
An Abstract of the Project of

Shiwei Zhao for the degree of Master Science in Computer Science presented on July

15, 2001.

Title: A Visual XML Query Interface

Abstract approved: _______________________ _

Martin Erwig

As XML becomes more and more popular, easy-to-use and powerful XML query

languages are in great need. Xing is a visual query and restructuring language for XML

documents. The objective of this project is to develop a basic version of Xing, including a

user-oriented XML query interface and a simple query translation implementation. The

interface design is based on a visual document metaphor and the notion of document patterns

and rules. End users do not have to be good at programming or XML syntax to use Xing. In

this report, we describe the implementation for the Xing prototype, including GUI design, data

structures and algorithms. We also compare the features of Xing with other XML query

languages.

A Visual XML Query Interface

by

Shiwei Zhao

A Project

submitted to

Oregon State University

In partial fulfillment of

the requirements for the

degree of

Master of Science

Completed July 15, 2001

ii

111

Acknowledgments

I am grateful to my major professor, Dr. Erwig, for the principal ideas, helpful hints,

precious comments he puts in my work. This project was extensively discussed in a series of

meetings with him. My appreciation also goes to Dr. Burnett and Dr. Bose for their help and

being on my committee. Thanks also go to all my friends who gave me their valuable

suggestions and encouragements.

iv

Table of Contents

Page

Abstract ... i

Acktiowledgment .. iii

Table of Contents .. iv

List of Figures ... vi

Chapter 1: In.troduction .. 1

1.1 XML .. 1

1.2 Visual Programming Language (VPL) .. 2

1.3 Xing and Design Goals .. 2

1.4 Organization ... 3

Chapter 2: Related Work ... 4

2.1 XML Query Languages ... 4

2.1.1 XML Query Algebra .. 4

2.1.2 XQuery ... 5

2.1.3 XML-QL .. 5

2.2 Visual XML Query Language ... 6

Chapter 3: The Xing System .. 9

3.1 How It Works ... 9

3 .2 How to Create Queries ... 13

3.2.1 Using Patterns ... 14

3.2.2 Using Rules .. 17

3.2.3 Queries that Xing Cannot Express 21

Chapter 4: XML Query Algebra .. 23

4.1 Projection ... 23

4.2 Iteration .. 23

4.3 Selection .. 25

4.4 Special Functions ... 26

Chapter 5: Design of The Prototype .. 29

5 .1 GUI Design .. 29

5 .2 Translating Xing to XML Query Algebra ... 30

V

5.3 Data Structure Design .. 32

5.4 Algorithms ... 33

5.4.1 Dynamic Icon Resizing .. 33

5.4.2 Generation of Pop-up Menus .. 38

5.4.3 Translation ofXing Queries ... 40

Chapter 6: Conclusion and Future Work ... 44

Bibliography .. 46

vi

List of Figures

Figure 2.1. A sample XML-GL query .. 7

Figure 2.2. A sample EquiX query ... 8

Figure 3 .1. File menu in Xing ... 9

Figure 3.2. Query menu in Xing ... 10

Figure 3.3. Edit menu in Xing .. 11

Figure 3.4. Right-click pop-up menu on a text field ... 12

Figure 3.5. Right-click pop-up menu on an icon or folder ... 13

Figure 3.6. Query 1: selecting all subelements with tag name book ... 15

Figure 3.7. Query 2: selecting all elements whose subelements author include
"Knuth" .. 17

Figure 3.8. Query 3: selection and extraction ... 18

Figure 3.9. Query 4: preserving structures and change tag name: the children of
book icon have no constraints .. 19

Figure 3.10. Query 4: preserving structures and change tag name: book icon is
empty .. 20

Figure 3 .11. Query 5: restructuring transformation .. 21

Figure 5 .1. A sample representation for the structure of XML data ... 29

Figure 5.2. A query translation example ... 31

Figure 5.3. Change size after a new component added ... 34

Figure 5.4 AST of the query translation ... 41

A Visual XML Query Interface

Chapter 1: Introduction

In recent years, XML [10] is becoming more and more popular. People in diverse

fields started to realize its great simplicity, generality, and standardization on data description,

data exchange and web representation. To utilize its great features on data processing, the

need for XML query languages emerges, and lots of different XML query languages have

been developed. However, one realistic problem is that most existing query languages are too

complex, maybe not for professionals, but for some end users who need to query XML

databases while not being professionals.

Thus, there has been research for expressing XML queries m a user-friendlier

notation: "a visual query and restructuring language for XML documents, called Xing (which

is pronounced 'crossing' and which is an acronym for XML in Graphics)" [l]. In this project,

we developed a user-oriented XML query interface, which is based on "a visual document

metaphor and the notion of document patterns and rules" [1], and we implemented a simple

query translation.

1.1XML

XML is a language for creating markup languages, which describe data in a format

with no indication of how the data is to be displayed. XML is rapidly developing into the

standard format for data exchange and for representing data on the Internet. More and more

companies and researchers start to apply XML for their product or research.

XML data is fundamentally different from relational or object-oriented data.

Therefore neither SQL nor OQL is appropriate for XML. Because XML is self-describing and

not rigidly structured, it has some important abilities that do not exist in relational or object

oriented data, like the ability to model irregularities naturally. XML can be used as database or

2

work with other databases. For enterprises trying to meld incompatible systems, XML can

serve as a common transport technology for moving data around in a system-neutral format. In

addition, XML can handle all kinds of data, including text, images, and sound, and is user

extensible to handle anything special. Based on all those merits, we believe that XML can be

applied much better than other data models on data extraction, conversion, transformation, and

integration, whose solutions rely on a query language.

An XML document primarily consists of a strictly nested hierarchy of elements with a

single root. A Document Type Definition (DTD) [10] can be used to define the document

structure so that the documents can be checked to conform to a predefined format. A DTD can

be declared inline in a XML document, or as an external reference.

1.2 Visual Programming Language (VPL)

"When a programming language's (semantically-significant) syntax includes visual

expressions, the programming language is a visual programming language (VPL)" [3]. The

goals of VPLs include making programming easier for humans and helping achieve better

programming language design.

1.3 Xing and Design Goals

There have been lots of different query language drafts developed, which emphasize

different features. However, a big problem for beginning end users who want to do queries on

XML databases may be that they do not know those sophisticated XML query language, and it

will be so painful to study since they may not be professionals in computer technology. So in

that case it is in need that there is a user-friendly query interface to provide an easy and direct

way to express those queries. We hope that Xing [1, 4] can help to get the power.

In Xing, users only need to draw forms to mimic the structured XML document. Users

can start with very simple searches and can advance by adding structural requirements. In

addition to simple queries based on document patterns, reformatting and restructuring of query

results is also possible.

3

1.4 Organization

In this section, we have introduced XML, VPL, and the design goal of our Xing

system. In Chapter 2, related work in XML query languages and in visual XML query

languages is reviewed. In Chapter 3, it is discussed how to use Xing and how to pose queries

in Xing. Translation from Xing to XML Query Algebra is the content of Chapter 4. Design

issues of the Xing prototype, including GUI design, data structures, several important

algorithms exploited in the implementation, are described in Chapter 5. Conclusions and

possible future work follow in Chapter 6.

4

Chapter 2: Related Work

2.1 XML Query Languages

As an increasing amount of information is stored, exchanged, and presented using

XML, the need for retrieving the information efficiently emerges. Since XML has great

flexibility in representing different kinds of data, including the information traditionally

considered to be a database or to be a document, a very important issue in the XML

application world is how to intelligently query the diverse data sources.

To satisfy the increasing need for better query ability, there have been lots of different

XML query languages proposed, most of which are based on textual notations. A few of them

are introduced below.

2.1.1 XML Query Algebra

XML Query Algebra [2] is proposed by the W3C XML Query Working Group [15].

The group has defined query requirements [11] and a data model [12] for XML documents.

The data model is based on the W3C XML information set [17] that provides a consistent set

of definitions of the information in a well-formed XML document. It is also the foundation of

the W3C XML Query Algebra. The group hopes to use the algebra both to supply well

defined query semantics and to support query optimization. So it has enough power and

compact expression.

Because XML Query Algebra is well defined and well designed, it is well suited to

verify and execute Xing queries. Therefore, we think that the algebra is a good textual target

representation for our visual queries. We will consider XML Query Algebra in detail in

Chapter 4.

5

2.1.2 XQuery

XQuery [6] is also designed by the W3C XML Query Working Group. The group

hopes to make it meet the requirement for a human-readable query syntax, that is to keep it as

a small, easy-to-implement language in which queries are concise and easily understood. It is

derived from an XML query language called Quilt [18]. XQuery is a functional language,

which may take several different forms of expression to implement the same query. XQuery is

otherwise very similar to XML Query Algebra.

2.1.3 XML-QL

The main concern ofXML-QL [5] is about large data repositories, heterogeneous data

integration, legacy data export, and data transformation. An XML-QL query usually includes

three clauses: (1) pattern: to match nested elements in the input document and bind variables;

(2) filter: to test the bound variables; (3) constructor: to specify the result in terms of the

bound variables.

To give an impression of the style of expressing queries in XML-QL, we show here

two examples. The same queries will later be examined in Xing and XML Query Algebra. The

first example selects all book elements from a bibliography database: www.xml.com/bib.xml.

CONSTRUCT <bib> {

WHERE

<bib>

<book> $b </book>

</bib> IN "www.xml.com/bib.xml"

CONSTRUCT

<book> $b </book>

} </bib>

In XML-QL queries, patterns and filters appear in the WHERE clause, and the result

expressions appear in the CONSTRUCT clause. The WHERE clause generates a relation that

maps variables to tuples of values that satisfy the clause. Then, the CONSTRUCT clause

constructs elements for every tuple that satisfies the WHERE clause.

6

The second example illustrates how to specify some constraints on the elements that

appear in the result.

CONSTRUCT <bib> {

WHERE

<bib>

<book year=$y>

<title>$t</title>

<pu bl is her> Add ison-Wesley</pu bl is her>

</book>

</bib> IN "www.xml.com/bib.xml",

$y > 1991

CONSTRUCT <book year=$y><title>$t</title></book>

} </bib>

XML-QL's structure is similar to an XML document, and thus easy to understand for

people that know XML syntax.

2.2 Visual XML Query Languages

Besides Xing, there are also two other visual XML query languages in development,

with different emphasis.

XML-GL [8] is a language proposal that uses a graph-based formalism. The tree and

graph representation used by XML-GL is well suited for a general-purpose formal language

manipulation. However, it is questionable whether XML-GL is simple enough for a user

oriented query language. In our opinion, to represent XML documents in a form-like way can

still reflect their tree structure, whereas at the same time it is better suited for the user's view

and more convenient for object representation and the user's operation.

Figure 2.1 is a simple query in XML-GL, which selects all the book elements of a

particular author from a document and list the titles and the authors. The left-hand-side graph

contains the extract part of the query. The right-hand-side graph contains the clip part, which

defines the DTD of the result document.

7

www.xml.com/bib.xml

Bib

Bib

book
book

author

Knuth

Figure 2.1. A sample XML-GL query

There is also another form-based query interface provided by EquiX [9]. Its form

based Gill is constructed automatically from the DTD of XML documents, which does not

require any intervention from users. EquiX also generates automatically a DTD for the result

documents, which is helpful for users, too. However, it is also very restricted since only XML

data having a DTD can be operated. Another limitation is that it does not allow users to

reformat the query results, which limits its application area.

To give an impression of the style of EquiX queries, we copy an example from [9]

because EquiX is currently not accessible for us to create a query. The example is presented in

Figure 2.2, which computes the courses not taught by Dr. Jekyll.

- root

-- !one is I department

■ ~::eis I course id: CJ
- !non& is

.. tet,.cher

- course

I teacher

E"Dr. JekyllR

Figure 2.2. A sample EquiX query

8

]

9

Chapter 3: The Xing System

3.1 How It Works

The program can be run from a web browser or as a standalone application. It is a

menu-based, event-driven system. The main purposes are a user-friendly interface and an

easy-to-understand visual object representation.

Figure 3 .1. File menu in Xing

First, to create a query, users must specify an XML database to work on. If run as an

application, you can select a local XML document or specify a URI for an XML document. If

run as an applet from a browser, then, for security reasons, local files cannot be operated on.

From the File menu, see Figure 3 .1, a user can also save a query or load an existing query

when run as an application. The Clear menu item is used to clear the screen and restore the

internal status before making a new query.

10

Figure 3.2. Query menu in Xing

In the second step, users may start to draw a visual query. After the XML document is

selected, a folder icon with a specified root name shows up automatically for users'

convenience, see Figure 3 .2. Users can also take their own option from the Query menu: select

Create Pattern to make simple queries, or select Create Rule to express more complex

features. A document rule consists of two document patterns that are joined by a double

arrow. Extend Pattern to Rule may be used when users are partly or fully done with editing

their pattern and then find they need a rule to express a more complicated data transformation.

In this way, users do not lose their previous work when creating rules. From this menu,

Generate Query is used to translate a visual query into a textual query, an expression of XML

Query Algebra, and Execute Query is used to run the query on an XML data source. The

current version does not include the implementation of a query execution engine and can only

translate pattern-represented queries.

11

Figure 3 .3. Edit menu in Xing

After users have created a folder to represent the root of the XML document, they can

use the Edit submenu to add more components on the folder to constrain the query, see Figure

3.3. An icon element represents a structured element (that has subelements and attributes as

children), see Figures 3.4 & 3.5. Users can supply constraints on plain elements (that has no

any children) and attributes to specify the query. Plain elements and attributes can only be

added to parent icon elements. To delete a component from the current query, users may click

on the component and select Delete menu item or click <Delete> key.

12

Figure 3 .4. Right-click pop-up menu on a text field

13

Figure 3 .5. Right-click pop-up menu on an icon or folder

If the XML document contains (a link to) a DTD to define the document structure, our

system supplies a very convenient and direct option to edit the query. If users click the right

mouse button on any text field (Figure 3.4) or icon (Figure 3.5), all possible names that can be

added will be listed in a pop-up menu. When an icon is clicked on, the menu items may

include the names of structured elements, plain elements, and attributes. The items are

separated by category. As Figure 3.5 shows, the Receipt icon can include no structured

element, three plain elements, and one attribute. Users may select the Delete < ... > item to

delete the focused component, and may click any other item to insert the item name to the

focused text field or to insert a component with the item name to the focused icon or folder.

3.2 How to Create Queries

To illustrate what kinds of queries we can create with Xing and how to express them

with Xing, we describe some typical XML query scenarios here, including selection,

14

flattening, restructuring, regrouping, and so on. In the next chapter, we will represent every

scenario with a textual query language, XML Query Algebra, to compare the two languages

and, in particular, to show Xing' s advantages and limits.

We use the following running example. Assume the XML input is in the document

www.xml.com/bib.xml, containing bibliography entries described by the following DTD.

<!ELEMENT bib (book*, article*)>
<!ELEMENT book (title, (author+ I editor+), publisher, price)>
<!ATTLIST book year CDATA #REQUIRED>
<!ELEMENT article (title, (author+ I editor+))>
<!ATTLIST article year CDATA #REQUIRED>
<!ELEMENT author (#PCDATA)>
<!ELEMENT editor (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

This DTD specifies two different elements: book or article. A book element contains

one title element, one or more author elements or one or more editor elements, one publisher

element, and one price element; it also has a year attribute. An article element contains only

one title element, and one or more author elements or one or more editor elements. A title,

author, editor, publisher, or price element contains text.

In the following sections, all of our example queries will be based on this document.

3.2.1 Using Patterns

The first example is the simplest. We just select all books, by checking the element

tag (see Query 1 in Figure 3.6). Since we keep the result's original structure, a pattern is

sufficient for our needs.

15

Figure 3 .6. Query 1: selecting all subelement with tag name book

Here we use a folder icon to represent the root element, inside of which multiple

layered document icons are used to represent subelement.

Next, let us consider a little more complex query: select all publications, either books

or articles, of a particular author, and list the titles and the author (see Query 2 in Figure 3.7).

Here, we have to check some properties of the subelements.

For example, assume there are two elements in our sample document, which are listed

as follows:

<book year = 111992">

<title> Concrete Mathematics </title>

<author> Graham </author>

<author> Knuth </author>

<publisher> Addison-Wesley </publisher>

<price> 65.95 </price>

</book>

<article year = 111998">

<title> Introduction to Linear Algebra </title>

<author> Knuth </author>

</article>

16

We want to list all titles written by author 'Knuth', and expect to get the elements:

<book>

<title> Concrete Mathematics </title>

<author> Knuth </author>

</book>

<article>

<title> Introduction to Linear Algebra </title>

<author> Knuth </author>

</article>

Here, other authors of the same book or article, if any, are excluded.

17

Figure 3.7. Query 2: selecting all elements whose subelements author include "Knuth"

Inside of the document icon, users only need to insert two plain elements and specify

their tag names, which may or may not have constraints, to define what information to extract.

The empty title tag of the document icon represents an expression like the wildcard, which

means we want to find all structured elements, whose children include title and author

elements. In the condition field of author element, a specific name 'Knuth' is typed to express

the constraint that only those books or articles written by 'Knuth' appear in the result.

3.2.2 Using Rules

In the first two examples, document patterns were sufficient to express the queries.

Document patterns perform selection first, followed by a projection consistent with the

pattern. However, we often need to do a projection that is not consistent with the selection

pattern, so we have to employ a new pattern to form a rule. In later examples, we also have to

employ document rules to achieve restructuring.

18

Our next example is Query 3 in Figure 3.8, which selects all books published by

Addison-Wesley after 1991. Moreover, the book elements in the result only include their year

and title.

Figure 3.8. Query 3: selection and extraction

fu Xing we display attributes and basic elements with different fonts and base lines, as

shown in Figure 3.8.

The next query preserves the grouping of results by title (see Query 4 in Figure 3.9 &

3 .10). At the same time, we also change the tag name from 'book' to 'result'. Thus, using the

same sample data source above, we expect to get the result shown below:

<result>

</result>

<title> Concrete Mathematics </title>

<author> Graham </author>

<author> Knuth </author>

19

Figure 3.9. Query 4: preserving structures and change tag name: the children of book icon
have no constraints

20

Figure 3 .10. Query 4: preserving structures and change tag name: book icon is empty

According to Xing' s semantics, if there are no constraints for the elements in the

pattern, those elements can as well be omitted from the pattern. Thus, the queries in Figure 3.9

& 3.10 are identical with regard to their semantics. For every book all authors are matched and

returned in one tuple.

Query 5 in Figure 3.11 regroups the database by authors to get a list of authors, and

lists every book of theirs with title and publisher.

21

I byAulhor j

book I

Figure 3 .11. Query 5: restructuring transformation

3.2.3 Queries that Xing Cannot Express

We note that the current version of Xing is still limited in its expressiveness. In this

section, we list several general query examples that cannot currently be expressed in Xing.

Then in the next chapter, the solution in XML Query Algebra will be discussed.

The previous example, Query 4, preserves the structure of the data source. The next

query, we call it Query 6, returns a collection of all title-author pairs of book elements. The

query flattens the nested structure, each book contributing one pair for each author.

Using the same sample data source, we hope to get two different elements related to

the two authors separately:

<book>

</book>

<book>

</book>

<title> Concrete Mathematics </title>

<author> Graham </author>

<title> Concrete Mathematics </title>

<author> Knuth </author>

22

This query cannot be expressed in Xing. It actually requires us to restructure the data

source, so we have to use rules here, instead of patterns, to explicitly express the result's

structure. Unfortunately, the current version of Xing does not support this particular form of

restructuring. One possible solution and a discussion can be found in Sections 3 .3 & 4 of [2].

The design of Xing and the corresponding semantics is still under development.

Another typical query is to illustrate restructuring by grouping each author with the

titles he or she has written (Query 7). This requires joining elements on their author values.

Although Xing can perform grouping operations with a grouping element like in Query 5, it

cannot express this query because it cannot construct a variable number of title elements on

the same level as one author element.

Sometimes, it is required to extract information from multiple documents and merge

them. In Xing, for simplicity, users can only select one data source to construct a query on it at

one time, so it does not currently support a combination of multiple data sources. On the other

hand, it is not impossible to implement it in a visual language. Interested readers can find a

discussion of this issue in [1].

Elements in an XML document are ordered. In some cases, it might be important to

refer to the order in which elements appear, to preserve the order in the output, or to impose a

new order. However, referring to individual elements by position is not possible in Xing. To

represent a sorting operation is also too complicated for Xing' s current version.

23

Chapter 4: XML Query Algebra

In this chapter, we use XML Query Algebra to create the queries for the same

scenarios explored in Section 3 .2 and try to identify the relationship between Xing and XML

Query Algebra. Meanwhile, in every query, different features of XML Query Algebra are

explained.

To present the queries according to their syntax features, we explore the scenarios in a

different order from Section 3.2.

4.1 Projection

One of the most basic operations of XML Query Algebra is projection. The algebra

uses notations that have similar syntax and meaning to XPath's [19] path navigation.

The Query 1 from Figure 3.6 can be expressed in XML Query Algebra as follows:

Let bibO = ("www.xml.com/bib.xml")/bib

bib [bibO/book]

The let expression in the above query binds the variable bibO to the root of an XML

document, so that the global variable bibO may be used in any other expression of the query.

The document is given by URI enclosed in quotes, where the root element's name follows

with a slash. Then the second expression represents the query to be executed. There, bib is

used as the tag name of the newly constructed element, whose children are enclosed in

brackets (the notation[...]). And bibO/book represents the projection operation to return all its

subelements with the element name book.

4.2 Iteration

Another common operation is the for expression, which is used to iterate over all

subelements of one element and to bind a variable to each such element. Then the content of

elements can be accessed later and can be transformed into a new content. For example, the

24

XML Query Algebra expression for Query 4 in Section 3.2.2 includes iteration and projection

operations:

Let bibO = ("www.xml.com/bib.xml")/bib

results [

for b in bibO/book do

result [b/title, b/author]

Let us look at Query 6 in Section 3.2.3. It cannot be expressed in Xing, but it can be

expressed in XML Query Algebra.

Let bibO = ("www.xml.com/bib.xml")/bib

bib [

for b in bibO/book do

for a in bf author do

book [b/title, a]

Actually, the typing rule of the for expressions in XML Query Algebra is rather

involved. Comparing between the above two algebra expressions, you may find that there are

only small differences in the algebra expressions although the query results will be quite

different. Recall the query result discussion in Section 3.2. In Query 4, for every book element

we get a result element that consists of the book's title and all its authors.

author.

<result>

</result>

<title> Concrete Mathematics </title>

<author> Graham </author>

<author> Knuth </author>

In contrast, in Query 6, for every author element, we get one book element for each

<book>

</book>

<book>

</book>

<title> Concrete Mathematics </title>

<author> Graham </author>

<title> Concrete Mathematics </title>

<author> Knuth </author>

25

4.3 Selection

To select values that satisfy some predicate, we use the where expression. Using XML

Query Algebra to express Query 2 in Figure 3.7, we get:

Let bibO = ("www.xml.com/bib.xml")/bib

bib [

for b in bibO/* do

for a in bf author do

where a/data() = "Knuth" do

b [b/title, a]

The wildcard (*) in the expression means that we want to go through all elements that

are the children of the element that bib0 points to. Thus, in this case, the outermost for clause

iterates over all subelements of the root element and binds the variable b to each such element,

and the inner for clause iterates over all subelements ofb and only binds the variable a to each

element with tag name author. The outermost for clause determines the order of the result,

which means that all book elements will be listed before the article elements in the result

according to their order in the XML data tree. The where clause is used to select any element

whose value is "Knuth". The built-in function dataO is used to access atomic data of one basic

element like strings or integers.

As can be seen in Figure 3.8, Xing displays attributes and basic elements with

different fonts and base lines. In XML Query Algebra an@ sign is added before an attribute

name to tell it from an element name. Below is the XML Query Algebra expression for Query

3:

Let bibO = ("www.xml.com/bib.xml")/bib

bib [

for b in bibO/book do

]

where b/publisher/data() = "Addison-Wesley" do

where b/@year/data() > 1991 do

book [b/@year, b/title]

26

4.4 Special Functions

XML Query Algebra supplies a set of built-in functions. To express Query 5 in Figure

3.11, a built-in function distinct_valueO has to be employed, which produces a forest of nodes

whose values are all distinct. The complete code is listed below:

Let bibO = ("www.xml.com/bib.xml")/bib

results [

for a in distinct_value {bibO/book/author/data()) do

byAuthor [

author [a],

for b in bibO/book do

for a2 in b/author/data() do

where a = a2 do

book [b/title, b/publisher]

Here, for every distinct author a new element byAuthor is created. The brackets can

be nested to make a multi-layer structure transformation.

To express Query 7, which requires joining elements on their author values, the

distinct_ valueO is also employed.

Let bibO = ("www.xml.com/bib.xml")/bib

results [

for a in distinct_value(bibO/book/author/data()) do

result [

author[a],

for b in bibO/book do

for a2 in bf author/data() do

where a = a2 do

b/title

Combining values from multiple documents is not a problem for XML Query

Algebra. Assume we have a second data source at www.amazon.com/reviews.xml that contains

book reviews and prices, with the following DTD:

<!ELEMENT reviews (entry*)>

<!ELEMENT entry (title, price, review)>

<! ELEMENT title (#PC DAT A)>

<!ELEMENT price (#PCDATA)>

<!ELEMENT review (#PCDATA)>

27

Consider a query that lists all books with their prices from both sources as an

example. This query can be expressed in XML Query Algebra by:

Let bib0 = ("www.xml.com/bib.xml")/bib

Let review0 = ("www.amazon.com/reviews.xml")/reviews

books-with-prices [

for b in bib0/book do

for r in review0/entry do

where b/title/data() = r/title/data() do

book-with-prices [

b/title,

price-amazon [r/price/data()],

price-xml [b/price/data()]

In this case, only one more let expression has to be used to define the other new data

source. All other parts are similar to previous queries. Because we only want to get the price

value and not the price element, we have to use dataO keyword to return the atomic data.

Order related operations, including indexing, sorting, and so on, are other kinds of

special functions supplied by XML Query Algebra. (As discussed in Section 3.2.3, Xing does

not supply them.) One such example is to return each book with its title and the first two

authors, and an <et-all> element if there are more than two authors. A possible XML Query

Algebra solution is:

Let bibO = ("www.xml.com/bib.xml")/bib

bib [

for b in bibO/book do

book [

b/title,

for p in index(b/author) do

Where (p/fst/data() <= 2) do

p/snd/deref(),

Where (p/fst/data() = 3) do

<et-al/>

28

Here indexO is another built-in function in XML Query Algebra, which uses reference

in order to preserve node identity when accessing local order. In the result pairs of the indexO

function, fst expresses the order index, and snd expresses a reference to result element. The

built-in function derefO can de-reference an object. For detailed explanations and examples of

indexO, see Section 2.12 of [2].

The XML Query Algebra expression of Query 3 in Section 4.3 selected all titles of

books published by Addison-Wesley after 1991. In that example, output order was not

specified. Here we go back and show how to modify the query so that the titles are listed

alphabetically.

Let bibO = ("www.xml.com/bib.xml")/bib

bib [

for b in bibO/book do

where b/publisher/data() = "Addison-Wesley" do

where b/@year/data() > 1991 do

sort tin (book [b/@year, b/title]) by t/title

XML Query Algebra provides a sort function to sort a forest. The syntax is: sort Var

in Exp] by Exp2. The variable Var ranges over all the items in the forest Exp], and sorts them

by the key value Exp2.

29

Chapter 5: Design of The Prototype

The Xing system is implemented in Java 2. It is portable on Win32 and different Unix

platforms. It can run as a standalone application or as an applet from browsers. In this chapter,

the main design issues are discussed, including the GUI design, the translation from Xing to

XML Query Algebra, data structures, and algorithms.

5.1 GUI Design

Usability is a very important issue for end user systems. Therefore, the visualization

of XML data is kept simple yet it still reflects the structure of the data. In Xing, a forms-like

representation was chosen.

Receipt J

$4.43

1999

I Manifest }

I Hem }

Java Java Java

ID =209'----

~
BIii Oats•

Figure 5.1. A sample representation for the structure of XML data

30

Figure 5 .1 shows an example of how Xing represents the structure of an XML data

source. We use a folder icon to represent an XML document, whose root node is the folder's

name. An XML document consists of different categories of structured elements (that is, the

elements that have subelements or attributes as children), which are all represented by

document icons. The title of a document icon is given by the tag name of the structured

element, and inside the icon there are different descriptions for plain elements (which have no

children) and attributes. We use "name: value" to abbreviate the structure of plain elements.

Attributes are also written this way. Two different base lines are used to distinguish elements

from attributes.

By just using document patterns to express queries, users can extract information from

XML data. By adding a second pattern as a result pattern, users can create document rules to

get more control over the result.

To achieve a nice-looking GUI design, we have to consider different possible

operations on the interface. One important issue is that the interface should be flexible enough

for users to edit according to their needs. Then how should the icon size changes after users

insert or delete a component inside or outside that icon? First, since the folder is at the

uppermost level, we do not want to change its size anytime. Whenever it holds too many

children to display, a scroll bar should show up to enable users to adjust the view area.

Second, as the picture shows, document icons may be nested. We always maintain a minimum

width and height for the innermost icon and adjust the size of the icons enclosing it. Only the

icons enclosing the inserted or deleted component need to adjust their height. However, in

addition to the enclosing icons, whenever a new document icon is inserted or deleted, we must

also consider the changes to other nonrelated document icons to keep the same width for icons

on the same level. More details will be discussed in Section 5 .4.

5.2 Translating Xing to XML Query Algebra

To execute the queries composed by users, we have to translate them into a textual

query language. This textual query is then executed by an XML database system. We can then

link the XML database system to our system and supply a function to run queries directly.

As discussed in Section 2.1.1, we have chosen XML Query Algebra as the mid-layer

language. Now the key point is how to do the translation. Because the described data

31

transformations may involve very complex restructurings, the formal semantics of rules gets

quite complicated.

In this project, we only implemented the translation for document patterns, which is

easier than the translation of document rules.

L•t. Ordu-0 = ("'l:\Projtcl\book-ordu.xal•)/ordar
Ordv [for .0 in Ord1rO/lt1ctlpl do
Ree4!ipt. [.0/Tu, ID/9yur) , £or U in OrderO/llmifnl do
Manifest. [for a2 in al/Ilea io
11 .. [a2/Ti U,J I I

L..Tui..__J

Figure 5.2. A query translation example

Figure 5 .2 shows an example of a query translation. In addition to the pattern defining

data projections, a text area shows up and displays the translated code in XML Query Algebra

after the menu item Generate Query is selected.

The algorithm used to implement the translation will be discussed in Section 5.4.

32

5.3 Data Structure Design

To express the different components in the interface, in our program different classes

are designed for different kinds of components. The whole structure of the query is treated as a

tree. A folder icon is the root, which can hold a variable number of document icons as

children. The children of document icons can be document icons, plain elements, or attributes.

There are different classes for folder icon, document icon, plain element and attribute,

each of which has different properties to represent their features.

First, every document icon has width and height properties, and they are flexible to

adjust automatically during the query editing. Each class has two width variables: max Width

and minWidth. The current width in which an icon should be displayed is maxWidth, while

min Width is the minimum width an icon must maintain. The reason why they can be different

in general is because we always display the same width (max Width) for icons in the same level

and the variable max Width of any icon may be changed in case any icon insertion or deletion

happens on the interface. To decide how to change the value of max Width, the value of

min Width has to be considered. In Section 5 .4, this process will be explained in more detail.

Second, every icon class, either folder or document, has an array variable e!Array to

record its child components. That member array must be able to hold different types of

objects, since the possible child class types may include structured element class types, plain

element class types, or attribute class types.

A plain element or attribute consists of a name field and a condition field. The name

field, always in bold font, represents the node name. The condition field represents a value or

condition that constrains the elements being queried.

Finally, our program uses an XML parser [20] to analyze the selected XML data and

generate an object to access its content. Moreover, if the XML document specifies its

document format with a DTD, we use a DTD parser [21] to analyze it for generating a pop-up

menu.

33

5.4 Algorithms

5.4.1 Dynamic Icon Resizing

It is easy to decide the height of a document icon after any offspring component is

added or deleted, since its siblings' height will not be affected. However, it is complicated to

adjust the width of document icons because we must keep their siblings' width consistent.

Figure 5 .3 shows an example of how the changes can occur. Under the root folder

there are two icons called Receipt and Manifest. In the top figure, a plain element and an

attribute are inserted into the Receipt icon. The insertion causes that the height of Receipt is

increased. However, the insertion of plain elements or attributes does not affect the width of

their parent icon. In the bottom figure, a new icon Item is inserted into the Manifest icon. As

the figure shows, the Manifest icon enlarges to hold its children. Meanwhile, the Receipt icon

enlarges, too, to keep the same width as Manifest because they are on the same level. There is

also a minimum width that must be maintained by the Item icon, since it is the innermost. So,

how do we set the width of Manifest after Receipt is removed, or the width of Receipt after

Manifest or Item is deleted? To solve that, there are two variables max Width and min Width

defmed in a document icon.

34

Figure 5.3. Change size after a new component added

35

Since the height adjustment is easy to implement, this paper omits the algorithm about

the size handling after a plain element or an attribute is added or deleted. Below is the

algorithm description in java-like pseudo-code about how to handle the size changes after an

icon is added. The first method addStructElementO is a member method of the document icon

class, called when a child icon is added to the current icon. It initializes the new child icon's

size, then calls the bottomUpO method of the current icon to recursively update the size of its

ancestors upwardly. The constant WIDTH is the minimum width that an icon must hold. The

constant HEIGHT is the minimum height that an icon must hold. The constant SPACE is the

display space between the child and its parent.

addStructElement(String arg) {

}

create a new icon object: tmp; //whose minWidth is always WIDTH as default

//whose height is always HEIGHT as default

set tmp's title as arg;

insert the new icon into the current icon container as a child;

if (the current icon is root) {

if (the current icon has no children except tmp)

set tmp.maxWidth = WIDTH;

else

set tmp.maxWidth = maxWidth of the other siblings

} else {

}

if (maxWidth of the current icon equals the basic value WIDTH)

set tmp.maxWidth = WIDTH;

else

set tmp.maxWidth = maxWidth of the other siblings

and we know that the value must be maxWidth - SPACE;

bottomUp(tmp);

After an icon is added, the program continues to update the properties of its ancestors

from bottom to top. The parameter s of the following method is the updated child of the

current icon.

36

bottomUp(a document icon: s) {

}

if (the current icon is root) {

declare q as document icon class type;

go through every child of the current icon and refer to it by q {

set q.maxWidth = s.maxWidth;

q.topDown();

}

} else {

if (maxWidth of the current icon equals s.maxWidth) {

} else {

}

}

enlarge maxWidth of the current icon to s.maxWidth+SPACE;

enlarge minWidth of the current icon to s.minWidth+SPACE;

update the height of current icon;

topDown();

call bottomUp(this) of the parent icon;

//the current icon has bigger width than s, so no width to be enlarged

update the height of current icon;

if (the current icon's parent is not root)

call bottomUp(this) of the parent icon;

//otherwise, the recursive update stops

The following method updates the width of the siblings, those that are not direct

ancestors of the inserted icon, from top to bottom. The children of the current icon may be

document icons (structured elements), plain elements, or attributes. The displayed width

(maxWidth) of the child icons is always set to a constant value, SPACE, lower than the

displayed width of the parent icon.

topDown() {

}

declare s as the document icon type;

go through every child of the current icon and refer to it by s {

if (s is document icon type) {

}

}

set s.maxWidth = maxWidth-SPACE;

call topDown() of the object s;

37

Below is a description of the algorithm for how to handle the size changes after an

icon is deleted. The following method is a member method of the document icon class, called

after one of its child icons is deleted. This method is used to update the properties of its

ancestors from bottom to top.

void bottomUpRev() {

int width;

if (the current icon does not have any child of icon type)

set width = WIDTH;

else{

38

look for the icon that holds the maximum value of minWidth among the children

of the current icon, and store the value in a variable max;

set width= max+SPACE;

}

if (the current icon is root) {

declare s as document icon type;

go through every child of the current icon and refer to it by s {

set s.maxWidth = width-SPACE;

s.topDown();

}

} else {

}

}

set maxWidth = width;

set minWidth = width;

update the height of current icon;

top Down();

call bottomUpRev() of the parent icon;

5.4.2 Generation of Pop-up Menus

When a user clicks the right mouse button on an icon, an icon's title field, or the name

field of a plain element or an attribute, a pop-up menu shows up. Only those items that can be

added on the icon or the field are listed on the menu. How can we decide which items to show

in the pop-up menu? For example, using the DTD description in Section 3.2, if a user clicks

on the icon with title article, only title, author, and editor are listed as menu items. On the

other hand, if a user clicks on a child icon of root folder with empty title or title '*' (the

wildcard), then all the child nodes of both article and book should be listed as menu items.

39

Below is the algorithm to compose the dynamic pop-up menu. Actually, there is no

big difference between the algorithm handling the clicks on a title or name field and the

algorithm handling the clicks on a folder or an icon. Here we just present the algorithm that

handles the clicks on an icon's title field. In case an icon is clicked on, the program just needs

to go through all of the icon's children and generates a menu item for each of them. When the

name field of a plain element or an attribute is clicked on, the program just needs an additional

check on the icon's children and only generate menu items for those whose type match with

the focused component.

The following code segment does those initialization works. The variable focusOwner

is the icon users are clicking on. The variable dtd is an object that represents the DTD tree

structure of the selected XML data.

get root element of dtd and assign it to the variable root;

declare an array called elements, used to hold selected objects;

test every child node of root, add it to elements if the node is a structured element;

declare and initialize a popup-menu, called popup;

declare icons as an array of icons;

scan from the parent icon of focusOwner until root, insert every icon into icons in order;

The following part searches appropriate items to compose the pop-up menu. It uses a

variable notFound as the flag to record whether there is any matched item found. Whenever

there is no node name that matches with an icon's name in any level, the search stops.

40

boolean notFound = false;

during notFound is still false, go through every member of icons from root to children, and

ref er to it by a variable cur {

notFound = true;

declare a temporary array variable, called tmpArray;

if (the title of cur is empty or '*') {

notFound = false;

test every child node of the array member of elements, add it to

tmpArray if the node is a structured element;

elements= tmpArray;

} else {

}

}

go through every member of elements, and refer it to a variable elmt {

}

}

if (elmt has a tag same to the title of cur) {

notFound = false;

test every child node of elmt, add it to tmpArray if the node is a

structured element;

elements= tmpArray;

go through every member of elements, create a menu item with its name, add it to popup.

show the pop-up menu on focusOwner;

5.4.3 Translation of Xing Queries

To do the translation, the algorithm treats the UI components as a tree structure and

goes through every node of the tree in the depth-first order. Thus, there is a separate

queryGenerateQ method in the main class, the folder icon class, and the document icon class.

The program generates an abstract syntax tree (AST) to express the structure of the translated

XML Query Algebra query. In the current version, only pattern queries can be translated. The

translation does not allow the tag and the content of an element or an attribute to be empty at

the same time.

IterateNode

(for Var in Exp do)

LetNode

(Let Var=URI/root)

ProjectNode

(tag[......])

*

ProjectNode

(tag[......])

SelectNode

(where Exp do)

Figure 5.4 AST of the query translation

41

*

As the above figure shows, the AST consists of several node types to represent

different kinds of query statements, which are introduced in Chapter 4. LetNode represents the

let expression to bind a variable to an XML data source. ProjectNode represents the projection

operation to construct a new document. IterateNode represents the for expression to iterate

over all subelements of one element. SelectNode represents the where expression to select

values that satisfy the predicates. Every node has a printO method to output the query that it

represents. LetNode is the root of the AST, whose child is a ProjectNode to construct the root

of the new document. Every ProjectNode may have multiple children including ProjectNode,

IterateNode, and SelectNode, because the projection operation can be nested. Because only

document icons can be added as children into the folder icon, the ProjectNode mapping to the

folder icon has only children of type ProjectNode.

In the main class of the program, the following actions are executed after a user

selects the menu item "Generate Query". The global variable ast is used to represent the

generated XML Query Algebra AST, whose root node is of type LetNode. The variable root is

42

the string name of the XML document's root node. The variable xmlFile is the URL or string

that represents the position of the XML document. The variable folder Pane is the object that

represents the root folder icon of the Xing query. The member method queryGenerateO of

folderPane returns a node of ProjectNode type, which is inserted into the AST.

ast = new LetNode(root, xmlFile, root+"O");

if (folderPane exists) {

call folderPane.queryGenerate() and add the return node to ast as a child node;

}

Below is the method queryGenerate() in the folder icon class. The variable titleName

is the title of the folder icon, that is the name of the root node. The string titleName+ "0" is the

variable that is bound to the root node by the let expression.

ProjectNode queryGenerate () {

}

ProjectNode folder = new ProjectNode(titleName, titleName+"O");

go through every child icon of root, call its method queryGenerate(titleName+"O") ,

and add the return node to folder as a child node;

return folder;

Below is the method queryGenerate() in the document icon class, which also returns a

node of type ProjectNode. The parameter root is the variable that binds to the root node in the

let expression. If a plain element or an attribute's condition field is empty, only a projection

node is created as a child of the returned node; otherwise, both a selection node and a

projection node are created as children of the returned node. The variable index is a static

integer with initial value O in the document icon class, and is used as the index of a variable a#

that is bound to the current node. Every time this method is called, index is increased by one to

ensure that every node binds with a different variable a#.

43

queryGenerate (root) {

String titleName;

}

if (the icon's title field is empty or wildcard)

set titleName = "*";

else

set titleName = the text in title filed;

ProjectNode icon = new ProjectNode(titleName, root+"/"+titleName);

if (the document icon has no any children) {

//Which means that icon has no any children. The query should get the whole node

return icon;

}

int j=index++; //the index of current variable a#, which binds to the current node

create a new object lterateNode("a"+j, root+"/"+titleName)) and add it to icon as a

child node;

//generate selection part of the query

go through every child of the current icon. If that is a plain element or an attribute

and its condition field is not empty, create a new object of SelectNode type and add

it to icon as a child node;

//generate projection part of the query

go through every child of the current icon. If that is a plain element or an attribute,

create a new object of ProjectNode type and add it to icon as a child node . If that

is a document icon, do a recursive call on its member method

queryGenerate(root+"/"+titleName) and add the return node to icon as a child

node;

44

Chapter 6: Conclusion and Future Work

Xing is trying to supply a very direct way for end users to query XML databases, and

we believe it is successful in achieving this goal. Two main reasons to support our belief are:

1. The document metaphor used in Xing is based on a common form concept, which is an easy

solution for na'ive users. 2. It frees users from understanding complex textual query languages.

One trade-off, usually existing in data query systems, is between expressive power

and ease-of-use. Xing also tries to be able to express more complicated queries and supply

users more query functions. Although its expressiveness is limited compared with some

textual query languages, like XML Query Algebra, it seems to be generally sufficient for non

professionals to pose simple queries conveniently. Meanwhile, it saves users lots of energy

and reduces lots of pain by giving a possibility to avoid studying complex languages.

Basically, from the need in the real world we can see a pretty promising prospect for the use of

a visual and intuitive programming interface to query XML-based web documents.

One interesting feature of our Xing implementation is that it can be run as either a

standalone application or an applet from browsers. As an applet, it can be open to the public

through the Internet for trial and getting comments/feedback. Another feature is the pop-up

menu assistance for users through analyzing the DTD of the XML data worked on. It gives

further clues and tips during a user's query design, and avoids that users specify any

meaningless names or make typing errors.

Meanwhile, there are still lots of issues left on Xing' s future research. One aspect is to

define a formal semantics for Xing because it is the bridge between end user graphical or

textual notations and the real meaning of query expressions. No matter whether to do query

translation or to compile and execute the query, it is always a key step to understand the

semantics. Actually, some work on the semantics has been done and discussed in [1]. With

semantics, it also becomes possible to determine the exact expressive power of Xing, which

will help users to utilize the advantage of Xing system better.

Apart from the theory issues, one practical future work is to implement the rules

translation. Moreover, we may develop a new compiler or use any existing compiler and

embed it to Xing system so that users can execute the queries directly in Xing environment.

45

Again, the semantics will help a lot on that. Another possible improvement on the system is to

extract DTD information from pure XML data. Currently, the system can supply pop-up menu

assistance only if there is an explicit DTD in the document. However, it is also possible to

analyze a document and extract its DTD structure by Xing itself. One such tool is XTRACT

[14]. Since plenty of existing XML documents do not have DTD specification, which are only

pure data or specified by schema, that function can enable Xing' s nice feature to be exploited

in a much broader range.

46

Bibliography

[1] M. Erwig. Xing: A Visual Language for XML. 16th IEEE Symp. on Visual Languages
(VL 2000), 47-54, 2000.

[2] P. Fankhauser, M. Fernandez, A. Malhotra, M. Rys, J. Simeon, and P. Wadler, editors.
The XML Query Algebra. W3C Working Draft, 15 February 2001.

[3] M. M. Burnett. Visual Programming. In Webster, J. G., editor, Encyclopedia of
Electrical and Electronics Engineering. John Wiley & Sons, 1999.

[4] M. Erwig. XML Queries and Transformations for End Users. XML 2000, 259-269,
2000.

[5] A. Deutsch, M. Fernandez, D. Florescu, A.Levy, and D. Suciu. A query language for
XML. International World Wide Web Conference, 1999.

[6] D. Chamberlin, D. Florescu, J. Robie, J. Simeon, and M. Stefanescu, editors. XQuery:
A Query Language for XML. W3C Working Draft, 15 February 2001.

[7] M. Fernandez, J. Simeon, P. Wadler. XML Query Languages: Experiences and
Exemplars.

[8] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca. XML-GL:
A Graphical Language for Querying and Restructuring XML Documents. In 8th Int.
World Wide Web Conference, 1999.

[9] S. Cohen, Y. Kanza, Y. Kogan, W. Nutt, Y. Sagiv, and A. Serebrenik. EquiX - Easy
Querying in XML Databases. In 2"a ACM SIGMOD Int. Workshop on The Web and
Databases, pages 43-48, 1999.

[10] T. Bray, J. Paoli, C. M. Sperberg - McQueen, and E. Maler, editors. Extensible
Markup Language (XML) 1.0, 2000. http://www.w3.org/TR/REC-xml.

[11] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie, editors. XML Query
Requirements. W3C Working Draft, 15 February 2001.

47

[12] M. Fernandez and J. Robie, editors. XML Query Data Model. W3C Working Draft, 15
February 2001.

[13] D. Chamberlin, P. Fankhauser, M. Marchiori, and J. Robie, editors. XML Query Use
Cases. W3C Working Draft, 15 February 2001.

[14] M. N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim. XTRACT: A System
for Extracting Document Type Descriptors from XML Documents. In Proceedings of
ACM SIGMOD Conference on Management of Data, pages 165--176, May 2000.

[15] M. Marchiori, editor . ..KM"L Query, 2000. http://www.w3.org/XML/Query.htm1.

[16] M. Fernandez, J. Simeon, P. Wadler. An Algebra for XML Query. In Int. Conf on
Foundation of Software Technology and Theoretical Computer Science, LNCS 1974,
2000.

[17] J. Cowan, editor . ..KM"L Information Set, 2000. http://www.w3.org/TR/xml-infoset.

[18] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An XML Query Language for
Heterogeneous Data Sources. In 3nd ACM SIGMOD Int. Workshop on The Web and
Databases, 2000.

[19] J. Clark and S. DeRose, editors, ..KM"L Path Language (XPath), Version 1.0, 1999.
http:/ /www.w3.org/TR/xpath.

[20] Java™ AP Is for ..KM"L Processing (JAXP). http://java.sun.com/xml/xmljaxp.html.

[21] Ronald Bourret. DTD Parser
http://www.rpbourret.com/schemas/index.htm.

and Schema Converters.

