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ABSTRACT 

To be competitive in the development and production of complex electronic 
systems, a company must constantly scrutinize its manufacturing processes to find ways 
to reduce costs and increase productivity. One of the more costly problems is the 
inability to troubleshoot and repair faulty circuit boards on the spot. Rather, they must be 
diverted off the manufacturing line to a senior technician for diagnosis and repair. The 
purpose of Experdite is to provide a practical expert diagnostic system for manufacturing 
line personnel so they can quickly troubleshoot and repair most circuit board faults, 
thereby eliminating the need to send the board off lirie. 

Experdite also addresses other inherent manufacturing line issues, including the 
need to have a general purpose and easily adaptable system to work with many different 
circuit boards. It addresses the need for an expert diagnostician before anyone has had 
the time to become an expert troubleshooter on the circuit board. The final issue 
addressed is the ability to quickly and easily modify the knowledge base to handle any 
inevitable hardware changes. 

The component and self-test behavior for the target circuit board is abstracted 
and then modeled with a high level T~st Description Language, or TDL. A TDL to C++ 
translator converts the TDL description into a knowledge base of C++ classes. Then the 
inference engine traces the thread of causality to a fault on a circuit board by gleaning 
information from the knowledge base and comparing it to the actual behavior of the 
cirquitry. 

This paper elaborates on each of these points. Also included in the paper are 
descriptions of the implementation and application of Experdite to a production circuit 
board. 
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1. INTRODUCTION 

1.1 General background 

In order for a company to thrive in the extremely competitive world of · 

11high-tech 11 product development and production, a constant vigilance to reduce costs and 

increase productivity must be maintained. Diagnosing and repairing faulty circuit boards 

is one of the most costly manufacturing processes[6]. The current practice is to divert a 

faulty circuit board from the manufacturing line to a senior technician for diagnosis and 

repair. The intent of Experdite is reduce the costs of diagnosing and repairing circuit 

boards by providing expert troubleshooting advice so 110n th e spot 11 repair is possible. 

Beyond the primary goal of providing 110n the spot 11 diagnostic help, Experdite 

addresses three problems inherent in a manufacturing process. 

1. When a circuit board is first introduced into production, no one person has 

any significant experience trouble shooting the board. However introduction time is 

when an expert is most needed. This problem is referred to as the immediate expert 

problem. 

2. A manufacturing line typically produces many different circuit boards. 

Therefore, the expert system must be usable on any circuit board. 

3. Large, complex circuit boards inevitably require modifications to their 

circuitry after their production starts. Thus, the existing knowledge base for the circuit 

board must be easy to change and adapt to reflect the modifications to the circuit board. 

Experdite consists of two main components, a Test Description Language, or 

TD L and a general purpose inference shell. The TDL is used to model the structure and 
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behavior of the components and tests on most any type of digital circuit board. A 

knowledge base, specific to the modeled circuit board, is created by translating the TDL 

description into C++ classes. 

Experdite uses a model-based inference to trace down faults on the board. This 

inference method compares the actual behavior of a circuit board to the modeled 

behavior and acts on anomalies between them. 

Following is an example of the model-based methodology used by Experdite to 

find a fault. Figure 1 shows a system with three circuits , A, B and C. The dotted or 

dashed lines in the figure show the paths of tests Tl, T2 and T3 through the circuitry. A 

test is a series of vectors passed through a sequence of circuits. The vectors should cause 

some predetermined behavior. A pass or fail report from a test indicates whether or not 

the actual behavior matches the expected behavior. 
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Figure 1. Three circuit example. 
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A test, in most "real world" applications, does not check the full functionality of 

every circuit it passes through. A test may range in coverage from a check of absolutely 

every function in the circuit to a check of next to nothing. To take the varying coverage 

into account, the description of every circuit/test pair includes an extent-of-coverage 

value. For this example, Table 1 lists the extent-of-coverage value for each circuit/test 

pau. 

Circuit Test Extent-of-coverage 

A Tl Considerable 
T2 Moderate 

B T2 Absolute 
T3 Moderate 

C Tl Considerable 
T2 Moderate 
T3 Moderate 

Table 1. Example test coverage. 

Assume one circuit is faulty, though Experdite initially suspects all circuits 

equally. Experdite must pare down the list of suspects in the least amount of time and the 

fewest number of test executions. The operations of Experdite for this example are 

described in the following paragraphs and summarized in Table 2. 

The first task of Experdite is to choose the best test to start the process. (A 

detailed discussion of the selection process is in section 4.) Suppose test Tl is selected 

and it fails. This indicates a fault is somewhere in path of the test. The failure provides 

several pieces of information. First, since circuit B is not in the test path, it cannot 

possibly be the cause of the fault. Circuit B is removed from the suspect list. Second, 

observe that test Tl has the same extent-of-coverage value for both circuits A and C. 
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Thus, there is no evidence to indicate one circuit is more likely the cause of the fault than 

the other. 

Experdite continues its search by selecting another test. Notice test T3 checks 

circuits B and C, but not A. Since circuit B is known to be good, if test T3 fails, then 

circuit C is definitely the cause of the fault. If, on the other hand, the test passes, then the 

evidence leans toward naming circuit A as the most likely cause. However, since test T3 

only moderately evaluates circuit C, the possibility exists that the test did not detect the 

fault in the circuit. Therefore, circuit C cannot be eliminated as a suspect. 

Suppose test T3 is selected and it passes. Circuit A is now the primary suspect, 

but for Experdite to reach a definitive conclusion, it needs more evidence. Suppose Test 

T2, the only remaining test, fails. Since test T2 checks both circuits A and C only to a 

moderate extent, little additional information is produced. Experdite still cannot draw a 

definitive conclusion. However, since ~11 the tests have been executed, a best guess must 

be made based on the available evidence. The data point to circuit A as being the cause 

of the fault. 

Target Test Test Implication 
, Circuit . Run Result 

C Tl Fail B determine good. 
A and C equally 
likely suspect. 

C T3 Pass A most likely suspect. 
C shown to be partially 
fault free. 

A T2 Fail Confirms fault in A or 
C. Leaning towards A. 

Table 2. Summary of example Experdite operations. 
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Experdite uses a secondary reasoning process of if-then type rules, called 

look-aside rules. Look-aside rules are used to handle special cases where the model­

based method may break down, as explained in the following example. 

Test kick 
start line 

Test input 

B C 

) Test Output 

_) 

Figure 2. Example circuit for special case rules. 

For example, consider the circuit shown in Figure 2 containing the four circuits, 

A, 13, C and S. Suppose a test Tl passes its vectors through circuits A, Band C onlY:, but 

requires circuit S to "kick start" the test execution. Except for the initialization, circuit S 

is in no way affiliated with the test. Therefore, circuit S is not included in any circuit/test 

relationship description. However, should circuit S fail, then the normal behavioral 

model would still point to circuits A, Band C as suspects and miss circuit S altogether. 

The model-based method breaks down and an erroneous result is reported. So, for cases 

such as these, a look-aside rule provides special attention to potentially faulty "invisible" 

circuits. 
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1.2 Previous work 

There have been several previous examples of working, viable diagnostic expert 

systems, from early work on MYCIN[l] to the system currently aboard the Hubble Space 

Telescope[2]. Pau 1s survey[8] of expert diagnostic systems lists many different 

approaches to the inference methodology and types of knowledge bases used in various 

systems. His survey indicates the most common inference scheme used in diagnostic 

systems is the rule-based methodology. However, the model-based inference scheme is 

also prominent. 

Novak[12] contends that a back-chaining rule-based inference technique is 

sufficient to troubleshoot electrical components in an AC/DC motor control circuit. He 

does, however, use a model-based approach to develop a knowledge base. This means 

conclusions for rules are developed based on circuit behavior. Novak opted for the 

model-based type knowledge because 11it allows for a systematic and comprehensive 

method of defining the conclusions 11• 

Rule-based systems, including Novak 1s, are very domain specific, allowing for 

little carryover into other domains[l]. A set of rules is written exclusively for a specific 

system and are usually not transferrable to any other system. Thus, using a rule-based 

inference methodology exclusively in Experdite would not fulfill its requirement of being 

general purpose. 

Fink[?] used both rule-based and model-based inferences in her diagnostic 

system. She asserts that the shallow knowledge of a rule based system is sufficient in 

most common cases. But for problems not classified by a rule, the deeper knowledge of 

the system behavior is needed. Fink uses two separate knowledge bases, one for rules 

and one for modeled behavior. The inference engine uses both knowledge bases in 

conjunction, deciding on case by case basis which type of knowledge and inference 
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method to use. 

Fink's idea of using both model-based and rule-based inference methodologies is 

used in Experdite. Fink, however, relies more heavily on experiential, or rule-based, 

knowledge. Experdite is required to be working before any experiential knowledge 

exists. Therefore, Experdite relies primarily on a model-based system, using rules only 

as backup for uncommon cases. 

Davis[3] and DeKleer[4], in contrast to the other systems, both built their 

systems entirely around a model-based knowledge base and diagnostic inference 

methodology. Both systems use a similar technique that Davis calls constraint 

suspension to track down faults. Constraint suspension looks for the constraint, or circuit 

output, which if retracted, leaves the system in a state that is consistent with the model. 

This technique is applied when the actual behavior of a system is inconsistent from the 

modeled expected behavior in the knowledge base. 

Rather than direct the search to a consistent state, as done by Davis[3] and 

DeKleer[4], Experdite follows Marques'[9] lead in focusing the search always on the 

most likely candidate. This allows the constrained circuits to be quickly eliminated from 

further consideration. 

Davis[3] and DeKleer[4] require that a component model description in the 

knowledge base specify the actual behavior of the component. Describing functionality 

of a a circuit to this level permits diagnosis to a very fine grain. But creating the 

descriptions is an extremely complex and time consuming task. Experdite simplifies the 

modeling process by abstracting the model to a higher level and by providing a standard, 

easy to use description language. 

Both Yen[5], and Fink[7] use frame objects to represent knowledge. As Yen 
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states, the advantage of frames is that they can hold mutually exclusive information for 

the entity they are describing. Experdite extends the frame concept by making a frame a 

C++ object. This allows each circuit and test to store information about itself, and also 

provides an exclusive way for each object to update its own information. This relieves 

the inference engine of the burden of knowing how to manipulate data. Rather, the 

inference engine needs to know only how to tell the object to handle its own data. 

The problem of drawing a conclusion from partial data that is accumulated over 

time to has been the subject of much study. Yen[S] handles this problem with an 

acquired belief measure derived as an extension to the Dempster-Shafer theory. 

Experdite modifies Yen's approach by simplifying the algorithm that determines the 

belief factor. Since each component is represented by its own object, each circuit 

maintains its own belief measure. This allows each object to handle any special 

considerations for itself, something not possible in a central belief calculation. 

Horvitz[lO] asserts that when reasoning with partial information, the decision of 

when to refine the search strategy and when to assert a conclusion should be made as the 

incomplete information is gathered. Experdite uses this idea by switching its search 

mode based on the previously collected partial data. Also, Experdite determines when a 

continued search is futile and makes a best guess based on the information gathered to 

that point. 

1.3 Paper organization. 

Section 2 presents a detailed overview of problems this project is tackling. 

Included in the section is background on how a manufacturing process works and why a 

faulty circuit board in the process is so costly. The section also covers the current tools 

) 

and methodology used to troubleshoot faulty circuit boards. The final topic covered in J 
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the section is the solution this project proposes. 

Section 3 describes the abstraction and modeling of the hardware circuitry. 

Included in the section is an overview of the high level description language and the 

methodology of how it is used. Rule generation is also covered in this section. 

In Section 4, the inference engine is discussed. The section starts with an 

overview, followed by details on the so-called belief factors, the modes of the inference 

engine operation and look-aside rules. The criteria of when to declare a solution and a 

discussion of how the 11what is faulty 11 decision finishes the section. 

Section 5 gives the results of experiments when Experdite was applied to a real, 

production circuit board. An overview of the hardware circuitry and an explanation of 

experiments are given. The section finishes with a listing of the actual experimental 

results. 

Section 6 contains suggestions for future improvements to the system. 

Conclusions and analysis of the system are presented in section 7. 

Appendix A discusses the inference engine program design and implementation 

considerations. Appendix B covers the implementation of the high level test description 

language. Appendix C contain the Test Description Language model of the hardware 

used in the experiments. 
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2. THE APPLICATION DOMAIN 

2.1 The high cost of faults 

The first real application for this project is a high performance graphics 

workstation manufacturing line. The manufacturing process, shown in Figure 3, starts 

with the assembly of raw material into several different kinds of circuit boards. After 

assembly, a junior technician verifies the functionality of each board with a suite of tests. 

Fully functional boards continue down the line to final assembly, where they are 

combined with other circuit boards to complete a product. If, however, a fault is detected 

on the board, then it is diverted from the main stream to the repair station. At this point a 

senior technician diagnoses and fixes the faulty circuit board. The repaired board then 

reenters the normal manufacturing stream. 

Functional 

Board Faulty Board 

1-----Productr------;• 
Shi 

Figure 3. Manufacturing line sequence of operations. 

According to statistics gathered from the manufacturing line, workmanship or 

process errors, such as solder bridges or incorrect/misplaced parts, account for 95% of all 

the faults on the circuit boards[6]. These types of faults are typically visible and obvious 

once spotted. However, the circuit boards commonly measure 14X16 inches and contain 

several hundred integrated circuits. This translates to several thousand solder points. 

Obviously, given the magnitude of the visual task, trying to spot a workmanship or 
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process error simply by looking at every IC and every solder point on the board is 

wasteful and beyond human capability. 

Junior technicians do have the ability to fix workmanship and process errors, 

but do not have the time nor the expertise to find the fault. Thus the board is always 

diverted to a senior technician. Experdite provides the junior technician with the 

expertise needed so sfhe can find and quickly correct faults on the spot. The result being 

no disruption to the manufacturing line or costly diversion. Also, the senior technician is 

freed to diagnosis the more difficult problems, thereby increasing hisfher productivity as 

well. 

2.2 Built-in self-test and diagnostics 

The tests used by the junior technician to check a board are so called built-in 

self-tests. The term built-in means the self-test firmware is embedded into the hardware. 

A self-test is firmware program that injects a set of known vectors into a section of the 

circuitry. The test vectors pass through several components from the injection point to 

the exit point. The behavior of each component alters the vectors in some known 

manner. When the vectors reach their exit point, they are compared against a set of 

known good vectors. If all the actual results match the expected results, then the tested 

circuits are deemed healthy, with the caveat that the test may not check all the hardware 

100%. If the vectors do not match, then some circuit in the test path is faulty. 

The self-test suite for a circuit board is typically developed in conjunction with 

the circuitry design. Presumably, the test designer has in-depth knowledge of how the 

circuitry should behave. Using this knowledge, each self-test is developed by first 

determining what needs to be checked in a circuit and what vectors are required to do the 

circuit operations. Then, the path through any other circuitry that the test vectors must 
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take to get to the target component is determined. The effects of the other circuits on the 

test vectors must be factored into the test design. Finally, the software is written to 

achieve such an operation. 

Since a self-test merely discriminates between the expected behavior and actual 

behavior of the components in its path, the functionality of the tested circuits can be 

quickly ascertained. However, this also a weak point in self-tests. A test result gives 

only an indication whether or not a fault occurred along the test path. The key item here 

is that a self-test is an excellent verification tool, not a satisfactory diagnostic tool[3],[4]. 

Experdite, however, uses the knowledge of the interactions between the self-tests and the 

components to make inferences regarding the cause of the fault. This notion is discussed 

in detail in section 4. 

2.3 The production line's need for an immediate expert. 

When a circuit board is first introduced into production, a twofold problem can 

occur. First, a higher than normal percentage of faulty circuit boards are typically seen at 

the circuit board verification station[6]. Second, the senior technician's experience level 

diagnosing and repairing the new board is minimal at best. Combined, these two 

problems have the potential of choking the production line. 

By creating an Experdite system for a circuit board during its design phase, an 

expert diagnostician can be available when the board enters production. Thus, possible 

choking of the production line is prevented and productivity of both the junior and senior 

technician is increased. 
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3. ABSTRACTING AND MODELING A SYSTEM. 

3.1 Overview 

Abstracting the interaction between a test and a circuit can be thought of as 

modeling the deep knowledge of the domain with functional primitives[?]. Deep 

knowledge characterizes its domain in terms of functional information. It is used to 

model how the system works. This is contrary to so-called shallow knowledge, or "rules 

of thumb", which models how experts reason about the domain. Represented within the 

deep knowledge primitives are the structural and behavioral knowledge of the domain, 

where the expected behavior of each circuit is based on the stimulation provided by the 

test. 

Experdite uses a high level description language, called Test Description 

Language, or TDL, to describe the high level abstraction of a hardware system. 

Primitives representing the hardware system's components, tests and their interactions are 

combined to generate a description language[8]. The language provides a simple 

mechanism for the self-test designer to model the behavior of the system and create a 

knowledge base specific to the circuit board. 

Previous description languages[3],[8] required detailed modeling of internal 

workings for each component. The TDL abstracts a system description to use only the 

existence of, and the relationship between, the components and the tests. Therefore, it is 

possible to model essentially any system that verifies its components by a series of tests, 

where the tests report whether or not the expected behavior occurred. 

3.2 How to abstract and model a system 

The creator of a TDL model for a circuit board should be an expert on how the 
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board 1s components and tests interact. Most likely, the TDL author and the self-test 

designer are the same. To write the TDL description of a circuit board, the writer only do 

the following two steps. (The syntax for the TDL is described in Appendix A.) 

1. List all the components and tests. 

2. For each component, describe the relationship it has with each test that passes 

vectors through it. The description must include the following information: 

a. the extent of test coverage 

b. the cost/benefit ratio of the test. 

3.2.1 Extent of test coverage 

How thoroughly and completely a test checks a component is quantified in the 

extent-of-coverage value. Extent-of-coverage takes four values: Absolute, Considerable, ) 

Moderate, and Minimal. 

The Absolute category indicates the test checks 100% of the circuit. If an 

Absolute rated test passes, then the associated component is fully functional. Conversely, 

if the component is faulty in any way, this test will catch the incorrect behavior. 

The Considerable category indicates the test covers 99% to 66% of the circuit 1s 

functionality, the Moderate category indicates a 65% to 33% check and Minimal means 

32 % to 1 % of the circuit is tested. In each of these cases, there is a chance the test did 

not stimulate the faulty part of the component, even if the test passes. Thus, there is 

insufficient evidence to declare the component fully functional. Each category does, 

however, provide some degree of assurance that the component is functional. This 

partial assurance is used by the inference engine in the determination of the most likely 

cause of the fault. The inference engine is explained further in section 4. 
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tJ For each test/component relationship, the TDL writer must determine which 

extent-of-coverage category to apply. The writer must make the judgement based on 

hisfher knowledge of how the circuit operates and how definitively the test checks the 

circuit. 

iO 
i1 
i2 
i3 
i4 
i5 
i6 
i7 

8 Bit Register 

control ' 

oO 
ol 
o2 
o3 
04 
o5 
06 
o7 

Figure 4. Simple 8 bit latch. 

For example, consider the simple 8-bit latch shown in Figure 4. A latch is a 

device that captures the data on the input lines when the control line is asserted and holds 

the data on the output lines. To classify a test on the latch as absolute, it must check all 

input, output and control lines in all possible combinations. A considerable ,.. 

extent-of-coverage type test may test all combinations of only six of the data lines. 

Checking three data lines puts a test in the moderate category. Finally, a test that merely 

flips the state on one line, one time is a minimal type test. 

For another example, consider a counter. A counter latches in a starting value, 

increments the value with every clock input and places the value on the output lines. An 

absolute test would require starting the input with every possible value n, then increment 

the value its full range (n, n+l .... n-1), while checking the output value after each 

increment. A considerable check might increment the counter 1s full range, starting with 
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only a single value, and checking only the final value. A moderate check may count a ._ ) 

value far enough to cause the state to change on half of the output lines. A minimal check 

may increment an incoming value by one, causing only a single output bit to change. 

3.2.2 The cost/benefit ratio. 

The other parameter in the component-test relationship description is the 

cost/benefit ratio. This ratio indicates the cost versus the benefit of executing a test on 

the specific component. The inference engine uses this ratio when determining the next 

test to execute. For example, given two tests which are equal except in their cost/benefit 

ratio, the test with lowest ratio is selected. 

The cost of a test can be defined in terms of four quantities: time, money, 

invasiveness and destructiveness. 

The time value is directly related to the amount of time required to setup and/or 

execute a test. The more time a test requires, relative to other tests, the higher the cost. 

The money value relates the monetary expense of executing a test or of any test 

fixtures or equipment. For instance, if a test requires a very expensive lab setup, then it 

has a high cost value. 

Invasiveness is defined as the amount of dismantling or probing within a system 

that is required by a test. Any such action requires extra time and expertise, thus a higher 

cost. 

Destructiveness means the amount of irreparable damage a test may cause. The 

more destruction, the higher the cost. 

The benefit portion of the cost/benefit ration is quantified in terms of 
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definitiveness, isolation and thoroughness. 

The definitiveness factor relates the likelihood a test will discover a fault in a 

circuit, and not be bothered by the other circuits in the test path. That is, if a test has 

11absolute 11 coverage of a circuit, and 11minimar 1 coverage for all other circuits in its path, 

then the benefit of the test for this circuit is very high. 

The isolation factor is inversely proportional to the number of circuits in a test 

path. If a test fails, then all circuits in its path are suspect and all the suspended circuits, 

or those not in the test path, are eliminated as suspects. The smaller the number of 

circuits, the lower the suspect count and the easier to pin down the fault. Thus the benefit 

increases as the path count decreases. 

Thoroughness is defined as how rigorously a test checks a component. The 

more exhaustive the test, the higher the value. This is related to the extent-of-coverage 

value defined above. 

Ratios are formed by applying points to each cost and benefit category, as 

applicable to the test and the circuit. The actual point value assigned is currently left to 

the discretion of the TDL writer. The only restriction is the value must be in range from 

1 to 10. For a cost category, the lowest cost value is 1, while the highest is 10. For the 

benefit category, the least benefit value is 1 and the most benefit value is 10. 

Following is an example of how the values of the costfbenefit ratio is 

determined for two tests that check an EEROM (Electrical Erasable Read Only 

Memory). 1 The first test, Tl, reads the every data location in the EEROM, performs a 

1 An EEROM is an integrated circuit capable of acting as a normal read/write 
memory. However, an EEROM is unique because it is able to retain data without power 
applied. The caveat is that the EEROM is limited to a finite number of write operations 
to any one cell. If the limit is exceeded, then the cell decays and rapidly fails. 
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check-sum on the values and compares the calculated value to the check-sum value 

stored in the EEROM. If values match, the EEROM data is assumed to be correct. Tl 

does no write operations on the EEROM. The second test, T2, writes, then reads several 

patterns to every EEROM memory location. Thus, Tl checks the integrity of the data 

and checks nothing of the write operations. T2 does a full read and write check of the 

part, yet with the potential of destroying the part. The determination of the costfbenefit 

ratio for each test follows. 

Test Ratio Type Category Comment Value 

Tl Cost Time Negligible, < 1 millisecond 1 
Money None 1 
Invasiveness None 1 
Destructiveness None 1 

Tl Benefit Definitiveness A faulty address or data bus can interfere 3 
Isolation Only the processor, bus and EEROM 4 
Thoroughness Moderate, only test data retention 3 

T2 Cost Time Negligible,< 1 second 1 
Money Potentially high, if destroy EEROM 9 
Invasiveness None 1 
Destructiveness Potentially great, may destroy part 9 

T2 Benefit Definitiveness A faulty address or data bus can interfere 3 
Isolation Only the processor, bus and EEROM 4 
Thoroughness Fully test all functionality of EEROM 9 

Thus, the cost and benefit ratio for test Tl is 4/10, or 0.4, and for test T2 is 

20/16, or 1.25. Clearly, the benefit of Test T2 is much greater than test Tl, but so is the 

cost of running the test. Therefore, test Tl would be selected over T2 because it provides 

a reasonable check the EEROM. T2 would only be selected in special cases when greater 

testing is required to help isolate a fault. 

Refer to Section 6 for a further discussion on the need to provide an exact 

method of assigning cost and benefit values. 
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3.3 Look-Aside Rule definition and generation. 

As mentioned in the introduction, a look-aside rule is used in the special cases 

when the model based system is unable to characterize unusual circuitry. A rule's 

conditions and conclusions are acquired from senior technicians who have significant 

diagnostic experience on the circuit board. A look-aside rule is always attached to a test 

and is activated only when the test fails. 

The rule format is 

"if (premise)+, then circuit n is faulty". 

A single rule can have multiple premises. Two types of premises are currently 

supported, test results and measurements. 

A test result premise is derived after a diagnostician repeatedly and consistently 

observes that a certain test result always indicates a specific fault. For example, suppose 

a test is capable of reporting back "bits in error". If a fault always causes a unique bit 

pattern to be reported, then a premise can be derived from the information. The format 

for a result-based premise is 

"if test T reports a result of X, then .... ". 

For example, suppose in test Tl that an output bit of a circuit A is used 

exclusively to trigger another chain of events. If the bit does not toggle, the event chain 

fails to start and the test times-out. In this condition, the self-test control software detects 

the time-out and reports an "event failed to start" message. Also assume no other 

condition can cause such an report. A test result premise based rule for such a condition 

maybe: 

"If Tl reports event failed to start, then circuit 
A is faulty." 

Refer to Appendix B for the correct rule syntax. 
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A measurement premise stems from measurements taken by a diagnostician 

while troubleshooting faulty systems. If a distinguishing, measurable characteristic 

consistently identifies a fault, then this knowledge can be used to make a premise. The 

format for a measurement based premise is 

"if measurement Ml on circuit A is X, then " . . . . . . 

For example, suppose Circuit A is a clock signal output device. A 16 :MHz 

signal is expected from its pin 10. A rule with a measurement premise may be : 

"if 16 MHz not at pin 10 of Circuit A, then 
Circuit A is at fault." 

Look-aside rules can be included during the generation of a circuit board's 

original TDL description, or they can be added later as they are discovered. Refer to 

Appendix B for a detailed description of the rule syntax and the translation process of 

TDL rule format to C++ classes. 

3.4 TDL translation and the inference engine interface. 

The first step in building an Experdite system specific to a circuit board is to 

generate the TDL description of the circuit board. The description is then translated to 

C++ objects that make up the knowledge base for the inference engine. Each circuit,. test,­

circuit/test relationship and rule is represented by its own C++ object. (fhe translation 

process is discussed in detail in Appendix B.) The-translated knowledge base is compiled 

with the inference engine to produce an expert system unique to the circuit board. 
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4. INFERENCE ENGINE 

4.1 Overview 

The purpose of the inference engine is to guide the search for the faulty circuit. 

It must narrow the search space as quickly as possible[7]. The inference technique 

Experdite uses is similar to Davis' constraint suspension technique[3]. A constraint 

represents the expected relation between the nodes it connects[ll ]. For example, the 

constraint of adder Bin Figure 5 is the output point z, which is the sum of the inputs at 

points x and y. 

In Experdite, constraint suspension means divide and conquer. That is a 

constraint (the output of a component) is deliberately inhibited (suspended). Thus, if a 

test fails, then any suspended circuits are automatically known not to be the cause of the 

fault. Therefore, assuming a single fault, the suspended circuits are pruned from the 

suspect list. 

Tl 

r --~ 
u i V X 

adder Al 

i " 
'( ············ 

Figure 5. Example circuit to show constraint suspension. 
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For example, test Tl, shown by the dotted line in Figure 5, checks only adder A 

and circuit C, but not adder B. Therefore, the constraint of adder B is suspended. If test 

Tl fails, then adder B is known to be good. 

On the contrary, a passing test does not automatically indicate the fault is 

outside the test path, unless, of course the test covered all circuits in its path absolutely . . 

Further investigation is warranted to determine if the fault cause is outside of the test 

path, or if the test simply did not stimulate the right condition to trigger the fault. 

Referring, again, to the above example, if Tl did not toggle all the output lines of adder 

A in all combinations, a stuck bit may have been missed. 

When the inference engine selects a test to run, its decision is influenced by two 

primary goals. First, always keep the focus of the search on the fault. That is, choosing a 

test that is expected to fail keeps the fault within a known boundary, namely a circuit in 

the test path. Second, maximize the benefits of constraint suspension. That is, choose a 

test so if it fails, then the maximum pruning of the suspect list can occur. 

The factors used by the inference engine during the test selection process are the 

costfbenefit ratio and the extent-of-coverage values. Also, depending on the inference 

engine mode of operation, the most likely suspect and the number of circuits in a test 

path are also used to varying degrees in the selection. The decision process for each 

mode of the inference engine is explained in Section 4.3. 

After every test execution, the suspect list is updated and examined to determine 

if sufficient evidence exists to establish the cause of the fault. The criteria for this 

determination are explained in Section 4.5. 

22 

) 



) 

4.2 Belief in a circuit's functional status 

Each circuit carries with it a notion called a belief-factor that is the belief in its 

own functional status. This belief-factor ranges in value from -10 to 10, where -10 

indicates the circuit is definitely faulty and 10 means the circuit is fully functional. The 

gray area between the maximum values allows a circuit to maintain an inconclusive 

opinion as to its own status, ranging from probably good to may be good to may be bad 

to probably bad. The inference engine uses the inconclusive belief when ordering the 

circuits in the suspect list. The term most-likely-suspect is the circuit with the 

belief-factor closest to -10. 

The belief-factor is a cumulative value. It is calculated on a per test execution 

. basis, using the following two factors. 

1. The value indicating the extent-of-coverage provided by the test. 

2. The value indicating whether the test passed or failed. 

The defined values for extent-of-coverage are as follows. 

Absolute= 10, 
Considerable= 7.5 
Moderate= 5.0, 
Minimal= 2.5 

The defined values for pass or fail, (P,F), are 1 and -1, respectively. 

A value; coverage-value, is the combination of the extent-of-coverage and 

pass/fail values, where 

coverage value= (extent-of-coverage* (P,F)). 
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For each circuit in the path of an executed test, the belief factor is calculated as 

the mean and standard deviation of the coverage-value. The mean and standard deviation 

equations are as follows. 

mean= ( I:coverage values ) / number of tests 

std dev = (L (coverage value - mean)) 2 /number of tests 

Suspended circuits are treated as a special case in the belief-factor algorithm. If 

a test fails, then all circuits not in the test path have their belief-factor set to 10, or 

positively good, and are eliminated as suspects. If the test passes, then the belief-factor 

of the suspended circuits are not updated, since no information can be gleaned from the 

tests execution. 

Thus, the belief factor is a running history of the how robustly each circuit has 

been tested and the pass or fail outcome of each test. The mean value indicates how 

close the circuit believes it is to a definitive resolution. The standard deviation indicates 

how likely the resolution is correct. A mean value close to 10 indicates a high level of 

confidence that the circuit is functional. As the mean value approaches 0, confidence 

goes down, though the circuit is believed to be functional. As the value passes 0 and 

goes negative toward -10, the confidence that the circuit is faulty grows. 

To clarify this notion, consider the following example. 
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Figure 6. Three circuit example. 

This example has three circuits, A, Band C and three tests, Tl, T2 and T3, as 

seen in Figure 6. The circuit/test relationships are as follows: 

Circuit Test Extent-of-coverage 

A Tl Considerable 
T2 Moderate 

B T2 Moderate 
T3 Considerable 

C Tl Moderate 
T2 Considerable 
T3 Minimal 
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Suppose test Tl is executed and it fails. Then, the resulting belief Jactor for 

each circuit is shown in the following table. 

Circuit Coverage Value Belief-Factor 
mean std dev 

A -7.5 -7.5 0 
B (suspended circuit) 10 (special case) · 
C -5.0 -5.0 0 

Now suppose test T3 is executed and it passes. The resulting belief Jactor for 

each circuit is shown in the following table. 

Circuit Coverage Value Belief-Factor 
mean std dev 

A (suspended circuit) -7.50 0 
B N/A (not suspect) 10 
C 2.5 -1.25 2.65 

Lastly, suppose test T2 is executed and it fails. Then , the resulting belief-factor 

for each circuit is shown in the following table. 

Circuit Coverage Value Belief-Factor 
mean std dev 

A -5.0 -6.25 0.88 
B N/A (not suspect) 10 
C -7.5 -3.33 0.24 

In the final results, circuit A has the most negative belief-factor, so it is the most 

likely the fault. Circuit C is the next most likely since it has the next most negative 

belief-factor, and circuit Bis eliminated as a suspect. 

4.3 Inference engine modes of operation 

The inference engine operates in four different modes depending on the current 

state of the search for the fault. These modes are : 
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1. Find the initial fault, 

2. Confirm the suspected fault, 

3. Eliminate as many suspects as possible, and 

4. Eliminate the next most-likely-suspects. 

Each of these modes is explained below. 

4.3.1 Find Initial Fault Mode. 

Experdite starts in the find initial fault mode. The purpose of this mode is to 

detect a fault in the fewest tests possible and to reduce the suspect list to a plausible 

subset[9]. Initially, all components on the circuit board are suspected equally of being at 

fault. The problem, then, is to establish a starting point. 

A starting point is determined by emulating the methodology of a senior 

technician. When initially trying to find a fault, sjhe will typically execute a test that 

closely examines the more universal circuits, while also covering as much breadth of the 

circuitry as possible [7],[13]. The most 11universal circuit: means the circuit with the 

most connections to other circuits and has the most test vectors pass through it. Testing 

the system this way allows early detection of faulty universal circuits, while also testing 

as much of the system as possible. 

Test selection in this mode is based on two factors. The selected test has 

1. the highest extent-of-coverage for the most universal circuit and 

2. the greatest breadth-of-coverage. 

The breadth-of-coverage is based on the number of circuits in a test path. It indicates 

how encompassing the test is over the entire circuit board. Each test knows its own 

breadth-of-coverage value. 

The inference engine continues in this mode, selecting tests to be run until either 
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a fault is discovered, or the circuit board is deemed healthy. For each selection, a less 

universal circuit than the previous is chosen as the target of testing. This means 

Experdite is able to declare, with reasonable assurance, that the circuit board is fault free, 

without having to exhaust all tests. 

If a fault is detected, then the inference engine switches to the second mode, 

confirm the suspected fault. If the board is deemed fault free, the user is so informed and 

the program exits. 

4.3.2 Confirm the suspected fault mode 

The confirm the suspected fault mode determines the most likely cause of the 

fault and then chooses the best test to confirm this suspicion. The idea is to select test 

with the highest extent-of-coverage value for the suspect and the most narrow scope. The 

emphasis is placed on selecting the test with the highest extent-of-coverage value. Scope 

refers to the number of circuits in the test path and a narrow scope means the fewest 

number of circuits in the test path. The high extent-of-coverage value provides 

reasonable confidence that the suspect will be thoroughly checked. The narrow scope 

ensures minimal interference from other components and the potential for maximum 

suspect list pruning. 

If the test fails, then the suspect is confirmed and, due to the narrow scope of the 

test, a large number of circuits are suspended. Thus, the suspect space is greatly reduced 

and the inference engine moves on to the third mode, Eliminate as many suspects as 

possible. 

If, on the other hand, the test passes, and if the most likely suspect changes, then 

the mode is not switched and this same operation is performed on the new suspect. If, 

however, the most likely suspect does not change, then the inference engine is switched 
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to the third mode, eliminate as many suspects as possible. 

4.3.3 Eliminate as many suspects as possible mode. 

The eliminate as many suspects as possible mode is similar to the previous 

mode, in that the suspect is kept the focus of the search. This mode differs in that 

emphasis is placed on eliminating as many other suspects as possible, rather than 

confirming the fault. The test selection criteria are 

1. the most likely suspect must always be in the test path and 

2. the test path cannot contain more than 50% of the total circuits. 

This way, if the test fails, as is predicted, then a large number of circuits are eliminated 

from the suspect list. 

The inference engine remains in this mode until a solution is found, until no test 

meets the test selection criteria, or until the most-likely-suspect changes. In the first case, 

the solution is reported and the program terminates. In the next case, the inference 

engine is switched into the third mode, eliminate the next most likely suspects. In the last 

case, the mode is switched back to second mode. confirm the suspected fault. 

, 

4.3.4 Eliminate the next most likely suspects mode. 

The object of the eliminate the next most likely suspects mode is to eliminate the 

closest rivals to primary suspect. A test is chosen so that either the most-likely or 

next-most-likely suspect is in the test path, but not the other. Then, if the test fails, the 

suspended circuit is eliminated. If the test passes, then unless the test had an absolute 

extent-of-coverage value, neither suspect is eliminated. The belief factors of both circuits 

are adjusted accordingly and the operation is repeated . 

As the next-most-likely suspects are eliminated from consideration, then next 
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next-most-likely suspect is paired against the most-likely suspect. The process continues 

until either : 

1. a solution is found, 

2. all the tests that can provide any useful information are run, 

3. the belief in the most-likely suspect far outweighs its closest rival or 

4. the most likely suspect changes. 

Cases 1, 2 and 3 indicate the end of the diagnostic session. A best guess as to 

the cause of the fault is made at this time. In case 4, the inference engine is switched 

back to the second mode, confirm the suspected fault, and the process starts over. 

4.4 Look-aside rule operation 

As mentioned in the introduction, a look-aside rule is used to handle special 

cases where the model based method fails. Each test can have one or more look-aside 

rules attached to it. If a test fails, then all its attached rules are activated. If all t~e 

premises of a rule are satisfied, then the circuit specified in the conclusion is reported as 

the cause of the fault and the diagnostic session ends. Tests with multiple rules activate 

the rules one by one until either the rules are exhausted or a rule is satisfied. Refer to 

Appendix B for the rule syntax and definitions. 

4.5 Criteria for a solution. 

Experdite checks the suspect list entries to determine if the criteria to declare a 

solution are met after every test execution. If met, Experdite reports one of two possible 

solutions, either the circuit board is fully functional or the best gue~s as to the cause of 

the fault. 

The solution criteria are as follows: 
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1. If the belief-factor of every circuit is positive, meaning each circuit believes it 

is operable and each circuit has been verified by at least one test with an absolute or 

considerable extent-of-coverage value, then circuit board is judged fault-free. 

2. If all the premises of a look-aside rule are satisfied, then the circuit in the 

conclusion is reported to be the cause of the fault. 

3. If only one circuit remains in the suspect list, then, obviously, that circuit is 

the most likely and only cause for the fault. 

4. If all tests have been exhausted, then the most-likely circuit is reported as the 

prime suspect. 

5. If the most-likely suspect has no tests remaining whose extent-of-coverage is 

greater than Minimal, and all the other suspected circuits within one 

belief-factor-window2 of the most-likely suspect also have no outstanding tests with an 

extent-of-coverage value greater than Minimal, then the most likely suspected is declared 

to be the fault. 

For example, suppose circuit A is the most likely suspect with a belief-factor of 

-8.0 and all tests associated with A with an extent-of-coverage value greater than 

Minimal have been run. Let circuit B be the only other remaining circuit in the suspect 

list. Suppose Circuit B has a belief-factor of-7.0, which is within one 

belief-factor-window of the most-likely suspect. Also, suppose test T2 checks circuit B 

considerably and has yet to be run. Then after test T2 is run, the belief-factor for each 

circuit is updated accordingly. At this point, a solution is reported because criteria 4 and 

5 are satisfied. 

2 A belief-factor window is the area between an enumerated belief-factor 
range. For example the area between bad and probably bad is a window, or a value of 
2.5. 
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4.6 Reporting the fault 

Since no circuit is tested in complete isolation, making a determination of the 

fault often resorts to a best guess. Since each circuit continually calculates its own 

belief-factor based on the partial information gathered during the entire diagnostic 

session, Experdite's best guess simply falls out as the circuit with the most negative 

belief-factor. 3 

If the user desires, Experdite reports the next best guesses simply by traversing 

the suspect list in most negative belief-factor order. This provides the user with 

additional information in case the best guess is incorrect. 

) 

3 In the case of belief-factors tying, the push is given the circuit with the _) 
smallest standard deviation. 
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5. DISCUSSION OF EXPERIMENTAL TEST RESULTS 

5.1 Overview 

In order to evaluate the effectiveness of this project's methodology, Experdite 

was implemented and applied to a real, production circuit board. The objective of the 

evaluation was to determine how accurately and timely this diagnostic system locates 

faults on the circuit board. 

Faults were induced randomly on the circuit board. They represent 

characteristic defects, such as lines stuck high and low, shorted lines, open lines, etc. 

Faults with the potential of causing permanent damage to the system were disallowed. 

5.2 Hardware system description. 

Before the results are presented, a brief background on the hardware system. 

The circuit board used in the experiment is called the Picture Processor 2, or PP2, from 

the Tektronix 4230 series color graphic workstations. The PP2 is one of three major 

subsystems that comprise the workstation, as seen in Figure 7. Its purpose is to convert 

graphic display list commands generated by the Control Processor into explicit pixel 

address and data information. The PP2 writes the pixel information into the Frame 

Buffer. The Frame Buffer, in tum, stores and displays the graphic image. The Control 

Processor, CP, is the primary compute engine in the system. It provides the user 

interface and is the self-test dispatcher and controller for PP2. 
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Figure 7. Hardware architecture for Tektronix 4230 graphic workstation. 

The PP2 has two bit-sliced, micro-programmable graphic engines on the board. 

For this experiment, only one of the two bit-slice engines is modeled. This portion of the 

circuitry is made up of approximately 200 separate integrated circuits, which are divided 

into 32 distinct sub-systems. There are 22 distinct self-tests used to verify this portion of 

the PP2 hardware. The block diagram of the PP2 data path is shown in Figure 8 and of 

the PP2 control path in Figure 9[14]. The TDL listing for this circuit board is in 

Appendix C. 
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Figure 8. PP2 data path block diagram. 
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Figure 9. PP2 control path block diagram. 

5.3 Experimental results. 

In each experimental case, the following information is reported: 

1. The induced fault and its expected symptoms. 

2. The number of tests required for Experdite to .make a decision. 

3. Experdite's reported solution. 

" 

" 

M'II. CIIQ 

If l"ll0el 

4. Accuracy of results, where an indication of whether the fault was 
identified correctly, completely erroneously, or identified as the second or 

" (11"1 

) 

third best guess. _) 
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Case Induced Fault Number Reported Accuracy 
tests best guess 
requested 

1 ALU neg flag 14 ALU flag Correctly 
output stuck low output identified 

2 ALUYoutput 12 ALUY Correctly 
bit 11 stuck low output identified 

3 Scratch RAM addr 8 Scratch Ram Correctly 
Control output . Addrinput identified 
stuck low 

4 Scratch RAM output 4 Scratch Ram Correctly 
data lines shorted Output identified 

5 Holding Register 4 ALUD input 3rd best 
always enabled register guess 

6 Holding Register 5 Holding Correctly 
always disabled Register identified 

7 Pbus bit 29 held hi 4 ALUD input 3rd best 

) 
register guess 

8 Disable Rotate 9 Rotate Correctly 
register Register identified 

9 Disable Temp 7 Temp Correctly 
register Register identified 

10 Pbus source mux 7 Temp 2nd best 
disabled Register guess 

1,1 Multiway register 7 Multiway Correctly 
, 

output stuck low Register identified. 

12 Flag bit into 5 Scratch RAM Incorrectly 
sequencer stuck low Output identified 

13 Misc input to flag 5 Flag reg Incorrectly 
mux stuck low output identified 

14 Disable flag reg 5 Flag reg Correctly 
output Output identified . 

15 Sequencer D input 6 Scratch RAM Incorrectly 
line stuck low output identified 

) 
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Case Induced Fault Number Reported Accuracy 
tests best guess 
requested 

16 Disable sequencer 9 Sequencer Correctly 
mode switching Output identified. 

17 Disable holding 4 Holding Correctly 
latch Latch identified 

18 Disable pipeline 7 Temp 3rd best 
MS data output 

19 Disable pipeline 7 Temp 3rd best 
LS data output 

20 Scratch RAM Addr 6 Scratch Ram Correctly 
register carry bit Addr output identified 
stuck low 

21 Scratch RAM Addr 6 Scratch Ram Incorrectly 
control line identified 
stuck low 

5.4 Analysis of results. 

The PP2 circuit board uses 22 different self-tests to check 32 distinct 

sub-systems on the board. The experiment consisted of inducing faults on the board and 

using Experdite to diagnose the fault. As shown in the experimental results in the 

previous section, Experdite is capable of diagnosing faults on a real, complex circuit . 

board. 

The experiment consisted of 21 separate test cases . Experdite correctly reported 

17 of the faults when up to the third best guess is included in the total. Experdite was 

slightly less accurate, a total of 12, when counting reports which were correct on the first 

guess. Only four cases were reported entirely incorrectly. These statistics show the 

system is indeed capable of preforming diagnostic analysis of faults, though the accuracy 

is less than desired. 
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Two of Experdite's incorrect reports are due to an inaccurate TDL description of 

two pieces of the hardware. In this particular case, the faulty data was fed through a 

another circuit back to faulty circuit. This circular behavior proved to be difficult to 

accurately portray in the TDL. Therefore, when a TDL description is generated, 

extraordinary analysis must be made when describing feedback loops. Some thought 

how to cleanly handle such circuits in TDL and the inference engine is also needed. 

The remaining two cases reporting incorrect faults had unusual test reports. By 

making these unusual test results into test result premises and combining them with a 

measurement premise, a look aside rule could be generated to correct the model based 

deficiency. A test result premise alone is inadequate due to the large number of circuits 

on the circuit board. 

Experdite averaged 6.5 requests for a test to be run for it to determine a result. 

The minimum number of requested tests was 4 and the maximum was 14. The ability of 

Experdite to generate a solution in such a short order is advantageous in that it lessens the 

amount of time required to troubleshoot a circuit board. 

The response time of Experdite, from entering the test result until Experdite 

recommended a new test or produced the final suspect list, was consistently less than a 

second. This is an adequate response time for human interaction. 
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6. SUGGESTIONS FOR FUTURE WORK. 

This section covers suggestions for further work and ideas of what can be done 

to expand Experdite's capabilities. 

1. The design and implementation of a circuit boards self-tests must take 

Experdite's operation into consideration. Feedback loops, which are difficult to model, 

should be minimized. Addition of a small amount of hardware and better test design 

could increase Experdite's accuracy rate, thereby offsetting any additional hardware 

costs. 

2. The TDL model was intentionally made to simplify the modelling of a circuit 

board. The circuit/test behavior is the important entry in the TDL. The actual circuit 

behavior was irrelevant. But to increase the accuracy rate, the extent of coverage value 

must be expanded beyond a mere percentage. It is necessary to add some indication of 

what percentage of the circuit is checked by each test. For instance, consider two tests 

that both check 50% of the same circuit. The problem is, which 50% was checked. Did 

the tests overlap? Is 50% + 50% <= 100%? 

3. Make better use of the cost/benefit ratio for each test. A standardized point 

system for each cost and benefit category needs to be defined. The TDL writer then has a 

basis of how to assign number to each category. 

4. The production line staff collects statistics on the frequency and cause of the 

faults discovered during manufacture of circuit boards. Adding a likelihood-of-failure 

field to the TDL circuit description would be useful when determining the most likely 

suspect. 

5. Add capability for the system to automatically record its actions, the results of 

tests and the fault causes so that it can generate its own rules. Essentially a learning 
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system. 

6. Add a two faceted explanation functionality. First, provide the user with 

explanations of why and how a test is selected to be run. Second, to tell why and how the 

current most-likely suspect is selected. 

7. Currently, the translated TDL knowledge base must be compiled with the 

inference engine to make a working system. A more general purpose solution would be 

to have the inference engine read in and interpret the knowledge base at run time. 

8. The current user interface is marginal. A far better solution would be to have 

the Experdite talk directly to a self-test control program, bypassing the human altogether. 

This step would require a standard interface to all circuit board self-test systems. 

9. Increase the capability of the rules to create a more typical back-chaining 

approach to their use. That is, when the first look aside rule is fired, if a premise is 

dependent on other rules, the rules will back-chain in a typical fashion. This feature will 

allow for other premise types, such as a circuit premise. A circuit premise is "if test 

circuit A is known to be good". Then, to resolve the question "is the circuit good", 

Experdite could back-chain through other rules and apply normal constraint suspension. 
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7. ANALYSIS OF SYSTEM AND CONCLUSIONS. 

The first part of this section evaluates Experdite using the valuation criteria set 

forth by Pau[8]. The second half of this section discusses the practicality of the system, 

how well Experdite satisfied the project objectives and what is needed to make this a 

viable, "industrial strength" product. 

7.1 Evaluation of Experdite's Test Description Language. 

Pau[8] sets forth several evaluation points by which the effectiveness of a high 

level description language is judged. Each of these criteria are listed below, with a 

statement of how the TDL measures up. 

1. Expressiveness: Does the representation make distinctions between the 

concepts represented? The TDL abstracts the most primitive concepts of a circuit and a 

test. In addition, TDL represents the notion of a relationship between a circuit and test. 

Therefore, the basic concepts of a circuit board necessary to do diagnoses are 

represented. 

2. Computational efficiency: Does the representation scheme allow for efficient 

computation of various inferences required for the task? The TDL entries are translated 

into C++ objects representing each circuit, test and circuit/test relationship, as explained 

in Appendix A and B. Each object is self-contained as to its status, its ability to make 

inference decision and the data needed to make the decisions. Thus, when a list of 

objects are traversed during an operation, each object handles its own requirements. This 

simplifies the overall operation of the system, remove much overhead and extraneous 

control functionality. 

When the TDL is converted to C++ classes, they are currently held in simple 

linked lists. A linear search is used during inferences. The small number of items in the 
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lists allowed for efficient computing. However the lists are generated as objects, and can 

be altered to more efficient algorithm should the knowledge base grew significantly. The 

changes would be invisible to the remainder of the system. 

3. Modifiable: Is the representation scheme easily modifiable? Each circuit, test 

and circuit/test relationship is a wholly contained entity unto itself, as explained in 

Appendix A. Thus, the high level of abstraction allows easily changes to a piece of the 

knowledge base, while leaving the remainder of the knowledge base is oblivious to the 

change. 

4. Conciseness: Is the representation scheme compact, clear, and at the right 

level of abstraction? The TDL abstracts a circuit board to the most basic components, the 

circuit, the self-test and the relationship between the two. The TDL writer must use their 

own judgement when assigning a judgement to the extent a test checks a circuit and the 

cost/benefit ratio. While a test's extent-of-coverage value is reasonably straight forward 

determine, the writer would benefit from a more concise guideline for assigning 

costjbenefit ratios. 

5. Uniform representation: Can different types of knowledge be expressed with 

the,same general scheme? The TDL is capable of representing any system that has 

discrete parts that are tested with tests capable of reporting back at least a pass or fail 

status. For example, a TDL description of an automobile engine was used during 

development of the Experdite software. Thus TDL and the inference engine are capable 

of representing different domains, but only if they fit into the category described above. 

6. Easy retrieval and access: Is the representation scheme such that the desired 

knowledge can be easily accessed? The TDL is a high level description language. Its 

syntax, described in Appendix B, provides a straight forward representation for each 

element of described by the TDL. Therefore, it is easy to read the TDL description and 
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determine what circuits make up the board, what tests execute on the circuits, how each 

test and circuit relate to one another and any special case rules known about the 

hardware. 

7. Multiple level representation of knowledge: Does the scheme offer different 

levels of abstraction about the same concept. The TDL does not meet this criteria. Its 

primitives are abstracted to the most basic units. It currently has no previsions to handle 

any other level of abstraction. 

In summary, Experdite 1s Test Description Language satisfy the majority of Pau 1s 

representation schemes evaluation criteria. The TDL falls short in that it is limited to 

representing systems with components and self-tests and that it is limited to only the 

highest level abstraction. Regarding the first limitation, the number of different domains 

that are applicable is numerous, so Experdite is still valuable. Regarding the second 

limitation, if lower level abstractions are added to the TDL, it would allow Experdite to 

diagnosis to a finer grain, but sacrifice the ability to easily generate, understand and 

modify the knowledge base. 

7 .2 Evaluation of Experdite architecture. 

Pau[8] asserts a set of standard requirements to evaluate an expert diagnostic 

system. Each of these benchmarks and how Experdite measured follows. 

l. Minimum non-detection probability - Before declaring a solution, Experdite 

requires all but 11invisible 11 circuits to be either tested to a satisfactory level, or be 

declared good through constraint suspension. Invisible circuits are handled by look-aside 

rules. Therefore, the system has the capability of detecting nearly every fault. 

2. Minimum false alarm probability - Each circuit retains its own belief 
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regarding whether it is good or bad, and to what degree. This belief-factor is acquired 

over time. Also, the criteria used by Experdite when declaring a solution requires all 

circuits must have a belief-factor surpassing certain thresholds. Combining the 

accumulative belief-factor and the criteria for declaring a solution, false alarms are 

minimized 

3. Minimum detection/test selection time - Based on the experimental executions 

of Experdite, the test selection time is faster than can be measured with a stop-watch. 

Such a short response time is more than adequate for a user interaction. The limiting and 

most time consuming factor in running the system was the human involvement. This 

strengthens the argument suggested in the future work section to remove the human 

interface and have Experdite interact directly with the circuit board self-tests. 

4. Deep knowledge and specific historical knowledge data integration -

Experdite allows for input of both types of knowledge through its behavior and structure 

model description and its rule generation capabilities. 

5. Capable of handling uncertainties. Uncertainties in Experdite revolve around 

the self-tests and how completely a test checks every circuit in its path. A test may pass 

vectors through a faulty circuit and not trigger the fault condition. Also, since self-tests 

can indicate only that some circuit in its path failed or all passed, then the exact fault 

cause is uncertain . Experdite handles the uncertainties by having each circuit accumulate 

its own belief-factor, based on the extent a test checks the circuit and the pass/fail result 

of the test. This way, if a test misses a fault in a circuit, other tests will trigger it. The 

accumulated belief-factor evens out the hits and misses so Experdite can make a correct 

report. 

6. Expansibility and maintenance. Maintenance on specific circuit board 

knowledge bases is easy due to the high level abstraction of the TDL. Also, Experdite, as 
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a whole, takes advantage of the inherent ease of expansion and maintenance afforded 

object oriented systems. Therefore, Experdite satisfies this requirement in both the TDL 

and the inference engine. 

In summary, the architecture of Experdite satisfies the requirements set forth by 

Pau[8] for a diagnostic knowledge based systems. 

7 .3 Evaluation of Experdite to the specific manufacturing needs. 

7 .3.1 Analysis of how well Experdite met its primary goal. 

The primary goal of Experdite is to provide a practical expert diagnostic system 

for use by manufacturing personnel. In particular, Experdite is intended to help the 

junior technician at the board verification station. In the manufacturing scenario which 

includes Experdite, a junior technician would first use Experdite to narrow the search 

space to a few square inches of the circuit board and to a few !Cs. Then, sfhe would be 

limited to 5 minutes to locate a workmanship error in the search space. If the fault is not 

be found within the allotted time, the board is sent off-line to the senior technician for 

repair. 

The experimental evidence, detailed in section 5, shows Experdite is capable of 

correctly identifying a faulty circuit to an accuracy rate of 81, when considering the top 

three reported suspects. · However, if only the most likely suspect is considered, the 

accuracy rate drops to a 57%. 

Since the junior technician's time to find the fault is so limited, it is likely sfhe 

will have time to look only in the area of the most likely suspect. Thus, the 57% 

accuracy rate is unacceptably low. Further work is required to increase the accuracy rate 

of Experdite for it to be viable system for the junior technician. 
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The senior technician at the repair station is not under such tight time constraints 

and is more likely to consider the second or third guesses reported by Experdite. In 

conversations with the senior technicians, they expressed a great eagerness to have a tool 

such as Experdite, even if the accuracy is not 100%. Their concern is that with new 

circuit boards, each more complex than previous boards, constantly being added to the 

manufacturing line repertoire, their productivity is decreasing. The senior technicians 

felt any tool which could increase their productivity is desirable. Of course they would 

prefer a 100% accuracy, but they stated that using their own expert knowledge in 

conjunction with Experdite would be an significant in increasing their productivity.[13] 

Alas, the product line Experdite was intended for has been recently abandoned 

and the manufacturing line shut down. This occurred just as the implementation of 

Experdite was being completed. So, there is no feed back or evaluation from actual 

users. There has been no time to modify Experdite to be useable on another line. 

7.3.2 Analysis of how well Experdite met its secondary goals. 

As part of the practical requirements for the manufacturing line, Experdite was 

to address three special needs of the manufacturing line. 

1. The need for an expert diagnostician to be available immediately when a new 
... ... 

circuit board enters production. 

2. The need to have a general purpose inference engine that can be specialized to 

any circuit board. This requires a straight forward method of generating a specific circuit 

board's knowledge base. 

3. The need to localize and minimize changes in the knowledge base when 

reflecting modifications to the hardware circuitry. That is, the knowledge base should be 

designed such that a change to the hardware need be reflected only in the specific part of 

the knowledge base corresponding to the changed circuit. The remainder of the 
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knowledge is untouched. 

Experdite address the immediate expert problem by changing from rule based, 

qualitative type knowledge base to a quantified, behavioral model base. This means the 

knowledge base uses the expertise of the circuitry designer, rather than the expert 

troubleshooter. Thus, an expert is available much earlier in time, allowing for a 

diagnostic system to be built before the board enters production. 

The two part design of Experdite, a TDL description of a circuit board and the 

general purpose inference engine, satisfies the need to have one general system be 

applicable to many different circuit boards. If, as part of a circuit board's design, the 

TDL description for a circuit board is generated, then every board in production has its 

own expert diagnostic system. 

The requirement to easily reflect modifications to the hardware is addressed 

with the TDL. Each circuit, test and circuit/test relationship is a wholly contained entity 

unto itself, as explained in Appendix A. Thus, when hardware is changed, only the TDL 

sections affected by the hardware change need to be modified. The high level of 

abstraction allows for easy changes and the remainder of the knowledge base is oblivious 

to the change. 
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A. APPENDIX A - INFERENCE SHELL PROGRAM DESIGN AND 
IMPLEMENTATION CONSIDERATIONS 

A.1 Overview 

The design of this system uses an object oriented approach. That is, the system 

is designed such that, with very few exceptions, all the elements of the system are 

defined as objects. These objects indude circuits, tests, circuit/test relationship, rules, 

lists, belief-factors and inference engine modes. The only exception is the main control 

loop of the inference engine. 

Each circuit in the hardware system is defined as a circuit object. A circuit 

object is autonomous in that it maintains its own belief-factor with a belief-factor object, 

its own list of associated tests and its own universal visibility factor. A universal 

visibility factor is an indication of how many other circuits this circuit is connected to 

and how many tests include the circuit in their path. Each circuit object wholly contains 

methods to determine the best test to be run on itself, the ability to update its own 

belief-factor and report its own status. 

Every test in the system is defined as a test type object. A test object maintains 

its own status, is able to invoke its own internal methods to request action, gather data 

and report the result of its execution. 

Each circuit-test relationship is defined as an object. For every test associated 

with the circuit, this object describes the relationship between the two. The object 

contains the all important extent-of-coverage and the cost/benefit ratio values. 

Rule type objects are made up of premise objects and a conclusion object. The 

premise objects are divided into two virtual objects, a test premises and measurement 

premises. The premises are described above in section 3.3 on rule generation. If all 
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premise objects are satisfied, then the method to apply the conclusion object is initiated. 

The conclusion object reports the solution. 

The list type object provides generic list handling operations for all lists within 

the system. This includes the suspect list (circuit objects), associated test lists 

(circuit-test relationship objects), rule object lists, premise object lists, and test object 

lists. 

Belief-factor objects are used only by circuit objects. They calculate the 

belief-factor value and update themselves with the new value. This object also is capable 

of comparing itself to another belief-factor. The advantage of the belief-factor being an 

object is that if its algorithm ever requires a change, the change would be invisible to the 

remainder of the system. 

The so called meta-rule objects are wholly contained objects that control the 

operation of each inference engine mode. Each meta-rule does the appropriate test 

selection and result analysis, as described in the inference engine mode of operation 

section, section 4, above. These objects are also capable of setting up the next meta-rule 

to .be fired, based on its exit criteria. Having the operational modes as objects allows for 

quick and easy changes to the inference engine operation, without affecting any other . 

mode. 
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B. APPENDIX B -TEST DESCRIPTION LANGUAGE IMPLEMENTATION 

B.1 Overview 

The intent of this appendix is twofold. First, the presentation of the Test 

Description Language syntax and grammar. Second, the description of the TDLto C++ 

Translator structure and implementation. 

As stated in a section 3, the Test Description Language, or TDL, provides a 

simple mechanism to model the structure and behavior of the circuitry and the self-tests 

for a digital circuit board. 

A TDL description of a circuit board consists of four basic pieces of the system: 

the circuit, the test, the relationship between the circuit and test , and the look-aside rule. 

Thus , when writing a description, the author follows the TDL syntax to describe each 

circuit and test associated with the circuit board , each circuit/test relationship and every 

rule. 

For example, consider circuit in Figure 10, which has three circuits, A, B and C, 

and three tests, Tl, T2 and T3. Test Tl passes vectors through circuits A and C, test T2 

through circuits A, Band C and T3 through circuits Band C. Thus , the TDL description 

for such a system consists of a separate entry for each circuit A, B and C, for each test 

Tl, T2 and T3, for each circuit/test relationship A/fl, C/fl, A/f2, B/f2, C/f2, B/f3 and 

C/f3, and for any pertinent rules. 
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Figure 10. TDL Example 

B.1.1 TDL syntax and grammar 

A description of the syntax for the circuit, the test, the circuit/test relation and 

the rule follows. 

B.Ll.1 Circuit entry. 

The TDL syntax for a circuit starts with the circuit identification token, CKT, 

followed by the name of the circuit, as shown here. 

CKT circuit-name. 

For instance , the TDL definition for a circuit named "Adder-1 11 is: 

CKT Adder-1. 
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B.1.1.2 Test entry. 

In a similar manner, the TDL syntax for a test begins with the token, TEST, 

followed by the test name, as shown here. 

TEST test-name. 

As an example, consider the test named Adder-1-test. The TDL entry is 

TEST Adder-1-test. 

B.1.1.3 Circuit/fest relationship entry. 

The circuit/test relationship TDL syntax starts with a REL token followed by a 

circuit name. The next items are the test relationship descriptions for each test that 

passes even a single vector through the circuit. The test relationship consists of the test 

name, followed by the extent-of-coverage value and the cost/benefit ratio value that 

describes the test and circuit association. The circuit and test names must match 

previously defined circuits and tests. The syntax for a circuit/test relationship entry is: 

REL circuit-name (test-name, coverage, cost/bene) 

or 

REL circuit-name ((test-name, coverage, cost/bene)+) 

For example, suppose Adder -1- test 1 and Adder-1- tes t2 are tests that check the 

circuit Adder-1 with extent-of-coverage values of considerable and minimal, and 

. cost/benefit ratios of 2 and 1, respectively. Therefore, the TDL relation entry is 

REL Adder-1 ((Adder-1-testl, considerable, 2), 
(Adder-l-test2, minimal, 1)) 

B.1.1.4 Rule entry. 

A TDL entry for a rule always start with a RULE token, followed by the name of 
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the test to which the rule is associated. Only previously defined tests may be used in a 

rule definition. One or more premises are listed next, followed by the conclusion. The 

rule syntax is 

RULE test-name ((premise)+; conclusion) 

A premise begins with the premise type token, TP or MP, indicating a test or 

measurement type premise respectively. A text string containing the body of the rule 

follows the token. The syntax of the test and measurement premises are : 

TP, "test premise string" 

and 

MP, "measurement premise string" 

The body of a test premise describes a specific test result. To satisfy the 

premise, the result from the actual test execution must match the test result registered in 

the premise. For example, suppose test Tl reports bits 0-3 are stuck high. Let this be an 

indication of a specific fault condition existing in the hardware. The premise would then 

read 

TP,"Bits 0-3 always high". 

The rule handler in the inference engine uses the string to generate a conditional 

statement to the user. The user confirms or denies the condition, which satisfies or 

rejects the premise. 

The measurement premise body specifies the circuit to be measured, what to 

measure and the expected condition. An example of the measurement premise is 

MP, "Pin 3 on circuit Al oscillating at 16MHz". 

Again, the inference engine poses a question to the user that is constructed 

around the string portion of the premise. A positive reply from the user, based on his/her 
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measurement of the hardware, satisfies the premise. 

The conclusion is the name of the faulty circuit. If all rule's premises are 

satisfied, the circuit listed in the conclusion is declared faulty. 

The following example is the complete rule, using the above premise examples. 

RULE Adder-1-testl( 
(TP,"Bits 0-3 always high"), 
(MP, "Pin 3 on circuit Al oscillating at 16MHz"); 
Adder-1) 

B.1.2 Context free grammar 

The set of productions defining the TDL Context Free Grammar is listed here. 

Following traditional syntax, upper case letters identify tokens and lower case characters 

for non-terminals. 

start: 

exprs 

exprs 

/*empty*/ 
exprs expr; 

expr: test expr 
I ckt expr 
I rel-expr 
I rule_expr; 

ckt_expr: CKT ckt_name; 

test_expr: TEST test-name; 

rel_expr: REL ckt_name test_coverage_expr) 

test coverage expr: 
- test name,test coverage,cost bene ratio 

(test coverage-expr) 
(test=coverage=expr),test_coverage_expr 

rule_expr : RULE test-name ((premise expr); 
conclusion) 

premise_expr: premise 
premise , premise_expr 
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premise: TEST PREMISE, STRING ID 
I MEAS=PREMISE, STRING ID 

conclusion : ckt name 

test name : ID 

ckt name : ID 

cbr : number 

number DIGIT 
number DIGIT 

test_coverage: 
I 
I 
I 

ABSOLUTE 
CONSIDERABLE 
MODERATE 
MINIMUM 

B.1.3 Translation from TDL to C++ 

The circuit board TDL description is applied to a TD L translator to generate a 

knowledge base for use by the inference engine. The translator parses the TDL 

description and creates a knowledge base consisting of a set of C++ classes. A C++ class 

is produced for each CKT, TEST, REL or RULE entry in the TDL description. The 

knowledge base is then compiled with the inference engine shell code. The result is an 

expert diagnostic system specific to the described circuit board. 

The TDL translator consists of two main parts, the lexical analyzer and the _ · 

parser, each described below. 

B.1.3 .1 Lexical Analyzer. 

The lexical analyzer converts the stream of characters from the TDL description 

into tokens and feeds them into the parser. The lexical analyzer also captures specific 

character strings and/or number values needed by the parser[15]. 

The UNIX lex utility is used to build the lexical analyzer. The input to Lex is a 
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table of regular expressions and their corresponding rules. Lex produces a program 

fragment containing the lexical analyzer. The parser incorporates the fragment as its 

system front end[l6]. 

The input to lex consists of two main parts, the definitions section and the 

lexical rules section. The definitions section contains the set of valid regular expressions 

for the Test Description Language. The rules section defines the actions taken upon 

matching a regular expression. There is a one to one correspondence between a regular 

expression and a rule. Descriptions of each section follow. 

The definition section, listed below, contains the regular expressions that defines 

the TDL. Each expression is case insensitive. 

letter [A-Za-z] 
digit [0-9] 
ckt token id [cC][kK][tT] 
test token id [tT][eE][sS][tT] 
rel token Td [rR][eE][lL] 
absolute token id [aA][bB][sS][oO][lL][uU][tT][eE] 
consid token id 
[cC][oO][nN][sS][iI][dD][eE][rR][aA][bB][lL][eE] 
moderate token id [mM][oO][dD][eE][rR][aA][tT][eE] 
minimal token id [mM][iI][nN][iI][mM][aA][lL] 
rule token id-[rR][uU][lL][eE] 
test-premise token id [tT][pP] 
measurment_premise=token_id [mM][pP] 

Upon recognition of one character in each set of braces for any one definition, 

the lexical analyzer designates a token id to the parser. For instance, 11ckt 11, 11Ckt11 or 

11CKT 11 are all possible strings that identify a ckt_token_id. 
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The rule section, shown in the following list, gives the lexical rule definitions 

for each regular expression. Upon recognition of a regular expression, its associated rule 

is invoked. Most of the rules simply return a token identifying the matched regular 

expression. Some cases require setting of variables or copying of input strings. 

{ckt_token_id} return(CKT); 

{test_token_id} return(TEST); 

{rel_token_id} return(REL); 

{absolute_token_id} { 

{consid_token_id} { 

} 

coverage value= ABSOLUTE; 
return(ABSOLUTE); 

coverage value= CONSIDERABLE; 
return(CONSIDERABLE); 

{rnoderate_token_id} { 

} 

{rninirnal_token_id} { 

coverage value= MODERATE; 
return(MODERATE); 

coverage value= MINIMAL; 
return(MINIMAL); 

{rule_token_id} { return (RULE)} 

{test_premise_token_id} { return (TEST_PREMISE)} 

{measurement premise token id} { 
- - return (MEASUREMENT_PREMISE) 

[A~Za-z][A-Za-i0-9_]* { 

} 

strcpy (str_ptr, yytext); 
return (ID) ; 

\"[A-Za-z][A-Za-z0-9 ]* { 

[0-9] { 
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B.1.3.2 Parser 

" ) " 
II ( II 

" " ' 

value= yytext[O] - '0'; 
return(DIGIT); 

return(RIGHT_PAREN); 

return(LEFT PAREN); 

return (COMMA); 

The parser groups the incoming stream of tokens from the lexical analyzer into 

grammatical phrases, as defined by the language[15]. Then, after an semantic check on 

the phrases, the parser generates a set of C++ classes reflecting the original TDL data. 

The UNIX yacc utility is used to create the parser. Y ace takes the user defined 

specification for a language and produces a program capable of parsing the specified 

language[l 7). 

Three main sections, the declarations, the rules and the programs, make up the 

yacc format. The declarations section contains the definitions of the tokens used in the 

rules section and the C data structures used in the programs section. The rules section 

contain the grammer rules specifying the language to be parsed. Actions are invoked 

upon recognition of a rule. The action invocation results in function calls to the C 

routines in the programs section. 

B.1.3.3 Yacc rule section for TDL. 

This section lists the TDL grammer, including the action items. The grammer is 

labeled as grammer, while an action is indicated as ACTION 

start : 
{ 

INIT_LISTS ( ) ; 

} 
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exprs 
{ 

GENERATE_ CODE ( ) ; 

RECORD _NUM _ CKTS ( ) ; 

exprs : 
/*empty*/ 

expr 

I exprs expr; 

test_expr 
ckt_expr 
rel_expr 
rule_expr; 

ckt_expr 
CKT ckt name 
{ 

INIT CKT ( CKT STR) ; 
} ; - -

test_expr 
TEST test name 
{ 

INIT TEST ( TEST STR) ; 
} ; - -

rel_expr 
REL ckt_name LEFT_FAREN test_coverage_expr 
{ 

ASSOCIATE TESTS WITH CKT ( CKT STR) ; 
}; - - - -

test coverage expr: 
-{NUM_VALUE-= 0;} 

test name COMMA test_coverage COMMA cbr 
{ 

INIT_RELATION(CKT_STR, TEST STR, COVERAGE_VALUE, 

NUM _ VALUE ); 

} 
I LEFT FAREN test_coverage_expr RIGHT FAREN 
I LEFT FAREN test_coverage_expr RIGHT FAREN COMMA 

test_coverage_expr; 

rule_expr : 
RULE test name 
{CURRENT RULE= INIT_RULE(TEST_STR);} 

LEFT PAREN 
LEFT FAREN 

premise expr 
RIGHT FAREN SEMI COLON 
conclusion 

RIGHT FAREN 
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{FINISH_ RULE (CURRENT_ RULE) ; } ; 

premise_expr : 
premise 

I premise COMMA premise_expr; 

premise : 
TEST PREMISE COMMA STRING ID 

{ 
STRCPY ( PREMISE STR, STR PTR) ; 

ADD_T0_PREMISE LIST(TP_TYPE, PREMISE_STR); 

} 
I MEASUREMENT PREMISE COMMA STRING ID 

{ 
STRCPY ( PREMISE _STR, STR _PTR) ; 

ADD_T0_PREMISE_LIST(MP_TYPE, PREMISE STR); 

} ; 

conclusion 
ckt name 
{ 

GENERATE CONCLUSION ( CKT STR) ; 

} ; 

test name ID {STRCPY(TEST_STR, · STR PTR); 

ckt name : ID {STRCPY(CKT_STR, STR_PTR); 

cbr: number; 

number : 
DIGIT 

{ 
NUM VALUE = VALUE ; 

} 
I number DIGIT 

{ 
NUM VALUE = ( NUM _VALUE* 1 Q ) + VALUE; 

} ; 

test_coverage 
ABSOLUTE 

CONSIDERABLE 

MODERATE 

MINIMAL; 

B.1.3.4 Example. 

This section shows an example of a TDL description and the C++ object 

knowledge base that results from the translation. Consider the circuit shown in Figure 
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11. The system has three circuits, A, B and C, and three tests Tl, T2 and T3. The test 

coverage and the cost benefit rations for each circuit/test relation is shown in Table 3. 

Circuit 

A 

B 

C 

Test Extent-of-
checking 

Tl Considerable 
T2 Moderate 

T2 Absolute 
T3 Moderate 

Tl Considerable 
T2 Moderate 
T3 Moderate 

Table 3. TDL example circuit setup. 
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Figure 11. Circuit for TDL walk through example. 

Cost/ 
Benefit 

1 
2 

3 
1 

8 
1 
1 

Using the syntax definition above, the TDL description of this circuit follows. 
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follows. 

) 

_) 

CKT A 
CKT B 
CKT C 

TEST Tl 
TEST T2 
TEST T3 

REL A ((Tl, Considerable,1),(T2, Moderate,2)) 
REL B ((T2, absolute,3),(T3, Moderate, 1)) 
REL C ((Tl, Considerable,8), 

(T2, Moderate,1), 
(T3, Moderate,1)) 

After feeding the TDL description to the translator, the resulting output is as 

ckt class* A; 
char* A str = "A"; 
ckt test-relation list* A_test_suite; 

ckt class* B; 
char* B str = "B"; 
ckt test-relation list* B_test_suite; 

ckt class* C; 
char* C str = "C"; 
ckt test-relation list* C_test_suite; 

test class * Tl; 
char-* Tl str = "Tl test"; 

test class * T2; 
char-* T2 str = "T2 test"; 

test class * T3; 
char-* T3 str = "T3 test"; 

ckt test relation* A Tl ct rel; 
ckt-test-relation * A-T2_c_t-rel; 
ckt-test-relation * B-T2_c_t-rel; 
ckt-test-relation * B-T3_c_t-rel; 
ckt-test-relation * C Tl=c=t=rel; 
ckt-test-relation * C-T2 ct rel; 
ckt-test-relation * C-T3=c=t=rel; 

void ie initialize ckt desc and list (void) 
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{ 
A = new ckt class(A str, -

A test suite, 
2); -

B = new ckt class(B_ str, -
B test suite, 
2); -

C new ckt class(C str, - -
C test suite, 
3); -

/* 
* Init the suspect list with all ckts in the 

system 
*/ 
suspect list->insert((char *) A); 
suspect-list->insert((char *) B); 
suspect=list->insert((char *) C); 

}/* ie initialize ckt desc and list*/ 

void ie initialize test suites (void) 

{ 

A test suite= new ckt test relation list; 
B-test-suite = new ckt-test-relation-list; 
C-test-suite = new ckt=test relation=list; 

}/* ie initialize test suites*/ 

void ie initialize test and list (void) 

{ 

/* 
* Initialization of tests in system 
*I 

Tl= new test class(Tl str, 2); 
T2 = new test-class(T2-str, 3); 
T3 = new test=class(T3=str, 2); 

/* 
* Initialization of the tests in system 
*/ 
all_test_list->insert((char *) Tl); 
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all test list->insert((char *) T2); 
all=test=list->insert((char *) T3); 

}/* ie initialize test and list*/ 

void ie initialize ckt test relation (void) 

{ 
A Tl C t rel = new ckt test relation( --- - -

Tl, 
CONSIDERABLE, 
1) ; 

A T2 C t rel = new ckt test relation( --- -
T2, 
MODERATE, 
2) ; 

B T2 C t rel = new ckt test relation( --- -
T2, 
ABSOLUTE, 
3) ; 

B T3 C t rel = new ckt test relation( --- -
T3, 
MODERATE, 
1) ; 

C Tl C t rel = new ckt test relation( --- -
Tl, 
CONSIDERABLE, 
8) ; 

C T2 C t rel = new ckt test relation( --- -
T2, 
MODERATE, 
1) ; 

C T3 C t rel = new ckt test relation( --- -
T3, 
MODERATE, 
1) ; 

I* 
* Test Suite definitions for all ckts 
*/ 
A test suite->insert((char * ) A Tl C t rel); - - ---
A test suite->insert((char * ) A T2 C t rel); - - suite->insert((char - -c-t-rel); B test *) B T2 - - suite->insert((char - -c-t-rel); B test *) B T3 - - - ---
C test suite->insert((char *) C Tl C t rel); - - - ---C test suite->insert((char * ) C T2 C t rel); - - - ---C test suite->insert((char * ) C T3 C t rel); - ---

}/* ie initialize ckt test relation */ 
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C. APPENDIX C - TDL DESCRIPTION OF EXPERIMENTAL SYSTEM 

5.2. 

This appendix lists the TDL description of the PP2 board described in section 

CKT alu carry in ckt 
CKT alu-d in ckt­
CKT alu-flag-out ckt 
CKT alu-reg ckt -
CKT alu-y out ckt 
CKT flag mux no emsc ckt 
CKT flag-reg-out ckt-
CKT flag-reg-in mux out ckt 
CKT flag-reg-in-pbus ckt 
CKT flag-reg-in-alu ckt 
CKT flag-reg-ctrl ckt 
CKT hold-latch ckt 
CKT hold-reg ckt 
CKT int reg ckt 
CKT multiway reg ckt 
CKT pbus ckt- -
CKT pipe-data seq d ckt 
CKT pipe-data-eids ckt 
CKT pipe data=eidl_ckt 
CKT rotate ckt 
CKT seq d io ckt 
CKT seq-mode-ckt 
CKT seq-stack ckt 
CKT spar esar-ckt 
CKT spar-ram in ckt 
CKT sp ctrl reg-pass thru ckt 
CKT sp-ctrl-rega ckt-
CKT sp-ctrl-regb-ckt 
CKT sp-ctrl-regc-ckt 
CKT sp-ram addr ckt 
CKT sp-ram-data-ckt 
CKT tmp_reg_ckt-

TEST alu carry in tst 
TEST alu-flag tst­
TEST alu-reg tst 
TEST flag mux tst 
TEST flag-reg-tst 
TEST hold-latch tst 
TEST hold-reg tst 
TEST multiway-tst 
TEST pbus_tst-
TEST rotate tst 
TEST seq d io tst 
TEST seq-mode-tst 
TEST seq=stack_tst 
TEST spar_tst 
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TEST sp actrl rega tst 
TEST sp-bctrl-regb-tst 
TEST sp-cctrl-regc-tst 
TEST sp-addr ram tst 
TEST sp_data-ram-tst 
TEST int_reg_tst 
TEST tmp_reg_tst 

REL alu_carry_in_ckt ((alu carry in tst, absolute, 1), 
( sp addr ram tst, minimal, .1), 

(sp_data_j"am_tst, minimal, 1)) 

REL alu din ckt ((alu carry in tst, minimal, 1), 
(alu-flag tst~ considerable, 1), 

(alu reg tst, minimal, 1), 
(flag reg tst, minimal, 1), 
(hold-latch tst, considerable, 1), 
(hold-reg tst, considerable, 1), 
(multiway-tst, minimal, 1), 
(pbus tst~ considerable, 1), 
(spar-tst, moderate, 1), 
(sp actrl rega tst, minimal, 1), 
(sp-bctrl-regb-tst, m1nimal, 1), 
(sp-cctrl-regc-tst, minimal, 1), 
(sp-addr ram tst, minimal, 1), 
(sp data=ram_tst, considerable, 1)) 

REL alu y out ckt ((alu reg tst, minimal, 1), 
- - - (flag reg tst, minimal, 1), 

(hold-latch tst, considerable, 1), 
(hold-reg tst, considerable, 1), 
(pbus-tst~ considerable, 1), 
(spar-tst, moderate, 1), 
(sp actrl rega tst, moderate, 1), 
(sp-bctrl-regb-tst, moderate, 1), 
(sp-cctrl-regc-tst, moderate, 1), 
(sp-addr ram tst, moderate, 1), 
(sp data=ram tst, considerable, 1)) 

REL alu_flag_out_ckt ((alu carry in tst, minimal, 1), 
(alu-flag tst~ absolute, 1), 

(sp addr ram tst, minimal, 1), 
(sp data=ram tst, moderate, 1)) 

REL alu_reg_ckt ((alu carry - in tst, minimal, 1), 
(alu-flag tst~ minimal, 1), 

(alu reg tst, absolute, 1), 
(flag reg tst, minimal, 1), 
(spar-tst~ minimal, 1), 
(sp actrl rega tst, minimal, 1), 
(sp-bctrl-regb-tst, minimal, 1), 
(sp-cctrl-regc-tst, minimal, 1), 
(sp addr_ram_tst, minimal, 1), 
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(sp_data_ram_tst, moderate, 1)) 

REL flag_mux_no_emsc ckt ((flag mux tst, absolute, 1), 
(sp addr ram tst, minimal, 1), 
(sp data=ram-tst, minimal, 1)) 

REL flag_reg_out_ckt ((alu carry in tst, minimal, 1), 
(alu-flag tst~ minimal, 1), 

(flag-mux tst, considerable, 1), 
(flag-reg-tst, absolute, 1), 
(sp addr ram tst, minimal, 1), 
(sp_data=ram_tst, minimal, 1)) 

REL flag_reg_in_mux_out ckt ( 
(alu carry in tst, minimal, 1), 
(alu-flag tst~ minimal, 1), 
(flag mux-tst, absolute, 1), 
(flag-reg-tst, considerable, 1), 
(sp addr ram tst, minimal, 1), 
(sp data=ram tst, minimal, 1)) 

REL flag_reg_in_pbus ckt ( 
(flag mux tst, considerable, 1), 
(flag=reg=tst, absolute, 1)) 

REL flag reg in alu ckt ( 
- - - (alu carry in tst, considerable, 1), 

(alu-flag tst~ minimal, 1), 
(sp addr ram tst, minimal, 1), 
(sp data=ram tst, moderate, 1)) 

REL flag reg ctrl ckt ( 
- - (alu carry in tst, considerable, 1), 

(alu-flag tst~ considerable, 1), 
(flag mux-tst, considerable, 1), 
(flag-reg-tst, considerable, 1), 
(multiway-tst, considerable, 1), 
(sp addr ram tst, moderate, 1), 
(sp data ram tst, moderate, 1)) 

REL hold latch ckt ((hold latch tst, absolute, 1), 
(sp addr ram tst, moderate, 1), 
(sp data=ram tst, considerable, 1)) 

REL hold_reg_ckt ((alu reg tst, considerable, 1), 
(hold reg tst, absolute, 1), 
(pbus=tst~ considerable, 1)) 

REL int_reg_ckt (int_reg_tst, absolute, 1) 

REL multiway_reg_ckt (multiway_tst, absolute, 1) 

REL pbus_ckt ((alu carry in tst, minimal, 1), 
(alu=flag_tst~ minimal, 1), 
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(alu reg tst, considerable, 1), 
(flag mux tst, minimal, 1), 
(flag-reg-tst, moderate, 1), 
(hold-latch tst, considerable, 1), 
(hold-reg tst, considerable, 1), 
(multiway-tst, minimal, 1), 
(pbus tst~ absolute, 1), 
(rotate t~t, considerable, 1), 
(seq d io tst, moderate, 1), 
(seq-mode-tst, minimal, 1), 
(seq-stack tst, minimal, 1), 
(spar tst,-moderate, 1), 
(sp actrl rega tst, moderate, 1), 
(sp-bctrl-regb-tst, moderate, 1), 
(sp-cctrl-regc-tst, moderate, 1), 
(sp-addr ram tst, moderate, 1), 
(sp-data-ram-tst, considerable, 1), 
(int reg-tst~ moderate, 1), 
(tmp=reg=tst, considerable, 1)) 

REL pipe_data seq d ckt ( 
- - -(seq d io tst, absolute, 1), 

(seq=stack_tst, considerable, 1)) 

REL pipe_data eids 

REL pipe~data eidl 

ckt ( 
- (seq d io tst, considerable, 1), 

(spar tst~ considerable, 1), 
(sp actrl rega tst, minimal, 1), 
(sp-bctrl-regb-tst, minimal, 1), 
(sp-cctrl-regc-tst, minimal, 1), 
(sp-addr ram tst, minimal, 1), 
(sp-data-ram-tst, minimal, 1), 
(int_reg tst~ minimal, 1)) 

ckt ( 
- (alu carry in tst, minimal, 1), 

(alu-flag tst~ considerable, 1), 
(alu-reg tst, minimal, 1), 
(flag mux tst, considerable, 1), 
(flag-reg-tst, minimal, 1), 
(hold-latch tst, considerable, 1), 
(hold-reg tst, considerable, 1), 
(multiway-tst, minimal, 1), 
(pbus tst~ considerable, 1), 
(rotate tst, considerable, 1), 
(sp data ram tst, considerable, 1), 
(tmp_reg=tst~ considerable, 1)) 

REL rotate ckt (rotate_tst, absolute, 1) 

REL seq_d_io_ckt ((seq d io tst, absolute, 1), 
(seq-stack_tst, considerable, 1)) 

REL seq_mode_ckt ((seq_mode_tst, absolute, 1)) 
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REL seq_stack_ckt ((seq d io tst, considerable, 1), 
(seq=stack_tst, absolute, 1)) 

REL spar esar ckt ( 
(spar tst, absolute, 1), 
(sp actrl rega tst, considerable, 1), 
(sp-bctrl-regb-tst, considerable, 1), 
(sp cctrl=regc=tst, considerable, 1)) 

REL sp_ram_addr_ckt ( 
(sp addr ram tst, absolute, 1), 
(sp data=ram tst, considerable, 1)) 

REL sp_ram_data_ckt ((sp addr ram tst, moderate, 1), 
(sp data=ram tst, absolute, 1)) 

REL spar_ram_in ckt 
(spar tst, absolute, 1), 
(sp actrl rega tst, considerable, 1), 
(sp-bctrl-regb-tst, considerable, 1), 
(sp-cctrl-regc-tst, considerable, 1), 
(sp-addr ram tst, considerable, 1), 
(sp data=ram-tst, considerable, 1)) 

REL sp_ctrl_reg pass thru ckt (spar tst, absolute, 1) 

REL sp_ctrl_rega_ckt (sp_actrl_rega_tst, absolute, 1) 

REL sp ctrl regb ckt ( 
- - - (sp bctrl regb tst, absolute, 1), 

(sp-addr ram tst, considerable, 1), 
(sp data=ram tst, considerable, 1)) 

REL sp_ctrl_regc_ckt (sp_cctrl_regc_tst, absolute, 1) 

REL tmp_reg_ckt ((alu carry in tst, minimal, 1), 
(alu-flag tst~ minimal, 1), 
(alu-reg tst, considerable, 1), 
(flag mux tst, minimal, 1), 
(flag-reg-tst, moderate, 1), 
(hold-latch tst, considerable, 1), 
(hold-reg tst, considerable, 1), 
(multiway-tst, minimal, 1), 
(pbus tst~ considerable, 1), 
(rotate tst, considerable, 1), 
(seq d io tst, moderate, 1), 
(seq-mode-tst, minimal, 1), 
(seq-stack tst, minimal, 1), 
(spar tst,-moderate, 1), 
(sp actrl rega tst, moderate, 1), 
(sp-bctrl-regb-tst, moderate, 1), 
(sp cctrl=regc=tst, moderate, 1), 
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(int reg tst, moderate, 1), 
(tmp-reg=tst, absolute, 1)) 
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