficulty,

McCabe complexity metrics, number of comment words,

number of comment lines in initial block, number of tabs

per line, percentage of indentation tabs, number of simple

type variables, and number of structure type variables for a

Pascal text file procedure .

Generate Full Chart

Draw a Plum Diagram of a Pascal text file procedure.

Slice Chart

Slice the current Plum Diagram on certain control

structure(s), variable(s) and/or some input/output

statements.

20

Heading Weights

Allow user to assign weights to program heading, definition

and declaration constructs : each program (or procedure or

function) keyword, each parameter, definition and

declaration found.

Statement Weights

Allow user to assign weights to each simple statement,

procedure call, begin, case, else, end, for, if, repeat, while,

and with keywords found.

Constant Weights

Allow user to assign weights to each local integer, real,

string, unit global, nil, and true & false constants found.

Variable Weights

Allow user to assign weights to each local boolean, integer,

longint, real, char, structure & others, unit global variable

and parameter, and each function call, non-declared

identifier, and with clause found.

Operator Weights

Allow user to assign weights to each of these operators

found :

+, -, *,/,DIV, MOD,=,<>,<,>,<=,>=, IN, OR, A."t\TD, NOT,@.

21

4.2 Tutorial

To use VIGRAM we first open a Pascal text file containing

either a standard Pascal source code program or a unit of Lightspeed

Pascal for the Macintosh. To open a Pascal source file pull down

"Open ... " item under "Source File" menu.

After opening a source file, VIGRAM will automatically show a

source file and the list of. procedure and function names found in that

source file in separate windows. These windows can be resized,

moved and scrolled. Figure 4.2 shows these two windows after the

source file named "average" is opened.

overage
PROGRAM DPrnPn:rlr.,h j
{------------ ---f
i Thi:, prv=dur-eo ;:, u:,ed -b:, ~n,:,n:rir-11-l:e--th, u:,~ "f

PRCCID..J2E F'n:l lw,r~,;
{F,nd ~never ~oe 1br pos111Vt lnttaer- n..rrrt>trs)

Yi'IR
C.a.Jrd : T'll:G9"r j
SU"Tl, i'l'ler-aoe, l'llrrt>Pr: na1;
Caittiue : booleai;

BEOIN
CCU'li :• 0 j
Su-n := D;
Cmi:Tiu, :• iru~ j
Vr-il:Gln('Pii-,a .. Tlpvt. nU"T"t»r .nd hit r•'1.lrn.');
Yr11:e1nC"1o qu11. enter ~n.J neg~t1Ye nU11ber :);
Vl-lLE C.On-tinue-DO
BEDIN

Re-adh(NU11ber); u. ,..,
r or (.., I 1'

overage
Program Demonstrate

Procedure FindAvera!Je

Procedure Pro ce d ure2

Procedure Procedure3

Pro1;edure Function1
Procedure Procedure-4

Procedure Functi on2

Figure 4 .2 Source file window and procedure &

function list window.

~

R5
l2J

22

Select a procedure or function to be · analyzed by mouse

clicking on that procedure or function name listed in the right

window. The procedure or function name chosen will be highlighted

to show the selection. Another window will pop up to show the

selected procedure textual source code. See Figure 4.3. This window

can also be resized, moved, scrolled and closed.

aueragE .
Procgduni FindRLJeraqB

{----·--- ·-------}
{ 1hii:: pr-ou,d..i,.t is: us:o:! -1,o 0grnons::-b--.ott iht-Us:>Q <11"

PROCID..RE FindAv""°aga;
<r"ln:1 •. n ever<1Qe ror pas1t1YE lnteQer mrnbersl

VAR

1H ...
; ;i
; :;

Caurd : ini:991r; i ;:

Slnl, Anra;;,e. Numbt'r : rt'.a1; : ll
8~;:tnu, : brioll:"11n; .. _ -··· _. . t !t

Ccm1 := o; i H
SU'll := o; ! H
CtfflT1uf :- -t~u"; ! H
Vdteln('Pl-n foput ~ n.Jrrbe-r-~nd hi-t f"'e"turn. ') j i ii
Vrfttln('T1> quit, Qhii;r -rl!I n,;,gafo·• numbor. ?; ! ll
VHLt Cai~inua DO ; ;;

BEI3111 ! !i
Rl:'adl'(Number); ! !l
If N.Jrrb:-r--< 0 THEN ...

P roti rn m Demon strn t e

Procedure Procedure3

Procedure Function I

Procedure Procedure4

Procedure Fum::tion2

Figure 4.3 Selecting a procedure or function to

analyze.

23

Now the user can perform 2 operations : 1) generate the plum

diagram and 2) perform complexity analysis. First we generate the

plum diagram then do slicing.

1) Generate Plum Diagram

To generate the visual "Plum Diagram" representing the source

program, pull down "Generate Full Chart" item under "Analyze"

menu. Figure 4.4 shows the plum diagram generated from the

procedure in Figure 2.4a . For more details about manipulating plum

diagrams see [HSIE 88] .

B~BB~~W~~~~~[m~
-□ Plum Diflgrnm

Procedure FindR11ercge .:

1~R1~R1~R1~1~1~l¼l¼l~l~l¾I
l!t~c~ !!t~::B !!t~::B !ll::~loq

1!2J

Figure 4.4 Plum Diagram for procedure

"F. dA " . p· ? 4 rn _ verage m 1gure -· a.

24

2) Perform Complexity Analysis

For the "weight of difficulty" metric, the user can assign

weights corresponding to each Pascal element of the procedure

procedure heading-definition-declaration, constants, variables,

statements and operators by selecting "Heading Weights", "Statement

Weights", "Constant Weights", "Variable Weights", and "Operator

Weights" items from the "Analysis" menu. The default weights for all

elements is one. Once set, VIGRAM remembers the weights until

they are reset or until the user quits the application. Dialogs for

weight setting are shown in Figures 4.5 through 4.9.

To perform complexity analysis, select item "Calculate Quality

Metrics" - from menu -"Analyze". - Figure -4.10 -shows a - sample -report ·

from the analysis. Figure 4.11 and 4.12 shows brief descriptions of a

complexity metric report under "About Quality Metrics ... " of the

"apple" menu.

Heading, Definition & Declaration

PROGRAM 1.00

PROCEDURE 1.00

FUNCTION 1.00

Parameter 1.00

Constant Definition 1.00

Type Definition 1.00

Variable Declaration 1.00

(OK J (Cancel J

Figure 4.5 Heading, Definition & Declaration Weight

Setting Dialog .

Statements

Control Stetements

BEGIN 11.00 I

Simple Statements 11.00

Procedure Cells 11.00

[OK J [

CASE. •. OF

ELSE tHE
END
FOR .•• TO (DOWNTO)

IF. •• THEN

1.00

1.00

1.00

REPEAT ••• UNTIL 1.00

WHILE. .. DO j 1.00

WITH ... 00 j 1.00

Cencel J

Figure 4.6 Statement Weight Setting Dialog.

25

Locel Constants

Integer

Reel

String

Constants

Unit Globe! Constants

NIL

TRUE & FALSE

11.00

11.00

11.00

11.00

11.00

11.00

(OK) (Ccncel)

Figure 4.7 Constant Weight Setting Dialog.

Ueriables D' Pernmeters

Locel Uariebles end Pernmeters

Booleen

Integer

Longint

Reel

Cher

Structured & Others

Unit Globe! Variables

Function Cells O'
Non-declared Identifiers &
'WITH' clauses

(__ o_K _,,J [

11.00

11.00

11.00

11.00

11.00

11.00

11.00

11.00

Cencel

Figure 4.8 Variable Weight Setting Dialog.

J

26

Operators

Arithmetic trnd Set Operntors Reletionel end Set Operntors

'+' Addition, Identity It .00

'- ' Subtraction, Negetion It .00

..... Multiplicetion It .00

'/' Diuision It .00

DIU 11.00

MOD 11.00

-=, <>, <, >, <-=, >=, IN

Booleen Operntor

OR

AND

NOT

@ Operntor

[..___ __ OK_________ _ ~ -J _____ (_____ _ Cancel

Figure 4.9 Operator Weight Setting Dialog.

Report for Procedure FindAuerege

Weight of Difficulty 46.00 Berry & Meekings

Comment % of Comment Lines

11.00

11.00

It .00

It .00

11.00

10.71

Totel Words 18 % of lndentetion Spaces 0

lines in I nitiel Block 3 % of Blank Lines 0

Teb
Characters per Line 18.28

Tabs per Line
Spaces per Line 1.86

2.68

% of Indentation Tabs
symbolic Constants 0

11.74
Reserued Words 18

Uerieble Helstead
Simple Type 16 Uolume 163.50
Structured Type 0 Difficulty 8.5

McCabe Effort 1316.16

Tote! 'IF' 1 OK

Figure 4.10 Sample complexity metric report.

27

28

$bout Quality uttetrics

Weight of Difficulty

Comment
Total Words
Lines in Initial Block

Tabs :

Tabs per Line

Variables :
Simple Type

Structured Type

McCabe's Total "IF'

= Summation of all Weights

= total comment words found
= total comment lines before

or after procedure or
function heading

total tabs
= total lines

= total local simple type
variables found (simple
types are char, real, integer,
longint and boolean)

= total local structured type
variables found (all local
variables except simple type
variables)

= total 'IF' keyword found

(H E:(T J [0 U IT j

Figure 4.11 Description of a complexity metric

report under "About Quality Metrics ... "

item of "apple" menu.

29

$bout Qualit!J ~etrics

Berry & Meekings :
tot a I comment Ii n es 00 er.

Percent of Comment Lines - ---------- x 1 ~10 - total lines

Percent of Indentation Spaces - i nd entation spaces x 100~
- file length 0

Percent of Blank Lines

Characters per Line =

Spaces per Line

Symbolic Constants

Reserved Words

Halstead . .
Volume (V)

Program Difficulty (D)

Effort (E)

where n1

nz

N1

N, .,

= total blan_k lines x l00%
total lines

file length - total spaces - total tabs
total lines

= total sp_aces x l00%
total lines

= total number of local
constants found

= total number of Pascal
reserved words found

= (N1+Nz) Log 2 (n1 +nz)

n1 x Nz
= 2nz

= ' DX V

= number of unique operators

= number of unique operands

= total number of operators

= total number of operands

(PREVIOUS J (QUIT J

Figure 4.12 Description of a complexity metric

report under "About Quality Metrics ... "

item of "apple" menu.

30

3) Slice Plum Diagram

To slice the plum diagram, select the "Slice Chart" item under

"Analyze" menu. The slice-criterion dialog will pop up, see Figure

4.13 . Check each control or I/O structure to be emphasized. One or

more variable can also be selected from the list on the right. Only

plums containing or leading to these items will be highlighted in the

plum diagram. Figure 4.14 shows the plum diagram in Figure 4.12

obtained from slicing the program in Figure 2.4a using the criterion

in Figure 4.13. Slicing and unslicing can be performed at any level of

the original plum diagram. Slice and unslice are toggle switches.

0 CASE

□ FOR

D IF

0 REPEAT

0 WHILE

□ WITH

0 READ, READLN

0 WRITE, WRITELN

Please Enter Slice On ltem(s).

[8J UAR I ABLE:

Number
Sum

(Cancel)

Figure 4 .13 Slic e-cri terion dialo g.

Figure 4.14 A hierarchical sliced plum diagram

obtained from settings shown in Figure

4.13.

3 1

To close a Pascal source file pull down "Close" item under

"Source File" menu. Once a source file is closed, we can open another

file.

32

5 Implementation

The source code is stored in RAM all at once and handled by

"TextEdit", a Macintosh toolbox routine. The maximum text length is

32K bytes [APPL 86], thus, programs must be less than 32K bytes in

length.

5 .1 Data Structure

The main data structure of VIGRAM is an enumerated type for

each token found when doing a lexical analysis. The data structure

for a plum diagram is the same as the one of P.D. Editor [HSIE 88],

except that we have added a display flag for slicing. See Figure 5.1.

token_type = (
{Keywords}
ARRA Ykw, BEGINkw, CONSTkw, DOkw, DOWNTOkw, ELSEkw,
ENDkw, ENDDOTI.-w, EXTERNALkw, FILEkw, FORWARDkw,
FUNCTIONkw, GOTOkw, INLINEh.-w, INTERFACEkw,
IMPLEMENTATIONkw, LABELkw, NILkw, OFkw,
OTHERWISEh.-w, PACKEDkw, PROCEDUREkw, PROGRAMkw,
RECORDkw, SETI.-w,THENkw,TOkw,TYPEkw, UNITkw,
UNTILkw, USESkw, VARkw, BOOLEANkw, CHAR.kw,
INTEGERkw, LONGTh'T'fkw, REALkw, STRINGh.-w, TE:X'Tkw,

{ String constant i.e. "stringA"}
STRINGconst,

{Keywords}
TRUE_FALSEkw, IFkw, FORkw, WHILEkw, WITill-w ,
REPEATkw, CASEh.-w,

{Operators}
PLUSop, :MINUSop, ORop, TIMEop, SLASHop, DIVop, MODop,
ANvop, NOTop, LTop, LEop, EQop, N.cop, GTop , GEop, INop,
ADDop, MULop, RELop, ADDRESSop,

{ Special character(s)}
i'.RROW, ASSIGN, COMMA, DOTDOT, LB, LP, RP, RB, SEMI,

Figure 5.1

COLON, PERIOD,

{Identifier}
!DENT,

{ integer, real}
INT, NUM,

{ Comments : " (*, {, *), } " }

33

OpenStarCom, OpenBraceCom, CloseStarCom, CloseBraceCom,

{white characters}
SPACE, NEWLINE, TAB,

{ Heximal digit error or other error}
HEXERR,

{For Heading weights : Parameter, Constant Definition,
Type Definition, Variable Declaration)
Para, CDef, TDef, VDef,

{For Statement Weights
SimpSt, PCall,

Simple Statement, Procedure Call)

{For Constants Weights : Integer Const, Real Const, String
Const, Unit Global Constant)
IntCnst, RealCnst, StrCnst, UnitGloCnst,

{For Variable Weights : Boolean Variable, Integer Variable,
Longint Variable, Real Variable, Char Variable, Structured
& others variable, Unit Global Variable, Function Calls &
Non-declared Identifiers & 'WITH'clauses)
BolVar, IntVar, LintVar, RealVar, ChVar, StructOthVar,
UnitGloVar, NonDecID_FCallVar
) ;

The main data structure token-type.

5. 2 Possible Extensions.

1) Other graphical forms can be tried to replace the Plum

Diagram.

2) Rewrite the lexical analysis part m Assembly language to

reduce the runtime.

3) Experiment on the weight of difficulty to find the "best"

default weights. ·

5. 3 Requirements and limitations.

1) VIGRAM accepts a Pascal source code unit or program.

VIGRAM recognizes standard Pascal programs and

Lightspeed Pascal units.

2) The maximum text length is 32K bytes.

3) The source code must be syntactically correct. This is for

runtime time-reduction. An alert is shown when a syntax

error occurs, and VIGRAM halts.

4) VIGRAM doesn't support nested procedures or functions.

34

I

35

5. 4 Application Statistics

1. Number of lines of source code .. 10,277

2. VI GRAM application size ~ 145 K

3. Resource size

3 .1 Uncompiled (.R) 80.5 K

3 . 2 Compiled (.Rsrc) .. 25 .5 K

4. Number of Units with P.D. Editor 16

36

6. Summary

6 .1 Program Understanding

We have presented a program understanding and complexity

metric analysis tool. VIGRAM's main aim, to make programs easier

to understand, has not been tested, but we believe it is promising for

the following reasons :

- We use a graphical form to augment, rather than replace the

textual form. The results should be no worse than text only.

- Slicing can be viewed as "indexing" to rapidly find

interesting object(s).

After using VIGRAM as an understanding tool, we can modify a

program using P.D. Editor.

6. 2 Complexity Metrics

Figure 6.1 shows the table we got from runnmg VIGR.~'s

three units, on nineteen procedures (functions) to compare two

program difficulties we compute : "Weight of Difficulty" and

"Halstead's Difficulty". On Figure 6.1, column :

1 The rank of "Weight of Difficulty" in column 4.

2 : The rank of "Halstead's Difficulty" in column 5.

3 The difference of column 1 from column 2.

4 : Weight of Difficulty applied from [BERN84] with the

default weight one.

5:
n1 x N2

Halstead's Difficulty = 2 n2

are of columns 9 to 11.

37

6 : Total words without comment words. By words, we

mean Syntactic tokens, e.g. N 1 + N2 + "reserved words" +

"declaration variables" + "closing parenthesis" + "opening

bracket" + "closing bracket" + "dot dot token" + colon +

string constant + semicolon.

7 : Total Reserved words.

8-11 N1 = total number of operators

N2 = total number of operands

n 1 = number of unique operators

n2 = number of unique operands

Figure 6.2 shows that the number of total words 1s a factor of

"Weight of Difficulty".

1

1
2
3
4
5
6
7
8
9
] 0

1 1
1 2
J 3
J 4
15
1 6
1 7
J 8
19

2 Rank Weight Hal's Words Reserved Nl N2 nl
Comparison of Dif. Dif. words

1 0 7 .00 0.00 1 5 3 0 0 0
3 1 22.00 2 .75 54 4 1 1] 1 2
4 1 25 .00 3 .14 54 15 7] J 4
14] 0 37 .00 10 .00 79 1 5 20 20 9
5 0 39.00 3 .50 74 J 4 1 5 2 1 4
8 2 40.00 6.00 86 1 2 21 24 6
9 2 43.00 7.27 94 28 20 20 8
7 - 1 48 .00 5 .41 93 ') ~ -., 24 23 8
2 -7 55 .00 2.10 90 1 8 2] 35 3
] 0 0 62 .00 8 .06 135 27 37 3 1 1 3
6 - 5 78 .00 5 .03 175] 2 50 52 6
1 J - J 86 .00 8.50 166 28 42 5 1 8
15 2 90 .00 11. 80 190 26 57 59 1 0
1 3 -] 110.00 8 . 88 206 26 55 63 J 1
1 6 - 1 144.00 16.63 304 35 101 11 0 1 3
12 -4 152.00 8 .62 3 1 8 5 1 87 96 7
1 8 1 202.00 30.00 439 76 15 1 11 0 1 8
1 7 - 1 391.00 22.47 791 121 214 230 1 7
1 9 0 795 .00 33.01 1299 297 403 471 1 5

Figure 6.1 Difficulty Comparison Table.

800--------------m--------,

600

-= ...
Q

""" C, 400 C ...,
-= c,, ...
c.,

)r

200 C

~
.P

tf .

0 I

0 1000

Total 'w'ords

Figure 6.2 Total words 1s a factor of "Weight of

Difficulty".

2000

38

n2

0
4
7
9

1 2
1 2
12
1 7
25
25
3 1
24
25
39
43
39
33
87

107

39

From the table in Figure 6.1, there are four out of nineteen

significant rank differences : (10, -7, -5, -4 in column 3). Four

procedures have the same rank (four zeros in column 3); fifteen

procedures differ by a small amount : (-1, 0, 1, 2 in column 3).

Weight of difficulty is in the opposite direction from Halstead's

Difficulty metric for procedures ranked 7 and 8 according to Weight

of Difficulty.

Figure 6.3 1s a scatter graph shows the relation between

"Weight of Difficulty" and "Halstead's Difficulty". There is a strong

relation between these two difficulties, even though some conflicts

are still found.

~
0 -= -.t::.
"'
Q.I

)I

800 -----------------r:~----

600 -

.

400 -

200 -

C
irr

0 ';'
0

Figure 6.3

I:] C
[:]

E E tl
!!bm° m

I I

10 20 30 40

Hal."s dif

Scatter Graph showing relation between

"Weight of Difficulty" and "Halstead's

Difficulty".

I

..

·.r

40

7 . Bibliography

[APPL86] Apple Computer, Inc.

"Inside Macintosh", May 1986, Volume 1, pp.I378.

[BERN84] G. M. Berns,

"Assessing Software Maintainability", Communications of

The ACM, January 1984, Volume 27 Number 1, pp. 14-23.

[HARR86] W. Harrison and C.R. Cook,

"A Note on The Berry-Meekings Style Metric",

Communications of The ACM, February 1986 Volume 29

Number 2, pp.123-125.

[HSIE88] C. Hsieh,

[KEAR86]

"A Graphical Editor for Pascal Programming on

Macintosh", Research Paper, Department of Computer

Science, Oregon State University, March 1988.

J. K. Kearney, R. L. Sedlmeyer, W. B. Thompsom,

M. A. Gray, and M. A. Adler;

"Software Complexity Measurement", Communications of

The ACM, November 1986 Volume 29 Number 11,

pp.1044-1050.

[LEVlI87] T. G. Lewis,

"CASE Computer-Aided Software Engineering", Computer

Science Department Oregon State University, Corvallis,

O.R. 97331.

[P AGE80] M. Page-Jones,

"The Practical Guide to Structured Systems Design",

Yourdon Press, 1501 Broadway, New York, NY 10036.

[REDI86] K. A. Redish and W. F. Smyth,

"Program Style Analysis: A Natural By-product of

Program Compilation", Communications of The ACM,

February 1986 Volume 29 Number 2, pp.126-133.

[WEIS81] M. Weiser,

41

"Program Slicing", Proceedings of the Fifth International

Conference on Software Engineering, 1981, pp. 439-449.

[YANG88] S. Yang, T.G. Lewis, and C. Hsieh,

"OSU: Integrating CASE and UIMS", Computer Science

Department, Oregon State University, Corvallis, OR 97331,

1988. ·

" '

	20221020124305375
	20221020124500554

