
The Empire Infrastructure for Testing Experimentation

by

Brian Davia

a research paper
submitted to

Oregon State University

in partial fulfillment
of the requirements

for the degree of

Master of Science

April, 2001

Abstract

It is widely believed that there is not enough experimentation in the field of computer

science. One area in particular in which additional experimentation is needed

involves regression testing of large, real software. Regression testing is the expensive

process of validating changes made to previously tested software. One reason why

there is not enough experimentation in this area is the substantial infrastructure

required for such experimentation. We have developed an infrastructure designed for

performing various testing experiments on a large, real test subject. This paper

describes the requirements, design, and implementation issues associated with the

development of our infrastructure. We also performed an experiment to validate the

infrastructure, in which we investigated the affects test granularity has on regression

test selection techniques. The experiment shows the usefulness of our infrastructure.

We believe that our infrastructure can serve as a prototype for future development of

similar infrastructures involving other large test subjects.

Contents

1 Introduction

2 Requirements
2.1 Test Repeatability

2.2 Subject Requirements

2.3 Requirements of the Automated Testing Procedure

2.4 Requirements for Regression Testing

3 Case Study Subject

4 Infrastructure Design and Implementation
4.1 Source Code and Version Preparation

4.2 The Composition of a Test

4.2.1 Creating Tests with the Category Partition Method

4.2.2 Handling Different Test Granularities

4. 3 Components of the Infrastructure

4. 4 The Directory Tree

5 A Case Study in Regression Test Selection Techniques
5.1 Subject

5.2 Techniques

5.3 Procedure

5.4 Results

6 Conclusion and Future Work

Appendix A: run_test.pl
Appendix B: make_install.sh
Appendix C: test_ emp.ex

References

1

2

4
5

6

7
9

10

11
12

12
12

18

20

23

25
25

26
27

28

33

34
38
41

43

1. Introduction

For most important discoveries in science, there have been experiments that have

either validated or produced those discoveries. There have been simple experiments,

such as Galileo dropping two cannon balls of different weight off of the Leaning

Tower of Pisa to show that objects of different weight fall at the same rate. There

have also been more complicated experiments, such as Robert Milikan' s oil drop

experiment, which led to the calculations of the mass of an electron in 1910. There

are even accidental discoveries, such as that of penecillin by Alexander Fleming in

1928, that have been products of experimentation. Experimentation is important,

because it leads to innovation and a better understanding of the world around us.

Experimentation is part of the foundation of science, and in this, computer science

should not be an exception. In his paper Should Computer Scientists Experiment

More?, Walter Tichy states, "To understand the nature of information processes,

computer scientists must observe phenomena, formulate explanations and theories,

and test them" [12]. Unfortunately, it seems as if this belief is not acted on widely

enough. Tichy also cites findings that of a random sampling of papers published by

ACM in 1993 that claim the need for empirical analysis, 40 percent of those papers

provided none. It is clear that there is room for growth in experimentation in

computer science.

One particular area of interest in experimentation within computer science is that of

regression testing. Regression testing is an expensive testing process that attempts to

validate changes made to previously tested software. One method of regression

testing is to save the test suites used to validate the software, and rerun all of those

tests after changes have been made. This method can prove to be expensive,

particularly when the time needed to execute these tests can be on the order of days.

One way to reduce this cost is to select and run only the tests that validate the

modified or new portions of code.

2

Since effective regression testing techniques could save companies a great deal of

time and money, regression testing is a popular area ofresearch. However, as

popular as it is in the field of research, it is widely acknowledged that more

experimentation in regression testing is needed [2, 3, 4, 5, 6, 9, 13].

One reason why there hasn't been enough experimentation in regression testing is that

such experimentation requires substantial infrastructure. First, it requires subject

programs which have multiple versions. Second, it requires tests that can be executed

on those programs and their versions. Lastly, it requires automation. As the number

of tests needed to validate a piece of software increases, so does the need for

automation. By automating tests, we can accomplish in a few hours what may

otherwise take weeks by hand.

There have been previous efforts to produce infrastructure for regression testing that

met the requirements outlined above [11]. However, this infrastructure was

developed for relatively small programs (100 -1000 lines of code). To make

continued progress in experimentation using regression testing techniques, there is a

need for an infrastructure that can handle larger, real-world programs.

For this project, we have produced such an infrastructure. Our infrastructure is

designed to be flexible, so that it can support many different types of testing

experiments. The infrastructure focuses on a large (about 80,000 lines of code), real­

world program, and several of its versions. It also consists of nearly 2,000 tests

aimed at testing the functionality of that program. The infrastructure has automation

capabilities that will execute a test suite on multiple versions of the program, save the

results, and analyze them. Finally, although the infrastructure focuses on a single,

specific program, we believe that it serves as a prototype for such infrastructures, and

thus, can be used to support additional large experimental subjects in the future.

To validate the usability of our infrastructure, we conducted a case study

investigating how test granularity affects the effectiveness and efficiency of

regression test selection. As a result of this study, we report that there may be little

3

benefit to using regression test selection techniques with test sets of coarse

granularity. Further, we find that regression test selection techniques applied to fine­

grained test sets can be competitive with the retest-all method applied to coarser­

grained test sets.

The remainder of this paper is organized as follows. The second section of this paper

describes the requirements that the infrastructure must meet. The third section briefly

describes the test subject that is used in our infrastructure. The fourth section

describes the details involved in designing and implementing the infrastructure, as

well as the tests for the subject. The fifth section summarizes a case study that was

completed using the infrastructure, and the results of that study. Finally, the sixth

section presents our conclusions and discusses further work.

2. Requirements

In this section we discuss the requirements that our infrastructure should satisfy.

When specifying these requirements, we must be sensitive to how the infrastructure

will be used. Our overall goal is to create an infrastructure that supports

experimentation with testing and regression testing techniques on a large, multi­

version software system.

There are several items that comprise such an infrastructure. First of all, there is the

program that is to be tested and all of its versions. Second, there is a set of realistic

tests and test suites that are used to test the program. Third, there should be a set of

tools that can be used to accomplish various tasks involved in testing, such as

installing the program and executing tests.

It should be made clear that we are not producing this infrastructure for the sole

purpose of supporting a single experiment. Instead, we would like to produce a

4

system that is extensible and flexible enough so that it can be used in various

experiments pertaining to testing the specified subject.

Initially, the system must be able to support the following experiments:

1. Evaluation and comparison of regression test selection techniques. Given a

program, its test suites, and its version history, which tests should be selected

to guarantee coverage of modified code between versions?

2. Test case prioritization. How should tests be prioritized in order to improve

various test measures, such as rate of fault detection?

3. Test suite minimization. Given a program, and a test suite, which tests should

be selected to guarantee coverage of desired code in that program while

minimizing the number of tests selected?

4. Regression testability issues. How do factors in test process or test suite

design affect the efficiency and/or effectiveness ofregression testing?

These overall requirements imply a number of additional requirements for the

infrastructure. These requirements will be explored in the following sections.

2.1 Test Repeatability

Since we are creating a system that assists in executing testing experiments, we also

need to address issues that arise when executing any scientific experiment. We will

be most concerned with controlling the environment in which we are testing. We

want all tests to be repeatable. That is, suppose.l{x,v) represents the result (outputs)

of some test x executed on some version v. Letf'(x,v) be the results of executing the

same test x on the same version v a second time. Then.l{x,v) must be equal to

f'{x,v). 1 Repeatability is an issue that we will encounter further while addressing the

requirements of the infrastructure, as well as the design and implementation of the

infrastructure.

1 At least equal barring any extraordinary circumstances such as disk crashes or power failures during test
execution.

5

2.2 Subject Requirements

There are certain qualities that we would like our test subject to possess in order to

support experimentation such as that outlined previously.

We would like the experimentation subject to be relatively large (at least 10,000 lines

of code), and available in multiple versions. The subject should also be "real". That

is, it should be software that is used in the real world, rather than software that was

developed specifically for experimentation. The subject should be written in C for

reasons that will be discussed later in this section.

We would like our subject to be maintained in a version control system. By

maintaining the code of the subject in such a manner, we can efficiently store the

many versions of the subject, as well as ensure that we can retrieve any desired

vers10n.

Another quality that we require of our subject in order to make our experiments

repeatable is determinism. As discussed in Section 2.1, we must attempt to ensure

that, regardless of when or how many times we run a test on a single version, we

receive the same results from that test every time. If the subject is not deterministic,

our infrastructure may attempt to point out false bugs. For example, suppose the

subject prints the date at some point during execution. If we run tests that extract this

behavior on two separate days, and if our system works as it should, a bug will be

reported because there were two different outputs for the same test. This information

is useless to those who are running the experiment, since the program is simply

behaving as it should. Another source of non-determinism is the use of random

number generators. In order to remove non-determinism, we may need to modify the

original code of the subject so that it behaves in a predictable manner.

6

When executing a test, it is often desirable to measure the effectiveness of that test.

One possible measure of effectiveness is test coverage, in which we record the

portions of code that were executed while running a test (or suite). Such coverage

information includes the percentage of the code (functions, statements, or branches)

that was covered, and exactly what code was executed during the tests. For the user

of the system to be able to extract meaningful information about the coverage of the

tests executed on the subject, the subject should be instrumented in some manner in

order to calculate the test coverage. The instrumentation software that should be used

by the infrastructure is Aristotle [7]. Since this software works only on C-based

programs, the subject must be written in C.

2.3 Requirements of the Automated Testing Procedure

One general requirement for our infrastructure is that it provides a system that

automatically runs selected tests on the subject. In this section, we describe a general

outline of what we would like the system to do while running tests. This entails an

explanation of the inputs and outputs for the system, as well as a description of the

testing process.

Let's begin by addressing what the system needs to do in order to execute a test on

the subject. Since the subject will be under version control, the system must first

extract the subject from the version control system repository. Next, since only the

source code of the subject will be stored in the repository, the system must take the

steps necessary to build and install the subject.

We would like to import any data files that the subject may rely on. Depending on

the test subject, there may be many areas of functionality of the program that we

would like to test that are not accessible with a newly built instance of the subject.

By importing pre-configured data files, we can effectively force the subject into a

state in which we are able to test all desired functionality. Note that this should be

done before each test, and not just after the subject has been installed. The reason is

7

that we would like a controlled environment when executing each test. Each test

should be executed with the same start state; this is necessary for the testing process

to be repeatable.

Once the subject is built and installed, and the data files have been imported, the

system is ready to start executing tests. The structure of the tests is really a design

issue and depends on the subject. However, we will require that the structure of the

tests allow for flexibility in execution. It is very important that the system be flexible

enough to handle tests of different size and test suites of different size, and be able to

test any number of versions of the subject.

After each test is executed, the system should save the results of that test.

Specifically, we can identify three items that we would like to save. The first item is

the output of the subject; this is the primary output produced by the program, and is

usually output sent to standard-out or standard-error (the computer screen). The

second item concerns the state of the system after the test was executed. This

involves data files that are maintained by the test subject. Last, we instrumented the

subject in order to collect data on the effectiveness of the test executed (and the

effectiveness of a suite). Thus, the third item we would like to save after each test is

the trace file produced by the instrumentation.

We have now outlined the requirements that the system must meet when executing a

test suite. These requirements allow us to define a process that our system must

follow. The system must first build and install the subject. Then, for each test in the

test suite for the subject, the system must import data files, execute the test, and save

the data for that test. The result of executing the test suite will be a directory

populated by test output, data directories, and trace files. All of these should be

stored (named) in a manner in which it can be easily determined which test produced

which results.

8

2.4 Requirements for Regression Testing

We have discussed the requirements of the system that must be met to support

execution of a test suite. We now discuss the capabilities the system must have in

order to execute regression tests in an automated fashion.

We would like the system to be able to run a test suite on one or more versions of the

subject. There are several different types of tests that we would like the system to be

able to run, so we need a flexible system that would be able to handle any of these

possibilities. Specifically, we would like the system to be able to do the following:

1. run a suite of tests on a single version;

2. run a suite of tests on a pair of versions, and compare the results;

3. run a suite of tests on a sequence of pairs of versions, and compare the results.

In order for the system to do this, on any execution of the system, we must supply the

system with (1) a test suite and (2) a list of versions to be tested.

Item 1 was addressed in the previous section. For items 2 and 3, we assume that

anytime there is more than one version specified to be tested, the system is

performing regression tests. In the case that only a pair of versions is specified, once

the suite is executed on each version, the system should compare the results. The

system should report any differences in either the outputs of each test or the contents

of the resulting data directories. If there are more than two versions specified to be

tested, then the results of testing each pair of versions in sequence should be

compared. For example, ifwe specify versions Vi, v2, V3 and to be tested, then the

results of pairs (vi, V2) and (v2, V3) will be compared, but not (vi, v3).

9

3. Case Study Subject

The infrastructure whose requirements were outlined in Section 2 will be used in a

number of experiments focused on testing methodologies and issues. Although the

requirements that have been outlined could be applied to any test subject, there are a

number of issues in the design and implementation of the system infrastructure that

are dependent on the test subject chosen for experimentation. Thus, before discussing

the design and implementation, we first present the test subject that was chosen for

this project.

The software for which we have built our infrastructure is a client/server game called

Empire. Empire is a game of world domination where the setting of the game is a

world in which each player has their own country. The goal of the game is for a

player to develop his or her country's economy and military to the point of

overpowering all other countries in the game. A game of Empire is setup, started, and

maintained by the deity of the game who installs and activates a server. The players

of the game dial up using a client and play from their own terminal, issuing

commands via the command line. The functionality available to the player consists of

182 commands (most with multiple parameters and options). A sampling of these

commands is provided in Figure 3 .1. We have chosen the server of this system to be

our testing subject.

10

Figure 3.1: Some Sample Commands

Command Description of functionality

move Moves people or commodities between sectors.

commodity Displays information on the commodities in each sector.

map Displays a map of the land visible to the user.

telegram Write a telegram to another player in the game.

build Builds a plane, ship, land unit, bridge, or nuclear warhead.

load Load a plane, a land unit, or commodities onto a ship.

offer Allows user to offer a loan or treaty to another country.

bye Logs the user out of the game.

There are several reasons why we chose Empire as a test subject. First, it met all of

the requirements addressed in the previous section: it is a large piece of software

(around 80,000 lines of code) written in C, it is used in the real world, and it has

multiple versions (29 versions to date) available. The second reason why Empire was

chosen was the availability of source code and documentation for the system. Empire

is distributed under the GNU General Public License Agreement, and can be

downloaded at no cost. Along with the software comes a large amount of

documentation on how to play the game. This documentation is crucial in designing

tests for use in experiments.

4. Infrastructure Design and Implementation

We now discuss the design and implementation of our infrastructure. The section is

split into four parts. The first part addresses the steps that were taken to prepare the

source code of the subject for the infrastructure. The second part discusses the format

of a test, and why we chose this format. The third part of this section describes the

11

different components that make up the automated regression test system. The last

section describes the contents and purposes of the different directories within the

infrastructure that supports the system.

4.1 Source Code and Version Preparation

Section 2.2 outlined specific requirements that must be met by the test subject.

Before a version of the subject could be included in our infrastructure for testing,

there were three tasks that needed to be completed in order to meet these

requirements. First, all nondeterministic portions of code were modified in order to

produce a deterministic version of the subject, including instances where date and

time were considered, as well as instances where random numbers were used.

Second, the Makefiles used for building and installing the subject were modified to

allow for building both regular and instrumented instances of the subject. The last

task was to insert the version into the CVS repository. Once these steps were

completed for each version, the subject was ready for test development.

4.2 The Composition of a Test

The major issue that needs to be addressed when determining the format of a test is

flexibility. As stated in the requirements, the system must be flexible enough to

handle test suites of different sizes, and allow different granularities of tests to be

constructed. Let's start by looking at how we created tests and then look at how we

implemented those tests.

4.2.1 Creating Tests with the Category Partition Method

For this project, we chose to create tests adequate for functional testing. The goal of

functional testing is to locate faults within the software; that is, to find discrepancies

between the specifications of the software and the actual behavior of the software.

12

We used a semi-formal method for creating functional tests for our test subject called

The Category Partition Method [1]. This method required us to use a Test

Specification Language (TSL) to represent the specification for each command. This

allowed us to partially automate the process of creating tests. Figure 4.1 shows a

sample command specification provided with our subject and Figure 4.2 shows a test

specification created for that command by applying the Category Partition Method

and using TSL.

13

Figure 4.1: Functional Specification for toggle Command ,-

Command : TOGGLE

NAME
toggle - Toggle client flags

Level: Expert

SYNTAX
[##:##]% toggle [informjflashjbeepjcoastwatchjsonarjtechlists] [onjoff]

You use the toggle command to set various user-interface flags for your coun­
try. The server will remember which flags you have set between sessions. If
you do not specify the second argument ("on" or "off''), then the server will
just flip the switch from on to off or vice versa.

[##:##] Command: toggle inform
Will toggle the "inform" flag (default oft) for your country. When inform is
on, the server will inform you immediately whenever you receive a telegram.

[##:##] Command: toggle flash
Will toggle the "flash" flag (default on) for your country. When flash is on,
you can receive instantaneous messages from your allies when they use the
"flash" and "wall" commands.

[##:##] Command: toggle beep
Will toggle the "beep" flag (default on) for your country. When beep is on,
your terminal will beep whenever there's a big explosion in the game (shells,
bombs,torpedoes ...). Youmightwanttoturnbeepoffifyou don't want to
disturb others.

[##:##] Command: toggle coastwatch
Will toggle the "coastwatch" flag (default on) for your country. When
coastwatch is on, then you will receive telegrams informing you of any new
ship sightings.

[##:##] Command: toggle sonar
Will toggle the "sonar" flag (default on) for your country. When sonar is on,
then you will receive telegrams whenever any of your sonar-equipped ships
detect a sonar ping.

[##:##] Command: toggle techlists
Will toggle the "techlists" flag (default oft) for your country. When
techlists is on, when you do a "show" command, the lists shows will be in
order of tech instead of grouping order.

[##:##] Command: toggle
Will list all your flags and show whether they are on or off.

SEEALSO
telegram, flash, wall, Communication

14

Figure 4.2: Test Specification for toggle Command

Test specification for toggle
[##:##]% toggle [informlflashlbeeplcoastwatchlsonarltechlists] [onloff]

Parameters:
what to toggle:

'inform'.
'flash'.
'beep'.
'coastwatch'.
'sonar'.
'techlists'.
blank.
something else.

onor off:

Environment:

'on'.
'off.
blank.
something else.

property was on before call:
yes.
no.

[single]
[single]
[single]
[single]
[single]

[property blank]
[error]

[if !blank]
[if !blank]
[if blank]
[error] [if!blank]

[if !blank]
[if !blank]

To apply the Category Partition Method, we start by analyzing the specifications of

the program, function, or in our case, the command that we wish to test. We identify

input parameters as well as environmental influences (factors other than parameters

that affect the function of the command); these are our categories. In our example,

the categories are 'what to toggle', 'on or off, and 'property was on before call'.

Once we have specified these, we identify specific choices for each category. For

example, in category 'on or off, we identified four choices: 'on', 'off', blank, or

something else. Tests are generated by combining choices for each category. Finally,

since the full set of combinations may yield too large a set of tests, we can associate

constraints with individual choices to limit the number of combinations. For

example, consider the 'what to toggle' parameter in Figure 4.2. Since we associate

[single] with it, the 'inform' choice will be tested only once. We also added [property

blank] to the 'blank' choice for 'what to toggle'. Once this property is declared, we

can use it to apply constraints to the remaining parameters. We have effectively cut

our number of tests down from 64 (8*4*2) to 12 by using these constraints.

15

After running a TSL tool on our specification, we are left with the test cases specified

in Figure 4.3. It is then left to the tester to implement the specified tests.

Figure 4.3: Test Cases for toggle Command

Test Case 1 <single>
what to toggle : 'inform'

Test Case 2 <single>
what to toggle : 'flash'

Test Case 3 <single>
what to toggle : 'beep'

Test Case 4 <single>
what to toggle : 'coastwatch'

Test Case 5 <single>
what to toggle : 'sonar'

Test Case 6 <error>
what to toggle : other fluff

Test Case 7 <error>
on or off : other fluff

Test Case 8
what to toggle
on or off

(Key= 6.1.1.)

property was on before call

: 'techlists'
: 'on'
: yes

Test Case 9
what to toggle
on or off

(Key= 6.1.2.)
: 'techlists'
: 'on'

property was on before call : no

Test Case 10
what to toggle
on or off

(Key= 6.2.1.)

property was on before call

: 'techlists'
: 'off
: yes

Test Case 11
what to toggle
on or off

(Key= 6.2.2.)

property was on before call : no

: 'techlists'
: 'off

Test Case 12
what to toggle
on or off

(Key= 7.3.0.)

property was on before call

: blank
: blank
: <n/a>

16

4.2.2 Handling Different Test Granularities

As stated in the requirements, the only real requirement for how a test is structured is

that it be flexible. We must design the infrastructure so that it can handle tests of

different granularities, as well as test suites of different sizes. It may be beneficial to

define some terminology at this time. A test is a set of inputs that can be applied to a

program, which yield some outputs. A test suite is a collection of one or more tests.

The term granularity refers to the size of a test. A test of the finest granularity is a

test of the smallest possible size, where size is some measure appropriate to the

system being tested. To look at these issues in our context, consider the test subject

for which we are designing the system; Empire. Empire is a game in which the user

issues commands via a command line when prompted. Therefore, for Empire, a test

of the finest granularity (granularity-I) is a test that executes only one command. A

test of granularity-4 involves four commands.

We decided that the best means of storage for a test would be a file. There are a few

levels of abstraction to discuss in this design, so we will start at the bottom and work

our way up.

Figure 4.4

buildl.gr buildl.ts suitel

build plane pl 2,2 buildl .gr 1 foo buildl.ts

The foundation of our test structure, the building block with which we build all of our

tests, is a test grain. Each test grain is composed of one command that can be issued

to the test subject. For example, we could have a file (a test grain) buildl .gr that

contains a command to build a plane (Figure 4.4, left). With this test grain, we can

create a test. Empire is a game with a number of players. So, when creating a test,

17

we must specify the player (and password) for which the grain should be executed, as

well as the test grain itself. So, to complete our example, we can represent a test that

executes buildl.gr for player 1 with password 'foo' as 'buildl.gr 1 foo' (Figure 4.4,

center).

Each test is represented in a file. The test that we created above, for example, is

contained in the file buildl.ts. Continuing to build out, we can create a test suite by

listing a number of tests. Figure 4.4 (right) summarizes the contents of an example

suite.

By structuring our tests into grains, tests, and suites, we have effectively modularized

our test structure. A test suite is built using tests. A test is built using test grains.

This modularization gives us a great deal of flexibility. Of course, there can be any

number of tests in a test suite. Also, we can use any number of test grains within each

test. This allows us to meet the requirement that the system handle tests of any size.

Figure 4.5 shows what a test of granularity-4 may look like.

Figure 4.5: build2.ts

buildl.gr 1 foo
build2.gr 1 foo
build2.gr 3 bar
build5.gr 3 bar

18

4.3 Components of the Infrastructure

There are many repetitive steps involved in testing a piece of software. One purpose

of our infrastructure is to identify those repetitive steps, and automate them. By

automating the test process, we can decrease the time it takes to execute tests, as well

as lessen the chance of human error while executing tests. In the following

paragraphs, while we discuss the key steps in the process of testing our subject, we

identify the major components of our automated system.

Let's start by taking a look at the big picture. We would like to run regression tests

on the subject. The requirements state that the system should be able to run a suite of

tests on any number of specified versions of the subject. This suggests an outermost

loop of executing a suite of tests for each version listed.

So what needs to be done in order to run a suite of tests on a single version of the

subject? A complete summary of the algorithm that we used can be found in Figure

4.6.

Figure 4.6: Algorithm for run_ test.pl

For each version specified

1. build & install subject

2. for each test in suite

3. import data files

4. start server

5. for each grain in test

6. execute test grain

7. stop server

8. store, tar, and zip output and data files

9. remove subject

19

The first component of our infrastructure is a Perl script called run_test.pl, following

the algorithm outlined in Figure 4.6. The first step in the algorithm is to extract the

specified version of the subject from the CVS repository, build it, and install it (line 1

of Figure 4.6). To automate this, we created make_install.sh, a simple shell script

that extracts the specified version of the subject from CVS, builds the subject, and

takes any other steps necessary to enable running of the subject. (This is the second

component of our infrastructure.)

Next, for each test in the suite, we must initialize the state of the subject so that the

test will execute as designed. Once the server has been started, we then execute the

test and save the appropriate output and data files. We group all of these steps into a

second loop (lines 3-8 of Figure 4.6).

Finally, each grain within the test needs to be executed (lines 5-6 of Figure 4.6). Up

to this point, every step can be accomplished by using simple shell and Perl scripts.

However, the task of executing a test grain is not so simple. Remember that we are

dealing with an interactive program, and simply executing the program with some

command line parameters will not suffice. This problem is handled in our third

component, called test_emp.ex. test_emp.ex is a script written in Expect[lO], which

is an extension of Tel. Expect gives us the capability of running a program (like the

Empire client) and interacting with that program. Using Expect, we are able to

specify prompts to look for from the program, and input to feed to the program when

we see those prompts. For example, consider the steps that are taken to log a user in

to the server using the client. Figure 4. 7 shows the steps that a user would take to

login by hand (italics distinguish user inputs), while Figure 4.8 shows the section of

test_ emp.ex that allows the infrastructure to login to the server.

20

Figure 4.7
1% emp_client
Country name? POGO
Your name? *****

[0:640) Command:

-
1.

2.
3.

4.
5.
6.
7.
8.

9.
10.
11.
12.
13.

14.
15.
16.
17.

spawn csh

expect "%"
send "emp _ client \r''

expect {
"% $"
"Country name?"

send "$name \r''

expect {
"% $"
" Your name?"

send "$pswd \r"

expect {
"% $"
"Command "

exit }

exit
}

{ }

{ exit }
{

The example in Figure 4.8 starts out by spawning a process in line 1, using the spawn

command. In this case, the process is a shell. The expect command waits for a string

from that process: in line 2, Expect waits for the shell prompt. Upon receiving that

prompt, Expect uses the send command to send a string to the spawned process: in

line 3, Expect starts the client of empire by sending "emp_client\r" to the spawned

process. Lines 4-7 of Figure 4.8 illustrate Expect's ability to handle multiple

possibilities within the spawned process. In line 5, if Expect sees the shell prompt

(' $' anchors the end of a string), then the client was unable to connect to the server,

and thus the test should exit. However, in line 6, if the spawned process prompts for

21

"Country Name:", Expect continues to the next line where it sends the country name

to the spawned process. Similarly, in lines 9-13, Expect waits for the prompt for a

password, and then sends the password to the spawned process. If the login failed,

Expect will receive the shell prompt from the spawned process and will consequently

exit, as specified in line 15. However, if the spawned process produces the command

prompt, then the Expect script has successfully logged-in to the server, and continues

on to the next statement.

Empire uses 22 different prompts in total. Since Expect allows us to handle multiple

possible prompts, test_emp.ex handles all 22 prompts, and is used to execute all test

grams.

Once each test in the suite has been executed, we remove the subject that we have

been testing (line 9 of Figure 4.6), and prepare to run tests on the next specified

version of the subject.

In summary, the three major components of the automated system are run_test.pl (the

driver of the system), make_install.sh, and test_emp.ex. There are a few smaller

components used to assist with minor details of the system operation, such as a script

that compares the results. However, the components described make up the

framework of the system.

4.4 The Directory Tree

The infrastructure that we have designed to this point requires several script files.

The infrastructure could also provide large numbers of test suites and thousands of

tests, and produce multiple instances oftest results. To maintain this large collection

of files in an orderly manner, we have designed a directory tree structure. The

structure of this tree is shown in Figure 4.9. A description of the contents of each

directory in this tree follows.

22

Figure 4.9: Tree Structure

I Empire Test j

.-----.c.------~ I ~ ~.------------'-
empCVSrepo I / Results 11 Scripts 11 Stage I I Suites 11 Universe

/~
.---R-e-su-lt-sl----,11 Results2 I I~ -R-es-ul-ts-N~ Grains

empCVSrepo: This directory is maintained by CVS and contains the source code of

all versions of the test subject.

Results[l,2,3, ...]: The directories Results 1, Results2, ... ResultsN contain tarred and

zipped test results for each of the N versions that are tested during a test run.

Results: This is the parent directory for Results 1, Results2, ... ResultsN.

Scripts: This directory contains all the scripts used by the infrastructure. Such

scripts include test_emp.ex and make_install.sh, as well as other minor utility

scripts used in running tests and analyzing results.

Stage: This is the location where all tests are run. A version of the subject is

extracted to this directory to be tested.

Suites: This directory holds all suites that can be used in running tests.

Universe: The Universe directory holds all tests. Included in the Universe directory

are all .ts files, as well as the Grains directory.

Grains: This directory contains all test grains (.gr files) used for testing.

23

5. A Case Study in Regression Test Selection Techniques

The primary goal of our infrastructure is to support experiments on regression testing.

To assess whether we have accomplished this goal, we used our infrastructure to

perform a prototype case study. The objective of the case study is to investigate the

effects that different test case granularities have on regression test selection (RTS)

techniques.

5.1 Subject

The subject that we will be testing is the subject which we developed the

infrastructure for; Empire. We chose five versions of Empire to work with. These

versions are summarized in Table 5 .1.

Table 5.1

Version Number of Functions Number of Functions Changed
from Previous Version

4.2.0 1159 -
4.2.1 1159 51
4.2.3 1171 300
4.2.4 1172 9
4.2.5 1173 100

We created several sets of tests aimed at testing the functionality of the server of

Empire. The first set of tests is the granularity-1 tests created by using the techniques

described in section 4.2.1. There are 1,985 tests in the granularity-1 set. Using this

set of tests, we then created sets of granularity-4, granularity-16, and granularity-64

tests. As described in section 4.2.2, a test of granularity-n is just n test grains selected

to make a single coarser-grained test.

In the sets of granularity-n tests, n test grains were each used exactly once. In

creating a set of granularity-n tests, the first step is to create a list of granularity-1

24

tests. The next step is to randomly remove n granularity-I tests from this list and use

them to create a single test of granularity-n. This step is repeated until there are at

most n granularity-I tests remaining in the list. The final granularity-n test is

composed of the tests remaining in the list of granularity- I tests. The test sets we

created for Empire by this process are summarized in Table 5.2.

Table 5.2

Test Set Number of Tests

granularity- I 1985

granularity-4 497

granularity-16 125

granularity-64 32

5 .2 Techniques

There are two regression testing techniques that are used in this study. The first

technique, called retest-all, takes all tests that were created and executed on a version,

vk, and executes them all on the succeeding version, vk+1•

The second technique uses a selection technique to select a test set that is safe [8], and

runs only those tests selected. In this study, we use a selection technique that is safe

at the function level; that is, we select tests that execute either changed or missing

functions between versions vk and vk+1• The first step in this process is to execute all

tests on vk and collect coverage information for each test. The second step is to find

all functions that either differ in V1c+1 from vk, or exist in Vk, but not in V1c+t• The third

step is to cross-reference the list of changed and deleted functions with the coverage

information collected in the first step. Every test that executes, on vk, a changed

function, or used to execute, on Vk, a function that has been deleted, is selected. The

result is a list of tests that, when run on vk, execute functions that have changed in, or

25

deleted from Vk+t• The fourth, and final step is to run the tests that resulted from the

third step on vk+t• A summary of these steps is listed in Figure 5.1.

Figure 5.1 Regression test selection technique.

1. Run all tests on vk and collect coverage information.

2. Find all differences between vk and Vk+t at the functional level.

3. Cross-reference functions found in step 2 with coverage

information found in step 1.

4. Run the tests resulting from step 3 on Vk+t•

5 .3 Procedure

The main objective of this study is to apply the two different regression testing

techniques just described using the four different granularity-n test sets, and see how

the two techniques compare under different test granularities. Figure 5.2 summarizes

the algorithm for our procedure.

Figure 5.2

1. For each test granularity level G

2. For each pair of sequential versions vk, vk+l

3. Run TG on vk and collect test results

4.

5.

6.

7.

Measure the time to run TG on vk+1 (retest all)

Gather the coverage results from running TG on vk

Cross-reference coverage results with the changed

functions between vk, vk+1 to determine set of

selected tests

Measure time to run selected tests from step 7 on

26

There are two metrics that are recorded during this procedure. The first is how long it

takes to run a suite of tests on a version (step 4), and also the time it takes to run a

selected subset of tests on that version (step 7). The second metric is the number of

tests that are selected to be safe at the function level (step 6).

5.4 Results

Table 5 .3 summarizes the number of tests selected by our test selection technique

(step 3 in Figure 5.1) by listing the percentage of tests selected from the complete

granularity-n test set, for each granularity level.

Table 5.3 Percentage of tests selected to be functionally safe.

Version Granularity-1 Granularity-4 Granularity-16 Granularity-64

4.2.0 29.9% 74.4% 97.6% 100%

4.2.1 85.1% 100% 100% 100%

4.2.3 6.7% 23.6% 60.8% 93.8%

4.2.4 59.9% 98.0% 100% 100%

In general, as the granularity of the test set increased, so did the percentage of tests

selected. Therefore, we can say that as the granularity of test sets increased, the

effectiveness of the selection technique used decreased. This result was consistent

across all versions.

The other metric that we want to look at is the time it takes to re-test all and run

selected tests for each version. These results are displayed in Figures 5.3 - 5.6.

27

Figure 5.3 Suite execution time for version 4.2.1

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00
gran-1 gran-4 gran-16 gran-64

Figure 5.4 Suite execution time for version 4.2.3

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00
gran-1 gran-4 gran-16 gran-64

28

0 test-all

■selection

0 test-all

■selection

Figure 5.5 Suite execution time for version 4.2.4

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00
gran-1 gran-4 gran-16 gran-64

Figure 5.6 Suite execution time for version 4.2.5

8:24:00

7:12:00

6:00:00

4:48:00

3:36:00

2:24:00

1:12:00

0:00:00
gran-1 gran-4 gran-16 gran-64

0 test-all

■ selection

0 test-all

■ selection

The first thing that we notice in the results depicted above is that as the granularity

increased, the time to re-test all decreased. Recall that there is overhead incurred

each time a test is executed; mainly the time it takes to reset the server, and to save

the results. Since there are actually fewer tests executed in the larger granularity sets,

this overhead does not occur as much in those sets as it does in smaller granularity

sets.

29

We also notice that there is a much greater benefit for using the regression test

selection technique for the granularity- I set of tests than there is for the others. This

is in direct correlation with the number of tests selected shown in Table 5.3.

The results suggest that with very coarse-grained test sets, there may be little to gain

by using a selection technique. With granularity- I 6 and granularity-64 test sets, there

was little or no time saved by using the test selection technique.

Figures 5.3 and 5.5 also show, however, that using the regression test selection

technique with the granularity- I set of tests can be competitive with the retest-all

technique applied to the other sets of tests. This is important, because there is at least

one other reason to use tests of fine granularity, and that is that fine granularity tests

can be more accurate in pinpointing faults. For example, consider a granularity-64

test that consists of 64 commands. If the test fails catastrophically (the server shuts

down) on the fourth command, the remaining 60 commands will not be executed.

This leads to inefficiency since it is possible that somewhere in the remaining 60

commands, additional faults are uncovered. Yet, to actually uncover these faults, the

problem uncovered by the fourth test must first be handled, and then the test can be

rerun. Only at this time will the next fault appear. This can all be avoided when

using fine granularity tests, where at most one fault can be uncovered by each test.

In summary, we see that in the case studied, the benefits of using the regression test

selection technique were more prevalent when applied to test sets of fine granularity

than when applied to tests sets of coarser granularity.

30

6. Conclusion and Future Work

In this project, we have identified the requirements for, designed, and implemented an

infrastructure to be used for regression testing experiments, where the test subject for

these experiments is a large, real program. Though the design and implementation of

our infrastructure are in some ways dependent on the test subject, we believe our

infrastructure can serve as a prototype for additional infrastructures built for other

large, real test subjects.

Our infrastructure was designed to support multiple types of regression testing

experiments. To validate our infrastructure, we performed a case study that utilized

many of the features of that infrastructure. This case study explored the effects that

test granularity has on the effectiveness of regression test selection (RTS) techniques.

We found that RTS techniques applied to fine-grained test sets can be competitive

with the retest-all method applied to coarser-grained test sets. We also found that

there may be little benefit to using RTS techniques on coarser-grained test sets.

For future work, there are many more experiments that can be implemented by using

our infrastructure. One experiment could take our case study a step further by

including investigation into the effectiveness of finding faults. Other experiments, for

example, could focus on test suite minimization, and test case prioritization.

In addition to further experimentation, there is further work to be done on the

infrastructure itself. First, faults within the various versions of the subject need to be

identified and categorized. Second, by running a real game, we can collect

operational profiles on user usage, which could be used to investigate issues in

reliability. Finally, the test subject chosen for our infrastructure, Empire, is a

continuous work in progress. As new versions of Empire are released, they should be

included within the infrastructure.

31

Appendix A: run_test.pl

#!/usr/bin/perl

Title: run_test.pl

Author: Brian Davia
Project: Empire Regression Testing

This script is designed to perform regression tests on Empire.
As inputs, it takes a list of versions, and a list of tests to
be run on each of those versions. The script builds and
installs the specified version, runs the specified tests on the
version, and saves the results of each test. When more than one
version is specified, the script analyzes the results between
each sequential pair, looking for descepancies in their output files.

#inputs:
1 -

file containing a list of all versions to run tests on
(one version per line)

2 - file containing a list of tests to be run on each version
(one test per line)

($versList, $testList, $flag) @ARGV;
$scriptsDir = '/nfs/phantom/u8/davia2/EmpireTest/scripts';
$stageDir = '/nfs/phantom/u8/davia2/EmpireTest/stage';
#$testDir = './';
$testDir = '/nfs/phantom/u8/davia2/EmpireTest/test suites';
$resultsDir = '/nfs/phantom/u8/davia2/EmpireTest/results';
$univDir = '/nfs/phantom/u8/davia2/EmpireTest/universe';
$dataDir = '/nfs/phantom/u8/davia2/EmpireTest/stage/data';
$begin= 'date';
$AristotDir = '/nfs/phantom/u8/davia2/AristotleDB';

print 11versList
print 11testList

$versList\n 11
;

$testList\n 11
;

open the file containing the list of versions
open (VFILES, 11 $versList 11

) I I die II cannot open $versList:
$vers_num = 1;

while (<VFILES>)
chomp;
$version=$;

create directories for results
system("mkdir $resultsDir/results$vers num");
system("mkdir $resultsDir/traces$vers_num 11

);

$vers_begin = 'date';

#kill existing empire server
system("$scriptsDir/kill_emp.sh 11

);

system (11 sleep 3 11
) ;

print(11 removing old emp\n 11
);

32

$ III•
• I

system ("rm -fr emp4") ;
print("finished removing emp4\n");

print "now we will build $version\n";

$binDir = "$stageDir/emp4/bin";

#build version
system("make_install.sh emp4 $version")

&& die "installing emp4 failed";

$mid_time = 'date';
print("copying files to bin\n");
system("cp $scriptsDir/test_emp.ex $binDir")

&& die "cannot copy: $!";

$built= "no";
$test_num = 1;
open(TFILES, "$testDir/$testList")

I I die "cannot open $testList:
while (<TFILES>) {

chomp;
$test $_; # a string
if (length($test) >0)

$ I". . ,

chdir ("$binDir") I I die "cannot move to $binDir directory";

if ($built eq "no"){

$built= "yes";
#kill existing empire server
print "\tkilling existing emp_server if one exists ... \n";
system("$scriptsDir/kill emp.sh");

#removing data files
print "\tremoving data files \n";
system ("rm -fr .. /data");

#copying data files
print "\tcopying data files \n";
system ("cp -r $dataDir .. ") && die "connot copy data files\n";

#start server
print "\tstarting empire server ... \n";
system("emp_server") && die "could not start server\n";
system("sleep 1");

print "\tnow running $test on $version\n";

#open file containing the grains of the test
open (GFILE, "$uni vDir /$test") I I die "cannot open $test: $! ";

while (<GFILE>) {
chomp;
$grain=$_;
if (length($grain) > 0)

33

#splits the string into an array of strings
@grain= split(//, $grain);
($comm, $country, $pswd) = @grain;

print ("cnty is $country, comm is $comm, pswd is $pswd\n");

#run expect script
system("expect test_emp.ex $country $pswd $univDir/GRAINS/$comm

$resultsDir/$test") && die "failed running $comm:
$ I". . '

system("mkdir $resultsDir/results$vers_num/test$test_num")
&& die "could not create directory: $!";

system("mv $resultsDir/$test
$resultsDir/results$vers_num/test$test_num/$test_num.out")
&& die "failed mv: $!";

system("mv $stageDir/emp4/data
$resultsDir/results$vers num/test$test_num/data_$test num"
&& die "failed cp: $! ";

need to kill server to get .tr files
system("$scriptsDir/softkill emp.sh");

allow time for trace files to be written
system ("sleep 3") ;
system("cp $AristotDir/empire.c.tr

$resultsDir/traces$vers_num/$test_num.tr") && die "failed
copy: $!";

system("mv $AristotDir/empire.c.tr
$resultsDir/results$vers_num/test$test_num/$test_num.tr")
&& die "failed mv: $!";

system("echo tarring and zipping files ");
system("$scriptsDir/gzutil.sh

$resultsDir/results$vers_num/test$test_num&");
$test_num = $test_num + 1;
chdir ("$stageDir") I I die "cannot move to $stageDir:

#printout summary of how long testing this version took
$vers_end = 'date';

$ I". . '

open (SUMMARY, ">$resultsDir/results$vers_num/summary.txt");
print SUMMARY ("test suite started at $vers_begin\n");
print SUMMARY ("test suite finished at $vers end\n");
close(SUMMARY);

tar and zip the directory of trace files
system("$scriptsDir/gzutil.sh $resultsDir/traces$vers_num&");
$vers_num $vers_num + 1;

$end= 'date';

print the summary of how long the tests took
open(OUT, ">$resultsDir/summary.txt");

34

print OUT ("test started at $begin");
print OUT ("build completed at $mid time");
print OUT ("test ended at $end\n");­
close{OUT);

35

Appendix B: make install.sh

#!/bin/sh

Title: make install.sh

Author: Brian Davia
Project: Empire Regression Testing

This is a shell script that checks out the specified version of
#apiece of software, builds, and installs it. There are pieces of
code that are specific to the program in which this was designed
for: Empire.

#parameters:
#1-the project you are checking out of cfe, ex: emp4
#2-the version of the project that you are checking out of cfe
ex: v4 2 5

PROJECT=$1
VERSION=$2
WRK_DIR="/nfs/phantom/u8/davia2/EmpireTest/stage"
SYSTEM="solaris"
SCRIPTS="/nfs/phantom/u8/davia2/EmpireTest/scripts"

if ["$PROJECT"=""]; then

fi

echo "ERROR, Project name not specified"
exit 1

if "$VERSION"=""]; then
echo "ERROR, Version number not specified, will use most recent"

fi

#~~
Things to do before checking out a version of the project go here.
For our project, we must make sure that there is not a version
of our project currently running.

echo "Stopping Empire Server (if running)"
PID='ps -e I grep emp_serv I awk '{print $1}''
kill $PID > /dev/null 2>&1

#~~

#~~
Do the checkout
if the working directory doesn't exist we must first get a baseline
before we can get any specific rev

if [! -d $WRK DIR]; then

fi

echo "$WRK_DIR doesn't exist, it will be created"
mkdir $WRK DIR

echo "Checking out version $VERSION of $PROJECT to $WRK_DIR"

36

cd $WRK DIR
pwd

now get specific revision
if ["$VERSION"!=""]; then

cvs checkout -r $VERSION $PROJECT
else

CVS checkout $PROJECT
fi

#~~

#~~
Things to do after the checkout and before building the project
There are a few files and directories that are necessary
for the build to be successful. We create them here. We also
must edit the build.con£ file that was checked out. The
build.eon£ file holds a lot of system specific info, along with
info concerning the type of world we would like to build.

echo version is $VERSION

cd $PROJECT

the Empire build process is flawed, these are ugly workarounds
echo mkdir data
mkdir data
echo touch data/econfig
touch data/econfig
echo touch data/econfig.bak
touch data/econfig.bak
echo mkdir bin
mkdir bin
echo mkdir lib
mkdir lib

build empire binaries
echo "Editing build.con£"
find. -name build.eon£ I $SCRIPTS/edit_buildfiles.pl

There are two versions that have slightly different file structures.
We take care of that here.

if ["$VERSION" = "v4 0 12"
echo special version
cd emp4

I I [II $VERSION"

echo mkdir data
mkdir data
echo touch data/econfig
touch data/econfig
echo touch data/econfig.bak
touch data/econfig.bak
echo mkdir bin
mkdir bin
echo mkdir lib
mkdir lib

37

"v4 0 13"]; then

fi

#~~

#~~
Now build the project.

echo "Building Empire"
#gmake $SYSTEM
gmake inst-bt
gmake depend
echo "Empire build complete"

#~~

#~~
Things to do after building the project
for some reason, older versions looks in xyz for data, so
we'll just move those things to xyz so that it runs properly.

mkdir xyz
cp data/* xyz

#~~

Finished.
echo "Empire build and instalation complete"

38

Appendix C: test_emp.ex

Title: test_emp.ex

Author: Brian Davia
Project: Empire Regression Testing

This is a simple expect script that will log in to the empire
client as a specified player. It will then execute a specified
sequence of commands. The script looks for any of the possible
prompts that are issued by Empire, and submits the commands listed
in the file specified by comm (the third input parameter). The
script also keeps a log of events between it and the spawned process.
This log is what the user would see if the commands were fed to
Empire by hand.

The

following parameters are read in from the command line in order:
1) login name

2) login pswd
3) command to execute
4) name of logfile

set name [lindex $argv
set pswd [lindex $argv
set comm [lindex $argv
set cout [lindex $argv
set timeout 90

send "name: $name\n"
send "pswd: $pswd\n"
send "comm: $comm\n"

open the input file

OJ
l]
2]
3]

set exFile [open "$comm" "r"]

spawn a shell to start Empire
spawn csh

#open log file
log_file "$cout"

expect"%"
send "emp_client\r"
expect {

"% $" exit }

user name
user password
file of commands to be issued
the destination of the log file

"Country name?" { }

send "$name\r"
expect {

"% $ II
"Your name?"

send "$pswd\r"
expect {

"% $"
"Command II

exit }
{ }

exit }
{ }

39

While we have commands to issue (from input file), look for a
and submit the command. If we don't see any of the specified
then expect will timeout, and the program will exit.
while { [gets $exFile line] ! = -1} {

send "$line\r"
expect {

timeout
"% $ II
"Command $"
"\ \? $"
"left: $"
"value : $"
"lot to buy: $"
"do you bid: $"
"Bomb what\\?*) $"
"Number of mil*:$"
"How many mil*:$" {
"attack with*]$"
"assault with*]$"
"bidding on: $"
"per unit: $"
"destination sector
"<*:*:*> $"
"(days) $"

exit }
}

$"

"<*: *,*> $" { }
"This setup ok\ \? $" { }

{ }

"No such file or directory" { }
"Execute · " { }
"<FLASH>$" { }
"(max *) : $" { }
"ynYNq?] $"

quit emp_client
send "bye\r"

exit the shell
expect"%"
send "exit\r"

#close log file
log_file

40

prompt
prompts

References

1. M. J. Balcer, T. J. Ostrand, The Category-Partition Method for Specifying and

Generating Functional Tests, Communications of the ACM, June 1988 (pages 676

- 686).

2. J. Bible, G. Rothermel, A Unifying Framework Supporting the Analysis and

Development of Safe Regression Test Selection Techniques, Technical Report 99-

60-11, Computer Science Department, Oregon State University, December 1999.

3. Y. Chen, D. Rosenblum, and K. Vo, TestTube: A System for Selective Regression

Testing, Proceedings of the 16th International Conference on Software

Engineering, May 1994 (pages 211-222).

4. S. Elbaum, D. Gable, G. Rothermel, Understanding and Measuring the Sources of

Variation in the Prioritization of Regression Test Suites, Proceedings of the t"
International Software Metrics Symposium, April 2001.

5. S. Elbaum, A. Malishevsky, G. Rothermel, Prioritizing Test Cases for Regression

Testing, Technical Report 00-60-03, Computer Science Department, Oregon State

University, February 2000.

6. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, G. Rothermel, An Empirical

Study of Regression Test Selection Techniques, ACM Transactions on Software

Engineering and Methodology, April 2001 (pages 184-208).

7. M. J. Harrold, L. Larsen, J. Lloyd, D. Nedved, M. Page, G. Rothermel, M. Singh,

M. Smith, Aristotle: a System for Development of Program Analysis Based Tools,

Proceedings of the ACM 33rd Annual Southeast Converence, March 1995 (pages

110-119).

8. M. J. Harrold, G. Rothermel, A Safe, Efficient Regression Test set Selection

Technique, ACM Transactions on Software Engineering and Methodology, April

1997 (pages 173-210).

9. J-M. Kim, A. Porter, G. Rothermel, An Empirical Study of Regression Test

Application Frequency, Proceedings of the 22nd International Conference on

Software Engineering, June 200 (pages 126-135).

10. D. Libes, Exploring Expect, O'Reilly & Associates, Inc., 1995.

10. Y. Liu, Regression Testing Experiments and Infrastructure, Computer Science

Department, Oregon State University, August 1998.

41

11. Walter F. Tichy, Should Computer Scientists Experiment More? Computer, May

1998 (pages 32-40).

12. F. I. Vokolos, P.G. Frankl, Empirical Evaluation of the Textual Differencing

Regression Testing Technique, Proceedings of the International Conference on

Software Maintenance, November 1998 (pages 44-53).

42

