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0. Abstract 

I present a new heuristic search approach to compute approximate 
answers for the probability query in belief nets. This approach can 
compute the 'best' bounds for a query in a period of any given time 
(if time permitted, it will get an exact value). It inherits the essence 
of Symbolic Probabilistic Inference (SPI), which is the factoring part 
of SPI, and searches the structure passed by SPI to find a 
approximate value. This paper also presents the theoretical 
background for this approach. Empirical results are presented for 
three heuristics of this approach and a best first search approach 
tested in a set of randomly generated belief nets and a net from the 
real world. 

1. Introduction 

The belief networks is a popular graphical approach for representing 
uncertain expert knowledge reasoning in coherent probabilistic form. 
Many algorithms have been developed for evaluating queries and 
performing probabilistic inference on belief networks. They can be 
classified into two groups: exact techniques and approximate 
techniques. 

Two of the most well known exact techniques are Shachter's graph 
reduction algorithm [Shachter, 1986, 1989], and Pearl's message 
passing algorithm [Pearl,1988]. Both of these two approaches 
basically use a forward or data-directed control regime. A relatively 
new approach [D'Ambrosio, 1989], Symbolic Probabilistic Inference 
(SPI), however, uses a backward or goal-driven regime for 
probabilistic inference, and its performance is superior according to 
the empirical results of [Li, 1990], [D'Ambrosio & Li, 1991]. 

Exact diagnostic inference in general multiply connected networks 
has been shown to be NP-hard [Cooper 1987]. Therefore, there is 
considerable interest in the development of methods that provide 
greater efficiency at the cost of imprecision in the results. There 
have been two main directions in which researchers have sought 
efficient approximate algorithms. One approach involves random 
sampling of network instantiations or stochastic simulation [Henrion, 
1988], [Chin &Cooper, 1987], [Pearl, 1987], [Shacher&Peot, 1989]. 
The other involves the search methods to find the most probable 
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hypotheses [Shimony & Charniak, 1990], and the bound on the exact 
posterior probabilities [Henrion, 1991] 

In this paper, I present a search approach to compute approximate 
answers for the probability query in belief nets. In general, the 
answer to any query is the sum of a large number of terms, each of 
which in turn is the product of a set of probabilities provided in the 
original model. We believe that, under reasonable assumptions 
about the nature of the originally provided probabilities, a few large 
terms will dominate this sum, and the remaining terms will be very 
small and contribute little to the final answer. My algorithm 
employs the heuristic search method to search for the largest terms 
or mass terms thus far in the SPI internal computing structure, so 
that it can compute the lower and upper bound for the query. 
Additional search progressively narrows the bounds on the 
probabilities. Therefore, it can compute the 'best' bounds for the 
query in a period of any given time, finally, if time permitted, it can 
compute the exact value. 

In the rest of this paper, section 2 presents some background 
knowledge about SPI. Section 3 presents some theoretical 
background and methodology based on it. Section 4 presents the 
empirical results. Section 5 discusses the future research. Finally, 
section 6 gives a summary. 

2. Background 

2.1. Belief Nets 

A belief network consists of a directed acyclic graph G = (V,E), and a 
set of numeric probability distributions, where nodes in V represent 
variables, arcs in E and numeric probability distributions represent 
probabilistic relationships between the nodes (marginal for those 
nodes with no incoming arcs, otherwise conditioned on the nodes at 
the tails of the incoming arcs). Furthermore, for all v e V, if c(v) is 
the set of all parents of v, and a( v) is the set of propositional 
variables in V excluding v and v's descendents, and W is any subset 
of a(v), then W and v are conditionally independent given c(v). 
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2.2. Symbolic Probabilistic Inference 

Symbolic probabilistic inference (SPI) [ D'Ambrosio 1989] is a goal­
driven method which uses Bayes theorem directly for probabilistic 
inference in belief nets. Processing takes place in three phases: 
phase one forms an algebraic expression which corresponds to the 
answer to any query. Phase two constructs a factoring of the 
expression which permits efficient evaluation. Phase three finally 
evaluates the factored expression to determine the numeric answer. 
In the rest of this section, I will present some examples [D'Ambrosio 
1989] to illustrate how the SPI works. 

Figure 1 : A Simple Belief Net 

In a simple belief net shown in figure 1, using the chain rule of 
inference, we can compute the following symbolic expressions for the 
prior probability of each node: 

P(A) = P(A) 

P(B) = LA P(BIA)P(A) 

P(C) = LA P(CIA)P(A) 
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P(D) = LABCEF P(DIBCF)P(FIE)P(E)P(CIA)P(BIA)P(A) 

P(E) = P(E) 

P(F) = LEP(FIE)P(E) 

(1) 

Now we can compute the prior probabilities for any node (variable) 
in the belief net from the above expressions ( we only discuss prior 
probabilities here for simplicity). This method extends quite simply 
to include queries about arbitrary joint distributions simply by 
evaluating the union of the symbolic expressions for the 
corresponding nodes. But, the problem is the efficiency. That is 
computational complexity. Efficient evaluation of the expression 
requires keeping the size of intermediate results small. The key to 
efficient evaluation lies in recognizing that summation over some 
dimensions can be done early in the computation, rather than at the 
end. For example, we can more efficiently evaluate P(D) as follows: 

P(D) = LBc(Lp(P(DIBCF)(LEP(FIE)P(E))))(LAP(BIA)(P(CIA)P(A))) (2) 

The ideal solution is to find an optimal factoring for the expression, 
but optimal factoring is a hard problem. The factoring problem SPI 
considered is the factoring, which 1 ). minimizes the number of 
floating point multiplications needed for evaluation, and 2). makes 
use of the intermediate results computed in previous queries. 

SPI splits the factoring problem into two parts: a static part, in which 
a structure (partition tree) is established to guide query evaluation, 
and a dynamic part consisting of: first, a control heuristic that 
manages information flow between partitions; and second, a local­
evaluation heuristic which generates efficient evaluation trees for 
distributions being combined within a partition. The partition tree, 
and the evaluation tree of the belief net in figure 1 are given in 
figure 2 and figure 3, respectively. 
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Figure 2: A Partition of the Sample Belief Net 

sum-over:A 

Figure 3: An Evaluation Tree for Query P(D) 

Actually, this tree is equivalent to equation (2) 

5 



2.3. Search-Based Approximation in SPI 

SPI is quite efficient, and its performance is the best according to the 
empirical result of [Li, 1990], [D'Ambrosio & Li, 1991], due to its 
approach to the factoring problem mentioned in the above section. 
However, since exact computation for probabilistic inference is a NP­
hard problem [Cooper, 1987], we have to find an approximation 
approach for probabilistic inference for very large belief net. 

Our approximate approach inherits the essence of SPI, which is the 
factoring part of SPI (the first two phases of SPI mentioned in section 
2.1), and searches in the structure (a evaluation tree) passed by SPI 
to find an approximate value. In other words, to answer any query 
in a belief net, it first produces an evaluation tree for the query 
using the SPI techniques, then searches the evaluation tree to find 
the approximate value for the query. We will present our 
methodology in the next section. 

3. Notation and Methodology 

3.1. An Overview 

In general, the answer to any query is the sum of a large number of 
terms, each of which in turn is the product of a set of probabilities 
provided in the original model. For example, in the sample belief 
net, a query P(D) is a sum of terms given by formula (1) or (2). Each 
term is the product of probabilities P(DIBCF), P(FIE), P(E), P(CIA), 
P(B IA), and P(A). We believe that, under reasonable assumptions 
about the nature of the original provided probabilities, a few large 
terms will dominate this sum, and the remaining terms will be very 
small and contribute little to the final answer. The problem of 
computing an approximate answer quickly, then, can be reduced to 
the problem of identifying these large terms. An obvious 
approximation method is to search those large terms among all the 
terms for the query. 

3.2. Notation and Theorem 

Suppose we have a belief net C = (V, E, P), where G = (V, E) is a 
directed acyclic graph, and P is the corresponding probability 
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distribution. For any v e V, let c(v), V ::> c(v), be the set of all parents 
of v, then for each node v in the graph, we have a probability 
distribution P(vlc(v)), (for those root nodes, c(v) is empty). 

Theorem 1. For any belief net C = (V, E, P), P(V) is given by 

P(V) = IIv e v & P(c(v))>O P(vlc(v)) 

where II v e v & P(c(v))>O means we are taking the product of all 
propositional variables in V for which P(c(v))>0 [Neapolitan, 1990]. 

In the rest of this paper, we will name this product as a term, and 
P(vlc(v)) as an item. 

Theorem 2. For any subset V' of V, 

P(V') = Lv e (V - V') II P(c(v))>O P(vlc(v)) 

Proof: From the property of marginal probability, 

P(V') = Lv e (V - V') P(V) 

= Lv e (V - V') II P(c(v))>O P(vlc(v)) {theorem l} 

In other words, theorem 2 tells us that any query is a sum of the 
related terms. 

Corollary 3. If we have a set of terms for P(V'), let say, t 1, t2 , ... , tn, 
then 

n 

P(V') ~ L ti 
i=l 

Proof: we know that P(vlc(v) ~ 0, thus, each term ~ 0, 

P(V') = L tj 
all 

Theorem 4. If all the values V' can take are x1, x2, ... , Xn, and 
P(V'= Xi) ~ Li, then 

7 



P(V'= Xi) ~ 1 - L L j 
j¢i 

In other words, if we know all the lower bounds for P(V'), we know 
the upper bounds too. 

Proof: from the definition of the probability 
n 
L P(V'=xi) = 1 
i=l 

P(V'=xi) = 1 - L P(V'=xj) 
j¢ i 

The above lower and upper bound theory is proved for the case 
without observed value (prior probability). In fact, it is also satisfied 
for the case with observed value (posterior probability). 

Theorem 5. Suppose the observed variable set is Obs, the query 
variable set is Q, and we already know P(Q, Obs) ~ L, then L is also 
the lower bound of the posterior probability of Q. 

Proof: from the definition of condition probability 
Ppost(Q) = P(Q I Obs) 

= P(Q, Obs) / P(Obs) 
~ P(Q, Obs) {because P(Obs) ~ 1 } 
~L 

Obviously, corollary 3 is also satisfied for the case with observed 
values. 

From Corollary 3, Theorem 4, and Theorem 5, we know that, if we 
find some terms for P(V'), we get the lower bounds and upper 
bounds for P(V'). The more terms or the bigger term we find, the 
narrower bounds we will get. This is the basic theory our search 
algorithm bases on. The problem is how to search the bigger term 
efficiently? Unfortunately, searching for the biggest term is another 
NP-hard problem. SPI [D'Ambrosio & Shachter, 1990] gives more 
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theorems and heuristics about how to avoid the redundant terms, 
how to get better factoring, and how to cache the intermediate 
values. Our algorithm will do the search on the evaluation tree given 
by SPI, which is essence of the factoring problem SPI dealing with. 

An evaluation tree is a representation of SPI factoring for a query. It 
is a binary tree having the following properties: 

1. The leaf nodes are distributions of the original belief net. For 
example, in figure 3, P(A), P(CIA), P(BIA), P(E), P(FIE), and P(DIB,C,F) 
are all in leaf nodes of the tree. 

2. The internal nodes are the probability distributions produced 
during the computation for the query (The root of the tree is the 
queried distribution). Each probability is the product of its two 
children's probabilities, summed over the sum-over variables in 
sum-over (sum-over is the variable set to be summed over). For 
example, in figure 3, P(A,C), P(B,C), P(F), P(DIB,C), and P(D) are all in 
the internal nodes of the tree ( we name these intermediate 

probabilities as mass items), and P(DIB,C) = Lp P(DIB,C,F) P(F). In 
SPI, all these probabilities are exact values, but in our system, they 
may be the partial (accumulated) values. Corresponding to the 
notation after theorem 1, each item P( vie( v)) is stored in the leaf 
node, a term is the product of all probabilities in the leaf nodes. We 
define a mass term as following: a mass term of a query or an 
evaluation tree is the product of items or mass items satisfying : i) 
each (mass) item's ancestor mass item (ancestor, descendant, brother, 
and father here are all in terms of the evaluation tree) is not in the 
same mass term, and ii) each (mass) item's brother (mass) item or 
brother's descendant item must be in the mass term. In other words, 
we can get a mass term by repeatedly substituting two brother 
(mass) items in a (mass) term by its father mass item. For example, 
in figure 3, we get a mass term P(DIB,C,F)P(F)P(BIA)P(CIA)P(A) by 
substituting P(F) for P(FIE) and P(E) from a term 
P(DIB,C,F)P(FIE)P(E)P(BIA)P(CIA)P(A). We can get another mass term 
P(DIB,C)P(BIA)P(CIA)P(A) by substituting P(DIB,C) for P(DIB,C,F) and 
P(F) from a mass term P(DIB,C,F)P(F)P(BIA)P(CIA)P(A). 

Max Dim of an evaluation tree is the maximum dimension of 
probability distributions in the evaluation tree. For example, the 
Max Dim of the evaluation tree in figure 3 is 4. 
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3.3. Algorithms 

The heart of the SPI heuristic search algorithm Query, showed in 
Figure 4, has four input parameters: 
q: the current partial term value (a partial term is the partial product 
of a term), the first time called value is 1. 
B: the query variable set and the corresponding query values. 
H: the heuristic function. 
T: the evaluation tree ( in fact, it is a pointer to the tree). 

Query returns the 'biggest' term or mass term for query B thus far, in 
terms of the heuristic function H, and the state of the evaluation tree 
T. It will return the next 'biggest' (mass) term next time Query is 
called. 

Algorithm Query can be described as: At any node i of the evaluation 
tree, when a query arrives (together with a found partial term 
value), if the value for the query has already been cached at the 
node, we obtain a term by multiplying this cached value and the 
found partial term value. Otherwise, it will call HS earch from its 
both subtrees to get heuristic values. Then, Instantiate the whole 
subtree with a bigger heuristic value (hopefully, instantiating this 
subtree will get a bigger subterm. And instantiating the subtree will 
bind sum-over set a value not summed over), and Query (a 
recursive call) the other subtree. In other words, the sum-over 
order at the internal nodes of the evaluation tree is guided by the 
HSearch and the heuristic function H. 

Query is implemented as a non-backtracking search. One reason is 
that any query is a sum of a large number of terms, each term we 
found is useful for the query, even though it is relatively small. 
Another reason of not a best first search is that best first search 
approach tends to be memory bound, especially for large belief nets. 
Finally, the time needed to find the biggest (next) term in the worst 
case is exponential to the number of nodes in belief net (Thus, in 
some case, search for the biggest term may even take longer time 
than the exact value). Query here is a compromise of the SPI 
structure ( evaluation tree), time and space. The worst case time for 
finding a next 'biggest' term is guaranteed to be polynomial with 
respect to some heuristic functions. 

10 



algorithm Query(q, B, H, T) 
begin 

if (there is a whole value for P(B) already cached at the root of T) then 
return (the cached value); 
{we find a term (q*the return value)} 

while(there is no a whole value for query B cached at the root of T) 
begin 

(vt, Bt) = HSearch(B, H, leftSubTree(T)); {note J} 
(v2, B2) = HSearch(B, H, rightSubTree(T)); 
if (vt > v2) then 

begin 
(qt, B12) = lnstantiate((B u Bt), H, leftSubTree(T)); {note 2} 
42 = Query(qt *q, (B u B12), H, rightSubTree); 
Cache(qt *q2); 
qt = Query(q2*q, Bu S), H, leftSubTree(T));{note 4} 
Cache(qt *q2); 

end 
else 

begin 
(q2, B21) = Instantiate((B u B2), H, rightSubTree(T)); 
41 = Query(q2*q, (B u B21), H, leftSubTree); 
Cache(q 1 *q2); 
42 = Query(qt *q, B u S), H, rightSubTree(T));{note 4} 
Cache(qt *q2); 

end { end if, note 3} 
end; { end while, a whole value for query B cached at the root of T} 
P(B) = (the cached value); 

end; 
Figure 4. the recursive call procedure for each node in the evaluation tree. 

Note 1: ( v, B ') = HSearch(B, H, T), will search in the tree T to find the 
'biggest' value v, in terms of the heuristic function H and the query 
set B, where B' is the instantiated set (or called binding) for value v. 
HSearch algorithm is as following: 

algorithm HSearch(B, H, T) 
begin 

(v, B') = H(B, T); {note 1.1} 
if (v < 0) then {note 1.2} 

begin 
(v1, Bl) = HSearch(B, H, leftSubTree(T)); 
(v2, B2) = HSearch(B, H, rightSubTree(T)); 
if (vt > v2) then 

return (vt, Bt) 
else 

return (v2, B2); 
end 

else 
return (v, B') 

end; 
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Note 1.1: For simplicity, 
value v, and binding B. 

we suppose heuristic function H return a 
Actually, this is not true for all heuristics. 

Note 1.2: (v < 0) means that the heuristic function H can't find a 
proper value. 

Note 2: (v, B') = Instantiate(B, H, T), will instantiate the whole tree T, 
to get the 'biggest' term v and the corresponding binding B ', with 
respect to the heuristic function H, the instantiated set B, and the 
space not yet instantiated. The Instantiate algorithm is as following: 

algorithm Instantiate(B, H, T) 
begin 

(v, B') = H(B, T); 
if (v < 0) {heuristic H can't get a proper value} 

begin 
(vt, Bt) = HSearch(B, H, leftSubTree(T)); 
(vz, B2) = HSearch(B, H, rightSubTree(T)); 
if (vt > v2) then { note 3} 

begin 
(41, B12) = Instantiate((B u Bt), H, leftSubTree(T)); 
( qz, B22) = Instantiate((B u S), H, rightSubTree(T)); { note 4} 
Cache(q1 *qz); 

end 
else 

begin 
(qz, B22) = lnstantiate((B u Bz), H, rightSubTree(T)); 
(qt, B12) = lnstantiate(B u S), H, leftSubTree(T));{note 4} 
Cache(ql *qz); 

end 
return (the cached value and the corresponding binding); 

end 
else 

return (v, B'); 
end; 

Note 3: This if-statement instantiates the subtree with bigger 
heuristic return value v first. It employs the heuristics of ''bigger 
item implying bigger term". 

Note 4: S is the instantiated sum-over variable set at root of the tree 
T. It is instantiated by its first instantiated subtree. 

This algorithm is implemented in LISP as a generator. Every time it 
is called, it returns a 'biggest' term or a mass term thus far. In other 
words, it narrows the lower and upper bound for query B every time 
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it is called. This implementation is especially suitable for the real 
time decision making/diagnosis problem. In real time diagnosis 
decision making, it can be called repeatedly until the due time, or 
until it gets a satisfying bound (knowing an absolute bound is enough 
in some situation). Of course, it will give an exact answer if there is 
enough time. 

3.4. Complexity 

The most expensive routine in algorithm Query is H and HSearch. 
The number of times Query calls HSearch is O(Tsize) (Since whether 
HSearch calls itself or not depends on heuristic H, O(Tsize) here does 
not include HS earch calling itself, we will discuss more in section 3.5), 
where Tsize is the number of nodes of the evaluation tree, Tsize = 2n 
-1, and n is the number of nodes in the belief net. Thus, the number 
of times Query calling HSearch is O(n). Similarly, the number of 
times Query calls H is O(n) (not including HSearch calling H). What is 
the complexity of H and HSearch? They will be discussed below. 

Our data structure is the evaluation tree for a query, and the 
information kept in each node of the partition tree. Therefore, the 
space complexity is the same as SPI. 

3.5. Heuristics 

The heuristic function in algorithm Query is a parameter so that we 
can easily try different heuristics, and see which heuristic is best for 
which kinds of belief nets. 

3.5.1. HO: Naive Heuristic 

HO will guide Query to do summation over sum-over set at each 
internal node in a numeral enumeration order. In other words, once 
HO is called at node i, it will return the next value set in the 
enumeration order for sum-over. For example, at node i, sum-over is 
{a, b}, first time HO is called, it returns (0, 0), next time returns 
(0, 1), and so on (suppose the domain of a and b is [0, l] ). 

Complexity of H and HS earch in this case is constant 0(1), thus, the 
worst case time complexity of Query for a single term is O(n). 
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3.5.2. Hl: Bigger Item Implying Bigger Term 

This heuristic H 1 will guide HSearch(B, H, T) routine to find the 
biggest uninstantiated item in the tree T, and guide Instantiate to 
instantiate the biggest uninstantiated item. More exactly, the 
heuristic function will try to find the biggest uninstantiated whole 
probability value in the root of tree T. If it can find one, HSearch 
finishes. Otherwise, the HSearch will recursively call heuristic 
function H 1 for T's both subtrees, and return the bigger one (see 
N otel in section 3.3) 

The worst case time complexity of the heuristic function is O(DDim), 
and the worst case time complexity for the HSearch is O(nDDim), 
where D is the domain size of all distribution variables (suppose they 
have the same domain sizes), Dim is the Max Dim, and n is the 
number of nodes in tree T. Therefore, the worst case time 
complexity of Query for a single term is O(DDimnlogn). 

3.5.3. H2: Randomly Instantiate One of the Subtrees 

From the analysis in the above section 3 .5 .2, we know that the worst 
case time complexity of HSearch, for such a simple heuristic Hl, is 
very high. And in the algorithm Query and Instantiate, HSearch is 
called recursively. As noted in Note 3 of figure 4 and figure 5, calling 
HS earch and the if-statement there are driven by the heuristics of 
"bigger item implying bigger term". Is this heuristic already fixed in 
the algorithm Query and Instantiate? Not really. We can get rid of it 
by letting the HS ea re h do nothing but randomly return O or 1, so that 
algorithm Query and Instantiate can instantiate the subtree 
randomly, and do less HSearch. In this case, H2 is the same as Hl 
when it is called directly by Instantiate, and is a O and 1 random 
generator when it is called directly by HSearch. 

The worst case time complexity of the heuristic function is the same 
O(D Dim), the complexity of HSearch in this case is constant 0(1), the 
complexity of Query calling Instantiate is O(n), thus, the worst case 
time complexity of Query for a single term is O(nDDim). 

3.6. Example 

Suppose that John is taking a class. The probability of John study 
hard is 0.9, the probability of John being clever is 0.7. Suppose 
further that whether a student can get an A in the class depends on 
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whether s/he studies hard, and is clever (the condition probability is 
given in figure5). Query : what is the probability of John getting an 
A for the class? 

The corresponding belief net and the evaluation tree are shown in 
figure 5 and figure 6, respectively. 

Figure 5: Belief Net of the example 

sum-over: C 

4 

P(AIS,C) 

P(AIS) 

S C A=0 A=l 
(0, 0) 0.8 0.2 
(0, 1) 0.5 0.5 
(1, 0) 0.5 0.5 
(1, 1) 0.2 0.8 

P(A) 

sum-over: S 

/ P(S) (0.1, 0.9) 

P(A) =Ls (LC (P(AIS,C)P(C))) P(S) 

P(A=l) = 0.504+0.135+0.035+0.006 

Figure 6: Evaluation tree of the example 

15 



3.6.1. Query Calling Scenario for H 0 

Query(l, ((A 1)), HO, Tl); 
no a whole value for P(A=l) cached at root of Tl; 
(H 0) = HSearch(((A 1)), HO, Tl); 
Instantiate(((A 1) (H 0)), HO, T2); 

(C 0) = HSearch(((A 1) (H 0)), HO, T2); 
(0.2 ((A l)(H 0)(C 0))) = lnstantiate(((A l)(H 0)(C 0)), H0,T4); 
(0.3 ((C 0))) = instantiate(((A l)(H O)(C 0)), HO, T5); 
return (0.06 ((A l)(H O)(C O))); 

(0.1 ((H 0))) = Query(0.06, ((A 1) (H 0)), HO, T3); 
return (0.006 ((A l)(H O)(C O))); {first term found} 

Query(0.1, ((A l)(H 0)), HO, T2); 
no a whole value for P(A=l,H=O) cached at root of T2; 
(C 1) = HSearch(((A 1) (H 0)), HO, T2); 
(0.5 ((A l)(H 0)(C 1))) = lnstantiate(((A l)(H 0)(C 1)), H0,T4); 

(0.7 ((C 1))) = Query(0.05, ((A l)(H O)(C 1)), HO, T5); 
return (0.035 ((A l)(H O)(C 1))); {second term found} 

still no a whole value for P(A= 1) cached at root of Tl; 
(H 1) = HSearch(((A 1)), HO, T1); 
Instantiate(((A 1) (H 1)), HO, T2); 

(C 0) = HSearch(((A 1) (H 1)), HO, T2); 
(0.5 ((A l)(H l)(C 0))) = lnstantiate(((A l)(H l)(C 0)), H0,T4); 

(0.3 ((C 0))) = Instantiate(((A l)(H l)(C 0)), HO, T5); 
return (0.15 ((A l)(H l)(C O))); 

(0.9 ((H 1)) = Query(0.15, ((A 1) (H 1)), HO, T3); 
return (0.135 ((A l)(H l)(C O))); {third term found} 

Query(0.9, ((A l)(H 1)), HO, T2); 
no a whole value for P(A=l,H=l) cached at root of T2; 
(C 1) = HSearch(((A 1) (H 1)), HO, T2); 
(0.8 ((A l)(H 0)(C 1))) = lnstantiate(((A l)(H l)(C 1)), H0,T4); 
(0.7 ((C 1))) = Query(0.72, ((A l)(H l)(C 1)), HO, T5); 
return (0.504 ((A l)(H l)(C 1))); {fourth term found} 

finish; 
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3.6.2. Query Calling Scenario for H 1 

Query(l, ((A 1)), Hl, Tl); 
no a whole value forP(A=l) cached at root ofT1; 
HSearch(((A 1)), Hl, T2); 

(0.8 ((A l)(H l)(C 1))) = HSearch(((A 1)), Hl, T4); 
(0.7 ((C 1))) = HSearch(((A 1)), Hl, Ts); 
return (0.8 ((A l)(H l)(C l))); {return the bigger one} 

(0.9 ((H 1))) = HSearch(((A 1)), Hl, T3); 
(0.9 ((H 1))) = Instantiate(((A 1) (H 1)), Hl, T3); 
Query(0.9, ((A l)(H 1)), Hl, T2); 

no a whole value for P(A=l, H=l) cached at root of T2; 
(0.8 ((A l)(H l)(C l)))= HSearch(((A 1) (H 1)), Hl, T4); 
(0.7 ((C 1)))= HSearch(((A 1) (H 1)), Hl, T4); 
(0.8 ((A l)(H l)(C 1))) = Instantiate(((A l)(H l)(C 1)), Hl,T4); 
(0.7 ((C 1))) = Query(0.72, ((A l)(H l)(C 1)), Hl, T5); 
return (0.504 ((A l)(H l)(C l))); {first term found} 

Query(0.9, ((A l)(H 1)), Hl, T2); 
no a whole value for P(A=l,H=l) cached at root ofT2; 
HSearch(((A 1) (H 1)), Hl, T2); 

(0.5 ((A l)(H l)(C 0)))=HSearch(((A l)(H 1)), Hl, T4); 
(0.3 ((C 0))) = HSearch(((A 1) (H 1)), Hl, T5); 
return (0.5 ((A l)(H l)(C 0))) 

(0.5 ((A l)(H l)(C 0))) = Instantiate(((A l)(H l)(C 1)), Hl,T4); 
(0.3 ((C 0))) = Query(0.45, ((A l)(H l)(C 0)), Hl, Ts); 
return (0.135 ((A l)(H l)(C 0))); {second term found} 

still no a whole value forP(A=l) cached atrootofT1; 
HSearch(((A 1)), Hl, T2); 

(0.5 ((A l)(H 0)(C 1))) = HSearch(((A 1)), Hl, T4); 
(0.7 ((C 1))) = HSearch(((A 1)), Hl, Ts); 
return (0.7 ((C l))); 

(0.1 ((H 0))) = HSearch(((A 1)), Hl, T3); 
Instantiate(((A 1) (C 1)), Hl, T2); 

(0.5 ((A l)(H 0)(C 1))) = HSearch(((A l)(C 1)), Hl, T4); 
(0.7 ((C 1))) = HSearch(((A l)(C 1)), Hl, T5); 
(0.7 ((A l)(C 1))) = Instantiate(((A l)(C 1)), Hl,T5); 
(0.5 ((A l)(H 0)(C 1))) = Instantiate(((A l)(C 1)), Hl,T4); 
return (0.35 ((A l)(H 0)(C l))); 

(0.1 ((H 0))) = Query(0.35, ((A 1) (H 0)), Hl, T3); 
return (0.035 ((A l)(H 0)(C l))); { third tenn found} 

Query(0.l, ((A l)(H 0)), Hl, T2); 
no a whole value for P(A= l ,H=0) cached at root of T2; 
(0.2 ((A l)(H 0)(C 0))) = HSearch(((A l)(H 0)), Hl, T4); 
(0.3 ((C 0))) = HSearch(((A 1)), Hl, T5); 
(0.3 ((C 0))) = Instantiate(((C 0)), Hl,T4); 
(0.2 ((C 1))) = Query(0.03, ((A l)(H 0)(C 0)), Hl, T5); 
return (0.006 ((A l)(H 0(C 0))); {fourth tenn found} 

finish; 
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3.6.3. Query Calling Scenario for H 2 

Query(l, ((A 1)), H2, T1); 
no a whole value for P(A=l) cached at root of Tl; 
Instantiate(((A 1)), H2, T2); 

(0.8 ((A l)(H l)(C l)))=lnstantiate(((A 1)), H2, T4); 
(0.7 ((C l)))=lnstantiate(((A 1)), H2, T5); 
return (0.56 ((A l)(Hl)(C l))); 

(0.9, ((H l)))=Query(0.56, ((A l)(H l)(C 1)), H2, T3); 
return (0.504 ((A l)(H l)(C l))); {first term found} 

Query(0.9, ((A l)(H 1)), H2, T2); 
no a whole value for P(A=l,H=l) cached at root of T2; 
(0.5 ((A l)(H l)(C 0))) = Instantiate(((A l)(H 1)), H2,T4); 
(0.3 ((C 0))) = Query(0.45, ((A l)(H l)(C 0)), H2, T5); 
return (0.135 ((A l)(H l)(C 0))); {second term found} 

still no a whole value for P(A=l) cached at root of T1; 
Instantiate(((A 1)), H2, T2); 

(0.5 ((A l)(H 0)(C 1))) = Instantiate(((A 1)), H2,T4); 
(0.7 ((A l)(C 1))) = Instantiate(((A 1)), H2,T5); 
return (0.35 ((A l)(H 0)(C l))); 

(0.1 ((H 0))) = Query(0.35, ((A 1) (H 0)), H2, T3); 
return (0.035 ((A l)(H 0)(C l))); {third term found} 

Query(0.1, ((A l)(H 0)), H2, T2); 
no a whole value for P(A=l,H=0) cached at root of T2; 
(0.2 ((A l)(H 0)(C 0))) = Instantiate(((A l)(H 0)), H2, T4); 
(0.3 ((C 0))) = Query(0.02, ((A l)(H 0)(C 0)), H2, T5); 
return (0.006 ((A l)(H 0(C 0))); {fourth term found} 

finish; 
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4. Empirical Results 

The search heuristics described in the above section, and a best first 
search developed by D'Ambrosio [D'Ambrosio, 1991] are tested in 
nineteen belief nets for these experiments. One of those nets is the 
intel net currently used for circuit diagnosis. The others are 
generated by J. Suermondt's random net generator. For each net, I 
only choose those queries with large evaluation tree for these 
experiments, because we are only interested in the query with large 
size. Instead of comparing the run time among these algorithms, we 
compare the basic operations which dominate the algorithms, so that 
the performance comparison is independent of the implementation 
(Therefore, in this section, time means the number of times of the 
basic operation). This basic operation is the examination of the items 
(distribution values), which includes 1) the comparison: whether this 
item is a bigger one, and 2) validation: whether this item can be 
taken or not. 

4.1. Data 
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a e : T bl 1 E xpenmenta lN etwor k Ch aractenst1cs 
Net Nodes Arcs Query tree MAX 

size DIM 
1 23 28 var23 9 4 

var21 15 4 -
2 10 38 var10 19 9 

var9 17 8 
3 11 26 var11 13 4 

vars 9 3 
4 14 21 var14 11 5 

var12 19 5 
var1 o 9 5 

5 10 15 var1 o 15 4 
var9 13 4 

6 27 35 var27 11 5 
var26 11 3 
var24 13 4 

7 12 26 var12 17 6 
var1 o 13 5 

8 12 23 var1 0 13 5 
var9 13 6 

9 14 15 var14 9 4 
1 0 12 22 var12 15 5 
1 1 20 42 var20 19 7 
1 2 16 35 var1 6 11 4 

var13 13 6 
1 3 12 20 var12 17 7 
1 4 28 34 var28 15 4 

var27 23 5 
1 5 25 30 var19 21 4 
1 6 22 29 var22 17 4 

var20 31 5 
1 7 27 41 var27 17 5 
1 8 16 16 var1 6 13 5 
intel 100 106 IHiJ?:h 225 fccd'sl 17 8 

lnom 224 cd's1 61 8 
!Normal 225m fccd'sl 63 8 
7.5_<=_BVDP2_<=11.5 63 8 
1Low_225m fccd'sl 17 8 - ---
BVDN2>=15 63 8 
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Table 2: First term time (basic operations) and the mass value percentage to the exact 
value 
Net Query First Term Oos first Term mass % 

A* HO Hl H2 A* HO Hl H2 
1 var23 89 9 27 9 17 .13 3.2 6.72 i 5.57 

var21 224 15 51 15 16.23 0.67 2.83 2.20 
............... WY .. ~~ 

2 varlO 4720 19 412 51 2.12 0.30 0.25 0.25 
var9 1730 17 255 17 2.95 0.38 0.54 0.34 

3 varl 1 227 13 85 13 7.62 0.44 0.37 1.86 
var8 76 9 26 11 31.18 3.8 11.38 ,10.34 ...... 

4 var14 168 11 52 11 6.57 2.57 2.75 2.75 
var12 372 19 72 21 6.67 0.04 2.84 0.45 
varl0 64 9 25 9 22.05 3.78 20.89 11. 7 

5 varl 0 168 15 69 32 12.25 0.05 2.78 0.75 
var9 148 13 57 36 10.69 0.16 3.50 3.57 

6 var27 251 11 33 12 17 .82 1.65 8.36 4.16 
var26 107 11 35 16 21.83 4.09 3.81 2.94 
var24 120 13 51 17 10.76 1.17 2.22 1.41 

7 varl 2 268 17 74 24 8.42 0.08 0.84 0.84 
varl 0 128 13 43 14 10.30 0.53 7.69 7.69 

8 varl0 268 13 55 13 5.88 0.63 2.93 1.36 ...... ~ ............... uu ...................... u •• 

var9 818 13 52 21 7.12 1.82 3.75 2.77 
9 var14 128 9 26 9 14.13 9.86 7.05 7.05 

"""'" ................... LO. ... 

1 0 varl 2 361 15 69 18 13.05 0.87 2.31 0.25 
1 1 var20 283 19 87 19 4.57 0.82 1.77 1.77 
1 2 var16 133 11 32 17 17 .12 5.53 3.84 8.50 

varl 3 178 13 68 20 16.06 1.86 2.24 2.24 
1 3 varl 2 559 17 76 63 4.88 0.08 0.67 0.35 
1 4 var28 185 15 50 15 14.22 0.28 4.38 2.23 

var27 470 23 106 24 4.25 0.28 0.49 0.07 
•••rm~n'"' 

1 5 varl 9 325 21 93 30 2.68 0.14 0.34 0.12 
1 6 . var22 497 17 54 19 11.09 0.16 1.71 0.77 

var20 932 31 136 52 0.82 0.003 0,01 0.02 
1 7 var27 182 17 74 17 7.44 0.17 ..... 0.83 ......... 0.83 ..................... .. .............. u ....... 

1 8 varl 6 120 13 52 14 6.37 2.80 2.77 1.53 
intel J!:ii..&E..~ 5 fc cd' s I * 17 61 17 * 0.78 2.96 .... 2.96 ........ u. ,u.uu ....................... 

lnom 224 cd'sl * 61 276 69 * l.19d-6 6.30d-8 1.17d-6 
!Normal 225m_fccd's1 * 63 316 290 * 5.96d-8 1.87d-7 1.16d-6. 
7.5 <= BVDP2 <=11.5 * 63 316 71 * 5.96d-8 3.91d-7 l.15d-6 
ILow 225m fccd'sl * 17 61 17 * 0.82 3.27 3.27 
BVDN2>=15 * 63 316 71 * 5.96d-8 3.9ld-7 1.lSd-6 

Note: The * in the table denotes an unknown value since the algorithm could not finish 
running those test cases in ten hours 
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Table 3: First term H mass value relative error to the A* mass value 
relative error = (mass( A*) - mass(H))/ mass(A*) 
Net Query tree MAX mass relative error 

size DIM HO Hl H2 
1 var23 9 4 0.81 0.61 0.67 

var21 15 4 0.96 0.83 0.86 
2 varlO 19 9 0.86 0.88 0.88 

var9 17 8 0.87 0.82 0.88 
3 varl 1 13 4 0.84 0.95 0. 75 

var8 9 3 0.88 0.63 0.67 
4 var14 11 5 0.61 0.58 0.58 

var 12 19 5 0.99 0.57 0.93 
var 10 9 5 0.83 0.05 0.47 ~-

5 varl 0 15 4 0.996 0.77 0.94 
var9 13 4 0.99 0.67 0:61 - ........... -...... 

6 var27 11 5 0.91 0.53 0.77 
var26 11 3 0.81 0.83 0.87 
var24 13 4 0.89 0.79 0.87 

7 varl 2 17 6 0.99 0.90 0.90 
varlO 13 5 0.95 0.25 0.25 

8 varlO 13 5 0.89 0.50 0.77 
var9 13 6 0.74 0.47 0.61 

9 var14 9 4 0.30 0.5 0.5 
1 0 varl 2 15 5 0.93 0.82 0.98 
1 1 var20 19 7 0.82 0.61 0,61 
12 varl 6 11 4 0.68 0.78 0.50 

var13 13 6 0.88 0.86 0.86 
1 3 var12 17 7 0.98 0.86 0.93 
14 var28 15 4 0.98 0.69 0.84 

var27 23 5 0.93 0.88 0.98 
1 5 var 19 21 4 0.95 0.87 0.96 
1 6 var22 17 4 0.98 0.85 0.93 

var20 31 5 0.996 0.98 0.98 
1 7 var27 17 5 0.98 0.89 0.89 
1 8 varl 6 13 5 0.56 0.57 0.76 
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Table 4: mass values in the same amount of time of A• algorithm for the first and second 
terms 
Net Query A*lst mass % A"'2nd mass % 

term A"' HO Hl H2 term A• HO Hl 
ODS ODS 

1 var23 89 17.13 100.0 27.00 86.92 136 32.57 100.0 56.24 
var21 224 16.23 100.0 66.00 100.0 253 27.35 100.0 76.00 

2 varlO 4720 2.12 100.0 1.33 11.55 5829 2.82 100.0 2.09 
var9 1730 2.95 100.0 2.43 16.36 2106 4.29 100.0 2.75 

3 varl l 227 7.62 100.0 1.35 41.57 257 14.97 100.0 1.50 
var8 76 31.18 100.0 41.00 92.00 110 36.03 100.0 47.00 

4 var14 168 6.57 100.0 11.60 76.00 217 30.54 100.0 13.50 
var12 372 6.67 100.0 12.12 34.70 381 10.10 100.0 12.17 
varlO 64 22.05 40.00 56.00 21.00 85 31.62 100.0 62.00 

5 varlO 168 12.25 100.0 13.50 9.00 189 17.43 100.0 15.64 
var9 148 10.69 100.0 8.20 14.30 174 19.59 100.0 9.64 

6 var27 251 17.82 100.0 61.30 93.00 283 25.79 100.0 61.90 
var26 107 21.83 100.0 79.11 100.0 181 44.67 100.0 100.0 
var24 120 10.76 100.0 22.00 70.00 227 17.93 100.0 69.27 

7 var12 268 8.42 83.88 11.00 42.32 300 10.22 100.0 12.60 
varlO 128 10.30 100.0 37.72 56.52 141 15.92 100.0 41.00 

8 varlO 268 5.88 89.00 6.50 38.56 353 8.89 100.0 10.00 
var9 818 7.12 100.0 52.90 100.0 1633 13.25 100.0 88.83 

9 varl4 128 14.13 100.0 65.00 100.0 171 21.36 100.0 100.0 
1 0 varl2 361 13.05 100.0 7.42 21.32 413 13.05 100.0 9.60 
1 1 var20 283 4.57 82.25 19.76 35.20 412 7.92 100.0 34.11 
12 var16 133 17 .12 100.0 77.93 97.27 177 31.72 100.0 86.00 

var13 178 16.06 66.98 6.00 11.40 210 23.96 16.56 8.00 
13 var12 559 4.88 72.62 14.80 11.50 645 7.11 88.23 16.21 
14 var28 185 14.22 100.0 29.00 100.0 269 25.22 100.0 46.86 

var27 470 4.25 100.0 8.00 7.06 495 8.46 100.0 12.00 
15 var19 325 2.68 100.0 11.34 100.0 357 4.92 100.0 13.10 
16 var22 497 11.09 100.0 100.0 100.0 526 15.40 100.0 100.0 

var20 932 0.82 100.0 12.70 100.0 1073 1.19 100.0 16.98 
17 var27 182 7.44 100.0 3.00 15.75 242 10.49 100.0 8.16 
18 var16 120 6.37 100.0 22.85 48.60 129 8.87 100.0 29.00 
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H2 

100.0 
100.0 
13.50 
20.60 
53.95 
100.0 
95.40 
38.40 
42.60 
14.10 
16.90 
96.50 
100.0 
100.0 
43.82 
60.00 
50.00 
100.0 
100.0 
25.11 
47.00 
l 00.0 
13.81 
13.51 
100.0 
72.00 
100.0 
100.0 
100.0 
50.00 
49.00 



Table 5: mass values in the same amount of time of Hl heuristic for the first and second 
terms 
Net Query Hl mass % Hl mass 

1st 2nd 
temr HO Hl H2 term HO Hl 
ODS ODS 

1 var23 27 41.67 6.72 15.00 44 66.87 12.48 
var21 51 17.34 2.83 10.64 69 48.53 5.03 

2 varlO 412 6.20 0.25 1.03 1023 21.48 0.29 
var9 255 6.81 0.54 1.62 539 28.41 0.73 

3 varll 85 8.54 0.37 7.12 124 28.32 0.58 
vars 26 11.18 11.38 32.36 41 48.42 21.73 

4 var14 52 29.84 2.75 17.32 68 62.63 4,53 
var12 72 1.18 2.84 2.04 107 13.09 3.57 
varlO 25 10.70 20.89 19.22 40 34.07 39.02 

5 varlO 69 2.56 2.78 4.89 100 7.98 8.09 
var9 57 3.02 3.50 3.21 88 10.77 4.97 

6 var27 33 12.46 8.36 28.94 41 24.56 12.51 
var26 35 58.41 3.81 29.93 41 90.00 6.10 
var24 51 24.70 2.22 21.06 62 40.41 5.89 

7 var12 74 4.44 0.84 5.50 94 7.23 1.40 
varlO 43 2.29 7.69 26.53 51 2.48 11.32 

8 varlO 55 7.09 2.93 6.14 113 27.72 3.47 
var9 52 9.16 3.75 7.46 64 12.45 7.24 

9 var14 26 31.54 7.05 35.56 38 55.55 22.48 
1 0 var12 69 8.81 2.31 3.66 83 17.03 2.88 
1 1 var20 87 24.00 1.77 18.36 100 26.26 2.84 
12 var16 32 34.34 3.84 30.92 38 43.87 5.52 

var13 68 16.80 2.24 5.00 89 19.98 4.03 
13 var12 76 2.52 0.67 0.74 84 3.54 1.93 
14 var28 50 19.07 4.38 13.89 58 44.81 5.94 

var27 106 3.62 0.49 0.26 121 11.00 0.59 
15 var19 93 6.21 · 0.34 7.15 100 6.41 0.79 
1 6 var22 54 8.84 1.71 1.46 63 10.45 2.93 

var20 136 3.46 0.01 0.04 157 3.79 0.11 
17 var27 74 6.38 0.83 5.48 80 6.85 1.46 
18 var16 52 41.33 2.77 22.83 58 47.37 3.66 
intel !High 225_fccd'sl 61 2.72 2.96 2.96 205 6.72 3.70 

lnom 224 cd'sl 276 4.71d-6 6.30d-8 1.17d-5 408 7 .44d-6 1.lOd-7 
!Normal 225m fccd'sl 316 2.94d-7 1.87d-7 1.16d-6 506 4.28d-7 4.28d-7 
7.5 <= BVDP2_<=11.5 316 2.94d-7 3.91d-7 1.38d-5 506 6.85d-7 4.28d-7 
ILow 225m fccd'sl 61 2.54 3.27 3.27 225 5.67 3.42 
BVDN2>=15 316 2.94d-7 3.9 ld-7 1.27d-7 506 6.85d-7 4.28d-7 
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H2 

25.54 
12.30 
2.40 
4.70 

10.03 
42.00 
24.79 

4.92 
19.30 

8.01 
5.25 

30.00 
42.99 
24.25 

9.00 
30.00 
17 .64 
8.26 

48.71 
4.12 

19.75 
38.51 

7.50 
1.00 

14.83 
0.32 
7.62 
2.60 
0.07 
6.94 

25.00 
4.00 

1.64d-5 
1.05d-5 
2.07d-5 

4.12 
1.95d-5 



Table 6: mass values in the same amount of time of H2 heuristic for the first and second 
terms 
Net Query H2 1st mass % H2 mass % 

2nd' 
term HO H2 term HO H2 
O'DS O'DS 

1 var23 9 3.20 5.57 14 6.95 12.48 
var21 15 0.97 2.20 21 2.00 5.03 

2 varlO 51 0.63 0.25 108 1.29 0.67 
var9 17 0.38 0.34 33 0.71 0.74 

3 varl 1 13 0.44 1.86 41 2.55 2.31 
var8 11 6.26 10.34 18 8.61 21.73 

4 var14 11 2.57 2.75 17 6.04 4.53 
var12 21 0.04 0.45 33 0.40 1.25 
varlO 9 3.78 11.7 15 6.70 19.22 

5 varlO 32 0.35 0.75 51 0.58 1.05 
var9 21 0.57 0.86 36 1.52 1.92 

6 var27 12 1.65 4.16 20 8.72 9.62 
var26 16 11.84 2.94 21 14.02 8.62 
var24 17 1.72 1.41 25 3.18 3.22 

7 var12 24 0.48 0.84 36 1.58 1.34 
varlO 14 0.53 7.69 19 4.54 11.32 

8 varlO 13 0.62 1.36 28 2.59 1.97 
var9 21 2.79 2.77 32 3.92 5.33 

9 var14 9 9.86 7.05 14 14.59 22.48 
1 0 var12 18 1.08 0.25 26 1.99 1.32 
11 var20 19 0.82 1.77 24 1.04 2.40 , 
12 var16 17 24.45 8.50 22 35.34 13.46 

var13 20 7.92 2.24 38 13.30 4.03 
13 var12 63 2.03 0.35 71 2.37 0.74 
14 var28 15 0.28 2.23 19 2.34 8.20 

var27 24 0.001 0.07 36 0.02 0.09 
15 var19 30 0.47 0.12 41 1.01 0.20 
1 6 var22 19 0.16 0.77 26 0.32 0.77 

var20 52 0.01 0.015 62 0.017 0.017 
1 7 var27 17 0.17 0.83 20 0.39 1.46 
18 var16 14 2.80 1.53 19 3.70 1.93 
intel 1Hhth_225_fccd'sl 17 0.87 2.96 152 5.52 3.70 

lnom 224 cd'sl 69 1. l 9d-6 1. l 7d-6 88 1.60d-6 2.35d-6 
!Normal 225m fccd'sl 290 2.43d-7 1.16d-6 338 3.1 ld-7 2.32d-6 
7.5 <= BVDP2 <=11.5 71 6.26d-8 1.15d-6 109 l .23d-7 3.45d-6 
ILow 225m fccd'sl 17 0.78 3.27 172 4.79 3.41 
BVDN2>=15 71 6.26d-8 1. lSd-6 90 7 .99d-8 2.30d-6 
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4.2 Discussion 

Table 2 shows the time (basic operations) and the mass value 
percentage for finding the first term of the queries. The * in the 
table denotes an unknown value since the algorithm could not finish 
running that test cases in ten hours. Notice that 

mass(Hl) ;;::: mass(H2) ;;::: mass(H0) 

in most cases ( of course, mass(A *) is always the biggest), but 

time(A *) » time(Hl) > time(H2) ;;::: time(H0) 

is always true. 

we draw six charts from table 2. They present how the mass values 
or time changes for different evaluation tree sizes when the Max Dim 
is fixed, or for different Max Dim when the evaluation tree size is 
fixed. These six charts are all put in the Appendix. 

Chartl and chart2 show that when the Max Dim is fixed, time(H0) is 
linear with the evaluation tree size, time(H2) is the same as or just a 
little bit longer than time(H0), time(Hl) is almost linear with the size 
of the evaluation tree, and time(A *) increases with the tree size 
dramatically. These are consistent with the time complexity analysis 
in section 3, which are O(n), O(DDimnlogn), and O(nDDim), for HO, Hl, 
and H2, respectively. 

Chart3 shows that when the evaluation tree size is fixed, time(H0) is 
a constant, time(H2) is the same as or just a little bit longer than 
time(H0), time(Hl) increases with the Max Dim fast, but not to the 
extend of exponent. Time(A*) seems to increases with the Max Dim 
exponentially. These are also consistent with the time complexity 
analysis in section 3, but the results in table 2 and chart3 show that 
the first term time for Hl, and H2 are much smaller than the worst 
case time in general. 

Chart4, chart5, and chart6 show that the mass values become 
smaller, when the problem size increases. This is as expected: the 
larger the numbers of items smaller than one, the smaller the 
product of all these items. From these three charts, we can see that 
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the ratio of mass(H) to mass(A *) is independent of the problem size 
(that is the tree size and the Max Dim). 

Table 3 shows clearly that the relative error 

(mass(A*) - mass(H) )/ mass(A*) 

is independent of the problem size. This relative error depends on 
the distributions of the original belief net, and the heuristics. 

As showed in table 2, for any net, the bigger the first term mass 
value, the larger the cost. What is the trade-off between the mass 
value and the time? Table 4 shows the mass values in the same 
amount of time of A* algorithm for the first and second terms. We 
see that, 

mass(HO) > mass(H2) > mass(Hl) > mass(A*) 

in most of the test cases. This implies that the search is too 
expensive. Actually, for the A* algorithm, searching for the largest 
term sometimes takes time longer than the time for exact value 
computation, and also tends to be memory bound (as those queries in 
table 2 for intel net). 

Table 5 shows the mass values in the same amount of time of Hl 
heuristic for the first and second terms.· We see that, Hl is still the 
worst, H2's performance is improved, but still not better than HO. 

Table 6 shows the mass values in the same amount of time of H2 
heuristic for the first and second terms. In these shorter amount of 
time, H2 performs better than HO. 

5. Future Research 

The heuristic function in the algorithm is implemented as an input 
parameter, we can try more heuristic functions for various belief 
networks to see which heuristic is good for which kinds of belief 
nets, and how the performance changes in terms of different net­
scaling. 
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6. Summary 

I have presented a new search approach to compute approximate 
answers for the probability query in belief nets. This approach can 
compute the 'best' bounds for a query in a period of any given time 
(if time permitted, it will get an exact value). Three heuristics for 
this search approach and a best first search approach were tested in 
a set of randomly generated belief nets and a net from the real 
world. I also discussed the trade-off among the heuristics and the 
best first search approaches. The heuristic search approximation has 
a better performance than the best first search in these test cases. 
Among the three heuristics, HO and H2 are better than Hl for any 
given time limitation in most of the test cases. If the given time is 
very short, H2 is better than HO in most cases, but, with time 
increasing, HO looks better. 

Since probabilistic inference in belief networks is computationally 
hard, we believe no one algorithm will be able to perform optimally 
in every situation ( e.g. time, constraints, accuracy goals, network 
topology). Instead, specialized algorithms are needed to match 
situations, and intelligent meta-level control mechanisms are needed 
to match situations with algorithms. 
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8. Appendix 

Chartl to Chart6, drawn from the data in table2, are presented in the 
following pages. 
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