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Abstract 

In this project we have designed a new construction method for t error correcting 

constant weight codes. This method is an improvement over the existing codes in terms of 

information rate. The construction method is recursive as it is based on the observation that 

2t error correcting code can be built by concatenating two t error correcting codes. This 

results in reduction of code word length for higher t values. 
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Notations 

k - length of the datapart 

w - wight of the datapart 

V - set of k-tuples of weight w 

v - information symbol, v e V, v = (vl'v 2, ... ,vk) 

n - length of the code word 

t - number of errors corrected 

l - weight of the code word 

G - abelian group with elements (g1,g2, ... ), g1 is the identity element 

F - Galois field GF(pµ) where p is a prime . 

a - primitive element of F 

d(x,y) - hamming distance between the vectors x and y 

U - set of all q out of p vectors. 

<I>(X) - <I> is a one-to-one mapping which maps the elements of the set X into a set of 
constant weight vectors 

'¥ - is any one-to-one mapping defined between GF(2µ) and U, where IUI ~ 2µ-1 
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1. Introduction : 

In a constant weight code each code word contains a fixed number of ones . The 

constant weight codes, in particular the balanced codes where each code word contains 

equal number of ones and zeros, have many applications. 

0 Balanced codes are most suited for fiber optical communications [11, 12, 13, 15, 22, 

27, 29, 30]. As the associated electronic circuitry in the fiber optical communication 

responds poorly when switching at high speed, the whole transmission process has to 

be AC-coupled. This demands a code which will eliminate the de component and the 

balanced codes have this characteristic. 

• Recently, the balanced codes are proposed for noise reduction in VLSI chips[26]. 

Because of the presence of parasitic inductance (L) of the power supply package lead · 

and V = L :. the current fluctuations cause a voltage drop between the chip and the 

circuit board. This can force the designer to design the chip to operate at a lower speed. 
di 

Using balanced codes, the voltage drop due to dt can be made zero. 

• Balanced codes are perfect asymmetric/unidirectional error detecting codes [ 4, 7, 10, 

14]. Also these codes are optimal in the sense that no perfect asymmetric/unidirectional 

code will have more code words than the balanced code for a given length. 

, • One other application of this code is in encoding the states of a sequential machines of 

fault-tolerant sequential circuits [24, 28]. 

• For data integrity purposes these codes are used in storing data in CD ROM [16, 19]. 

Any inadvertent O ➔ 1 changes in the data stored in these write once memories can be 

detected by using balanced codes. 

• They are used in the public key crypto system proposed by Ben-Zion [3]. 

• The error correcting balanced codes are used in fault masking in bus lines of VLSI 

systems [21]. The big advantage of fault masking using balanced codes is that it has no 

additional circuits except for bus terminal gates. 

• Balanced codes are used in the design oft Error Correcting and All Unidirectional 

Error Detecting(t-EC/AUED) codes [8, 17, 18, 20, 23, 25]. 

• Recently, in [5], the authors have shown how these codes can be used in transferring 

data in asynchronous systems with no acknowledgement signals. 

Designing a constant weight code with t error correcting capability has been open for 

several years. The earlier construction methods proposed for t = 2,3 and 4 are presented in 

the second chapter of this report. Wide spreading fiber optical transmission media demands 
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a constant weight code with t error correcting capability where t is an aribitrary finite 

integer. Until Lin's construction[20], designingt error correcting constant weight codes 

was known . 

The goal of this research project is to construct a systematic .t-error correcting(t-EC) 

constant weight codes. The construction method proposed in this report is an improvement 

over the method suggested by Lin[20]. Though the design given in this report will build t­

EC balanced codes it can very well be extended to construct t-EC constant weight codes. 

Futher, research work in analyzing the optimality of this code is pending. 

In this paper we assume that the data part is a constant weight vector, in particular a 

balanced vector, as was in [8, 17, 18, 25]. (fhe conversion from information part to this 

balanced code can be done using some of the recently developed efficient schemes [1, 2, 

16]). Appropriate checks are appended to this constant weight vectors to get error 

correcting constant weight code. In that sense these are called quasi-systematic codes. We 

present a construction method which has better information rate than the existing codes for 

higher t values (i.e. t > 4). 

The paper is organized as follows. In section 2, the preliminaries and previous construction 

methods for t=l,2,3 &4 are briefly reviewed. We present our recursive construction in 

section 4 following a short introduction of Lin's codes in section 3. Finally in section 5 we 

present the comparison between Lin's code, and the recursive code introduced in this 

paper . 
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2o Preliminaries and Previous Construction Methods 

2.1 Preliminaries, Terms and their definitions 

The message vector that has to be communicated is called information symbol. We 

append some redundant bits to the information symbol called check symbol to obtain the 

required distance among the encoded words. The code in which the check symbol and 

information symbol are separable in each encoded word, is known as systematic code . 

Further, in the systematic codes, the information symbol of the code word is unmodified. 

If the information symbols are modified during the encoding procedure, those codes are 

known as quazi-systematic codes. 

The number of bits in the code word is referred to as the length of the code ·word. For 

example, in u = (001100), the length of the code word is six. There are several metrics to 

measure the distance between two vectors, one of the one most commonly used measures 

in coding theory is Hamming distance between vectors. Hamming distance between two 

vectors u and v, denoted as d(u.v), is defined as the number of positions of u and v in 

which their bit values differ. For example u = (0101), v = (1100) then d(u,v) = 2. 

The information symbol is encoded into some code word before it is sent on the 

communication channel. Because of the channel noise, the received word may be different 

from the word sent. The number of different coordinates in these two words is called the 

number of errors made during transmission. The code built with t errors correcting 

capability will enable the decoder to get the message sent from the received word even in 

the presence of up to t errors in the received word. Data sent over the channel may suffer 

different kinds of errors. 

A widely used channel is the binary symmetric channel in which 1 ➔0 and O➔ 1 errors 

occur with equal probability. In the asymmetric channel the probability of a 0➔1 error is 

lower than the probability of a 1 ➔O error. In optical disk storage media, a O can be 

changed to 1 but a written 1 can never be changed to a 0. The optical communication 

channels are considered to be asymmetric channels in which a 1 ➔O error occurs with much 

higher probability than a O➔ 1 error. The errors that occur in the symmetric channel are 

known as symmetric errors, whereas the errors in asymmetric channel are called 

asymmetric errors. There is one other kind of errors called unidirectional errors. As the 

name suggests, in this kind either 1 's become O or O's become 1. But either 1 will become 
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0 or O will become 1 is not known apriori, hence the unidirectional error 

correcting/detecting code design differs from that of symmetric error correcting/detecting 

codes. In the VLSI chips, when the gates malfunction, either stuck-at-one or stuck-at-zero 

condition is created. In either situation either all 1 's sent will be changed to O's or all O's 

sent will be changed to 1 's, giving rise to unidirectional errors. 

Hamming, Bell System scientist, had designed the single symmetric error correcting 

and detecting codes in 1950. BCH(Bose-Chaudhuri-Hocquenghem) codes are a 

generalization of the Hamming codes to correct multiple errors. BCH codes are cyclic, and 

thus the code words are generated by a generating polynomial. According to the BCH 

bound[3 l], to design t error correcting code the generating polynomial has to have 2t roots, 

which are consecutive powers of the primitive element of the underlying finite field. This 

characteristic of the BCH code is used in the construction method presented in this report. 

Example 2.1: To construct a 3-EC BCH code over the binary alphabet, the 

generating polynomial g(X) has to have six roots which are consecutive powers of the 

primitive element a. Suppose, these roots are a, a2, a3, a4, a5, and a6, then 

g(X) = xrn + xB+ x5 + x4 + x2 + x + 1 

g(X) is the greatest common divisor of the minimum polynomials of a, a3, and a5. This 

ensures g(X) has a, a2, a3, a4, a5, and a6 as its roots. In this case, a is a primitive 

element of the galois field GF(24). The code word length is 15, information bits can be 

upto 5 and the check bits are 10. 

The number of l's in a code word stands for its weight. The code in which all code 

words have the same weight is a constant weight code. A balanced code is a constant 

weight code in which the weight of the code word is half of its length. We have seen the 

wide applications of balanced codes in the previous chapter. 

The code which can correct up to t symmetric errors and detect all unidirectional errors 

is denoted as t-EC!AUED. The following theorem [8, 9] states the necessary and sufficient 

condition for a code to be t-EC/AUED. 
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Theorem 2.1: 
A code C is capable of correcting t symmetric errors and of detecting all t+ 1 or more 

unidirectional errors iff the code C satisfies the following condition: 

for all X, Ye C, N(X,Y) ~ t+ 1. 

Here N(X,Y) is the number of 1 ➔ 0 crossover from X to Y. 

When this result is applied to a constant weight code C: 

C is capable of correcting t symmetric errors iff for all X, Ye C, d(X,Y) ~ 2t +2. 

In the remainder of this section we briefly explain the known methods of t-error 

correcting constant weight codes fort= 1,2,3 and 4. The concepts adopted in these code 

constructions are useful in designing codes fort > 4. 

2.2. 1-EC/ AUED Code Construction[S]: 

Let G be an abelian group of size k and V be the set of words with constant weight w 

and length k. Define a mapping 

T:V ➔ G 
k 

where T(v) = LV .g. 
. 1 • 1 l= 

.. -{ g 1 (identity element of G) for vi = 0 
Vigi - g · for V · = 1 

l l 

Let Ube the set of L}J-out-of-p vectors where pis the smallest integer such that 

p 

<t_ ~} ~ IOI. Thus the check symbol of vis given by <l>(T(v)) Note that <I> is a one-to-one 
2 

mapping from G to U. 

5 



) 

Example 2.2: The design of 1-EC codes with 6 information bits is as follows: 

The 26 information symbols can be represented by a 4-out-of-8 code. Note that a 4-out-of-
8 code has 70 words but only 64 need _to be used. Now choose G = z8 to build the check 

p 

symbol, and choose p = 5 as G_ 2} ~ 8. The length of the code word is 8+5 = 13. 
2 

2.3. t-error correcting codes [17,18,25] for t=2,3 and 4: 

The following construction in the case of t = 2 was proposed independently by both 

Kundu and Reddy[l8] and Saitoh et. al.[25]. 

Let F be a Galois field of order at least k + 1 elements, and the elements of F be 
{f0=0,f 1=1,f2 ... ,fk}. Any code word of 2-EC/AUED under this construction has three parts: 

datapart v, two check symbols <l>(T1(v)) and <l>(T2(v)) 

k k 
where T1(v) = .Lfivi and T2(v) = nfti, 

l=l i=l 

Here the summation and multiplication operations are field addition and field 

multiplication . Further we assume <I> is a one-to-one mapping from the Galois field to the 
p 

set of L~J-out-of-p vectors U, where p is the smallest integer such that G_ e} ~ IF 1-
2 

Three error correcting codes were independently given by Kundu[l7] and Saitoh et. 

al.[25]. Any code word in this construction has 4 parts: datapart v, three check symbols 

<l>(T1(v)), <l>(T2(v)) and <l>(T3(v)). T1(v) and T2(v) are defmed as above whereas T3(v) = 

k v. 
_Ii/). Here the field should be GF(2µ) and 2µ > k. 
l=l i 

Example 2.3: The design of 2 and 3-EC codes with 6 information bits is as follows : 

As discussed in example 1.1 we need to map the 26 information symbols into 4-out-of-8 

code. The smallest field F with IFI > 8 is GF(32). Here we have to choose pas 5 and so 

<l>(T1(v)) and <l>(T2(v)) are 5-tuples. The code word length is 8+5+5 = 18. 

In the case of 3-EC, the smallest GF(2µ) field with 2µ > 8 is GF(24). These 16 

elements can be represented by a 3-out-of-6 code, i.e. p = 6, so the total code length will be 

8+6+6+6 = 26. 

6 



Example 2.4: The design of 4-EC codes with 6 information bits is as follows: 

As discussed in example 1.1 and 1.2 we need to map the 26 information symbols into 

4-out-of-8 code and need GF(24) to generate the check symbols. The 16 field elements can 

· be represented by a 3-out-of-6 code, i.e. p = 6, so the total code length will be 

8+6+6+6+6+6 = 26. 
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3. Lin 9s constant weight code construction 

In [20] Lin has described methods for designing quasi-systematic t-error correcting 

constant weight codes for any t. For t = 2 and 3, his codes use the same number of check 

bits as that of (17,18,25]. Fort= 4 his method is better than (25]. Since our design 

methods are improvements over his, we first briefly explain his methods in this section. 

First we describe his codes for t = 5 and then for any t. Let F be a Galois field of 2µ 

elements, where 2µ-1 ~ k, and a be a primitive element in F. Any code word in this 

construction has the following form: 

k .. 
where Pj = .Ivi(a 1)1 for j = -3,-1,1,3 and vis the data part. 

l=l 

<I> is a one-to-one mapping from the Galois field elements to set of L~J-out-of-p vectors U, 
p 

where p is the smallest integer such that \ Q} ~ I FI• 
2 

Let P1(v) be (pl'p 2, .. ,Pµ) and P_1(v) be (p_l'p_2, .. ,P_µ) 

Let G = {g1 =O,g2, ... gµ} be an abelian group ofµ elements, then define 

µ 
Q1(v) = ~P- g. where p .. g. = g1 when p. = 0 

£.Jl'l 11 1 

i = 1 

µ 
Q_1(v) = LP-i.gi where 

i = 1 

p .. g. = g1 when p . = 0 
-1 1 -I 

P .. g. = g. when p . = 1 
-1 1 1 ~ 

'I' is a one-to-one mapping from the elements of group G to the set X of L}J-out-of-q 
q 

vectors, where q is the smallest integer such that \ g_ J) ~ I GI• 
2 

In this way of designing we can notice that for any two different data vectors v and v', 
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Similarly 

Whereas when P_1(v) = P_1(v') or P1(v) = P1(v') we have d(v,v') ~ 4 by BCH bounds, 

and when P_1(v) = P_1(v') and P1(v) = P1(v') we get d(v,v') ~ 10 using BCH bounds. 

In all the cases mentioned above, together with the balanced check symbols <l>(P_3(v)) 

and <l>(P3(v)), we get the minimum distance of 10 between any two encoded words. We 

can make the observation that the check symbols involving the lower powers of the 

primitive element have to be augmented with suitable vectors to have higher minimum 

distance among them. We can look at this construction as concatenation of two code words 

from 4-distant and 2-distant codes to the datapart. This observation gives a natural 

extension of this code construction to general t EC code. 

In Lin's construction of distant 4t+ 2 code any code word has the form 

Here v is the data vector of length k and the rest of the vectors in the code words are 

check symbols. By choosing a suitable Galois field F, define 

X = P1 (v) I P3(v) I .... Pzt-1 (v) and <l>(X) = Vt 

Y = P-1(v) I P_3(v) I .... P-(2t-l)(v) and <l>(Y) = Wt 

where <I> and P/v)'s are as defined in the above construction extending for j = -(2t-1), ... , 

-3, -1, 1, 3, ... , 2t-1. 

To construct the check symbols vt_1,vt_2, ... v 1 and wt-l'wt_2,. .. w 1, X and Y values are 

computed in a similar manner by taking the check symbol computed in the previous step in 

the place of data vector v. For the sake of simplicity, only positive powers of the primitiv~ 

elements are considered for computing Y values while building the check symbols Wt-l ,Wt-

2, ... w 1. 
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The general design principle in this construction can be explained as follows: Each code 

word has a data part and two check parts each of which is a code word from a constant 

weight code of minimum distance 2,. The construction of check parts is done in 2t steps, in 

each step appending a constant weight vector and thus reducing the minimum distance 

requirement by 2. 
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4o Recursive Code Construction 

4.1 Construction Methodology 

Suppose we want to construct a quasi-systematic constant weight code C with the 

minimum distance 2t+2 (where t ~ 1). Each code word c in C will have the form LlvlR 

where v is the datapart and R and L are code words from constant weight codes with 

minimum distance of 2.f} land 2l½J respectively. By having well defined data parts for R 

and L we can recursively construct the check parts R and L. We can look at these check 

parts in another way as follows: we require the check part R to be a code word from a code 

of minimum distance 2m + 2 where m = r ½ l -1 and m ~ 1. Now we have m in the place of 

tin the original code construction. We can construct R as RLlvRIRR where RR is a code 

word from a constant weight code with a minimum distance of ir;1 and RL is a constant 

weight code with a minimum distance of 2L; J and VR is the datapart of R. 

Now we formally define the main idea for our construction method. Let V be the set of 

all constant weight vectors of length k. Let SI = rt land s2 = L½J, 
v = (vl'v 2, ... ,vk) e V. Let F = {O,a0,a 1, ... ,a2µ-1} be the Galois field with 2µ elements, 

a is a primitive element in F. We assume thatµ is the smallest integer such that 2µ > k. 

PR: V -> {GF(2µ)} 81 and PL: V -> {GF(2µ)} 82 

Here Pi(v) = I(aji for i = -(2s2-l), .... -3,-1,1 ,3, ... ,2s 1-1. Note that PR and PL map 
V-=1 

J 
a vector v e V into s1 and s2 tuples over GF(2µ) . Let U 1 and U2 be two constant weight 

codes with minimum distance 2s 1 and 2s2 respectively . Also let IU 1 I ~ 2µs1 and IU21 ~ 

2µs2. Define two one-to-one function <1>1 and <1>2 where 

1 1 
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Then R = <I> 1 (PR) and L = <1>2(P L) and the final encoded word will have the form LlvlR 

Example 4.1: Let V be the set of 7-out-of-14 code. Suppose we want to design an 8 

error correcting code i.e. distance of the code is 18. From the above design the appropriate 

Galois field is GF(2 4). If we choose a as the root of x4 + x + 1 = 0 then a generates all 

non-zero elements in GF(24). Suppose v = (11111110000000) e V. Then 

P1(v) = cx.O + a 1 + a2 + a3 + a4 + a5 + a6 = a5 

p3(v) = (a°'J3 + (a1)3 + (a2)3 + (a3)3 + (cx:4)3 + (a5)3 + (a6)3 = a14 

P_l(v) = (a°')-1 + (alrl + (a2rl + (a3rl + (a4rl + (a5rl + (a6rl = a14 

P_lv) = (a°')-3 + (alr3 + (a2r3 + (a3r3 + (a4r3 + (a5r3 + (a6r3 = a•i 

Then we have 

PR(v) = [ ::4] and 

Here PR(v) and PL(v) are 2-tuples over GF(2 4), hence we need U1 and U2 to be constant 

weight codes of minimum distance 8 and have size greater than or equal to 28• 

Lemma 4.1: 

The above code construction gives a minimum distance 2t + 2 among the code words. 

Proof: 
, , , 

Let v = (vl'v 2, ... ,vk) and v' = (v 1,v2, ... ,v.) be two information symbols . They are 

encoded as 

c = L Iv I R and c' = L' I v' I R' 

respectively. 

easel: L =f=. L' and R =f=. R' 

By construction Rand R' are code words from code with minimum distance 21} 1 and L 

and L' are code words from code with minimum distance 2L½J. Hence d(c 1 ,c2) ~ 

2t+2. 

case 2: L 1-eandR=R' 

12 
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The datapart of R is PR.(v) and the datapart of R' is PR.(v'). Since R = R' and v, v' are 

constant weight vectors, we get 

1, a,a 3 , .. a2f; l-1 as roots of the binary coefficient polynomial 

As a is chosen to be a primitive element of the Galois field, we have a2, a4, a6, 

... ,a2f}l also as roots of the above polynomial. Using the BCH bound we can 

conclude that d(v,v') ~ 2f½l + 2, and since d(L, L') ~ L}J thus we get d(c, c') = 2t+2. 

case3: L = L' and Rf. R' 

Same as proof of case 2. 

case4: L = L' and R = R' 
V V 

In this case we have 

2L .!_J 2L .!_J-1 -1 1 2 2r11 fth 1 ·al a 2 ,a 2 , . .. a , ,a,a , .. a 2 as roots o e po ynotn1 
. , . 
L(Vi - Vi )X1 = 0 

Once again using BCH bound, we get d(c, c') = 2t+2. 

R and L are required to be code words from constant weight codes with minimum 
distance s1 and s2 respectively. Note that we can choose PR(v) and PL (v) as the dataparts 

of R and L respectively and can define recursively R and L using the procedure adopted in 

the case of the original datapart v. 

In this code construction each code word consists of a data part and t check symbol 

vectors. Thus, encoding has t steps and adjoining a check symbol in each step reduces the 

minimum distance requirement by half, which is in contrast to Lin's construction of 

decreasing the minimum distance requirement by 2 on appending a check symbol in each 

step. This sharp reduction of minimum distance requirement at each step in the recursive 

code construction makes it a better code in terms of the information rate. 

4.2. Encoding Procedure: 

Encoding procedure for a constant weight code of minimum distance 2t+ 2 is listed in its 

various phases as follows: 

13 
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1. Let M be the message space for the code. Choose integers k and w such that ( ~) 

will be at least as big as IMI. Define a one-to-one mapping from the set M to the set V which 
consists of k-tuples of weight w. Let v = (v1,v2, ... vi' ... vk) be the data vector obtained 

under this mapping . 

2. if t ~ 1 proceed to step 3 else stop. 

3. Let µ be an integer satisfying the condition 2µ- L 1 < k ~ 2µ_ 1. Let a be a 

primitive element of GF(2µ) . Let sl = r½l and s2 = L½J, v = (v l'v2, ... ,vk) e V. Define 

one-to-one mapping PR and PL as follows: 

and 

P-(2s2-l)(V) 

Here Piv) = :I:(aJ)1 for i = -(2s2-1), .... -3,-l,l,3, ... ,2si-1. Note that PR and PL map a 
v.=1 
J 

vector v e V into s1 and s2 tuples over GF(2µ). 

Notice P(v) is a r½ lµ-tuple and Q(v) is a L½Jµ-tuple. 

4. Let F1 and F2 be sets of s1µ-tuples and s2µ-tuples respectively. Choose integers 

<JJ< and (Jl. such thai(;) ;,, I FI I and (;);,, I F2 I-Let UR be the set of ~-out-of-qR and UL 

be the set of ~-out-of-qL . Define a one-to-one mapping: 

Let vR be <l>R(PR(v)). Similarly define a one-to-one mapping: 

14 
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Let vL be <I>L (PL (v)). Append VR on the right and VL on the left to v as check symbols. 

5. Repeat step 2 once with t as s1-1, k as <IR and v as VR and the second time with t 

as s2-1, k as qL and v as vL. 

We can notice that step 2 will be executed log(t+ 1) times in this code construction, and 

totally t check symbols are appended. Also by lemma 1 we can ensure that this recursive 

encoding procedure gives the minimum distance of 2t+ 2 between any two code words. 

4.3 Decoding Algorithm for Recursive Code: 

Let I be the weight of the code words. Suppose c = LlvlR is the code word sent and c' = 
, , 

L'lv'IR' is the code word received. Let v be the first right hand side check symbol and v 
R L 

be the first left hand side check symbol received. These are the dataparts of R' and 1/ 
respectively. 

Step 1. if wt.(c') >/+tor wt(c') < l - t then we can detect that at least t+ 1 unidirectional 

errors have occurred. Stop. 

Step 2 if v' does not have the original weight or is not a valid vector go to step 4. 

Step 3 Encode v' to obtain c". When d(c',c") ~ t, v' is the data part sent which has been 

received correctly, c" is the correct code word. Stop. Otherwise go to step 4. 

, 
Step 4 If the first check symbol v appended on the right of v has the incorrect weight go 

R 

to step 6. Otherwise, let PR(v') = <I>-1(v~). Using the BCH decoding algorithm, we can 

correct up to rt l errors in v'PR(v'). If v" is the resultant of this decoding, encode v" to 

obtain c"'. If d(c',c"') ~ t then v" is the data vector sent. Stop . 
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Step 5 If the first check symbol v appended on the left of v' has the incorrect weight go 
L 

to step 8. Let PL(v') = <I>-1(vJ. Using the BCH decoding algorithm, we can correct up 

to L½J errors in v'PL (v'). If v" is the resultant of this decoding, encode v" to obtain c"' . 

If d(c' ,c"') :s; t then v" is the data vector sent. Stop. 

Step 6 Decoding of c' would have failed in the step (2) through (7) either when v and(or) 

the first check symbols on the left and right do not have the correct weights or there are 

more number of errors than the BCH decoding algorithm can effectively correct. If the 

decoding has failed in spite of the correct weights of the check symbols, we can once 
again apply t-error correcting BCH decoding algorithm to PL (v')v'P R (v'). If v" is the 

vector obtained after decoding, encode v" to obtain c"' . If d( c' ,c"') :s; t the!} v" is the 

data vector sent Stop. 

Step 7 If the decoding has failed in all the steps (2) through (6) and if the weights of the 

first left and right check symbols are not correct we know there are errors in the 

received check symbols. By the virtue of the recursive construction of this code, we 

can correct the errors in the check symbols also using steps 2 through 6. When 

decoding fails in all the steps go to step 9. 

Step 8 Repeat steps 4 through 6 with the check symbols obtained in step 7. 

Step 9 Uncorrectable errors have occurred. 

Theorem 4.1: 

The above decoding algorithm is valid. 

Proof : 

Assume there are m errors in the received code word c' . Let PL (v') = <1>-1(v~) and 

PR(v') = <l>-1(v~). 

Case 1: m = 0 
No error occurred in c' . In step 3 we will obtain d(c',c") = 0 :s; t, and hence it is 

decoded correctly. 
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Case 2. m > t and all the errors are unidirectional. 

When all the errors are O ➔ 1 then the weight of the received code word is greater than 

l+t or when all the errors are 1 ➔ 0 then the weight of the c' < /-t. In step 1 we detect 

that there are more than terrors inc'. 

I f 

Case 3: m < t; all m errors occurred in v', v and v 
R L 

Suppose PL (v')v'P R (v') has less than t errors. 

In the presence of even a single error in the datapart, note we will obtain d( c' ,c'') > t. 

Hence decoding will fail in step 1. 

When m > 0 and m ~ r½l, and all m errors are in v'v:, BCH decoding algorithm will 

correct up to r½l in v'PR(v') in step 4. Thus we will obtain the correct datapart sent. 

When m > 0 and m ~ L½J, and all m errors are in v~ v', BCH decoding algorithm will 

correct up to L½J in v'P L (v') in step 6. Thus we will obtain the datapart sent. 

rt7 ' ' When 1-2 < m < t, and all m errors are in v v'v in step 8 we will obtain the correct 
L R 

datapart sent. 

Case 4: 0 < m ~ t, but the number of errors in PL (v')v'P R (v') is greater than t. 
I p 

In this case, there are some symmetric errors in v and(or) v , but the weight of these 
L R 

check symbols are not altered. This situation may lead to more errors in <l>-1(v') and <l>­
L 

1(v 1
) and thus BCH decoding algorithm can no longer correct all the errors. Hence it is 

R 

required to correct the errors in the check symbols before we apply the decoding to the · 
I f 

datapart. Case 3 through 5 are applicable to the error patterns in v and v . Since either 
L R 

I I t I I 

V or V has < r -27 errors, step 10 of decoding procedure decodes V or V or both 
R L R L 

correctly. When one or both of them is error free step 11 decodes the datapart correctly, 

since the number of errors in the datapart < t. 

17 
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5. Comparison of the Recursive Code with Lin's Code 

One can observe that the difference in the length of the code words in these two codes 

is largely dependent on the value of t. Also a greater percentage of the difference in code 

word lengths comes from the first few check symbols appended . The first two check 

symbols appended will have the same number of bits in both Recursive and Lin's code 

constructions. Thus, we can look at the lengths of the next four check symbols appended 

which will determine the lower bound on the difference in code word lengths. Assuming t 

is divisible by 4, the bit length of the four check symbols appended in the second recursive 

call of the Recursive code construction is (t-2)log((}).Iogn), whereas in Lin's code 

construction they have 

(t-2)log((}).Iogn) + (t-4)log((}-l)log((})logn) bits . 

Hence the first four check symbols under Lin's construction method has 

more bits than the four check symbols of Recursive construction. Notice that the other 

check symbols appended in Lin's construction will also have more bits than the 

corresponding check symbols of Recursive construction. Thus the lower limit in the 

difference of the code word lengths is Q(tlogt + logloglogn) . Table 1 shows how the 

number of bits saved in the length of Recursive code word over Lin ' s code word grows as 

t increases for a fixed data vector size of 12. 
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k = 12 
t Length of the code word under Difference in the 

Construction length of code 

word 

Recursive Lin's Code 

2 18 18 0 

3 35 35 0 

4 46 46 0 
' 5 56 61 5 

6 66 76 10 

7 84 100 16 

8 102 124 22 

9 118 151 33 

10 134 178 44 

11 154 210 56 

12 168 242 74 

Table 1. 

6. Conclusion 

In this paper we improved the code proposed by Lin [20] in terms of codeword length. We 

extended his recursive construction of the first two check symbols to all the check symbols 

which led to a reduction in the sizes of intermediate check symbols resulting in a overall 

reduction in the codeword size. We showed that the codeword in the new construction 

shrinks in length compared to that of Lin's code at least at the rate of .Q(tlogt + logloglogn) . 
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