
Oregon State University

Power Saving in W AP

Power Saving in W AP

A PROJECT

Submitted to

Oregon State University

Girish Potti

In Partial fulfillment of the requirement of

The requirements for the

Degree of

· Master of Science in Computer Science

Presented June 1 ,2000

Commencement December 1,2000

Page Number 1

' I

Power Saving in W AP

An Abstract of the project of

Girish Potti for the degree of Master of Science in Computer Science
Presented on January 81\ 2001
Title: Power Saving in W AP

Wireless Application Protocol (W AP) is an industry standard aimed to bring the web to

handheld devices. The handheld devices are constrained by battery life and it becomes

important that power is conserved across web transactions. The power consumed by the

handheld device is directly proportional to the time taken for a transaction and time can be

minimized to conserve power. The W AP server gateway sits between handheld devices and

web content providers. The turnaround time for transactions can be improved by optimizing

the W AP server gateway. Load balancing of the requests between various server processes

was implemented. A server cache on the W AP gateway server to "remember" previous

requests and contents was implemented.

Oregon State University Page Number 2

Power Saving in W AP

ACKNOWLEGEMENT

I would like to acknowledge and thank Dr.Suresh Singh for the guidance and computing

facility support provided by him. My earnest thanks are extended to my Major Professor

Dr.Timothy Budd, who provided direction and valuable insights through all phases of this

project.Dr.Budd's attention to detail helped me refine my project report. I would also like to

thank Dr.Prasad Tadepalli for the valuable time he spend going through my report . Finally,

my deepest love to my wife Udayarani , who is always there to help. My gratitude extends far

beyond the acknowledgment.

Oregon State University Page Number 3

Power Saving in W AP

Table of Contents

1. Introduction .. 5

2. W AP Architecture Overview ... 6

3. W AP Protocol Stack .. 7

3.1 Wireless Application Protocol .. 8

3.2 Wireless Session Protocol ...•.. 8

3.3 Wireless Transaction Protocol .. 9

3.4 Wireless Transport Layer Security 10

3.5 Wireless Datagram Protocol•.....................................•....... 11

4. Power Saving in W AP ...•................... 14

4.1 Kannel Gateway Overview ... 14

4.2 Installing Kannel ... 14

5. Load Balancing Overview .. 16

5.1 Routing a message ...• 17

5.2 Factors in Load Balancing .. 18

5.3 Implementation of Load Balancing ... 19

6. Server Cache Overview .. 22

6.1 Server Cache Implementation... 22

6.2 Hashing. • . • ..23

6.3 Cache••.....................................•...•..... 24

7. Test Results•................................... 30

8. Conclusion•..........•.................................. 39

9. Future Work•... 39

10. References•.................•................................... 39

Oregon State University Page Number 4

f)

Power Saving in W AP

Introduction

Technologies that were visualized by science fiction authors are made a reality by advances in

science. The explosive growth of the Internet has taken the world by storm and people are using

the "WEB" for all sorts of applications. Breakthroughs in the wireless technology has made hand

held devices like cellular phones, PDAs (personal digital assistant) popular. The convergence of

these two technologies has literally brought the Internet to everyone's fingertips.

Most of the communication technology being developed by the industry is designed for the

powerful desktops and large machines and the communication link between desktops typically

have high bandwidth and less data loss.

The small hand held devices present a much-constrained computing environment. These devices

compared to desktops tend to have:

1) Less powerful CPUs

2) Less memory

3) Restricted power consumption

4) Small display

5) Different input devices (eg keypad)

Similarly the wireless data networks are limited by power, available spectrum, mobility and they

compared to wired net typically tend to have :

1) Less bandwidth

2) More latency

3) Less connection stability

4) Less predictable availability

Mobile service providers would also like to extend some advanced services to the customers

for attracting them. Mobile service providers can package lot of wireless telephony applications

(WTA) such as call forwarding and news service in a user-friendly manner.

All these necessitate a new technology that builds on existing technology and narrows the

limitations mentioned above. The Wapforum is an industry association consisting of lead players

in wireless technology, they produced the de-facto world standard for wireless information and

Telephony services on digital mobile phones and other wireless terminals. They came up with the

Oregon State University Page Number 5

Power Saving in W AP

Wireless Application Protocol (W AP) , an open global specification that makes browsing from the

cell phones possible and also attempts to makes it an enjoyable experience .

For example , a hungry traveling man can find out the directions, relative to his location, to the

nearest restaurant and can see their online menus and order them, to eat them hot when he reaches

the restaurant. When munching he can get online stock quotes and do the trading while his urgent

documents are mailed to him by his secretary. There are lots of other such conceivable

applications .

W AP Architecture Overview

The Internet WWW (World Wide Web) architecture presents applications and content in

standard data formats and are browsed by applications known as web browsers . The web browser

sends requests for named data objects to a network server and the network server responds with

the data encoding using the standard formats.

The W AP programming model is similar to the WWW programming model and has added on

to the WWW model to match the characteristics of the wireless environment as mentioned below.

The W AP model is shown in Fig I. It gives the user the ability to use existing tools like cgi, xml,

web server, a familiar programming model and a proven architecture. Optimizations and

extensions were done to the original WWW model wherever possible as mentioned below.

~ \
Client

WAE .

Fig-1

Oregon State University Page Number 6

Power Saving in W AP

In the WAP model the clients (Mobile devices) send requests for contents to the WAP

gateway using the W AP Protocol Stack.The W AP gateway uses the traditional WWW model to

get the content from the Web Sever. The gateway encodes the content and sends it to the client.

♦ Content- The WAP contents are all binary encoded WML (wireless markup language),

WMLscripts or WBMP (wireless BMP) format contents.

♦ The W AP Protocol Gateway - Translates requests from the WAP protocol stack (WSP, WTP,

and WDP) into the WWW protocol stack (HTTP and TCP/IP) and vice versa.

♦ Content Encoders and Decoders - The content encoders and decoders translate the W AP

content into Binary Format to reduce the size over the data network and also to keep the size

within the range of the hand held devices.

If the request from the client is for a WML (wireless markup language) document it retrieves

directly from the WML content servers. If the request is for an HTML document then the server

should have a HTML filter that would convert the html to WML.

Mobile operators usually use the WTA server to push their services like call forwarding,

update news and other telephony application to the client. The WTA server directly

communicates with the client in W AP protocol stack and pushes their services.

W AP Protocol Stack

Application Layer (WAE) I Other Services and
Applicat ions

Session Layer (WSP) I
Transaction Layer (WTP) I

Security Layer (WTLS) I
Transport Layer (WDP) I

Bearers:

I GSM 11 tS-136 11 CDMA I~ I CDPD 11 PDC-P 11 IDEN 11 FLEX 11 Etc. .. I

Fig-2

Oregon State University Page Number 7

,.

Power Saving in W AP

The W AP protocol stack consists of 5 layers over the underlying bearer connection as shown

in Fig- 2. Each layer is accessible by the layer above as well as by any other application or service

through the use of a well-defined service interface. There are well-defined request primitives by

which each layer talks to it's adjacent layers.

Wireless Application Environment

The Wireless Application Environment (W AE) is comprised of a micro browser environment

containing the following elements:

♦ WML - A markup language similar to HTML but optimized for use in hand held devices.

♦ WMLSCRIPT - Scripting language similar to Java script.

♦ WTA-Telephony services and programming interfaces.

♦ Content Formats: a set of well-defined data formats, including images, phone book records

and calendar information

The W AE user agent has 2 basic functions: - to request for a url and to display the contents.

The contents can be obtained either as a reply to a query or as content pushed in by the server. For

the latter the server needs to know the capability of the phone. This is achieved through capability

negotiation between W AE user agent and the server. WSP layer provides this functionality.

Wireless Session Protocol

WSP provides the application layer with two types of interfaces. One is a connection-oriented

service on top of a transaction layer protocol. The second is connectionless secure or non-secure

datagram service (WDP).

The services offered are

1) Long-lived session state.

2) Session suspend and resume with session migration.

3) A common facility for reliable and unreliable data push.

4) Protocol feature negotiation.

The protocol is optimized for low-bandwidth bearer network with relatively long latency.

A typical transaction through the WSP layer would look like Fig-3

Oregon State University Page Number 8

,.

)

Cliettt

S-Connect.req

S-Methodln voke.req

S-Connect.cnf

Provider

......... .. _ .. -·--....
................ ------

Server

-t---------►

S-Connect.res

.~ .. --... ~. ---------+----- I S-Methodinvoke.ind
I

S-Methodlnvoke .cnf ,.. ___________ _ _..-.. -J'
.... -.. -

I --------------~

S-Me-thodlnvoke.res

S-MethodResult.req

S-MethodResult.ind ~ ~--------.. -.------~

.. -..
,,,..,,,_ .. ,,,,...

S-MethodResult.res
..... ____ ,._ S-Method.Result.cnf --.... -----------------

Fig-3

Power Saving in WAP

Each transaction would include a connect, content and disconnect request. The W AB in client

passes a S-Connect.req primitive to WSP layer. The WSP layer contacts it's peer in the server and

passes this request, which is forwarded up to the W AB in server as S-Connect.ind. The protocol

requires a response and confirmation for all transactions.

Wireless Transaction protocol.

WTP layer lie over secure or non-secure datagram service in the protocol stack and offers the

following functionalities

1) Three classes of transaction service.

Unreliable one way requests

Reliable one way requests

Reliable two way request-reply transactions

Oregon State University Page Number 9

Power Saving in W AP

{) 2) PDU (protocol data unit) concatenation and delayed acknowledgements to reduce the number

of messages sent.

- WTP is responsible for concatenation (if possible) of multiple protocol data units into one

transport service data unit.

3) Asynchronous transaction.

4) Reliability is achieved through unique identifiers, timers, retransmissions and duplicate

removal.

- Since datagrams are unreliable, WTP is required to perform re-transmissions and send

acknowledgements in order to provide a reliable service to the WTP user.

5) No explicit connection set up in this layer in order to save overhead. The basic unit of

"transfer" is a MSG (message) and not stream bytes. So unavailability of messages is

indicated by abort messages.

6) Transaction layer caters to optional asynchronous transfers. Results are sent back when

available.

WTP is specified to run over a datagram transport service and the WTP protocol data unit is

located in the data portion of the datagram.

Wireless Transport Layer Security

The WTLS layer provides security for the transactions and also provide protection against

accidental and malicious attacks on the server. They typically provide the following

functionalities-

!) Data integrity - WTLS contains facilities to ensure that data sent between the terminal and an

application server is unchanged and uncorrupted.

2) Privacy - WTLS contains facilities to ensure that data transmitted between the terminal and

an application server is private and cannot be understood by any intermediate parties that may

have intercepted the data stream.

3) Authentication - WTLS contains facilities to establish the authenticity of the terminal and

application server.

4) Denial-of-service protection - WTLS contains facilities for detecting and rejecting data that is

replayed or not successfully verified. WTLS makes many typical denial-of-service attacks

Oregon State University Page Number 10

Power Saving in W AP

harder to accomplish and protects the upper protocol layers . It can be optionally turned on and

off.

Wireless Datagram Protocol (WDP)

WDP layer is the WAP transport layer equivalent. It runs over the data capable bearer services,

typically UDP is used in this layer.

The datagram transport is required to route an incoming datagram to the correct WDP user.

Normally the WDP user is identified by a unique port number . The responsibility of WDP is to

provide a datagram service to the WDP user, regardless of the capability of the bearer network

type. Fortunately, datagram service is a common transport mechanism, and most bearer networks

already provide such a service.

For example, all IP-based bearer's utilize UDP for this service.

Functions of WDP include-

!) Port number addressing

2) Segmentation and re-assembly (if provided)

3) Error detection (if provided)

Mobile

WAE

WSP

- defined in the WOP Specification

Wireless
Data

Gateway

Fig-4

WAP
Proxy/Server

WAE Appson
other servers

WSP

Subnetwork

In Fig-4 the shaded areas are the layers of protocol to which the WDP Specification is

specifically applicable. At the mobile client (phone) the WDP protocol consists of the common

WDP elements shown by the layer labeled WDP. The Adaptation Layer is the layer of the WDP

protocol that maps the WDP protocol functions directly onto a specific bearer. The Adaptation

Oregon State University Page Number 11

Power Saving in W AP

Layer is different for each bearer and deals with the specific capabilities and characteristics of

that bearer service.

The Bearer Layer is the bearer service such as GSM SMS, or USSD, or ANSI-136 R-Data, or

CDMA Packet Data. At the Gateway the Adaptation Layer terminates and passes the WDP

packets on to a WDP user.

The Tunneling protocol is the interface between the Gateway that supports the bearer service

and the W AP Proxy/Server. For example if the bearer were GSM SMS, the Gateway would be a

GSM SMSC and would support a specific protocol (the Tunnelling protocol) to interface the

SMSC to W AP servers.

The SubNetwork is any common networking technology that can be used to connect two

communicating devices, examples are wide-area networks based on TCP/IP or X.25, or LANs

operating TCP/IP over Ethernet.

The W AP Proxy/Server may offer application content or may act as a gateway between the

wireless WTP protocol suites and the wired Internet. If the phone goes out of range WDP is

notified. WDP in tum notifies the relevant sessions. The session suspension facility can be used to

rejuvenate the session once the phone comes in range.

Bearer

The W AP protocols are designed to operate over a variety of different bearers services,

including short message, circuit-switched data, and packet data. The bearers offer differing levels

of quality of service with respect to throughput, error rate, and delays. The W AP protocols are

designed to compensate for or tolerate this varying level of service.

The bearer network is responsible for routing datagrams to the destination device. Addressing is

different depending on the type of bearer network (IP addresses or phone numbers). In addition,

some networks are using dynamic allocation of Addresses and a server has to be involved to find

the current address for a specific device. Network addresses within the WAP stack may include

the bearer type and the address (e.g. IP: 123.456.789.123).

Examples of Bearer: IP, GSM SMS/USSD, IS-136 GUTS

Bearer functions include

1) Routing

2) Device addressing (IP address)

Oregon State University Page Number 12

Power Saving in W AP

3) Segmentation and re-assembly (if provided)

4) Error detection (if provided)

Oregon State University Page Number 13

Power Saving in W AP

Power Saving in W AP

The constraints under which the cellular phone work and also the limitations of the wireless

network LAN necessitates that data transfer overhead and connection time be minimized. The

battery within the cellular phone has finite power capability and it becomes important that the

client use it sparingly. Reducing the time it takes to process a request would reduce the time the

battery is used. The direct proportionality is evident and can be optimized to conserve the battery

energy. The WAP stack is optimized to have the bare necessary transactions only and so no

saving on power can be made there. A careful analysis of the various implementations of

gateways can help us fine-tune them so that the requests are processed and dispatched as soon as

possible.

Kannel W AP Gateway Overview

The potential of the W AP market made all the leaders in cellular market take an active interest

in getting the web to the handset. As a result companies like Nokia, Ericsson and others joined

hands to form the Wapforum. They came up with the WAP protocol stack and the other

specifications. The implementations were undertaken by different companies and as a result there

were numerous Gateway implementations. The cellular providers chose a gateway provider and

added on the W AP service to their existing service. Since all the gateways were from different

companies they had problems communicating with each other. The flexibility obtainable with

interoperability was lost in the nascent stage itself.

Kannel WAP Gateway is an open source WAP gateway from www.wapit.com as a result of their

endeavor to bring uniformity in gateway servers.

Installing Kannel

Kannel is a WAP Gateway that can be installed on Red Hat Linux or HP UNIX readily. The

source code can be obtained from www .kannel.org. Installing the xml library is a prerequisite for

Kannel. Libxml can be obtained from xmlsoft.org.The Libxml (version 1.7 or above) have to be

installed in the include directory from where Kannel detects it.

The commands for installing the kannel gateway include

Oregon State University Page Number 14

)

Power Saving in W AP

Configure - This would check out the configuration were you are running the gateway

Make - would compile the source and install the gateway.

Simulators for W AP compatible phones are available free in the web. The one that is easy to

install and use is from www.phone.com. The simulator can be installed only in windows and was

installed on a Windows 95 machine. The simulator also requires a Java virtual machine being

installed in the machine. The configuration file for running the gateway is provided in the

appendix.

The phone simulator was made to request wml files from the gateway and the obtained pages

were displayed in the phone simulator. Make sure that the simulator is run in non-secure mode

because WTLS layer is not provided in Kannel. Running the simulator in secure mode produces

unexpected results.

Oregon State University Page Number 15

Power Saving in W AP

Load Balancing Overview

The WDP layer is implemented as a software box called bearerbox and is multithreaded. All

the other higher layer in the W AP protocol stacks are implemented as a software box called

wapbox. The bearerbox is listening to the bearer network for any incoming content requests from

clients and the bearerbox is also listening for requests by wapboxes for connection. Multiple

wapboxes can connect to a bearerbox. In Kannel the bearer network is IP and the bearerbox is

listening to an IP address, port number pair. Inside the bearerbox the programming language

structure Boxc is used to keep the details of each individual wapbox.

The Boxc structure for a wapbox contains fields for

1) The logical wapbox id assigned to it

2) The load of the wapbox

3) The connection time

4) The ip address of the wapbox

5) The incoming request list for the Wapbox

6) The outgoing request list for the Wapbox

A list of attached wapboxes is maintained in wapbox_list structure. When a request for a

connection (wapbox registers with the bearerbox) arrives from a new wapbox an id is assigned to

it. An incoming and outgoing request lists are created for the wapbox. All the Boxc fields are

assigned and the wapbox structure is added to the wapbox_list.

The wapboxes can be either idle or be active processing requests. If we are in a low load

period the wapbox may be idle for quite some time. The bearerbox wouldn't be sure whether the

wapbox is alive or has chosen to retire from service. Maintaining the records of a dead wapbox is

a waste of resource and also can lead to undesirable routing problems. Also allocating some

processing to an already dead wapbox can lead to incorrect results.

To avoid these, wapboxes periodically send heartbeat messages to the bearerbox saying "I am

alive". The frequency of the heartbeat can be configured in the configuration file itself. Since the

bearerbox is multithreaded the frequent interruption by wapboxes won't adversely effect its

performance. The heartbeat is a good candidate for the wapboxes to tell the bearerbox about its

Oregon State University Page Number 16

Power Saving in W AP

grievances-how much load it is having. The load of wapboxes can be piggybacked along with the

"i am alive" message to the bearerbox.

Routing a message

The bearerbox sender module always listens to any incoming requests from "the outside

world". The outside world can be anything-for example IP, GSM SMS/USSD, IS-136.

When a message comes from a client it is forwarded to the route_msg module to route to the

proper wapbox. Each transaction would consist of several steps and would typically look like

A) Client -> Gateway

WTP: Invoke PDU

WSP: Connect PDU

B) Gateway -> Client

WTP: Result PDU

WSP: ConnectReply PDU

C) Client-> Gateway

WTP: AckPDU

D) Client-> Gateway

WTP: Invoke PDU

WSP: Get PDU (data: URL)

E) Gateway -> Client

WTP: Result PDU (data: WML page)

WSP: Reply PDU

F) Client -> Gateway

WTP:AckPDU

G) Client -> Gateway

WTP: Invoke PDU

WSP: Disconnect PDU

Packets A-C open a WAP session. Packets D-F fetch a WML page.

Packet G closes the session.

Oregon State University Page Number 17

Power Saving in W AP

For each transaction the wapbox will be in different finite states depending on whether the

message is connect request, result request or disconnect request It's quite imperative that all these

messages comprising one transaction are routed to the same wapbox lest the wapboxes would

find themselves in inconsistent states. The bearerbox maintains a list for associating transactions

with wapboxes. The socket (IP address, port pair) from where requests come is alloted one

wapbox and all subsequent requests from the same socket are routed to the same wapbox. When a

request comes from a socket the history is checked to see whether any previous requests arrived

from the same socket. If so the request is routed to the same wapbox it was routed to before. If

not, a wapbox is selected at random and the request is send to that after updating the history list.

What exactly is the load to be distributed?

The overheads involved in a page request are

► The negotiating for connect and disconnect are facilitators for actual page request. The

features of TCP necessitated a lot of overhead but guaranteed reliable, congestion free

transfer in a lossy networking model. In the wirelesss environment reliability is built into

the link layer and having them in higher layers is redundant. The bare necessary control

transfers are built into the W AP protocol stack and is optimized by the wapforum.

► The communication delay in the wireless network from the client to the gateway and back.

Only advances in the wireless arena can cement this and a lot of interest exists among the

industry players for doing this.

► The communication delay in the wired net between the gateway and the http server. This

also includes the amount of time the gateway takes to process requests. This could be

substantial and can be varying depending upon the size of the page request and the load

of the http (wml) server. This is a load that we can try to reduce for better power

performance.

Factors in Load Balancing

When a request for a page comes, the bearerbox at present selects any wapbox in random and

sends it the request. The wapbox in tum does the wml page request from the wml servers.

Oregon State University Page Number 18

)

Power Saving in W AP

The processing speed of the machine that runs the wapbox determines the turnaround time of

requests. If the wapbox were currently processing many requests it would be hard put to find

resources for more requests.

There are 2 primary criteria's for load-balancing to take care of

1) If all the wapboxes have the same processing power then the load should be equally

distributed among the wapboxes.

If there were 2 identical wapboxes then a load mix of 50% each would be ideal.

2) If some wapbox have more resources at their disposal then they should be allotted more work

since they would be able to handle those efficiently and fast.

Implementation of Load Balancing

(a) When should the Load Balancing Algorithm be called?

When a connect request packet comes from the client the load balancing algorithm should be

called. The load balancing algorithm would pick an appropriate wapbox . The socket of client

should be associated with this wapbox id and the pair maintained in the route_info list,

route_info. All subsequent requests from the client should be send to the same wapbox by

consulting the route_info list.

When a disconnect packet comes it should be routed to the same wapbox and then the

socket,wapbox_id pair should be taken off from the route_info list.

Check_disconnect module

Given a message packet this module would convert the binary message into characters. Then

it peruses the protocol data unit and checks whether it is a disconnect message and if so returns

true. When a packet arrives and if it is a connect request a wapbox would be allocated (by calling

the load balancing algorithm) and this information is maintained in the route_info list. If the

check_disconnect module returns true then the information is flushed from the route_info list.

How is the load determined?

The WAP application module (wap-appl.c) takes care of fetching the actual wml document

from the server. It converts the wml document to binary format and transfers it to lower layers.

Whenever a new request comes for a page a fetch_thread is spawned and this thread takes care of

the original fetching. A counter, count is maintained that reflects the number of active fetches

Oregon State University Page Number 19

Power Saving in W AP

being undertaken by the wapbox. This activity, fetching the pages, is in fact the bottleneck and

would give an idea of the load of the wapbox.

Whenever a fetch_thread is about to fetch a page it would increment the counter , count by

I.When the page has been fetched the counter count would be decremented. Since all these

threads could change the counter simultaneously the count can be in an inconsistent state. The

incrementing of the count is a critical section and access to it should be controlled. A

count_mutex lock is maintained by the wapbox . Before any thread can operate on the counter it

has to lock the count_mutex and release it once it is done. This way the count would always be in

a consistent state.

(b) How is the wapbox load passed to the bearerbox?

The W AP application layer maintains a get_load() function that would return the counter,

count (after locking and unlocking the mutex). The wapbox before sending a heart beat message

would ask for this count from the application module. It piggybacks this load along with the

heartbeat message to the bearerbox.

(c) What load balancing algorithm to use?

The bearerbox when it encounters a new message has to decide which wapbox to send the

message to. It has at its disposal a list of wapboxes with each entry having the details of the

wapbox (id, outgoing and incoming list) along with its load.

We have to select the wapbox with the minimum load from the list. A binary search or a linear

search would suffice. We are typically looking at the number of wapboxes in the range of 50-150.

A liner search or binary search doesn't have much performance difference in this case. Moreover

binary search requires us to have the list already sorted. The overhead involved in maintaining a

sorted list balances any inefficiency of linear search.

A linear search of the wap_list was undertaken to find the box with the minimum load. The

message is send to that wapbox for processing.

(d) Is the implementation ofload balancing justifiable time wise?

Does it take care of the criteria's for load balancing mentioned above?

[See factors in load balancing]

Oregon State University Page Number 20

Power Saving in W AP

The two factors for load balancing mentioned above are taken care of here. If all the wapboxes

have equal processing power the load should be evenly distributed. At a given time instance the

counter would reflect the load the wapbox is servicing at that time. If some other wapbox is

having less load, the incoming request is passed on to it since the counter for that wapbox will be

smaller. Thus equalizing the load. If some wapbox has more processing power they will service

the request more quickly and this would be reflected in the load counter (The load counter will

decrease faster here). Thus depending on the counter and thus load, more messages will be passed

to the less loaded machine.

Oregon State University Page Number 21

)

Power Saving in W AP

Server Cache Overview

The client phone communicates with the W AP gateway for getting the contents of a url. The

gateway does the original http request, converts the wml document into binary and sends it back

to the client phone . The client in fact is not aware of the presence of the gateway and sees it as a

part of the service provider. The client can cache the url and it's content, if the client browser

allows that. Then if the client wants to access the url again it can get it from its cache instead of

doing the expensive get from the web. The cache control header and the time to live field in the

page can be used to determine the time the client should keep it in it's cache. The server on its

part usually at peak time sees the same url being requested by different clients. The existing

implementation does a get from the original server for all incoming url requests. There are sites

that get hits of the order of thousands/day. These sites are accessed frequently by different

customers. Sites like Hotmail, CNN, Yahoo are just few of these. Lot of time is wasted in

accessing the same page from the same server again and again. The time to finish a transaction is

directly proportional to the power consumed by the client phone. We could conserve the power

by minimizing the time to get the pages. The server maintains a cache which stores the recently

accessed urls and it's contents. When a subsequent request for the same page comes, instead of

getting the page from the original server the gateway would take it out from it's cache and return

it. The page is converted to binary before it is cached. That way the time taken for converting

pages is also conserved.

Server Cache Implementation

A cache is maintained in the gateway that would hold the contents requested by the clients for

a time period. The cache- control header in the page would allow determining whether to cache

the page or not. If the time to live field is specified in the header the page is stored for the

specified time else it is stored for a server-specified time.

The cache is implemented as a hash table hashed using the url of the page. The hashing would

make storing and retrieving the content from the cache an easy operation.

Oregon State University Page Number 22

Power Saving in W AP

Hashing

Hashing involves two basic operations. Each page should be mapped to one slot of the table

consistently so that the storing and retrieving operation becomes trivial. A hashing function is

used to map each page into a unique integer. The hash function used was to sum up the integer

value of each character in the url.

The size of the hash table is implementation specific and can be set to reflect the load of the

gateway. The integer generated by the hashing function need not be less than the size of the hash

table. It has to be tuned to be within the hash table size. Most of the hash table implementations

would have different hashing functions but the second operation is mostly the same which is- the

integer obtained from the hashing function is divided by the hash table size, CACHE_SIZE and

the remainder is taken (modulo operation) as the index into the hash table. This way we are

guaranteed of an index within the hash table limits. But many urls can now map to the same hash

slot and can lead to confusion. This phenomenon is called collision. To avoid collision each slot

is made out to be a bucket that can hold several pages at the same time. Each hash table slot holds

a linked list of elements that have the same hash index. The linked list cannot be allowed to grow

indefinitely since it might lead to memory exhaustion. The size of each list is restricted by

MAX_ELMNTS_IN_SLOT value, which can be set by each installation according to their

resource availability.

Oregon State University Page Number 23

Power Saving in W AP

Cache

.. ◄,__ __ MAX_ELMNTS_IN_SLOT

Cache_size

Slot

Fig-5

Structure of the cache

►

The hash table, cache is an array of hash_element (a data structure instance)

Struct hash_element cache[CACHE_SIZE];

Where each hash_element is

struct hash_element {

List *element;

} ;

Each slot in the array, hash_element holds a linked list of contents that maps to the cache slot.

The linked list, element, contains elements of the type slot

slot {

struct content *slot_content;

time_t ins_time;

};

Each slot contains the contents of the page and also the time it was entered into the cache

Oregon State University Page Number 24

)

Fetch_thread

Get from
cache

Oregon State University

Power Saving in W AP

Flow Chart Diagram for Server Cache

WAE

Fetch_thread

Convert to Binary

Pass to Session
Layer

Stop

Fetch_thread

Nn

Get from
Server

Cache_it

Spawn Enforcer
Thread

Page Number 25

Power Saving in W AP

All the fetch_threads being spawned and also the enforcers being spawned may access the cache

simultaneously. Protecting the cache by a lock becomes necessary.

Cache_mutex

The cache table is a critical section, which could be modified by different threads at the same

time. This could lead to inconsistency in the information extended by cache .To protect against

this a lock is maintained, cache_mutex that has to be locked by threads before they access the

cache and unlock it when they are through. To see the potential problem consider the following

scenario

Thread 1 could be looking for a particular url and found it at the xth slot in the yth hash_element

and was about to access it.

Thread 2 is deleting the xth slot in the yth hash_element at the same time.

Thread! would now access a wrong element or could raise some exceptions.

Program Flow for Server Cache

When the WAP application layer receives a request for page from lower layers it spawns off a

fetch_thread that is responsible for the fetching of the page from server. The fetch_thread would

initialize proper headers and does the page get. The content is converted to binary format and

forwarded to the session layer.

I have introduced the server cache in between so that the get from the server would not be

necessary if a hit is found in the cache.

The modules introduced for implementing the server cache are

1) am_i_cached module

Module

Get_index

The fetch thread before doing the http server "get" would call the am_I_cached module with

the specific url. The module would do the following steps.

Oregon State University Page Number 26

Stepl: get hash index from get_index module

Step2: get the linked list at the specified index from the hash table

Step3: get the url from the contents of each slot of the linked list

Step4: convert the url to characters, urll

Power Saving in W AP

Step5: compare urll with the argument url and return the index inside the list where the

content is, else return MAX_ELMNTS_IN_SLOT + 1

2) Get_index module

This module implements the hash function for the cache table. It adds up the ascii values of all

the characters in the url. The integer obtained may be a huge number greater than the size of the

table. The integer is subjected to modulo operation with Cache_size.

For example:

www.abc.com would map to 1062 (w==119,a=67 and so on)

Now if Cache_size were 100 the hash_index obtained would be 62.

3) Get_item_from_cache Module

Fetch_thread

url, hash

nts_in_slot+ 1

Get_item_from_cache Get from http server

Get_item-from_cache module would call the get_index module to get the hash_index. The

parameter hash would have the index into the linked list where the content is. With both these

information the module retrieves the contents and returns it to the fetch_thread. Now the module

Oregon State University Page Number 27

Power Saving in W AP

would guess that since this content was used now there is a more than fair chance it would be

used again. This principle is called the temporal locality. The content is taken off from its present

position in the linked list and inserted into the top of the linked list. We should make sure that

some other threads do not use the cache across the am_i_cached and get_it_from_cache module.

Since we want the index returned by the am_I_cached module to be usable in get_it_from_cache

module we can lock the cache across the modules.

We can also make use of the spatial locality and bring to fore all the pages associated with this url

to the front of the list.

For example: if you have both www.abc.com and also www.abc .com/def and if you had a hit to

www .abc.com you can guess that www.abc.com/def would be referenced in the near future and bring it

also to the front of the linked list (I haven't implemented spatial locality since I was not sure

about it's advisability).

4) The cache_it Module

If the content is not cached we need to get it from the http server. After getting it from the http

server we need to see whether the page is cacheable or not. Parsing the cache control header

would tell us whether to cache it or not. If it can be cached we convert it to binary and then call

the cache_it module to cache it.

Stepl : call get_index module to get the index into the hash table.

Step2: Is there a linked list already present in this hash_element

If yes go to step4

Step3: Create a new Linked list. Insert the content to the list.

Go to step6

Step4: Insert the element as the first element in the list

Step5: Check whether list length is greater than MAX_ELMNTS_IN_SLOT

If so delete the last element.

Step6: return

In step4 we are inserting the element as the first element to preserve the temporal locality.

The content along with the time it was inserted is encapsulated inside a slot and inserted into

the list. Thus a slot has the information regarding when it was inserted. The cache_it module

also has information regarding how long to keep the content in the cache. The module can

look at the Time-to-Live (TOL) field of the content to ascertain this. If the TOL is not

Oregon State University Page Number 28

Power Saving in W AP

specified the content should be kept in cache only for a server specified time. The content

shouldn't be allowed to stay inside the cache for more time since that is not desired by the

content provider. If the content provider has not chosen to dictate how long it should be kept

in the cache it is upto the gateway installation to come up with the time. During peak load

time the content would be automatically be taken off from the cache when the number of

elements exceeds the MAX_ELMNTS_IN_SLOT. At other times the server should take off

the content from the cache to guarantee consistent contents for the clients.

5) Enforcer Module

The Cache_it module spawns off an enforcer thread to ensure that the cache does not contain

outdated contents. The cache_it module maintains a data structure, eraseme

struct eraseme{

int hash;

int time_left;

} ;

It contains the details of the content to be erased. The hash field in this structure holds the

hash_index of the list where the content would be. We can't maintain the index into the list where

the content can be since the content can be anywhere in the list over a period of time. The

time_left field indicates the time after which the content is to be erased from the cache. This time

could reflect the time to live field in the header of the page or could be an installation-specified

time. I have chosen a default value of 30 minutes.

When the enforcer is spawned by the cache_it module, for each content it caches it is passed

some information about the content. The information is, which linked list to operate on

(hash_index) and the time after which to be active and erase the content. The enforcer sleeps for

the specified time. After it wakes up from sleep it has at its disposal the hash_index where to find

the linked list. The content could be anywhere within this list.

The enforcer looks at each content to determine when it was cached. It also determines the current

time and calculates the elapsed time of each content in the cache.

Elapsed = current time- time in slot

The enforcer checks whether this time is greater than the time_left field inside the eraser and if so

this content is deleted from the list.

Thus the enforcer makes sure that no content stays inside the cache and becomes outdated.

Oregon State University Page Number 29

Power Saving in W AP

Test Results

)

Oregon State University Page Number 30

Power Saving in W AP

Kannel Gateway without Load Balancing and Server Cache

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 7.0 1.4

10
5 3.0 3.3

10 2.0 5.0

1 14.0 1.4

20 10 2.0 10.0

20 3.0 10.0

1 34.0 1.5

50
10 6.0 8.3

25 5.0 10.0

50 5.0 10.0
1 69.0 1.4

100 25 11.0 9.1

1 50 12.0 8.3

100 14.0 7.1

1 139.0 1.4

200 10 22.0 9.1

50 21.0 9.5

100 21.0 9.5

1 360.0 1.5

500
25 53.0 9.4

50 54.0 9.3

100 56.0 8.9
1 700.0 1.4

10 103.0 9.7
1000

25 108.0 9.3

50 104.0 9.6

Oregon State University Page Number 31

Power Saving in W AP

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

l 7.0 1.4

10
5 2.0 5.0

10 2.0 5.0

1 14.0 1.4

20 10 2.0 10.0

20 2.0 10.0

l 34.0 1.5

50
10 5.0 10.0

25 5.0 10.0

50 5.0 10.0
1 69.0 1.4

100 25 10.0 10.l
2

50 10.0 10.0

100 11.0 9.1

1 139.0 1.4

200 10 21.0 9.5

50 21.0 9.5

100 25.0 8.0

l 360.0 1.5

500
25 61.0 8.2

50 49.0 10.2

100 50.0 10.0
l 700.0 1.4

10 120.0 8.3
1000

25 96.0 10.4

50 98.0 10.2

Oregon State University Page Number 32

Power Saving in W AP

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 7.0 1.4

10
5 2.0 5.0

10 2.0 5.0

1 14.0 1.4

20 10 3.0 6.7

20 3.0 6.7

1 34.0 1.5

50
10 6.0 8.3

25 6.0 8.3

50 6.0 8.3
1 69.0 1.4

100 25 15.0 6.7
3

50 12.0 8.3

100 13.0 7.7

1 139.0 1.4

200 10 20.0 10.0

50 18.0 11.1

100 18.0 11.1

1 360.0 1.5

500
25 43.0 11.6

50 45.0 11.1

100 45.0 11.1
1 700.0 1.4

10 117.0 8.5
1000

25 114.0 8.8

50 94.0 10.6

Oregon State University Page Number 33

Power Saving in W AP

.,._ Kannel Gateway with LoadBalanacing
l

Noof No of Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 8.0 1.4

10
5 2.0 5.0

10 1.0 10.0

1 15.0 1.4

20 10 4.0 5.0

20 4.0 5.0

1 35.0 1.5

50
10 5.0 10.0

25 5.0 10.0

50 5.0 10.0
1 76.0 1.9

100 25 11.0 8.6

50 11.0 8.6

2 100 10.0 97.7

1 142.0 1.9

200 10 21.0 8.0

50 21.0 8.9

100 19.0 9.8

1 356.0 1.4

500
25 81.0 6.2

50 47.0 10.6

100 45.0 10.9
1 698.0 1.4

10 96.0 8.2
1000

25 96.0 8.2

50 89.0 11.2

Oregon State University Page Number 34

Power Saving in W AP

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 7.0 1.4

10
5 2.0 5.0

10 2.0 5.0

1 14.0 1.4

20 10 3.0 6.7

20 2.0 10.0

1 34.0 1.5

50
10 5.0 10.0

25 5.0 10.0

50 5.0 10.0
1 69.0 1.4

100 25 10.0 10.1

50 9.0 11.1

3 100 9.0 11.1

1 139.0 1.4

200 10 23.0 8.7

50 18.0 11.1

100 16.0 11.8

1 360.0 1.5

500
25 44.0 11.4

50 42.0 11.4

100 38.0 11.9
1 700 .0 1.4

10 94.0 10.6
1000

25 92.0 10.8

50 92.0 10.8

Oregon State University Page Number 35

Power Saving in W AP

Kannel Gateway with Server cache

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 6.0 1.7

10
5 2.0 5.0

10 2.0 5.0

1 11.0 1.8

20 10 2.0 10.0

20 2.0 10.0

1 28.0 1.8

50
10 5.0 10.0

25 3.0 16.7

50 3.0 16.7
1 53.0 1.9

100 25 6.0 16.7

1 50 7.0 12.5

100 7.0 14.3

1 107.0 1.9

200 10 15.0 13.3

50 12.0 16.7

100 12.0 16.7

1 264.0 1.9

500
25 22.0 22.7

50 34.0 14.7

100 33.0 15.2
1 529.0 1.9

10 53.0 18.9
1000

25 40.0 25.0

50 39.0 25.6

Oregon State University Page Number 36

Power Saving in W AP

Kannel Gateway with Server cache and Load balancing

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s)

1 6.0 1.7

10
5 2.0 5.0

10 1.0 10.0

1 11.0 1.8

20
10 2.0 10.0

20 2.0 10.0

1 27.0 1.9

50
10 3.0 16.7

25 3.0 16.7

50 2.0 25.0
1 54.0 1.9

100 25 5.0 20.0

50 5.0 20.0

100 7.0 14.3
2

1 109.0 1.8

200 10 12.0 16.7

50 11.0 18.2

100 10.0 20.0

1 265.0 1.9

500
25 24.0 20.8

50 19.0 26.3

100 18.0 27.8
1 532.0 1.9

10 52.0 17.2
1000

25 36.0 27.8

50 39.0 24.4

Oregon State University Page Number 37

Power Saving in W AP

Noof Noof Noof Time Rate
WapBoxes msgs Threads taken(s) (msg/s}

1 5.0 2.0

10
5 2.0 5.0

10 1.0 10.0

1 12.0 1.7

20 10 2.0 10.0

20 2.0 10.0

1 27.0 1.9

50
10 3.0 16.7

25 3.0 16.7

50 2.0 25.0
1 54.0 1.9

100 25 5.0 20.0

3 50 5.0 20.0

100 7.0 14.3

1 109.0 1.8

200 10 12.0 16.7

50 10.0 20.2

100 10.0 20.0

1 265.0 1.9

500
25 20.0 25.0

50 17.0 29.4

100 16.0 30.0
1 532.0 1.9

10 54.0 17.0
1000

25 37.0 27.0

50 35.0 28.6

Test Results Inference

♦ Kannel gateway with Load Balancing performs better on high peak periods and with

more Wapboxes than the gateway without Load Balancing.

♦ Kannel gateway with Server Cache performs 50% more efficiently than the gateway

without Server Cache.

♦ Kannel gateway with both Load Balancing and Server Cache performs better than the

gateway with just Server Cache on peak periods and with more Wapboxes .

Oregon State University Page Number 38

Power Saving in W AP

Conclusion

W AP is an exciting technology breakthrough and the full potential is not utilized due to such

constraints as clumsy input mechanism, power limitations of the cell phone. The power saving

features suggested would extend the battery life considerably. Load Balancing and Server Cache

were implemented in Kannel gateway and the gateway tested. Appreciable performance

enhancement in the gateway was obtained. Careful implementation of the gateway with an eye on

saving power, thereby increasing efficiency, can lead to less computing and hence more battery

power.

Future Work

Careful study of implementations can bring up more power saving candidates and those can be

implemented. The server cache can have limitations when implemented in real world due to the

limitation of memory to hold the cache. The cache can be designed so that part of it would be

stored in hard disk (secondary storage) and the other part in memory . When needed the part

stored in disk can be brought to the memory. Careful study needs to be done to get a proper mix.

Getting from disk is a costly operation and it should be made sure that it doesn't prove to be a

bottleneck.

References

Operating Systems Concepts- Galvin and Silberschatz

Introduction to Algorithms - Cormen ,Leiserson,Rivest

www.kannel.org

www.wapforum.org

www.phone.com

Oregon State University Page Number 39

