
)

A Graphical Editor for OSU v3.0

By Fangchen Lin

A research paper submitted in partial fulfillment of the
requirements for the degree of Master of Science

Major Professor : Dr. T. G. Lewis
Minor Professor : Dr. T. Budd

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331

March 16, 1992

Acknowledgements

I would like to express my appreciation to my major professor, Dr. T.G.

Lewis, for giving me the opportunity to work on this project. His guidance,

understanding, encouragement and helpful discussion has been instrumental to my

progress. I would also like to thank my Minor Professor, Dr. Timothy Budd, for his

helpful comments. I am grateful to Dr. Bruce D'Ambrosio for his willingness to

participate on my Graduate Committee.

I thank Huan Chao Keh and Chung-Cheng Luo, who bring a clear direct and

interactive discuss during developing this project. I thank other members of the OSU

v3.0 development team: Chih Lai, Walter Wittel, Kangho Lee, Tong Li, Kee Yun

Chan, and Hueii Huang for their discussion.

Lastly, I would like to express my gratitude to my parents, brothers in Taiwan

for their support and encouragement, and, to Fu-Lung Chang, for his patience and

encouragement to keep me going when the going got tough.

')
Table of Contents

Abstract ... 1

1. Introduction .. 2

1.1. Statement of the Problem .. 2

1.2. Approaches to the Problem ... · .. 3

1.3. Results of the Study ... 5

2. Petri-Net-Based Object-Oriented Conceptual Model for Direct-Manipulation

User Interface Systems ... 8

2.1. Formal Definition of a Petri Net .. 8

2.2. Direct-Manipulation User Interface Modeling with Annotated Petri

Nets .. 11

2.3. From Net Model to an Executable Object-Oriented Model 18

2.4. Translation of Annotated Petri Nets into C++ Programs 27

3. Use of the Annotated Petri Net Editor ... 29

3.1. File Actions .. 31

3.2. Creating a Petri Net ... 34

3.3. Editing the Petri Net 44

3.4. Syntax Checks 47

3.5. Code Generation 50

4. Design and Implementation of the Petri Net Editor 51

4.1. User Interface Classes 53

4.2. Petri Net Storage Structure and Object Classes 58

4.3. Graphics Object Classes 70

4.4. PNGraphicsView Class .. 76

5. Experience with the Petri Net Editor .. 88

5.1. MiniDraw 88

5.2. Help System ... 93

5.3.. Calculator .. 96

5.4. Record Query ... 103

5.5. Statistics ... 108

6. Conclusion ... 113

7. Appendix 115

8. References ... 127

)

Abstract

Development of graphical user interface (GUI) applications is difficult since the

process can be both complicated and tedious. We propose a solution directed at

reducing programming time and effort required to build a GUI application. Our

solution is based on the Petri Network, the Oregon SpeedCode Universe (OSU)

Application Framework, and the OSU Browser (v. 3.0). A Petri Network is a visual

programming language which is used represent the sequencing of objects and

messages. The Application Framework provides reusable components in the form of

objects. The Browser provides a visual way to examine a system in search of reusable

components.

A Petri Net editor was constructed which incorporates a code generator and

browser. This editor uses direct-manipulation to simplify coding tasks, accepting

specifications from the developer and generating the internal representations of the Petri

Net. The internal representation is input to the Code Generator, thus generating an

OSU Application Framework-based C++ program as output.

Using the Petri Net editor to generate four application programs; 1) drawing

program, 2) a help system, 3) a calculator, and 4) a record query system, it is estimated

that programming time has been reduced by 90% and programming effort has been

reduced by 79%.

1. Introduction

This report describes a method of visual programming based on Petri Network,

the Oregon SpeedCode Universe 3.0 (OSU v3.0) Application Framework, and the

OSU Browser. A Petri Net (PN) editor is described which provides a visual

programming language for the expression of objects and message flows within a

desired application. We describe an implementation of the PN editor for writing

application programs for the Macintosh computer.

1.1. Statement of the Problem

The development of graphical user interface (GUI) applications poses the

following types of programming problems:

1) GUI programmers must learn and use complex, low-level toolbox

routines;

2) Highly interactive interfaces are among the hardest to create, since they

must handle at least two asynchronous input devices, real-time feedback,

multiple windows, and elaborate, dynamic graphics [Myers 90];

3) GUI programmers must handle all input events at a low level;

2

_)

4) Intertwined interactions exist between the user interface and the

application logic (i.e., change propagation); and

5) GUI programmers must rewrite common but tedious routines for each

new application.

The development of a PN editor does not provide solutions for all of these

problems. However, it does address the restricted problem of sequencing linked

structures for user interfaces, while providing the ability to describe all of the possible

execution paths that a user may follow through the application interface: The problem

addressed in this report is the provision of an object-oriented conceptual model and a

visual programming language which can be used by programmers to construct GUI

applications. The goals of this study are to reduce the time and effort required for a

programmer using this system as compared to the same programmer using C++ as the

only means of programming.

1.2. Approaches to the Problem

The approach adopted is based on the following assumptions:

1) Visual programming based on Petri Network eases program design,

implementation, and reuse;

2) Graphical programming with Petri Network provides a high-level model

for program integration, specification, modeling, design, validation,

simulation, and rapid prototyping;

3

_J

3) An application framework provides the skeletal structure for an

application and reduces programming time and effort to implement the

domain specific parts; and

4) A browser allows programmers to easily view and seek reusable

components.

Petri Network was selected as the visual programming language because of

their underlying mathematical structure which can be easily understood. The PN editor

provides a capability for modeling high-level designs since, through the use of an

object-oriented application framework, it is capable of modeling both the static and

dynamic aspects of a GUI application at high levels of abstraction. In turn, the OSU

3.0 Application Framework (the OSU Framework) was selected as the basis for visual

programming because of its small size and the fact that it is in many respects easier to

use than MacApp [Keh 91]. Thus, this tool embodies most of the generic functionality

required for the construction of a GUI application. The OSU Browser provides a

visual programming assistance tool that can be invoked internally, from within a

programming editor, to provide a graphical view of the class hierarchies for an entire

application. Thus, the designer has only to exercise direct choice of appropriate

messages and to paste them into the application, providing the basic means to both

investigate and to reuse components.

4

)

1.3. Results of the Study

A Petri net editor (Figure 1. 1.) was constructed, based on the following

principles: 1) Integration with the Browser, 2) incorporation of a code generator, and

3) the use of direct manipulation to simplify the coding task. Using this editor, four

applications were implemented: 1) help system, 2) calculator example, 3) record query

example and 4) MiniDraw. The time and effort required to implement these four

examples is summarized as follows.

MiniDraw Help System Calculator Query Record Avcrage

*lines of codes generated 529 327 285 283 356

*MM (effort) 0.58 0.35 0.30 0.30 0.38

*TDEV (time) 2.03 1.67 1.59 1.58 1.72

*total lines of codes 545 330 395 549 455

*MM (effort) 0.6 0.35 0.42 0.6 0.49

*TDEV (time) 2.05 1.68 1.81 2.06 1.9

*%saving in effort 96% 99% 71% 50% 79%

*%saving in time 99% 99% 87% 76% 90%

*number of places 7 7 1 5 5

*number of transitions 20 18 20 9 16.75

*number of arcs 66 26 38 25 38.75

*number of messages 50 0 61 30 35.25

As shown in the above table, this approach reduced programming time by a factor of

90 percent and the effort required to complete this task by approximately 79 percent. In

addition, the Application Framework was used to implement the Petri Net editor itself.

5

The Petri net editor consists of 6,695 lines of code. Without the reused 33 objects and

262 methods (see Appendix A) from the OSU Application Framework, the size of code

will be at least 10,000 lines of code.

6

)

)

.J

Static Descriptions
of User Interface

Objects

Annotated
Petri Net
Model

Application
Specific
C++code

Messages

osu
Application · 1----a~
Framework

Graphics
View

Shape
Library

C++ Source Program
t-----------1~

Figure 1.1. Architecture of OSU 3.0.

7

)

)

2. Petri-Net-Based Object~Oriented Conceptual Model

for Direct-Manipulation User Interface Systems

In this chapter, we describe the use of an object-oriented conceptual model for

the construction of a direct-manipulation GUI application. First, the formal Petri net

structure and its rules are briefly described in Section 1. In Section 2, we illustrate the

use of an annotated Petri net to represent the relationships that link individual user

interface objects together in a GUI application . In Section 3, the process for the

adaptation of an annotated Petri net for an object-oriented GUI application model, via

the OSU Application Framework, is considered. Finally, a brief description of the

logical structure of the annotated Petri net, as translated into C++ source code, is

presented in Section 4.

2.1. Formal Definition of a Petri Net

Petri Net Structure

A Petri net is composed of four parts: a set of places, P, a set of transitions, T,

an input function, /, and an output function, 0. The input functions maps from a

transition, tj, to a collection of places, l(tj), identified as the input places of the

transition. In turn, the output function maps a transition to a collection of places, O(tj),

identified as the output places of the transition [Peterson 81].

8

)

J

Petri Net Graphs

Most theoretical considerations of Petri nets are based on the formal definitions

of Petri net structures provided above. However, a graphical representation for a Petri

net structure is much more useful for illustrating the concepts of Petri net theory. A

Petri net graph reflects two types of nodes, where circles represent places and bars

represent transitions (Figure 2.1). Directed arcs (arrows) connect places and the

transitions, some of which are directed from places to transitions and vice versa for the

remainder. One type of arc, the input arc, is directed from the place pi to the transition

tj to define this place as an input place of the transition; conversely , the output arc is

directed from the transition tj to the place pi to define this place as an output place of the

transition.

9

)

j

/ t5
/

/
/

transition
p4

- - -r-
place

t4 _ -- -output arc - -. mput arc

tl

t3

Figure 2.1 Petri net conceptualization.

Petri Net Markings

A marking, u, assigns tokens to places within the Petri net. In this sense, a

token is a primitive concept, assigned to and regarded as residing within the places of a

Petri net. The number and the positions of tokens may change during the execution of

a Petri net.

Execution Rules for Petri Nets

The execution of a Petri net is controlled by the number and distribution of

tokens in the Petri net, and is executed by firing transitions. A transition fires by

)

)

removing tokens from input places and creating new tokens for distribution .to output

places. A transition may fire when it is enabled. A transition is enabled if each of its

input places has at least as many tokens in it as arcs from the place to the transition.

Upon firing, a transition removes all of its enabling tokens from its input places, then

deposits into each of its output places one token for each arc from the transition to the

place. Transition firings can continue as long as at least one enabled transition exists.

2.2. Direct-Manipulation User Interface Modeling with

Annotated Petri Nets

In this section, the use of an annotated Petri net to describe an application

program sequence of operations, reflecting all of the possible execution paths for a

direct-manipulation user interface system, is considered. To translate the model into a

useful program, selected annotations is added to the formal definition of a Petri net. An

example of an annotated Petri Net representation for a GUI application is shown in

Figure 2.2.

11

)

)

* File Edit Tools Window

a simple eHample

initial transition

pt, 128

output arc
quit transition

Figure 2.2 Petri net representation for a simple example.

For GUI applications , places are used to represent objects. From Figure 2.2, it

may be noted that icons are used to represent places , thus each menu, dialog box,

window, or alert has a unique icon. Transitions represent mouse actions performed on

selectable areas within GUI objects, and are represented as rectangles in Figure 2.2.

The input to a transition defines when the transition can be fired. Transition firing

corresponds to user actions performed on one of the selectable GUI items and the

actions undertaken by the application are described in the firing transition as output

arcs. Following these user actions, the new application state (i.e., the application

postcondition) is represented by places connected to the output arcs of the transition.

Thus, during the execution of the net, current marking detennines which user interface

objects are placed upon the screen. The transitions enabled for current marking

determine which items associated with which user interface objects are selectable .

12

)

)

When a user clicks on a selectable item, one of the enabled transitions is fired~ resulting

in placement of a new marking and effecting appropriate changes of the interface

objects.

Places in the PN Editor

In applications, places represent object types. Each place can contain more than

one token, and each token represents an instance of the place. Tokens are used to

simulate the execution of a Petri net For this purpose, a set of attributes is defined for

each place type and tokens carry the attributes of the place instances which they

represent. The precise appearances of user interface objects displayed on the screen are

determined by the current values of the attributes of their corresponding tokens, any or

all of which attributes can be modified or given an initial value at the time of transition

firing.

Places are classified in two sets, either modal or modeless places. A modal

place represents an interface object which will place the user in state or "mode" of being

able to work only inside this user interface object [Apple 85]. For Macintosh user

interfaces, modal dialogs and alerts constitute modal user interface objects. In turn, a

modeless object does not require the user to respond before doing anything else [Apple

85].

In the PN editor, GUI object places are drawn in the net as icons, seven of

which are used to designate user interfaces objects in the Macintosh system (Figure

2.3). Each place is labeled with a unique name (e.g., pl) and a resource ID. Resource

IDs are used to retrieve static descriptions of user interface objects from an

application's resource file. For the PN editor, menu, palette, and window places are

modeless, whereas stop alert, caution, and note alert places are modal places; however,

13

)

j

the modes for dialog places can be specified by the user through the selection of radio

buttons (Figure 2.4).

Untitled

Menu---+-----~

~

Dialog ---+--
p2, 128

Palette ---+--

No~Alert ----

~~ l l ~~~ :

Figure 2.3 Icons for a Macintosh user interface.

14

)

_)

Place Information

Place ID p5

Resource Type : DIALOG

Resource ID =I 1_2_a ___ l

@ Modal

0 Modeless

Instance Uariables :

char *fRec
char *fName
char *fAddr
char *fPhone

(Cancel)

(OK)

Figure 2.4 Radio buttons for setting the mode of a dialog place.

Transitions in the PN Editor

Each transition represents a mouse action performed on a selectable area of an

object place. The GUI object place for which the action is performed is called the

owner of the transition and is connected to the transition by an input arc. Thus, a

transition must be connected to at least one place by an input arc, each of which

describes transition input conditions for enabling that specific transition. Therefore, an

action cannot be performed until some objects exist. For example, the transition

"Save" will not be performed in the "File" menu in the absence of an opened window

displayed on the screen.

Within the net, transitions are drawn as boxes, each labeled with a unique name

(e.g ., tl) . There are two types of special transitions, INIT and QUIT . The first is

15

)

}

represented as a double bar which, when fired, initiates (i.e., starts) an application. In

turn, QUIT transitions are displayed as black rectangles, and the firing of a QUIT

transition represents quitting an application. Note that INIT transitions do not have

input places, whereas QUIT transitions lack output places.

Arcs in the PN Editor

Places and transitions are connected by directed arcs: Places to transitions by

input arcs and transitions to places by output arcs. Input arcs are used to present the

preconditions for an action to be performed on a GUI object. The preconditions for

these actions consist of certain objects as well as the nonexistence of modal objects.

For instance, a transition, representing the "Save" item of the "File" menu, cannot be

selected in the absence of either a window or a "File" menu displayed on the screen.

Moreover, the "Save" item cannot be selected if a modal object, such as a modal dialog

box or an alert box, is displayed on the screen.

When a transition is fired, certain application actions are taken, some of which

may change the existence of screen objects or the attributes of existing objects. This

situation is represented by output arcs connected to output places, with appropriate

annotations inscribed on the output arcs. Thus, following the firing of a transition, the

output places connected by output arcs are the currently existing objects. The inscribed

annotations may include messages, predicates, and/or sequence numbers. Messages

are sent from the place which owns the fired transition to the output places for that

transition, and are presented in the following formats:

• RRR::MMM

call a member function, MMM , of the
output place

call a member function, MMM, of an
object, RRR ('::' is a keyword.)

16

)

• VVV=MrvlM

• VVV=RRR::MMM

• func::FFF

• RRR=func::FFF

call a member function, MMM, of the
output place (a returned value for the
member function is assigned to the
variable VVV; '=' is a keyword.)

call a member function, MMM, of an
object, RRR (a returned value for the
member function is assigned to the
variable, VVV; '='and'::' are keywords)

call a defined function, FFF ('func' and
'::' are keywords)

call a defined function, FFF (a returned
value for that function is assigned to a
variable, RRR; note that FFF can also be
the right-hand side of an assignment
statement, such as a boolean value or an
arithmetic expression; '=', 'func' , and
'::' are keywords)

The translation rules for messages are listed in Section 2.4. Predicates are

boolean expressions whose values (either true or false) depend on the current state of

the net, permitting the specification of conditional flows within the net. Sequence

numbers are integer constants which can be used to determine the execution order of

concurrently activated objects at the moment of firing a transition.

A transition may fire if it is enabled, which condition may be met as follows: 1)

Each input place with an input arc has at least one token (i.e., the firing of a transition

is conditioned by the presence of tokens in each of its input places); and 2) those modal

places which do not represent ownership of the transition do not have any token.

Subject to these conditions, a transition fires by: 1) removing one token from each of

the input places connected by input arcs; 2) evaluating the boolean expressions of

predicates attached to the output arcs of the transition; 3) interpreting the messages

inscribed on the output arcs; and 4) adding tokens, according to the sequence numbers

inscribed on output arcs, only to those output places which are in correspondence with

17

J

the true value of the boolean expressions. Rather than removing older tokens and

adding new tokens, the firing of transitions which have both inputs and outputs from

the same place may consist of the modification of the values of older tokens in

accordance with messages inscribed on the output arcs. Since they are integral parts of

the Petri net execution process, and are used for simulation, the firing process and the

tokens cannot be represented by the PN editor. Rather, output or input arcs are

represented in the editor as lines ending in arrowheads. Their annotations are inscribed

on output arcs as given by the user through an entering statement in an edit-text box of

a popped-up dialog box provided in the editor.

2.3. From Net Model to an Executable Object-Oriented

Model

The process of using the PN editor to build an executable GUI application is

accomplished by the derivation of a class of new concrete objects from existing object

classes in the OSU Framework, then connecting these concrete object classes through a

message interface. In this section, this process is illustrated with an example record

query system (Figure 2.5, 2.6). For purposes of clarity, example explanatory notes

are indicated in italics.

This system lets the user open a personal record file. A query dialog with three

editText boxes and four buttons is used to display personal records in an

opened file. Each time the "Prev" button is selected, the file backs up one

record . Each time the "Next" button is pressed, the file advances one record.

To update the record, the user types in new data and selects the "Change"

button to confirm the update.

18

Figure 2.5 File menu for the record query example.

Name: I Lin, Fangchen

3045 NW Ashwook Dr.
Address : Couallis OR 97330

TEL: 1754-0229

(NeHt ~(Preu J (Change J (OK)

Figure 2.6 Dialog displaying record contents.

The first step is to determine the generic user interface object classes that are to

be subclassed to make up the user interface portion of the application . A generic user

interface object class is chosen from the OSU Framework. This is done by drawing a

typed user interface place (Figure 2.7).

Five places: two menu places, a window place, a dialog place, and a note a/en

place are drawn.

19

)

J

Record_Query_Nets

t5

..... '' '
··

Figure 2.7 Petri net representation for a record query application.

The value of an instance variable is then specified, determining the visual

characteristics of the selected user interface object class. This is done by entering a

resource ID in an information dialog box brought up while a place is drawn (Figure

2.8).

After the drawing of a place, PN editor brings up a dialog asking for the

information, e.g., the resource ID of the dialog.

20

)

J

Place Information

Place ID p5

Resource Type : DIALOG

Resource ID ~l1_2_a ___ _

@ Modal

0 Modeless

Instance Uariables :

char *fRec
char *fName
char *fAddr
char *fPhone

(Cancel)

(OK)

Figure 2.8 Dialog box for request of dialog place details.

The second step is to derive new concrete classes from the generic user

interface object classes selected above through the processes of subclassing and

inheritance . That is, when a generic user interface object class has to be specialized

into a subclass, it is customized by adding new application-specific data (i.e., instance

variables) and behaviors (i.e., methodsl. Adding new application-specific data to a

generic user interface object class can be done by declaring the variables (Figure 2.8).

There is an editText box for accepting the declarations of instance variables to

store new application-specific data. For the new dialog class.four string-type

variables,jRec,jName,JAddr, andfPhone, are declared: jRec stores the entire

record string obtained from the opened file. After analyzing the string, three

tokens are derived from the string and stored injName,fAddr, andfPhone.

21

)

The mouse-selectable areas in the user interface object which will be used to initiate

action messages to add new behaviors are then determined. Transitions are drawn for

each user interface place, connecting each place to its owned transitions through input

arcs.

For a query dialog (Figure 2.6), there are four buttons which will initiate action

messages when they are clicked with the mouse; there are four transitions

connected by input arcs from the dialog place (Figure 2.7). Each represents a

button in the query dialog. Following creation of a transition, representing the

"Next" button of the query dialog, the PN editor then pops up an information

dialog (Figure 2.9), which asks for the attributes of a transition. In this dialog

box, the user specifies the item number of the "Next" button in the dialog

resource (see Figure 2.10) and declares the dialog place p5 to be the owner of

the transition by entering the place ID of the dialog place.

Transition Information

Transition ID : t6

@ Regular Transition

O Quit Transition

Belong to Place : __ Is ___ ____.
item# .__I~----

(Cancel)

(OK) ~

· Figure 2.9 Dialog requesting transition attributes.

22

)

)

§0~ D ITL ID = 128 from record

jName laj L!::::11 =======

!Address Lzjl!::11 =========::::J

Lajl

~I
~EL : L!.aj L!:::::11 ======

[NeHtlaj [PreullJ [Changlaj _[__

WI
OK L!.j

Figure 2.10 Resource format for the dialog box shown in Figure 2.6.

The third step is to determine message connections between the various

concrete object classes: That is, which objects receive specific action messages sent by

which objects. The required action is to draw an output arc connecting the transitions

owned by places representing message-sending objects to those places representing

message-receiving objects, and associating specific messages with specific output arcs.

An object can be both the sender and receiver of an action message at the same time.

This can be represented as a transition in which both the input arc and the output arc

send a message from the same place (self-loop).

After the "Next" button is pressed, the contents of the next record are displayed

in the editText box of the query dialog. To do this, the dialog place sends a

message to the window place asking for the next record, which is then returned

in the form of a string. The string is separated into tokens, which are then

displayed on the editText boxes of the query dialog. While the "Next" button is

selected, to specify the actions mentioned above, two output arcs are drawn

from the transition, representing the "Next" button. The window place and the

dialog place are the output places for these two output arcs (see Figure 2.7). To

23

)

)

specify the message sent to the window place, the user double clicks the output

arc connecting the transition t6 to the place p4, then a dialog box asking for the

annotation of the output arc pops up (see Figure 2.11). The message

"fRec=GetNextRecord()" is typed in. For assuring that the next record is

obtained before undertaking further action, the sequence number of the output

arc is 1.

OutputArc Information

Sequence # : ._I 1 ____ _.
Messages

jtRe c =Get Ne H tR e co rd ()

Predicate :

[Cancel)

(OK)

~

Figure 2.11 A dialog for asking annotations on an output arc.

Since the query dialog is still on the screen after the "Next" button is clicked, an

output arc is drawn back to the dialog place (see Figure 2.7) . To analyze and

display the record string obtained from the file, the following messages are

inscribed on the output arc and the sequence number of the output arc is set at

"2" (see Figure 2.12):

fName=func: :GetToken(fRec, 1)

fAddr=func::GetToken(fRec,2)

fPhone=func::GetToken(fRec,3)

24

)

j

SetltemText(5, tName)

SetltemText(6, fAddr)

SetltemText(7, fPhone)

OutputRrc Information

Sequence # : ... I 2 ____ __.
Messages

fName=func::GetPattern(fRec, 1)
fAddr=func::GetPattern(fRec,2) (Cancel)
fPhone=func::GetPattern(fRec,3)
Set I temTeHt(S, fName) (OK)
Set I temTeHt(6, fRddr) ~

Predicate :

Figure 2.12 Dialog requesting annotation for an output arc.

It follows then that

the contents of a record are derivedfromfR.ec and are stored in three variables.

"June" is a keyword notifying the Code Generator that this is a defined function

instead of a member function (method); "GetToken" requires two parameters, a

string and an integer n,. parsing the string and returning the nth token of the

string; and "SetltemText" is a method defined in the CLDialog class, display a

string for an item in a dialog box. Those methods defined in OSU Framework

can be viewed and copied by using the OSU Browser. For details on invoking

the Browser, the reader may refer Section 3 .2 (page 37-40).

25

)

)

26

When a transition is not connected to its input place through an output arc, a

message, DoClose(), from a corresponding object to itself is implied:

The transition t5, indicating the "Ok" button, is not connected to its input places

through output arcs, the dialog place, or the window place. This means that the

query dialog and the opened file is closed after the "Ok" button is pressed.

After completing the three steps, the PN editor generates an executable specification

(i.e., an annotated Petri net model). This specification can be saved and used by the

Code Generator to generate C++ programs based upon the Application Framework .

After the entire application is specified by the above steps, PN editor builds a

Petri net mode/for the application. The model can be saved (see Figure 2.13)

for later use. To generate source programs, the user selects "Generate Code"

from the "Tools" menu (see Figure 2.14). The details of this example are

reconsidered in Section 5.4.
,,

Edit Tools Window

XN
XO
xw

s (J l l (~ ,)(, s
Saue Rs

Quit XO

Figure 2.13 File menu, Petri net editor.

)

J

S File Edit

Figure 2.14 Tools menu, Petri net editor.

2.4. Translation of Annotated Petri Nets into C++ Programs

The translation of Petri nets model into the OSU Framework based C++

programs is described below [Keh 91]. The basic translation rules include the

following:

Places

• Each user interface place p in the Petri net is mapped into a derived class d

of its corresponding user interface abstract class in the OSU Application

Framework;

• The place type, resource ID, and place ID are used to generate the head of

the derived class; and

• The variables given in the places are used to generate instance variables of

the derived class.

Transitions

• Each transition t of p is mapped into a public member function! of d.

Arcs

27

)

_)

• Each action message inscribed on the output arcs of tis mapped into a

statement in/; and

• The translation of input arcs generates code that ensures that the transition

can be fired if and only if each of its input places contains at least one

token.

Messages

Message formats and their mapped C++ statements are listed as follows.

•RRR:::MNll\1

•VVV=~

• VVV =RRR: ::MNll\1

• func::FFF

• RRR=func::FFF

MMM;

(Sender and receiver of MMM are the
same object.)

rrr->MMM;

(Sender of MMM is different from the
receiver; rrr is the variable name of the
receiver.)

RRR->MMM;

VVV=MMM;

(Sender and receiver of MMM are the
same object.)

VVV= rrr->MMM;

(Sender of MMM is different from the
receiver; rrr is the variable name of the
receiver.)

VVV=RRR->MMM;

FFF;

RRR=FFF;

28

)

)

3. Use of the Annotated Petri Net Editor

To provide the reader with an overview of the PN editor system, a dataflow

diagram of the system is provided in Figure 3.0. Input to the editor includes:

• Specifications from the programmer: The Petri net objects and message

flows are specified by the programmer. The programmer enters required

information for an object (e.g., the resource ID of a Macintosh user

interface object).

• Reusable messages selected from the Browser: The Browser parses C++

source programs, builds the class hierarchy tree chart, displays the

methods (i.e., messages) for the classes, copies the methods selected by

the user, and sends the list of messages to the PN editor.

• Petri net external representation: Petri net external representation is saved

by the editor as a textual form file according to internal Petri net

representation. The programmer can open existing files as editor input.

Thus, the editor interacts with the programmer, processing the input and converting it

to an internal Petri net model. The editor output includes:

29

)

)

• Internal Petri net model (i.e., internal Petri net representation): This model

becomes the input for the Code Generator, which in turn generates C++

source code as output.

• External Petri net representation file: As noted above, the editor converts

the internal representation file into an external representation file for

subsequent use.

Output of the Code Generator (i.e., C++ source code) then becomes the input

for the Macintosh Programming Workshop (MPW), which in turn compiles the source

code, links the source code to the OSU Framework and to other C++ source program

files, loads correspondent resources from the resource file, and generates the desired

application.

30

')

)

Petri net external

Petri net External
Representation File

C++ source code

programmer

representation

osu
C++ Source Program Application

Other C ++ Source
Program Files

~L
Resource File

C++ source code

application

Desired
Application

Figure 3.0 Data flow diagram for the Petri Net Editor.

3.1. File Actions

A Petri net graph edited within a window is internally represented as a Petri net

model. This internal representation can be saved in the form of a text file for

31

j

subsequent reediting. Thus, creating a Petri net graph also creates an internal

representation and an external file.

To create a new Petri net graph, the user may select "New" from the "File"

menu (Figure 3.1). A new PN editor window, "Untitled," with an initial transition is

created on the screen (Figure 3.2). Note that the initial transition stands for the starting

point of an application, is unique, and cannot be deleted. A palette tool is also shown

beside the window. This tool is the users' medium for informing the system which

places or arcs should be created. As shown in Figure 3.3, there are seven different

icons for drawing Macintosh user interface objects and two icons for drawing arcs.

The user can draw the Petri nets or modify existing Petri nets with the palette tool and

menus. These processes are described in Sections 3.2 and 3.3.

,
Edit Tools Window

a€N
a€0
a€UJ

§ <l l i (~ ,){, S
Saue Rs

Quit a€Q

Figure 3.1 File menu items.

32

)

J

s File Edit Tools Window

Untitled

t1

:_:,:.:.·.·.:.·.:.·.·.·.·.·.·.·.·.:.·.:

Figure 3.2 New Petri net window.

Internal representations of the Petri net model can be saved in textual form,

creating files which can be read by opening them in the MPW environment. To see and

edit the graphical representation of a Petri net, the user selects "Open" from the "File"

menu (Figure 3.1). A Petri net file can be opened by choosing available files from an

SFGetFile dialog box. The editor reads in the text file, builds the Petri net internal

representation, loads a window, and display the Petri net graph on the screen.

Just as for any other Macintosh application, to save a file the user may select

"Save" or "Save As" from the "File" menu, and to close a file the user may select

"Close" from the "File" menu.

33

3.2. Creating a Petri Net

Initiating a net begins with the creation of places, transitions, and arcs, first

selecting the appropriate icon with the mouse (Figure 3.3).

switch. tool

du.log ph.ee tool

pt.lttte ph.ee tool

note wrt ph.ee tool

input are tool

r
~i
i [i]
[B[I]
~~

m.eD.u ph.ee tool

window ph.ee tool

elution. t.ltrt ph.ee tool

stop wrt ph.ee tool

output are tool

Figure 3.3 Palette tool.

To create a place, from the palette the user selects from among the seven place

icons with the mouse, clicking it with the cursor to the desired location. A dialog box

requesting further information on the created place is displayed (Figure 3.4(a)). If the

created place is a dialog place, two radio buttons are activated to specify the appropriate

mode; for other places, the radio buttons are inactive since the modes are set at default

values (Figure 3.4(b)).

34

35

Place Information

Place ID : p2

Resource Type : DIALOG

Resource ID : ._j 1_2_a ___ _

@Modal

0 Modeless
(Cancel)

Instance Uariables : (OK)

Figure 3.4(a) Dialog box for a dialog place (radio buttons active).

J

)

)

Place Information

Place ID pl

Resource Type : MENU

Resource ID

0 M<Hlc:ll

@ Mod<~l<~is
(Cancel)

Instance Uariables : ~ (OK)

Figure 3.4(b) Dialog box for a menu place (radio buttons are inactive).

To create an output arc (i.e., connect a transition to a place) , the user selects an

output arc icon from the palette, clicks inside the transition and then drags the arc to a

place. Note that if the user clicks the wrong end nodes or clicks outside of a node,

then an output arc cannot be drawn. In this case, an alert will pop up (see Figure 3.5)

to demonstrate the means to create an output arc.

36

)

_)

Error! To create an output arc, the mouse
should be pressed in the initial transition or
an eHisting regular transition. Please try
again!

K OK D
(a)

Error! To create an output arc, the mouse
should be released in an eHisting place.
Please try again!

(b)
Figure 3.5 Alert box for syntax errors and process

for creating output arcs.

As noted in Section 2.3, messages, predicates, and sequence numbers can be

inscribed on transition output arcs. Thus information can be entered by double-clicking

on an output arc to obtain a dialog box, which provides an editText box for the

acceptance of a sequence number (Figure 3.6). The user may type in the number or

accept a default value of "O". The message for an output arc can be typed in directly;

otherwise, the user may call the Browser (Figure 3.7), copy methods from the class

hierarchy (Figure 3.8) shown in a Browser window, highlight the output arc (Figure

3.9), and then paste the message to the output arc by selecting "Paste" from the "Edit"

menu (Figure 3.10). For details on the operation of the Browser, refer to [Li 91].

37

)

)

OutputRrc Information

Sequence # : 1 o ____
Messages

Predicate :

Figure 3.6 Dialog box for output arcs.

C File Edit Window

(Cancel)

(OK)

Generate Code XG
Check SyntBH

__ e,·omse Hierarchy :i:H

Figure 3.7. Selection of "Browse Hierarchy" to invoke the Browser.

38

:dUIOb ·ect

ew

~ Collection

OSU 3.0 Framework

CLOb 'List

CLRadioButton

CLScrollBar

IEn,:iblet len1Jltern I
Di 38 bl e Menu Item
CheckMenultem
CheckOnl yltem
UncheckMenultem
Add Rs re
GetEnsbleStstus
GetCheckmsrkStstus
DoSetupMenus
DoMenuCommsnd

.: ·.·.·.·.·.·.·.·.·.·.·.·.·:·.·.·.·.·.·.·.·.·.·.·.·.·.·.·.·

Figure 3.8 Copying methods from the Browser.

ts File Edit Tools Window

r
~~
~EB

p1, 128

Figure 3.9 Output arc screen for message pasting.

39

)

)

c File Tools Window

XZ itled

~ . . .

i ~
? ✓ Show Details . pt, 128

[e][a
~ ~ 1~!!lll~!! ~!:i:!=:i,ili:i=:i,Hl:l=,!,l:i:i=,1,1:1,1=,1,i!Hi=!i!iiiii!=i!i!HH=iiHHH,.--,,-+=-t

Figure 3.10 Pasting messages on highlighted output arcs.

To assure that messages are copied, the user can double-click the output arc.

The current status of that output arc will be shown in a dialog box (Figure 3.11). Thus,

the user may edit messages or type in additional messages.

OutputArc Information

Sequence # : 1 o ____ __,
Messages

EnableMenu I tem(short
p I temNumber)

Predicate :

(Cancel)

(OK)

Figure 3.11 Output arc dialog box with messages.

40

)

To create an input arc (i.e., to connect a place to a transition), the user clicks the

input arc icon in the palette, then clicks inside a place and drags the input arc. When

the mouse button is released within an existing transition, the transition is connected to

the place. If the mouse is not released in a transition, a new transition may be created

(Figure 3.12). A dialog box appears, requesting appropriate transition information

(Figure 3.13). In this box, the type of this transition (i.e., a regular or a quit transition)

should be specified by clicking the appropriate radio button, then entering the ID of the

place owning the transition. If the user does not specify this information, default values

are provided by the system. The default value for a transition is a regular transition and

the default value for a place ID is the number for the place connected to the created

input arc.

Untitled

p1, 128

Figure 3.12 Creation of transition by drawing an input arc.

41

)

J

Transition Information

Transition ID : t2

@ Regular Transition

O Quit Transition

Belong to Place : ,__j 1 _____ 1

item # ._I--~
(Cancel)

(OK)

Figure 3.13 Dialog box with default transition information.

An input arc connects a place to a transition. The PN editor displays an alert if

incorrect procedures are used to draws an input arc (Figure 3.14(a)). For example, if

the mouse is not pressed within an icon, an alert box with a directions message

appears . If the mouse is not released in a blank area or within an existing transition, a

second alert (see Figure 3 .14(b)) appears to indicate appropriate directions.

Error! To create an input arc, the mouse
should be pressed in an eHisting place.
Please tye again!

Figure 3.14(a) Alert for syntax error messages and
directions for creating input arcs.

42

)

Error! To create an input arc, the mouse
should be released in o blonk oreo or in an
eHisting regular transition or a quit
transition. Pleose try again!

K OK)

Figure 3.14(b) Alert for syntax error messages and
directions for creating input arcs.

If a user does not want dialog boxes to appear each time a node or an arc is

created, this feature can be disabled by removing the selection from "Show Details" in

the "Edit" menu (Figure 3.15). Thus, nodes or arcs will be drawn directly without the

appearance of informative dialog boxes. To pop up a box to enter details, the user

must double-click either a place, a transition, or an output arc.

C File Tools Window
Undo XZ

Cut XH
Copy XC
Paste XU

✓ ShOlll Details

Figure 3.15 Edit menu.

43

)

)

3.3. Editing the Petri Net

For editing a Petri Net graph, places and transitions are treated as nodes, while

input and output arcs are referred to as arcs. The following editing procedures may be

used.

Drag

3.16).

Cut

If a node is repositioned, then all of its arcs are automatically adjusted (Figure

p1, 128

(a) (b)

Figure 3.16 Repositioning nodes: (a) prior to drag and
(b) following drag.

To cut an element, the user highlights or groups the shapes, then selects "Cut"

from the "Edit" menu (Figure 3.15).

44

)

)

J

- a.a ... ~-· □
~-e
p'2, 128

(a)

p1, 128

II.I
(b)

Figure 3.17 Cutting nodes: (a) prior to cut and (b) following cut.

Cutting a node

If a place or a transition is deleted, all of its arcs will be deleted. Only the place

or the transition is placed on the clipboard. If a place is cut, its owning

transitions are also cut. The process is identical to cutting a group of nodes (see

below).

Cutting an arc

Cutting an arc deletes the arc without placing it on the clipboard.

Cutting a group of nodes

Everything contained within the group, including all internal arcs (i.e., arcs

with both end nodes, representing a place and a transition, compose a group),

is removed (Figure 3.17) and placed in the clipboard (Figure 3.18). Those arcs

45

)

.J

Copy

with source or destination nodes are removed without being saved to the

clipboard (Figure 3.18).

-=-

p2, 128
p1, 128

Figure 3.18 Removing features to the clipboard.

46

To copy a net and save them in the clipboard, the user highlights groups of

shapes, then selects "Copy" from the "Edit" menu (Figure 3.15).

Paste

Copying a node

Only the node is duplicated and placed in the clipboard without connecting arcs.

Copying an arc

An arc cannot be placed in a clipboard, which is one of the limitations of the

editor. If an arc is pasted, the system should support a means for the user to

specify pasting actions for the two end nodes.

Copying a group of nodes

Everything contained within the group, including all of the internal arcs, is

copied to the clipboard; arcs with only source or destination nodes are not

copied .

)

)

To complete a paste procedure, the user selects "Paste" from the "Edit" menu.

The system then copies the shapes in the clipboard and pastes them to the screen.

Pasting a node or a group of nodes

The node(s) is pasted beside the original nodes, as shown in Figure 3.19).

Figure 3.19 Pasting a node.

Pas ting an arc

As noted above, the PN editor does not support the means to paste an arc.

3.4. Syntax Checks

Syntax checks are performed to assure that the Petri Net has a legal structure

and observes syntax rules. Syntax restrictions may be either built-in restrictions or

compulsory restrictions. Build-in restrictions are properties that are automatically

warranted by the system since the user interface for the editor is unable to violate these

restrictions. Built-in syntax restrictions include the following:

• A transition must be connected by at least one input arc. ·

47

)

• An arc can only be drawn from a place to a transition (or vice versa, see

Figures 3.5, 3.14).

• A quit transition cannot have an output arc (see Figure 3.5(a)).

• An initial transition cannot have an input arc (see Figure 3.14(b)).

• Every net must have exactly one initial transition.

48

The first restriction cannot be violated since a transition cannot be created in the absence

of an input arc. The editor does not allow an initial transition to be copied, cut, or

pasted. Thus, the final restriction given above cannot be violated. For the remainder

of the restrictions, the system provides error messages.

Compulsory syntax restrictions are properties that are not automatically

guaranteed by the system, but which must be fulfilled in order to run the Code

Generator. The system can also perform a syntax check for compulsory restrictions

when "Check Syntax" in the "Tools" menu is invoked (Figure 3.20).

S File Edit

Figure 3.20 Invoke "Check Syntax".

The compulsory syntax restrictions include:

• Each place should be connected to at least one output arc (Figure 3.21).

• The initial transition should have at least one output arc (Figure 3.21).

)

)

t1

i:a, 126

t4

Figure 3.21 A net with syntax errors.

Violations of the compulsory syntax restrictions are reported in alert boxes (Figures

3.22-3.23).

syntaH Error!

The following Places are missing
output arcs:

P2.P3.P4.

n OK n

Figure 3.22 Alert box for a syntax error.

49

)

SyntaH Error!!
The Initial Transition is not connected
by any output arc.

~ n OK »
Figure 3.23 Alert box demonstrating syntax error.

3.5. Code Generation

To generate C++ source code, the user selects "Generate Code" from the

"Tools" menu (Figure 3.20). The syntax is checked prior to the generation of code. If

errors are found, an error messages is first provided (Figures 3.22-3.23), then no

further source code is generated (Figure 3.24).

Sorry! Since there is a syntaH error,
code is not allowed to be generated.

n OK »
Figure 3.24 Stop alert notice for code generation .

50

t

)

j

4. Design and Implementation of the Petri Net Editor

The Petri Net Editor was constructed by subclassing and instantiating classes of

the OSU Framework. From Figure 4.1, derived classes, indicated by numerical

designations, are classified in four sets:

• GUI objects (items 1-13);

• Petri net Storage structures derived from the CLModel class and the data

structure library, and Petri net storage objects derived from the CLObject

class (item 15, 16, and 17);

• Graphics Objects derived from the shape library (item 18); and

• Petri net domain specific view (item 14).

These classes are discussed in the following four sections. Appending * to the end of a

method name indicates that that method overrides an OSU Framework method.

51

1.

2.

5.

ModalDialog

8.

1 I-- __ .,._ __ ,......,,

J~&nfar6~ : J

• gi@1~e6iaiog t• 1 [:eNf fJH;ih8nbillibg J
9 . .---.....1.-------,

: RNQtiti11.ttAi¢l)i~l~g g)

Figure 4.1 PN editor classes derived from the

OSU Application Framework.

52

16.

Window

12.

)

4.1. User Interface Classes

The user interface classes are standard and can be implemented through the

OSU Framework. For the attribution of specific purposes, objects derived from these

classes must be modified to override certain of the standard methods provided.

PNApp

The PNApp class implements the main event loop, directing events at the

objects to which they are responsible for operations. The PNApp class has a member ,

fBrowser, that serves as a pointer toward object from the Browser class, which is

responsible for initialization of the Browser, obtaining lists of selected methods,

closing the Browser window, and removing selected methods from the lists [Li 91].

"CreateMenus*" and "Initialize*" are overridden. The first is used to create menu bar

objects and objects which are specific to the PN editor, the second, which is an abstract

method from the CLApplication class, is overridden to perform additional application

initializations. These tasks include the creation and initialization of palette objects and

the fBrowser member.

PNDialog

The PNDialog class is responsible for the displaying of all dialog requiring a

user response before proceeding with further tasks. This class exists as a subclass to

provide two additional methods, "HandleRadioGroup" and "DrawDLine," that are not

53

)

provided in the Framework. The first is used to manipulate the radio group and the

second is responsible for line drawing within dialog boxes.

Other Dialog Classes

PNPlaceDialog is responsible for dialog which requests place information;

PNTransitionDialog is responsible for dialog which requests transition information;

and PNOutputArcDialog is responsible for dialog which requests output arc

information. For each of these dialog classes, "DoMouseDown*" is the only method

which is overridden.

PNDocument

This class is used to override "CreateModel*," "DoRead*," "DoWrite*," and

"DoSetUpMenu*". The first is used to create an instance of the PNPetriNet class as an

application model, the second and third are used to read/write the attributes of Petri net

data elements and their corresponding shapes from/to files, and the fourth is overridden

to set up application menu status.

Menu Classes

The classes PNAppleMenu, PNFileMenu, PNEditMenu, PNToolsMenu, and

PNWindowMenu are responsible for menu commands. Each of them overrides the

method "DoMenuCommand*" to perform the tasks in accordance with a menu item

54

)

55

selected by the user. To explain these tasks, the command behaviors, in the form of

code or pseudo code, is presented below:

CLCommand *PNAppleMenu::DoMenuCommand(short pitemNumber) {//source code

St.r255 name;

) :

short temp;
CLUserAlert *aboutPetriNet;

if (pitemNumber == 1) {
aboutPetriNet = new CLUserAlert(l45);
aboutPetriNet->Draw();
delete aboutPetriNet; }

else {
Getitem(fMenuHandle,pitemNumber,name);
temp= OpenDeskAcc(name);}// perform desk accessory

return O;

CLCommand *PNFileMenu: :DoMenuCommand(short pitemNumber) {//source code
PNWindow *aWindow;
if ((pitemNumber==NEW) I I (pitemNumber==OPEN))

aWindow=new PNWindow();
else

aWindow=(PNWindow *) gApplication->GetWindowByName("PNWindow");
switch(pitemNumber) {

case NEW:
aWindow- >Initialize();
aWindow->Draw();
aWindow->DoNew();
break;

case OPEN:
aWindow->Initialize();
if (aWindow->DoOpen()) // if a window is opened successfully

aWindow->Draw(); / /draw the window
else

delete aWindow;
break;

case CLOSE:
if (aWindow)

Boolean success=aWindow->DoClose();
)//if (aWindow)
break;

case SAVE:
if (aWindow) aWindow->DoSave();
break;

case SAVE AS:
if (aWindow)

if(aWindow->DoSaveAs()) {}
break;

case QUIT: //quit the application
Boolean jump=false;
Boolean success;
while ((!jump) && (aWindow=(PNWindow *) gApplication

>GetWindowByName("PNWindow"))) { // close the windows on the screen
Boolean success=aWindow->DoClose();

)

)

) :

if (!success) //if any window is not closed
jump=true; //the quit act i on is cancelled

if (!jump) gApplication->Terminate(); //quit the application
break;

//switch
return 0;

CLCom,mand *PNEditMenu::DoMenuCommand(short pitemNumber) { //pseudo code
theView=the view in the front most window;

) :

switch(pitemNumber) {
case UNDO:

check to see it's an undo or redo mode;
if (undo) call theView->Undo else theView->Redo;
break;

case CUT:
call theView->PNCut();
break;

case COPY:
check to see which window is the front most window;
if (thefrontmostWindow==PNWindow) // it's Petri Net window

call theView->PNCopy();
else / /it's a browser window and the user is copying the methods

call gApplication- >fBrowser - >addMethodsToList();
break;

case PASTE:
call theView- >PNDoPaste();
break;

case SHOW DETAIL:
checkmarks or uncheckmards "Show Detail" in the "Edit" menu;
break;

CLCommand *PNToolsMenu::DoMenuCommand(short pitemNumber) {/ / pseudo code

) :

switch(pitemNumber)
case CODE GEN:

if (CheckSyntax()) (//check syntax
// no syntax error
thePetriNet=get the pointer of the Petri Net model;

thePetriNet->Translation();
set the cursor to watch cursor;

else (//there is a syntax error, send error messages
bring an alert for error messages

break;
case CHECK SYNTAX:

if(CheckSyntax())
break;

case BROWSE_HIERACHY:

/ / check syntax

((PNApp *)gApplication)->fBrowser->newBrowser();
break;

return 0;

CLCommand *PNWindowMenu::DoMenuCommand(short pitemNumber) (//source code
PNWindow *aWindow;

56

_)

} ;

BRWindow *brWindow;
switch(pitemNumber)

case PNWIND://Petri net window
aWindow=(PNWindow*) gApplication->GetWindowByName("PNWindow");
if (aWindow) aWindow->Draw();//bring the window to front
break;

case BRWIND://Browser window
brWindow=(BRWindow*) gApplication->GetWindowByName("BRWindow");
if (brWindow) brWindow->Draw();
break;

II/switch
return O;

PNPalette

The method "DoMouseCommand*" is overridden to highlight icons from the

palette, as selected by the user, notifying the view, which is within the front-most

window, of the current shape tool.

PNWindow Class

57

The PNWindow class implements standard window manipulation tasks,

including resizing and zooming. "DoNew*" is overridden for performing those tasks

required each time a window is created, including calling the initialization method of the

view or setting up menu status (e.g., enabling "Close" or "Save As" in the "File"

menu). "DoOpen*", "DoClose*", and "DoSaveAs*" are overridden for purposes of

refinement. "DoOpen*" and "DoSaveAs*" call parental class versions of "DoOpen"

and "DoSaveAs" and set up their own menu status. "DoClose*" calls a parent class

version of "DoClose" and checks to determine if the current window is the final Petri

Net window on the screen. If the response is positive, the palette is hidden since there

can be no window on the screen after "DoClose" is performed. Code for "DoClose*"

is provided as follows:

Boolean PNWindow::DoClose(void)

)

J

Boolean success=CLWindow::OoClose(); // call parental
i f(success) {//if the window is closed successfully

if(gApplication- >GetWindowCountByName("PNWindow")) {}
else (// window list is empty now

// setup menu stat u s
gApplication->fMenuBar- >DisableMenuitem(FILE_ID,SAVE);
gApplication->fMenuBar->DisableMenuitem(FILE_ID,SAVE_AS);
gApplication->fMenuBar->DisableMenuitem(FILE_IO,CLOSE);
gApplicat i on->fMenuBar->OisableMenuitem(TOOL_ID, l);
gApplication->fMenuBar~>DisableMenuitem(TOOL_ID,2);
gApplication->fMenuBar->DisableMenuitem(EOIT_I0 , 0);
gApplication->fMenuBar->DisableMenuitem(WINO_IO,PNWINO);
CLBasicWindow *aPalt;
aPalt=gApplication->GetWindowByName("PNPALETTE");
if (aPalt) ShowHide(aPalt->fWindPtr,false);/ / hide the palette

return success;

4.2. Petri Net Storage Structure and Object Classes

PNPetriNet

PNPetriNet is a subclass of CLModel used for the storage of the Petri Net

structure, derived from CLModel since this structure is not a standard data structure as

defined in the data structure library. PNPetriNet uses two lists to store pointers for

places and transitions. As shown in Figure 4.2, there are lists of pointers to places and

transitions: placeList and transitionList are instances, respectively, of PNPlaceList

and PNTransitionList, each of which are subclasses of CLObjList. A number of

CLObjList methods can be reused to add or remove objects from lists or to find objects;

moreover, iterators can be declared for navigation or manipulation of elements within

lists.

58

)

j

placeList

initTransitio

placeCount

transitionCount

an instance of
PNPetriNet

a place a place a place

• • •

• • •

a transition a transition

Figure 4.2 Instance of PNPetriNet.

To allow ease of simulation , PNPetriNet maintains a pointer to the initial

transition. The simulator can obtain that pointer directly to initiate simulations.

For each place/transition there is a unique ID, placeID/ transitionID. Instance

variables, placeCount and transitionCount (Figure 4.2), are used to record the IDs for

the most recently created places and transitions. When a new place and/or transition is

created, the value of, respectively, placeCount or transitionCount is increased, as is the

ID of the new place/transition. Variables and functions included the following:

1) Instance variables:

• placeLlst

• transitionList

• initTransition

• placeCount

• transitionCount

list of pointers to places

list of pointers to transitions

pointer to the initial transition

ID of latest created place

ID of latest created transition

59

)

)

j

2) Member functions:

• CreateA Transition create a new transition and add the new
transition to transitionList

• CreateAPlace create a new place and add the new place
to placeList

• CheckSyntax check syntax

• AddAPlace add a place to placeList

• AddA Transition add a transition to transitionList

• RemoveAPlace remove a place from placeList

• RemoveA Transition remove a transition from transitionList

• DoWrite write the attributes of elements in the
Petri net to a file

• DoRead read the attributes of elements from a file

• GetPlaceCount return placeCount

• GetTransitionCount return transitionCount

• GetPlaceByID get the pointer of a place by ID

• GetTransitionByID get the pointer of a transition by ID

Hierarchy of Petri Net Storage Object Classes

The class hierarchy of the Petri Net storage object classes is constructed as

shown in Figure 4.3.

60

_)

PNAlertPlace

PNPlace --➔ ·PNDialogPlace

PNMenuPlace

PNWindowPlace

PNPalettePiace

CLObject PNinitTransition

PNTransition 1----l PNRegularTransition

PNQuitTransition

PNinputArc
PNArc

PNOutputArc

superclass---------------- >subclass

PNStopAlertPlace

PNCautionAlertPlace

PNNoteAlertPlace

Figure 4.3 Class hierarchy of Petri Net storage object classes.

In this hierarchy, there are three major branches, PNPlace, PNTransition, and PNArc,

each of which is derived from the CLObject class. The design of these classes is based

upon the principle of code sharing, to the greatest degree possible without

compromising logical relationships among classes. This class structure than might

otherwise have been required for the PN editor for reason of considerations

encompassed in the Simulator and the Code Generator. These classes are summarized

below.

61

)

j

PNPlace

PNPlace is an abstract class responsible for maintaining the attributes and

common behaviors of place objects. Variables and functions for this class are as

follows:

1) Instance Variables:

• placeID

• instanceVariables

• isModal

• mark4CheckSyntax

• resourceID

• inputArcs

2) Member Functions:

• CLis_a*

• GetPlaceID

• SetPlaceID

• Do WriteSelf/DoReadSelf

• GetResourceID

• SetResourceID

• RemoveinputArc

• GetinputArcList

• SetlnputArcList

• Getlnstance V ariableList

• DupDetail*

unique ID of a place

pointer to a list of instance variables

boolean value indicating if the place is
modal

boolean value indicating if the place is
connected by an output arc

resource ID for a place

pointer to a list of input arcs

return a defined integer to indicate the
type of object

return placeID

set the value of placeID

write/read attributes to/from a file

return resourceID

set the value of resourceID

remove an input arc from inputArcs

return inputArcs

set inputArcs

return the value of instance Variables

duplicate the details of an object

62

)

)

_)

Other Place Classes

The following place classes are responsible for object behaviors as follows: 1)

PNMenu.Place for the behavior of a menu place; 2) PNWindowPlace for the behavior

of a window place; 3) PNPalette for the behavior of a palette place; 4) PNDialogPlace

for the behavior of a dialog place; 5) PNAlertPlace for the behavior of an alert place; 6)

PNStopAlertPlace for the behavior of a stop alert place; 7) PNCautionAlertPlace for the

behavior of a caution alert place; and PNNoteAlertPlace for the behavior of a note alert

place. Each has the following member functions (i.e., there are no instance variables

for these classes).

•CLis_a*

• Duplicate*

PNTransition

return a defined integer to indicate the
type of object

duplicate the object

PNTransition is an abstract class which is responsible for maintaining common

information among all transition objects. This class has the following variables and

functions:

1) Instance Variables:

• transitionID

2) Member Functions:

• CLis_a*

• GetTransitionID

• SetTransitionID

unique ID for a transition

return a defined integer to indicate the
type of object

return transitionID

set the value of transitionID

63

)

)

• Do WriteSelf/DoReadSelf

• AddOutputArc

• RemoveOutputArc

• AddlnputPlaceArc

• RemoveinputPlaceArc

• GetBelongToPlace

• SetBelongToPlace

• GetOutputArcList

• DupDetail *

PNinitTransition

write/read attributes to/from a file

virtual method

virtual method

virtual method

virtual method

virtual method

virtual method

virtual method

duplicate the details of a transition

PNinitTransition is responsible for storing and maintaining information

regarding initial transitions. This class has the following variables and functions :

1) Instance Variables:

• outputArcs

2) Member Functions :

•CLis_a*

• AddOutputArc

• RemoveOutputArc

• DoWriteSelf/DoReadSelf

• CheckSyntax

• MarkOutputPlaces

list of pointers to output arcs

return a defined integer to indicate the
type of object

add an output arc to outputArcs

remove an output arc from outputArcs

write/read its attributes to/from a file

check to see if the initial transition has an
output arc

ask outputArcs to mark their output
places

64

)

)

• Duplicate*

• DupDetail *

PNRegularTransition

duplicate the object

duplicate the details of the object (a
method is called by "Duplicate")

PNRegularTransition is responsible for storing and maintaining information for

regular transitions. As shown in Figure 4.4, a regular transition has a list of pointers to

output arcs and maintains a pointer to the place which owns this transition.

inputPlaceArcs is a list of pointers to input place arcs, which in turn store pointers to

the input places for this transition; inputPlaceArcs is used by the Code Generator to

generate boolean statements to check for the existence of certain objects ; and

itemNumber is the number of the item represented by this transition within a GUI

object. Variables and functions for this class are described below:

transitionID

outputArcs

inputPlaceArcs
-+--a► •••

belongTo

itemNumber

a place a place a place

Figure 4.4 Instance of PNRegularTransition .

65

)

)

1) Instance Variables:

• outputArcs

• inputPlaceArcs

• belongTo

• itemNumber

2) Member Functions:

• CLis_a*

• AddOutputArc

• RemoveOutputArc

• AddlnputPlaceArc

• RemoveinputPlaceArc

• DoWriteSelf/DoReadSelf

• CheckSyntax

• MarkOutputPlaces

• GetBelongTo

• SetBelongTo

• GetitemNumber

• GetOutputArcList

• Duplicate*

• DupDetail*

list of pointers to output arcs

list of pointers to input place arcs

pointer to a place which owns this
transition

number of the item represented by this
transition

return a defined integer to indicate the
type of object

add an output arc to outputArcs

remove an output arc from outputArcs

add an input place arc to
inputPlaceArcs

remove an input place arc from
in putPiaceArcs

write/read its attributes to/from a file

check to determine if the initial transition
has an output arc

ask outputArcs to mark output places
(used during the process of checking
syntax)

return belongTo

set the value of belongTo

return itemNumber

return outputArcs

duplicate the object

duplicate the details of the object (called
by "Duplicate")

66

)

)

PNQuitTransition

PNQuitTransition is responsible for storing and maintaining information

regarding quit transitions. This class has the following variables and functions:

1) Instance Variables:

• inputPlaceArcs

• belongTo

• itemNumber

2) Member Functions:

•CLis_a*

• AddlnputPlaceArc

• RemovelnputPlaceArc

• Do WriteSelf/DoReadSelf

• GetBelongTo

• SetBelongTo

• GetltemNumber

• Duplicate*

• DupDetail *

list of pointers to input place arcs

pointer to a place which owns this
transition

number of the item represented by this
transition

return a defined integer to indicate the
type of object

add an input place arc to
inputPlaceArcs

remove an input place arc from
inputPlaceArcs

write/read attributes to/from a file

return belongTo

set the value of belongTo

return itemNumber

duplicate an object

duplicate the details of an object (called
by "Duplicate")

67

)

PNArc

PNArc is a subclass of CLObject and is an abstract class which maintains

common information of arc objects. Variables and functions are described as follows:

1) Instance Variables:

• transition

• place

2) Member Functions :

• CLis_a*

• GetPlace

• GetTransition

• SetPlace

• SetTransition

• Do WriteSelf/DoReadSelf

• BuildConnection

• ReleaseConnection

• DupDetail*

PNinputArc

pointer to a transition connected by this
arc

pointer to a place connected by this arc

return a defined integer to indicate the
type of object

return place

return transition

set the value of place

set the value of transition

write/read attributes to/from a file

virtual method

virtual method

duplicate the details of an object (called
by "Duplicate")

PNinputArc is responsible for maintaining information for an input arc. There

are no variables for this class and member functions are described as follows:

• CLis_a*

• Do WriteSelf/DoReadSelf

return a defined integer to indicate the
type of object

write/read attributes to/from a file

68

)

• BuildConnection

• ReleaseConnection

• Duplicate*

• DupDetail*

PNOutputArc

ask place to add an input arc to its input
arc list and ask transition to create an
input place arc

ask place to remove an input arc from its
input arc list and ask transition to
remove an input place arc which
maintains a pointer to place

duplicate this object

duplicate the details of an object (called
by "Duplicate")

PNOutputArc is responsible for maintaining information and behaviors for

output arcs. This class has the following variables and functions:

1) Instance Variables:

• predicate

• messages

• sequenceNumber

2) Member Functions:

• CLis_a*

• Do WriteSelf/DoReadSelf

• BuildConnection

• ReleaseConnection

the predicate inscribed on this output arc

a list of messages inscribed on this output
arc

the sequence number inscribed on this
output arc

return a defined integer to indicate the
type of object

write/read attributes to/from a file

ask transition to add this output arc to
its output arc list

ask transition to remove this output arc
from its output arc list

69

)

• MarkOutputPlace

• GetMessageList

• SetMessageFromBR

• Duplicate*

• DupDetail*

4.3. Graphics Object Classes

mark the place which is connected by this
output arc (called when syntax is
checked)

return messages

accept messages passed from the
Browser for storage

duplicate an object

duplicate the details of an object (called
by "Duplicate")

The graphics object (i.e., shape) classes are implemented to maintain graphic

representations of Petri net storage objects and are derived from the OSU Framework

shape library (Figure 4.5). Behaviors are inherited from parent classes. Each object

maintains a pointer to its corresponding Petri Net storage object . The variables and

functions of each class are described in each of the following subsections.

70

CLShape

Cl.Oval

Cl.Circle

Cl.Icon

..__ I : class of shape libary

M? > : f : class derived for Petri Net editor

) Figure 4.5 Class hierarchy of graphics object classes.

)

PNicon

PNicon is a subclass of CLicon, used for the representation of a graphics view

of a place.

1) Instance Variable:

• dataPointer

2) Member Functions:

• CLDraw Frame*

pointer to a corresponding place

draw an icon with place and a resource
ID inscribed

71

)

)

• CLis_a*

• CLReadSelf/CL WriteSelf*

• SetDataPointer

• GetDataPointer

• Duplicate*

• DupDeta.il*

PN Arrow Line

return a defined integer to indicate the
type of object

read/write all attributes from/to a file

set the value of dataPointer

return the value of dataPointer

duplicate an object

duplicate the details of an object (called
by "Duplicate")

PNArrowLine is a subclass of CLArrowLine, used for the graphic

representation of input or output arcs.

1) Instance Variables:

• dataPointer

• startNode

• endNode

pointer to a corresponding output or input
arc

pointer to a shape connected by the start
point of an arrow line (Figure 4.6)

pointer to a shape connected by the end
point of an arrow line (Figure 4.6)

72

)

)

startNode of arrow line one

endNode of arrow line two

arrow line two

\
endNode of arrow line one
startNode of arrow line two

Figure 4.6 Arrow line startNode and endNode.

2) Member Functions:

• Cillrag*

• CLis_a*

• CLReadSelf/CL WriteSelf*

• SetDataPointer

• GetDataPointer

• SetStartNode

• GetStartNode

• SetEndNode

• GetEndNode

• NodesHilighted

• ShouldBeDuplicated

• Adjust

drag an arrow line by changing the values
of its locations

return a defined integer to indicate the
type of object

read/write all attributes from/to a file

set the value of dataPointer

return the value of dataPointer

set the value of startNode

return the value of startNode

set the value of endNode

return the value of endNode

return a boolean value to indicate if both
startNode and endNode are
highlighted

return a boolean value to indicate if an
arrow line should be duplicated

make a drawing of an arrow line clear

73

)

• Duplicate*

• DupDetail*

PNTwoLines

duplicate an object

duplicate the details of an object (called
by "Duplicate").

74

PNTwoLines is a subclass of CLSegment and is used to implement a pair of

lines to represent the graphics view of an initial transition.

1) Instance Variable:

• dataPointer

2) Member Functions:

• CLDrawFrame*

• CLis_a*

• CLReadSelf/CL WriteSelf*

• SetDataPointer

• GetDataPointer

• Duplicate*

• DupDetail*

PNRect

pointer to a corresponding initial
transition

draw a pair of lines

return a defined integer to indicate the
type of object

read/write all attributes from/to a file

set the value of dataPointer

return the value of dataPointer

duplicate an object

duplicate the details of an object (called
by "Duplicate")

PNRect is a subclass of CLRectangle, used to represent the graphics view of a

regular transition or a quit transition.

1) Instance Variables:

• dataPointer

2) Member Functions:

• CLis_a*

• CLReadSelf/CL WriteSelfl<

• SetDataPointer

• GetDataPointer

• Duplicate*

• OwningiconHilighted

• Duplicate*

• DupDetail *

PNLabel

pointer to a corresponding transition

return a defined integer to indicate the
type of object

read/write all attributes from/to a file

set the value of dataPointer

return the value of dataPointer

duplicate itself

return a boolean value to indicate if an
icon, representing the place which owns
a transition represented by this rectangle,
is hilighted

duplicate an object

duplicate the details of an object (called
by "Duplicate")

PNLabel is a subclass of CLLabel. It shows the id of a transition. It keeps a

pointer to the graphics object which is labeled.

1) Instance Variables:

• cpdShape

2) Member Functions: .

• CLDrawFrame*

• CLis_a*

pointer to a labeled shape

draw text .

return a defined integer to indicate the
type of object

75

)

• CLReadSelf/CL WriteSelf-l'

• GetCpdShape

• Duplicate*

• DupDetail*

4.4. PNGraphicsView Class

read/write all attributes from/to a file

return the value of cpdShape

duplicate an object

duplicate the details of an object (called
by "Duplicate")

76

The PNGraphicsView class is responsible for the manipulation of shapes

displayed in a window and user interactions. The storage structure (Figure 4.7)

fShapeList contains a list of pointers directed toward instances of standard data

structures. Standard data structures, such as linked lists, are defined in the OSU

Framework data structure library. Pointers to shapes are stored in these instances of

data structures and CLGraphicsView navigates the shapes by iterating its storage

structures, based upon the following algorithm:

CLiter nextDataStructure(fShapeList);
CLCollection *aDataStructure;
CLShape *aShape;
while (aDataStructure = (CLCollection *) nextDataStructure())
{

CLiter next(aDataStructure);

while (aShape = (CLShape *) next())

} ;

)

fShapeLis

►

•
•
•

• • • a linked list

Figure 4.7 Storage structure (fShapeList) of CLGraphicsView.

For undo/redo or paste actions, CLGraphics View implements fU ndoShapeList

and fClipShapeList, each of which have a storage structure (Figure 4.7) similar to that

for fShapeList. The subclasses of PNGraphicsView, in relation to CLGraphicsView,

reflects the following instance variables:

• CLObjList *tPNShapeList;

• CLObjList *tPNUndoShapeList;

• CLObjList *tPNClipShapeList;

• PNHelper *fHelper;

• Boolean fShowDetail;

The variables tPNShapeList, tPNUndoShapeList, and fPNClipShapeList are instances

of CLObjList and their functionalities are as follows: 1) fPNShapeList stores pointers
'

toward shapes which are to be displayed on the screen; 2) fPNUndoShapeList stores

pointers toward shapes which are to be used when an "undo" action is taken; and 3)

fPNClipShapeList stores pointers for the shapes which are duplicated when a paste

77

)

)

action is undertaken. It follows that tPNShapeList is added to fShapeList to enable

manipulation by the methods defined for CLGraphics View of shapes stored in

tPNShapeList. In similar fashion, tPNUndoShapeList is added to fUndoShapeList

and tPNClipShapeList is added to fClipShapeList. In turn, fShowDetail notes whether

or not the view is in the dialog pop-up mode for requesting additional information. The

boolean value of fShowDetail is set when the user checks or unchecks "Show Details"

from the "Edit" menu. Finally, fHelper is considered in the following section.

PNHelper

The change in shapes will affect corresponding data elements, it is also true that

the update of data elements may affect corresponding shapes. Consistency between

shapes and data elements must be maintained by some objects. However, it is not

good idea to demand that PNGraphics View or PNPetriNet enforce the principle of

consistency since that would serve to reduce the degree of cohesion within the two

classes [Budd 90, Lewis 90]. Thus, PNGraphicsView is devoted primarily to the

manipulation of shapes, whereas PNPetriNet was developed for the maintenance of

data elements within a Petri net; each is required to focus upon its defined and specific

purpose, maintaining internal methods directed to that end. A Petri net may be

represented as a shape in the PN editor, but may be represented in a different manner in

a graphical sequencer; that is, it should be easily understood, easily extracted from

specific applications, and easily reused in new situations.

PNGraphicsView maintains an instance variable, fHelper of the ~lass

PNHelper. PNHelper is attributed the complicated task of maintaining consistency

between shapes and data. After a shape (or several shapes) is created or edited,

78

J

79

PNGraphicsView invokes fHelper to maintain consistency. Thus, the PNHelper class

is defined in the following code:

class PNHelper : public CLObject
protected:

PNPlaceHelper *fPlaceHelper;
PNTransitionHelper*fTransitionHelper;
PNinputArcHelper *finputArcHelper;
PNOuputArcHelper *fOutputArcHelper;
PNGraphicsView *fTheView;
CLObjList *fPNClipDataList;

public:

} ;

Boolean CreateData(CLShape*aShape, Boolean pShowDetail);
void DoubleClick(CLShape *clickedShape);
void DuplicateData(CLObjList *aShapeList);
void ReleaseData(CLObjList *aShapeList);
void AttachData(CLObjList *aShapeList);
void Reset () ;
PNHelper(PNGraphicsView *pTheView);
~PNHelper ();

The class PNHelper has instances of the following classes: PNPlaceHelper,

PNTransitionHelper, PNinputArcHelper, and PNOutputArcHelper. The major

methods for these four helper classes are described as follows:

1) PNPlaceHelper

• GetPlacelnfor obtain details regarding a place

• U pdatePlacelnfor help a place update information

• BringDialog invoke a dialog box to ask for detailed

• HelpCreation help create a place

• DoubleClick obtain information from a place, display
the information in a dialog box, obtain
user update, then help modify · place
information

2) PNTransitionHelper

• GetTransitionlnfor obtain transition details

• UpdateTransitionlnfor help a transition update information

)

)

• BringDialog

• HelpCreation

• DoubleClick

3) PNinputArcHelper

• HelpCreation_Phasel

• HelpCreation_Phase2

4) PNOutputArcHelper

• GetOutputArclnf or

• UpdateOutputArclnfor

• BringDialog

• HelpCreation

• DoubleClick

80

invoke a dialog box to ask for detailed or
updated transition information

help create a transition

obtain transition information, display the
information in a dialog box, obtain user
update, then help modify transition
information

help create an input arc

help create an input arc

obtain details regarding an output arc

help an output arc update its information

invoke a dialog box to ask for detailed or
updated information about an output arc

help to create an output arc

obtain information from an output arc,
display the information in a dialog box,
obtain user update, then help modify
output arc information

As may be seen from the above definitions, these classes are used to serve as

data element interfaces for a Petri Net model. Since they are responsible for displaying

detailed base data and obtaining updated information through the invocation of dialog

boxes, they may be treated as observer classes [Budd 90] for the base data elements in

a Petri Net. The instance variables of these classes are used by the PNHelper methods

"CreateData" and "DoubleClick" .

)

)

_J

1) CreateData: According to the type of the newly created shape,

PNHelper asks an observer object to assist in the creation of a Petri Net

storage object

2) DoubleCiick: PNHelper asks an observer object to accommodate

double-click actions in accordance with the type of the parameter,

"clickedShape."

In addition, "DuplicateData" is called when a cut, copy, or paste action is

performed in PNGraphics View, "ReleaseData" is called when a cut or undopaste action

is performed, and "AttachData" is called when an undocut or paste action is performed.

Finally, "Reset" is called to reset fPNClipDataList for the next cut or copy action.

In the remaining subsections, the variable actions for PNGraphics View are

considered.

Dragging

Before a shape can be dragged, the previous shape location is saved and

combined with the view notify region in a new notify region. After a shape is dragged,

the new shape location is set and combined with the view notify region in a new notify

region. To undo dragging actions, PNGrapicsView unites shape regions with notify

regions, switching the values of previous and current shape locations and uniting them

with the new region. To redo a dragging action, PNGraphicsView repeats an "undo

the drag" action.

81

_)

For dragging action, only shapes' information can be updated. This is because

the Petri Net storage objects are not concerned with dragging action. The methods of

PNGraphics View related to dragging action may be summarized as follows:

• PNBeforeDrag record old positions and invalidate the
regions for shapes which are to be
dragged
(called by "UserBeforeTrackMove*")

• PNCountTotalOffset determine the offset for dragging

• PNAfterDrag record the new locations and invalidate
the new regions for dragged shapes
(called by "UserAfterTrack:Move*")

• CLU serDuringTrack:Move* draw a rubber band

• CLDragUndo* undo a drag action

• CLDragRedo* redo a drag action

Cutting

PNGraphcisView reviews fPNShapeList, removing any shapes which are to be

cut and adding them to fPNUndoShapeList. Each removed shape is checked to

determine if should be duplicated and added to fPNClipShapeList. If the response is

positive, PNGraphcisView asks the shape to duplicate itself and returns the duplicated

copy, which is then added to fPNClipShapeList for subsequent paste actions. The

regions of the shapes removed from fPNShapeList are united with the notify region of

the view.

After the shapes are processed, PNGraphics View asks fHelper to revised the

data (i.e., the storage structures). PNGraphicsView sends the message

"DuplicateData" to fHelper, passing fPNClipShapeList to fHelper to assist in

82

)

)

duplicating the data in correspondence with the shapes stored in fPNClipShapeList.

PNGraphicsView then sends the message "ReleaseData" to fllelper, providing

fPNUndoShapeList as a parameter . fHelper directs the Petti net model to remove data

in correspondence with the shapes stored in fPNUndoShapeList.

To undo a cut action, PNGraphics View asks fHelper to revise the data, passing

fUndoShapeList to send the message "AttachData" to fHelper. After recovery of the

data, PNGraphicsView removes the shapes from fPNUndoShapeList and adds them

back into fPNShapeList, where the processed shape regions are combined in the notify

region of the view. In addition, to redo a cut action, PNGraphicsView repeats the

steps taken for cut actions.

The PNGraphics View methods related to cut action may be summarized as

follows:

• PNCut

• PNPlusAClipShape

• PNCutUndo

Copying

undertake a cut action, a method called by
the "Edit" menu and "UserRedo*"

duplicate a shape and add the new copy
to fPNClipShapeList, a protected method
called by "PNCut" and "PNCopy"

undertake an undo cut action, called by
"UserUndo*"

·· PNGraphicsView reviews fPNShapeList and duplicates shapes which are to be

copied. The duplicated copies are inserted in fPNClipShapeList for subsequent paste

actions. To make copies of the data, PNGraphicsView sends the message

"DuplicateData" to fllelper, passing the fPNClipShapeList to fHelper. To undo a copy

action, fPNClipShapeList is reset for the next copy or cut action and fHelper is asked

83

)

)

to reset its fPNClipDataList value. To redo a copy action, PNGraphicsView repeats

the actions undertaken for a copy action.

The PNGraphics View method for copy action:

~ PNCopy

Pasting

undertake a copy action, called by the
"Edit" menu and "UserRedo*"

PNGraphicsView reviews fPNClipShapeList and duplicates shapes. The

duplicated copies are added to fPNShapeList and fPNUndoShapeList. To display the

new shapes, the regions of new shapes are united with the notify region of the view.

After processing , PNGraphicsView sends the message "DuplicateData" to ffielper

with fPNUndoShapeList given as the parameter. Then, fHelper iterates

fPNUndoShapeList and obtains a data pointer for each shape in the list. The data are

asked to duplicate themselves and to return copies, whereupon ffielper asks the Petri

Net model to add the new elements to its lists.

To undo a paste action, PNGraphicsView reviews fPNUndoShapeList and

removes the shapes from fPNShapeList which appear in fPNUndoShapeList. The

shape regions are then united with the notify region of the view. After processing,

PNGraphicsView sends the message "ReleaseData" to fHelper with

fPNUndoShapeList given as the parameter and fHelper reviews the

fPNUndoShapeList and obtains data pointers for the shapes. By sending a message to

the Petri Net model and passing the data pointer as a parameter, ffielper asks the Petri

Net model to remove the data from the model. To redo a paste action,

PNGraphicsView repeats the actions taken for a paste action.

84

I

')

)

)

The PNGraphicsView methods related to paste actions are summarized as

follows:

• PNPaste

• PNU ndoPaste

Creating

undertake a paste action, called by the
"Edit" menu and "UserRedo*"

undo a paste action, called by
"UserUndo*"

To create a shape, by default PNGraphicsView uses the current shape tool set

when the palette tool icon is highlighted. The region of the created shape is united with

the notify region of the view and the shape pointer is added to fPNShapeList and

fPNUndoShapeList. PNGraphicsView sends the message "CreateData" to ±Helper

with the newly created shape and a boolean value for fShowDetail. PNGraphicsView

receives the boolean value returned from "CreateData." If the boolean value is false,

PNGraphicsView removes the shape from fPNShapeList.

To undo a create action, PNGraphicsView undertakes an undo paste action,

removing the shapes appearing in fPNUndoShapeList from fPNShapeList and asking

±Helper to remove the corresponding data from the Petri Net model. The shape regions

in fPNUndoShapeList are then united with the notify region of the view. To redo a

create action, PNGraphics View repeats the actions necessary for an undo cut action,

adding the shapes appearing in fPNUndoShapeList to fPNShapeList and asking

±Helper to add the corresponding data back into the Petri Net model. The shape

regions in fPNUndoShapeList are then united with the notify region of the view.

The PNGraphicsView methods related to a create action are summarized as

follows:

85

)

)

)

• PNPtlnicon

• PNPtlnRect

• PNMouseDownLegally

• PNMouseReleaseLegally

• PNBringStopAlert

• CLReleaseMouse*

• CLUserNewShape*

Other Methods

return an icon which a point is placed
within
(called by "PNMouseDownLegally" and
"PNMouseReleaseLegally")

return a rectangle which a point is within
(called by "PNMouseDownLegally" and
"PNMouseReleaseLegally''),

determine if the mouse has been clicked
rn a legal area (called by
"U serBeforeTrackMove*")

determine if the mouse has been released
rn a legal area (called by
"U serAfterTrackMove*")

invoke a stop alert telling the user that the
mouse has not been clicked or released in
a legal area (called by
"User AfterTrackMove*" and
"U serBeforeTrackMove*")

a method which is overridden to
accomplish special purposes for the
creation of a new shape, such as asking
fHelper to create a new data element
corresponding to the newly created shape

a method which is overridden to create a
new shape in accordance with the current
shape tool

In CLGraphicView, to accomplish certain domain-specific tasks,

PNGraphics View overrides all methods whose names begin with "User." These

methods are defined as follows:

• UserAnalysisEvent*

• U serCheckAction*

for additions to the "AnalysisEvent" of
CLGraphicsView, special conditions
must be checked

determine which actions will be taken

86

) • UserBeforeTrackMove*

• U serAfterTrackMove*

• UserUndo*

• UserRedo*

)

_)

completes set-up tasks before the mouse
can be dragged, such as checking syntax
to determine if a creation action is
involved, or calling "PNBeforeDrag"
prior to a drag action,

completes certain tasks after the mouse is
dragged, such as checking syntax if a
creation action, or calling "PNAfterDrag"
if a drag action

undo an action

redo an action

87

)

5. Experience with the Petri Net Editor

In this chapter, four example applications are implemented with the PN editor,

including MiniDraw, a help system, a calculator, and a record query. The intent of the

experiment was to determine the degree to which use of the editor would reduce

programming time and effort required to implement a GUI application.

5.1. MiniDraw

The MiniDraw application supports multiple concurrently displayed windows,

cut-and-paste editing operations, reading and writing data to and from document files

on disk, undo and redo of multiple commands, and setting patterns for drawing a

variety of shapes. Figure 5.1 shows a basic screen dump for this application.

88

)

.J

s File Edit Pattern

Tool Mini Draw_l

~

D
D

§0

■·----■

■1----·■

: : : : : :: : : : : : : : : : :: : : : : :: ::: ; : : : : : '. :: : ; : : : : : : : : : : :: : : : : : : : : : : : : : : : : :: : : : : ;~: ~

Figure 5.1 Basic screen for Mini Draw.

The design for this example is specified in Figure 5.2. The annotated output

arcs for this Petri net are listed as follows (i.e., each row indicating a single output arc,

the "from" column indicating the transitions from which the output arcs are drawn, the

"to" column indicating places to which output arcs are connected, and the "seq. no."

column indicating the sequence numbers inscribed on the output arcs).

from to
-- --
tl pl
tl p2
tl p3
tl p4
tl p7
tl p5
t3 p2

m~ages

CheckMenuitem(3)

Hilightltem(l)
EnableMenuitem(3)
EnableMenuitem(5)

seq.
no. comments

1
2
3
4
5
6
0

check "White" menu item

hilight item 1 of palette tool
enable "Close" menu item
enable "SaveAs" menu item

89

90
seq.

from to m~ges no. comments
-- -- --

DisableMenultem(4) disable "Save" menu item
t3 p7 0
t4 p2 EnableMenultem(3) 0 enable "Close" menu item

EnableMenultem(4) enable "Save" menu item
EnableMenultem(5) enable "SaveAs" menu item ·

t4 p7 DoOpenO 0 open a file with a SFGetfile
dialog

t5 p2 0
t6 p2 0
t6 p7 DoSave0 0 save the file
t23 p2 EnableMenultem(4) 0 enable "Save" menu item
t23 p7 DoSaveAsO 0 do "SaveAs"
t8 p3 0
t8 p7 Undo◊ 0 undo the action
t9 p3 0
t9 p7 Redo◊ 0 redo the action
tlO p7 aView=GetViewByName("CLGraphicsView")

1 get the graphics view from
window

tlO p3 EnableMenultem(5) 2 enable "Paste" menu item
a View::DoCut() ask a View to do a cut action

tll p7 aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
tl 1 p3 EnableMenultem(5) 2 enable "Paste" menu item

a View::DoCopy() ask a View to do a copy action
t12 p7 a View=GetViewByName("CLGraphics View")

) 1 get the graphics view from
window

tl2 p3 a View::DoPaste() 2 ask a View to do a paste action
t13 p7 a View=GetViewByName("CLGraphics View")

1 get the graphics view from
window

t13 p3 EnableMenultem(3) 2 enable "Cut" menu item
EnableMenultem(4) enable "Copy" menu item
a View::DoSelectAllO select all shapes

t14 p7 aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
t14 p4 CheckOnlyltem(l) 2 check "Black" menu item

aView::SetPattem(l) set pattern to "Black"
tl5 p7 aView=GetViewByName("CLGraphicsView")

1 get the graphics view from
window

t15 p4 CheckOnly Item(2) 2 check "Gray" menu item
a View::SetPattem(2) set pattern to "Gray"

t22 p7 aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
t22 p4 CheckOnly Item(3) 2 check "White" menu item

a View::SetPattem(3) set pattern to "White"
t16 p7 a View=GetViewByName("CLGraphics View")

1 get the graphics view from
window

t16 p5 Hilightltem(l) 2 hilight "selectionTool" icon
a View: :CLSetCurrentS hapeTool(selection Tool)

set the current tool to
"selection Tool"

)

)

,j

from to
-- --
tl 7 p7

tl 7 p5

t18 p7

tl8 p5

t19 p7

t19 p5

t21 p7

t21 p5

seq.
messages no. comments

aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
Hilightltem(2) 2 hilight "selectionTool" icon
a View::CLSetCurrentShapeTool(Rectangle)

set the current tool to
"Rectangle"

a View=GetViewByName("CLGraphics View")
1 get the graphics view from

window
Hilightltem(3) 2 hilight "RoundRect" icon
a View::CLSetCurrentShapeTool(RoundRect)

set the current tool to
"RoundRect"

aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
Hilightltem(4) 2 hilight "Oval" icon
a View::CLSetCurrentShapeTool(Oval)

set the current tool to
"Oval"

aView=GetViewByName("CLGraphicsView")
1 get the graphics view from

window
Hilightltem(S) 2 hilight "Line" icon
a View::CLSetCurrentShapeTool(Line)

set the current tool to
"Line"

For this example, messages inscribed on output arcs are methods inherited from

the OSU Framework, and "DoCut", "DoPaste", "DoCopy", "DoSelectAll",

"SetPattern", and "CLSetCurrentShapeTool" are CLGraphicsView methods. Due to

the design of the OSU Framework, a CLGraphicsView object can not be directly

accessed. Thus, to send a message to the view within a window, "GetViewByName"

is sent to the window place to obtain a pointer for the CLGraphics View object. The

returned pointer is stored in a variable, a View, which can then be declared a local

variable for the method generated for that transition, or it can be declared as an instance

variable for the place sending the message.

91

)

J

92

.__,........ About MniDra.w

'1:22 White
'1:20

-t5 New '1:23

Selction
Tool .----,

't16

p5, 128

Palette

Figure 5.2 Petri net representation for MiniDraw example (screen dump with added

textual explanations of entities).

For this example, 529 lines of code were automatically generated and 16 lines

of code were added by hand. The code added by hand is composed of "include"

statements and the statements declaring "a View" as a local variable. The source

programs for this application are listed in Appendix B.

)

_)

5.2. Help System

It is intended that the help system is integrated with the PN editor to serve as an

on-line help system and as a means to illustrate the utility of the Petri net editor. To

invoke the help system, the user selects "Help" from the "Others" menu (Figure 5.3).

(Note that when this system is integrated into the editor, the "Quit" item will be

eliminated and the "Others" menu will become the fifth menu main title.) To introduce

this system, a modeless dialog box is popped-up, from which two buttons, "Exit" or

"Next Page," can be selected to obtain additional information (Figure 5.4).

Figure 5.3 Help system menu.

This is a help system for PNEditor.
Please press "Ne Ht Page" for further help
information, or press "EHit" to terminate
this system.

[__ EH_it_) (NeHt Page)

Figure 5.4 Dialog box for the help system.

If the user selects the "Next Page" button, succeeding modeless dialog boxes will

appear in correspondence with the user commands. The sequence of these dialog boxes

is illustrated in Figure 5.5.

93

)

)

If the user selects the "Next Page" button, succeeding modeless dialog boxes will

appear in correspondence with the user commands. The sequence of these dialog boxes

is illustrated in Figure 5.5.

Thi• 11 a help system for PNEdltor.

introduction
Ple■H pr■H "NeKt Peg■• for further h■lp
Information, or preH "EKlt" to terminate
this system,

help system menu

Please pre11 •create• button to
see how to create a node or an
arc.
Please pre11 "Modify" button to
see how to edit an eKisted net.
Please pre11 "Browser· button to
see how to use the Browser,

([Hit l
~

(Preuiousf age

how to modify

To dreg • node or a group of nodes:
hlllght It (or them) the■ drag the mouse.

I

I ,
To cut or CDP! a n1de or a grt11pt 1f nodes, hillght II (or
theml then select ·cut' or 'Copy' Item from 'Edit'
menu

To paste the shapes In the clipboard, select 'paste'
llem from the 'Edit" menu

[Pn!ulou1 Page]

how to use Browser

To lnuoke the Browser:

[Kit

I .select "Browser Hierarchy" from the "Tools" menu.
2. seclfy the folder contains desired header flies
3. click the clan label from the tree chart
4. hillght desired methods
s. select •copy• from the "Edit" menu
6. choose "PNWlndow• from "Window• menu to go beck
to Petri nets window
7. hlllght the output arc which the menages are going
to be pasted
8. select "Paste• from the "Edit" menu

9. doubly-cllcklng the output arc to see If the messages
haue been pasted

[EHlt I ~ [Preulou1 P11ge j

how to create 1 .
To create e piece :
I. hlllght one the nine place Icons In the
palette.
2. pn11 the fflOUH In the Petri Nels
window and drag the mou1a.
3. enter Information In the pop up
dlalog

To create an output nrc:
I, cllck the output arc Icon In the
palette tool.
2. pr••• th• mou1a In en ewlatad
transition and dreg the mouH Into en
place,

I £Hit] I Prau1ou1] I NeH1 Page

how to create 2.

To tl'1!1te an Input ■re ■ran lnhlbllor arc:
1. cllct th• Input ire Icon ,r Inhibitor ■re In the
p1l1t11 toot
2, preu th• mouse In 1n Hlated place an• then
dng the llne
3. If the 1110011 releaaed In a■ eHlate• t1111111t1on,
thl ere la cnated
4. 1111 1 trensitlo■ ii creetld
Note: only Mo•alDIClleg piece end llert places ce■
be co1nected by Inhibitor ■res

[Pl'1!u1Ha Page]

Figure 5.5 Overview of the help system.

94

)

J

The Petri net representation for this example is given in Figure 5.6. One menu

place and six modeless dialog places are included in the representation. Relationships

among these places are specified by arcs, but no messages are inscribed on any of the

output arc. · Rather, the connections among arcs, places, and transitions imply the

creation and deletion of dialog relationships. The principal advantage for the use of the

PN editor for this type of function is that the user obtain a view of an entire system

without becoming lost in lists of detailed statements.

t1 6

t1 5 U4

- ...
""~-• D
~-e
p7, 175

Figure 5.6 Petri net representation for the help system.

- I.a
"'~-• D
~--e

p6, 174

The size of the generated programs was 330 lines of code, with 327 lines of

code generated by Petri net editor. Three "include" statements were added by hand.

95

96

5.3. Calculator

The third example built with the Petri net editor was a calculator. The calculator

consisted of a modeless dialog box with buttons for accepting user input and an

editText box in which results can be displayed (Figure 5.7). In the example given, a

calculator is shown on the screen after the application is launched. The "Off' button

(Figure 5.7) is used to turn off the calculator and to quit the application.

81 I

080[:J
0008
G000
0000
(o JO -

§0§ Dill ID= 128 fror

EJll0 ~1
~~0[:j
~~~~ 
~~~~ 
~~~TI! 

[ 0 L2]~ ~= 
_/ 

■ 

Figure 5.7 Calculator and its resource format. 

The Petri net representation for this application is shown in Figure 5.8. A 

dialog place was drawn for the derivation of a subclass from the CLModelessDialog 

class. Five instance variables, given as follows, were declared for saving application-

specific data (Figure 5.9) : 

• double fOperand; 

• double fR.esult; 

• char fOperator; 

store the current value of the operand 

stores the result of an operation 

stores the arithmetic operator 



) 

) 

• char *fStr, 

• Boolean hasDecPt; 

~□ 

' ' 
-t1' 

'()./)"' 

t20 
'C"' 

t2 

~( 

~3 

1/' 
t4 

,.yt' 
t5 

'\6 '+' H 1_ I 

t1 

~B 

stores a number in the form of text 

indicates if there is a decimal point within 
the current operand 

net 

'{I' 

'7' 

'6' 

'5' 
'4' 

,.,, 
,,,:. 

~I -t, t1 0 'l' 
'l7' 

0 0 • Io O o O O O o O o O o O o O o O o O o O o O o O o O o O O O o O o Io O o O O O O O O O o I O O o O ♦ 0 0 0 o O o O o o o O: o o o o o : : o o o I: 0 o O: 0 o::: 0::: o:: 0 : o o:: 0 o: o O o O:: o o: 0 o: o o o O o o o O O O O O o O o O O o o O O O o I o O ♦ 0 o O o O o O O O O O o O O O O I O O O O o O o O O O o O o O o O o O :: : ; ~: 

Figure 5.8 Petri net representation for a calculator 

97 



) 

) 

Place Information 

Place ID pl 

Resource Type : DIALOG 

Resource ID ~l1_2_s ___ ~ 

0 Modal 

@ Modeless 

Instance Uariables : 

double fOperand 
double fResult 
char fOperator 
char *fStr 
Boolean hasDecPt 

( Cancel ) 

( OK ) 

Figure 5.9 Dialog request for information on a dialog place. 

As shown in Figure 5.8, 19 transitions were created to represent digital 

buttons, the decimal point button, the arithmetic operation buttons, and the "Off' button 

for a calculator. The transition t20, which represents the "Off" button, is a quit 

transition that terminates the execution of this application. The dialog place is 

connected by an output arc from the initial transition, indicating that a modeless dialog 

object is created after the application is started. The message "DoClear()" is sent to the 

modeless dialog, initializing the instance variables for a new modeless dialog object. 

This method is also called when the "C" (clear) button is pressed. 

When a digital button is selected by the user, the digit is appended to fStr, 

which is then converted to a number. The value of fStr is then displayed in the editText 

box, which is the item 1 in the modeless dialog resource representation given in Figure 

98 



) 

5.7 . Consider this button as an example. The messages inscribed on the output arc 

(see Figure 5.8) from the transition tlO to the place pl are 

GetDigit("l "), 

fOperand=func: :atof(fStr), 

and 

SetltemText(l,fStr), 

in which "GetDigit" is a new member function of the dialog place, "atof' is a string 

convert function defined in the C library, and "SetitemText" is a method from the 

CLDialog class used to display a string in the editText box (Figure 5.10). 

OutputArc Information 

Sequence # : ..... 1 o ____ ...., 
Messages 

GetDigit(" 1 ") 
fOpe rand =fun c::a t of( fStr) 
Seti temTeHt(l, fStr) 

Predicate : 

( Cancel ) 

( OK ) 

Figure 5.10 Messages inscribed on the output arc drawn from tlO to p 1. 

When the first decimal point is entered, '.' is appended to fStr, which is then 

displayed in the editText box . If a decimal point already exists, then nothing is done 

when the '.' button is selected. The messages "fStr=func::strcat(fStr,".'')", 

"hasDecPt=true", and "SetitemText(l,fStr)" are inscribed on the output arc from t19 to 

99 



_) 

100 

pl (Figure 5.11). The predicate "!hasDecPt" is entered by the user. The statements 

generated for the transition t20 are as follows : 

If ( ! hasDecPt) { 
fStr=strcat(fStr, '.'); 
SetitemText(l,fStr); 
hasDecPt=true; 

OutputArc Information 

Sequence # : .... Io ____ -
Messages 

fStr=func::strcat( fStr, '. ') 
Set I temTeHt( 1, fStr) 
hasDecPt= func:: truej 

Predicate : 

I !hosDecPt 

Figure 5.11 Messages and predicate inscribed 
on the output drawn from t19 to pl. 

( Cancel ) 

( OK ) 

When an operation button is selected, the saved operation is performed, the result of 

the operation is displayed in the editText box, and the new operator is saved. This is 

done by sending messages back to the modeless dialog box. For instance, the 

following messages are inscribed on the output arc from the transition t6, which 

represents the'+' button, to pl: 

• PerformCalculation() do the calculation according to the old 
value in fOperator 

• func::num2str(fResult,fStr) convert the result to a string 



) 

• SetltemText(l,fStr) show the result value 

• fOperator= func::'+' 

• func::strcpy(fStr,"0") 

save the operator for later use 

set the string to "0" 

• hasDecPt=func: :false 

• fOperand=func::0 

set the value of hasDecPt to false 

reset the value of fOperand 

OutputRrc Information 

Sequence # : ._Io ____ _, 
Messages 

IP e rf ormc a I cu I at ion () 
fun c: :n um2 st r( fRes ult, fStr) 
Set I temleHt( 1, fStr) 
fO p era to r=fu nc:: '+' 
func::strcpq(fStr, "o") 

Predicate : 

Figure 5.12 Messsages inscribed on the 
output arc drawn from t6 to pl. 

( Cancel ) 

( OK ) 

101 

Note that "num2str" is a user-defined function which converts a number type "double" 

to a string. This example demonstrates how to attach functionalities to user interface 

objects through the use of messages · inscribed on output arcs. The message 

"PerformCalculation" is an application-specific method for the modeless dialog place 

and is written by the user. The code for"PerfonnCalculation" should appear as 

follows: 



) 

switch(fOperator) { 
case '+': 

fResult=fResult+fOperand; 
break; 

case '-': 
fResult=fResult-fOperand; 
break; 

case '*': 
fResult=fResult*fOperand; 
break; 

case '/': 
fResult=fResult/fOperand; 
break; 

case '=': 
break; 

Some redundant segments of generated code can be abstracted into separate 

procedures to improve the program readability. For example, the following code 

segment appears in the methods for performing operation buttons, and can be 

abstracted into a single module for subsequent recall: 

PerforrnCalculation(); 
num2str(fResult,fStr); 
SetitemText(l,fStr); 
fStr=strcpy(fStr,"0"); 
hasDecPt=false; 
fOperand=0; 

Most of the code added by hand concerned management of key down events. 

The method "DoKeyDown" was overridden to convert the keycodes for pressed keys 

to the number of items in the modeless dialog box. This example demonstrates one of 

the limitations of the PN editor. That is, an action taken for a key down event cannot 

be specified with the editor. The size of the programs for this example was 395 lines, 

of which 285 lines of code were automatically generated and 110 lines were added by 

hand. 

102 



) 

103 

5.4. Record Query 

The record query example consists of a system for scrolling personal records 

within a file. After selecting "Open" from the "File" menu, the user chooses the file to 

be queried. A query dialog box with four buttons and three editText boxes is popped

up (Figure 5.13) to scroll the file. The "Next" and "Prev" buttons are selected to query 

the record. To change the contents of a record, new data are typed in and the "Change" 

button is selected to confirm the update (Figure 5.14). 

Name: 

Address: 

TEL: 

I Lin, Fangchen 

3045 NW Ashwook Dr. 
Couallis OR 97330 

1754-0229 

( Ne Ht ~ ( Pre u J ( Ch an g e J ( OK J 

Figure 5.13 Query dialog box. 

Name: I Lin, Fangchen 

3045 NW Ashwook Dr. 
Address : Couallis OR 97330 

TEL: 1754-0119 

( NeHt J ( Preu ) [ Ch11ng~ ( OK ) 

Figure 5.14 Select "Change" button to confirm update. 



104 

The Petri net representation of this example is given in Figure 5.15. Two menu 

places, pl and p2, are connected by an initial transition. Thus, two menus, the 

"Apple" menu and the "File" menu, were added to the menu bar after the application 

was launched. The transition t3 is drawn to represent "Open" and the quit transition t4 

is drawn to represent "Quit" in the "File" menu. Note that t3 has three output arcs 

connecting the menu place, the dialog place, and the window place. Therefore, after 

selection of "Open" , this view is retained on screen and a window object and a dialog 

Record_Query_Nets 

i:5 

... ' ............ '' ......... ', ........ ······· ................................................. . .... ... ... . .. . .. ... . ... .. . ... ··········· ............................... •'••······································ 
o • ', o: o o • 0 o •, 0 • 0 • o o ',Io o • o •I• o • o .. o O • t •I•', ', 0 •I• o .. • I.': • o ::, 0 • ':':':" , • , •, 0 o • ,I• I I• • t • ', o • I•*, t •I•', o .. .' .. o t •I• I .. • I• I .. •', too• o • o .. ,• •I.'.", o .. o t • •: ,:, o ::•:•:• ,:::::::::::::: 

Figure 5.15 Petri net representation for the record query example. 

!!!!!! 



) 

_j 

105 

The dialog place has four transitions representing four buttons in the query 

dialog: t5 for the "Ok" button, t6 for the "Next" button, t7 for the "Prev" button, and 

t8 for the "Change" button. Note that t5 has two input arcs from the dialog place and 

the window place, but that it has no output arcs, indicating that after selection of the 

"Ok" button, the dialog and window objects are deleted; t6, t7 and t8 each have both 

input and output arcs connecting the dialog and window places, in these cases 

indicating that the dialog and window objects still continue to exist following selection 

of the "Next", "Prev", or "Change" buttons. 

To get the next record in a file, the dialog place sends the message 

"fRec=GetNextRecord()" to the window place. The record obtained from the file is 

returned in the form of a string. To analyze that string and display the contents of the 

record separately, the dialog place sends the following messages to itself: 

fN ame=func::GetToken(fRec, 1) 

fAddr=func: :GetToken(fRec,2) 

tPhone=func::GetToken(fRec,3) 

SetltemText(5, fName) 

SetltemText(6, fAddr) 

SetltemText(7, ±Phone) 

"GetToken" is a user-defined function which takes two parameters, a string and an 

integer n. It parses the string and returns the nth token in the string; "func" is a 

keyword for indicating that "GetToken" is a function instead of a method; and 

"SetitemText" is a method inherited from the CLDialog class used to display a stn?g in 

an editText box. It may be observed that the contents of a personal record are stored in 



) 

) 

106 

three strings separately, then displayed in editText boxes. The above messages are 

inscribed on the output arc drawn from t6 to p5 (Figure 5.16). 

OutputArc Information 

Sequence # : ..... 12 ____ ..... 
Messages : 

fName=func::GetToken(fRec, 1) 
fAddr=func::GetToken(fRec,2) 
fPhone=func::GetToken(fRec,3) 
Set I temTeHt(5, fName) 
Set I temTeHt(6, fAddr) 

Predicate : 

( Cancel ) 

( OK ) 

Figure 5.16 Dialog box accepting messages. 

The output arcs with messages are summarized as follows. 

from to messages no. comments 
- -- --
t7 p4 tRec=GetPrevRecordO 1 obt.ain previous record 
t7 p5 fName=func::GetToken(fRec,l) 2 get first token 

fAddr.=func::GetToken(fRec,2) get second token 
fPhone=func::GetToken(fRec,3) get third token 
SetltemText(5,fName) display the name 
SetltemText(6,fAddr) display the address 
SetltemText(7,fPhone) display the phone no. 

t6 p4 tRec=GetNextRecordO 1 obt.ain next record 
t6 p5 fName=func::GetToken(tRec,l) 2 get first token 

fAddr=func::GetToken(fRec,2) get second token 
fPhone=func::GetToken(fRec,3) get third token 
SetltemText(5,fName) display the name 
SetltemText(6,fAddr) display the address 
SetltemText(7 ,!Phone) display the phone no. 



) 

j 

from to messages no. comments 
-- -- --
t8 p5 fName=GetltemText(5) 1 method of CLDialog 

fAdclr=GetltemText( 6) get the text of editText box 
fPhone=Getltem Text(?) 
fR.ec=func::strcat(fName,"f') concate fName with "f' 
fRec=func::strcat(fRec,fAddr) concate fRec with fAddr 
fRec=func::strcat(tRec,"t') concate tRec with "f' 
tRec=func::strcat(tRec,fPhone) concate tRec with fPhone 

t8 p4 ChangeRecord(fRec) 2 update the record 
t3 p4 DoOpenO 1 open a file 

char *IRec=GetNextRecordO obtain the first record 
t3 p5 char*IName=func::GetToken(IRec,1 )2 get first token 

char*IAdclr=func::GetToken(IRec,2) get second token 
char*lPhone=func::GetToken(IRec,3) get third token 
SetltemText(5,IName) display the name 
Setltem Text( 6,IAddr) display the address 
Setltem Text(? ,!Phone) display the phone no. 

t3 p2 3 

According to the design principles of the OSU Framework, a document object 

is responsible for reading and writing data contained in the model from/to disks. For 

this example, a document class was subclassed from the CLDocument class for: 1) 

reading the records from a file and building a linked list to store the records, 2) 

obtaining the next and previous records in the linked list, 3) modifying records, and 4) 

writing the records in the linked list to a file. However, a document object was created 

as an instance variable of a window object. Due to encapsulation, the dialog place 

cannot send messages directly to a document object for record manipulation. The 

methods implemented in a document object are called by sending messages to the 

window place, which then send corresponding messages to the document object. 

There were 549 lines of code in this example, with 283 lines of code generated 

with the Code Generator. The statements added by hand concerned creation of the 

document class, user-defined functions, and "include" statements. 

107 



108 

5.5. Statistics 

Time and Effort 

The time and effort required to implement these four examples is summarized as 

follows. 

MiniDraw Help System Calculator Query Record 

*lines of codes generated 529 327 285 283 

*MM (effort) 0.58 0.35 0.30 0.30 

*TDEV (time) 2.03 1.67 1.59 1.58 

*total lines of codes 545 330 395 549 

*MM (effort) 0.6 0.35 0.42 0.6 

*TDEV (time) 2.05 1.68 1.81 2.06 

) *%saving in effort 96% 99% 71% 50% 

*%saving in time 99% 99% 87% 76% 

*number of places 7 7 1 5 

*number of transitions 20 18 20 9 

*number of arcs 66 26 38 25 

*number of messages 50 0 61 30 



) 

J 

109 

Reusability 

The following table shows how many objects in the OSU Framework were 

used, how many subclasses were added, and how many methods in the OSU 

Framework were reused in each example. 

MiniDraw Help System Calculator Record Query 

objects 
in the framework used 31 15 10 19 

number of subclasses 
;d:hi 8 8 2 8 

number of methods 
used 276 71 64 109 

Currently, there are 81 classes (objects), 969 methods in the OSU Framework. Figure 

6.1, 6.2, 6.3, and 6.4 show the class hierarchies of the Framework with different 

patterns to indicate which objects were used or subclassed for these four examples. 



110 

PrintHandler 

) 

f i!:ii: :!ii:!:;:::::::I : object used 

~ : subclasses, where n is the number of subclasses 

Figure 6.1 Objects used and subclassed, the OSU Framework 

j 



111 

ArrayedCollection 

BArrayCollection Dictionary 

SortedObJList Queue 

Ji ! m: I : object used 

Figure 6.2 Objects used, the Data Structure class hierarchy 

) 

DiclterValue Diclter DictlterKey 

I j !j : H I : object used 

Figure 6.3 Objects used, the Iterator class hierarchy 

) 



112 

ArrowLine 

Square 

j i / / i I : objects used in the examples 

) Figure 6.4 Objects used, the Shape Library 

) 



) 

) 

6. Conclusion 

The implementation of the Petri net editor demonstrates the reusability of the 

OSU Framework classes, thus reaffirming the basic principle of reusable design. A 

number of bugs were reported as feedback during the coding phase for the 

implementation of the Petri net editor. 

As demonstrated in Chapter 5, the Petri net editor provides a favorable 

environment for the construction of GUI application prototypes, saving considerable 

programming time and effort. Since a graphical editor provides programmers with a 

useful application overview, this approach avoids the possibility of losing 

programmers in a confusing mass of statements. 

The major limitation of Petri net editor is that interactions among objects within 

a place cannot be specified. For example, the interactions among a view, a model, and 

a document, each of which are within a window object, cannot be specified. In the 

case of deriving subclasses from these classes, it is necessary for the developer to step 

beyond the use of the Petri net editor and to create domain-specific classes by hand. 

However, the newly derived classes are relatively easy to create since they can reuse 

both design and implementation from the OSU Application Framework. 

A significant task for the future improvement of the Petri net editor is to revise 

action specifications for transitions. As noted in Chapter 2, a transition, representing a 

113 



114 

mouse-selectable area in a GUI object, initiates action messages which react to user 

input. They are translated from a derived class method and the annotations inscribed 

on their output arcs are translated into statements of that method. However, some 

types of statement structures still cannot be derived from the specifications of output 

arcs, messages, predicates, and/or the sequence numbers currently provided by the 

editor. For example, an "if .. else" statement cannot be correctly described by using 

predicates. In addition, a loop structure cannot be represented by the use of any means 

currently available within the editor. 



J 

Appendix A. 

Statistics of Project : 
number of classes : 56 

7. Appendix 

lines of source code: 6695 (.h 1525 + .cp 5170) 

Statistics of Reusability : 
number of classes (objects) in the OSU Framework: 81 

number of methods in the OSU Framework : 969 

115 

lines of source code in the OSU Framework : 19090 ( comments are also 

counted) 

number of objects reused by PN editor : 33 

number of methods reused by PN editor : 262 



) 

_) 

Appendix B. 
II 
II myAlert.h 
II 
#include "cldialog.h" 

#ifndef MYALERT H 
#define MYALERT H 

class NoteAlert_128_6 : public CLNoteAlert { 
public: 

NoteAlert 128 6 (): (128) { SetName ("NoteAlert 128 6"); 
void DoMo°iiseDown(short pitemHit); -
void Doiteml(); 

}; II end of class NoteAlert 128 6 

#endif MYALERT H 

II 
I I my Alert. cp 
II 

#include "myAlert.h" 

#pragma segment myAlert 

void NoteAlert 128 6::DoMouseDown(short pitemHit) { 
switch(pitem.Hit) { 
case 1: 

Doiteml(); break; 
} II end of switch(pitemHit) 

II end of DoMouseDown(pitemHit) 

void NoteAlert_128_6::Doiteml() {II ok button 
DoClose(); 

} II end of member function 

II end of file myAlert . cp 

II 
II myApplication.h 
II 
#include "clapplication . h" 

#ifndef MYAPPLICATION H 
#define MYAPPLICATION H 

class MyApplication : public CLApplication { 
public: 

void Initialize(); 
}; II end of class MyApplication 

#endif MYAPPLICATION H 

116 



) 

_) 

II 
II myApplication.cp 
II 
#include "myApplication.h" 
#include "myMenu.h" 
#include "myWindow.h" 

void MyApplication::Initialize() 
Menu 128 1 *Menu_128_1Obj = new Menu_128_l;l/apple menu 
Menu 128 lObj->AddRsrc(); 
gApplication->fMenuBar->AddMenu(Menu 128 lObj); 
Menu 129 2 *Menu 129 2Obj = new Menu 129 2;1/file menu 
Menu-129-20bj->DisableMenuitem(4);lldisable "Save" 
gApplication->fMenuBar->AddMenu(Menu 129 2Obj); 
Menu_130_3 *Menu_130_3Obj = new Menu_130_3;/ledit menu 
gApplication->fMenuBar->AddMenu(Menu 130 3Obj); 
Menu 131 4 *Menu 131 4Obj = new Menu 131 4;llpattern menu 
Menu-131-40bj->CheckMenuitem(3);llwhite -
gApplication->fMenuBar->AddMenu(Menu 131 4Obj); 
Window 128 7 *Window 128 7Obj = ne; Window 128_7; 
Window=128=70bj->Initialize(); 
Window 128 7Obj->DoNew(); 
Window-128-70bj->Draw(); 
Palette 128 5 *Palette 128 SObj = new Palette 128 5; 
Palette-128-SObj->Hilightitem(l);llhilight selection tool 
Palette-128-SObj->Draw(); 

II end of Initialize() 

II end of file myApplication.cp 

II 
II myMenu.h 
II 
#include "clmenu.h" 

#ifndef MYMENU H 
#define MYMENU H 

class Menu 128 1 : public CLMenu {II apple menu 
public: 

Menu_128_1 (): (128) { SetName("Menu_128_1"); } 
class CLCommand * DoMenuCommand(short pMenuitem); 
class CLCommand * Doiteml(); 

}; II end of class Menu 128 1 

class Menu_129_2 : public CLMenu {II file menu 
public: 

Menu_l29_2 () : (129) { SetName ("Menu_129_2"); 
class CLCommand * DoMenuCommand(short pMenuitem); 
class CLCommand * Doiteml(); 
class CLCommand * Doitem2(); 
class CLCommand * Doitem3(); 
class CLCommand * Doitem4(); 

117 



) 

) 

class CLCommand * Doitem5(); 
class CLCommand * Doitem6(); 

}; // end of class Menu 129 2 

class Menu_130_3 : public CLMenu {//edit menu 
public: 

Menu_130_3 (): (130) { SetNarne ("Menu_130_3"); 
class CLCommand * DoMenuCommand(short pMenuitem); 
class CLCommand 
class CLCommand 
class CLCommand 
class CLCornmand 
class CLCommand 
class CLCommand 

} ; // end of class 

* Doiteml () ; 
* Doitem2 (); 
* Doitem3 () ; 
* Doitern4(); 
* Doitem5 () ; 
* Doitem6(); 
Menu 130 3 - -

class Menu_131_4 : public CLMenu {//pattern menu 
public: 

Menu_131_4 (): (131) { SetNarne ("Menu_131_4"); } 
class CLCommand * DoMenuCommand(short pMenuitem); 
class CLCommand * Doiternl(); 
class CLCommand * Doitern2(); 
class CLCommand * Doitern3(); 

}; // end of class Menu_131_4 

#endif MYMENU H 

II 
// rnyMenu.cp 
II 
#include "rnyMenu.h" 
#include "rnyAlert.h" 
#include "rnyWindow.h" 
#include "clGraphicsView.h" 
#include "rnyApplication.h" 

#pragrna segment myMenu 

CLCornmand * Menu_128_1: :DoMenuCommand(short pMenuitern) 
switch(pMenuitern) { 
case 1: 

return Doiternl(); 
) II end of switch(pMenuitern) 

// end of DoMenuCornmand(pMenuitem) 

CLCornmand * Menu 128 1: :Doiternl() {// About MiniDraw 
CLCornmand *crndObj = O; 

NoteAlert 128 6 *NoteAlert_128_6Obj 
NoteAlert 128 6; 

NoteAlert_128_60bj->Draw(); 

new 

118 



) 

) 

return cmdObj; 
// end of member function 

CLCommand * Menu_129_2::DoMenuCommand(short pMenuitem) 
switch(pMenuitem) { 
case 1: 

return Doiteml(); 
case 2: 

return Doitem2 (); 
case 3: 

return Doitem3 (); 
case 4: 

return Doitem4 (); 
case 5: 

return DoitemS () ; 
case 6: 

return Doitem6(); 
) II end of switch(pMenuitem) 

// end of DoMenuCommand(pMenuitem) 

CLCommand * Menu_l29_2::Doiteml() {//New 
CLCommand *cmdObj = O; 

EnableMenuitem(3); 
EnableMenuitem(S); 
DisableMenuitem(4); 
Window 128 7 *Window 128 70bj 
Window-128-70bj->Initialize(); 
Window=128=70bj->DoNew(); 
Window 128 70bj->Draw(); 
return- cmdObj; 

// end of member function 

new Window_128_7; 

CLCommand * Menu_129_2::Doitem2() {//Open 
CLCommand *cmdObj = O; 

EnableMenuitem(3); 
EnableMenuitem(4); 
EnableMenuitem(S); 
Window 128 7 *Window 128 70bj new Window_128_7; 
Window-128-70bj->Initialize(); 
Window=128=70bj->Do0pen(); 
Window_128_70bj->Draw(); 
return cmdObj; 

// end of member function 

CLCommand * Menu_129_2::Doitem3() {//Close 
CLCommand *cmdObj = O; 

Window 128 7 *Window_128_70bj; 

Window 128 70bj = (Window 128 7 *) gApplication
>GetWindo;ByName("Window_l28=7"); 

119 



) 

if (!Window 128 7Obj) return 0; 
Window 128 70bj=>DoClose(); 
//by hand start 
Window 128 7Obj = (Window 128 7 *) gApplication

>GetWindo;ByName("Window_128=7"); 
if (!Window_l28_7Obj) { 

DisableMenuitem(3); 
DisableMenuitem(4); 
DisableMenuitem(S); 

} 

//by hand end 
return cmdObj; 

// end of member function 

CLCommand * Menu 129 2::Doitem4() {//Save 
CLCommand *crndObj = 0; 

Window 128 7 *Window_128_7Obj; 

Window 128 7Obj = (Window 128 7 *) gApplication-
>GetWindo;ByName ("Window_128=7"); 

if (!Window_128_7Obj) return 0; 
Window_128_7Obj->DoSave(); 
return cmdObj; 

// end of member function 

CLCommand * Menu 129 2::DoitemS() {//SaveAs 
CLCommand *cmdObj = 0; 

Window 128 7 *Window_128_7Obj; 

Window 128 7Obj = (Window 128 7 *) gApplication-
>GetWindo;ByName("Window_128=7"); 

if (!Window 128 7Obj) return 0; 
Window_l28_70bj=>DoSaveAs(); 
EnableMenuitern(4); 
return cmdObj; 

// end of member function 

CLCommand * Menu 129 2 : :Doitem6() (//Quit 
CLCommand *cmdObj = 0; 

gApplication->Terminate(); 
return cmdObj; 

// end of member function 

CLCommand * Menu 130 3::DoMenuCommand(short pMenuitem) 
// Edit - -

switch(pMenuitem) 
case 1: 

return Doiteml(); 
case 2: 

return Doitem2(); 
case 3: 

return Doitem3(); 

120 



) 

case 4: 
return Doitem4(); 

case 5: 
return DoitemS(); 

case 6: 
return Doitem6(); 

} // end of switch(pMenuitem) 
// end of DoMenuCommand(pMenuitem) 

CLCommand * Menu_l30_3::Doiteml() {//Undo 
CLCommand *cmdObj = 0; 

Window 128 7 *Window_l28_7Obj; 

Window 128 ?Obj= (Window 128 7 *) gApplication
>GetWindo;ByName("Window_l28=7"); 

if (!Window 128 ?Obj) return O; 
CLGraphicsView *aView = (CLGraphicsView *) Window_l28_7Obj

>GetViewByName("CLGraphicsView"); 
aView->Undo(); 
return cmdObj; 

// end of member function 

CLCommand * Menu 130 3: :Doitem2() {//Redo 
CLCommand *cmdObj = 0; 

Window 128 7 - - *Window_128_7Obj; 

Window 128 ?Obj= (Window 128 7 *) gApplication
>GetWindo;ByName("Window 128-7"); 

if (!Window 128 70bj)-return O; 
CLGraphicsView *aView = (CLGraphicsView *) Window_128_7Obj

>GetViewByName("CLGraphicsView"); 
aView->Redo(); 
return cmdObj; 

// end of member function 

CLCommand * Menu_l30_3::Doitem3() {//Cut 
CLCommand *cmdObj = 0; 

Window 128 7 *Window_128_7Obj; 

Window_128_7Obj = (Window_l28_7 *) gApplication-
>GetWindowByName("Window 128 7"); 

if (!Window_128_70bj)-return 0; 
EnableMenuitem(5); 
CLGraphicsView *aView = (CLGraphicsView *) Window_128_7Obj

>GetViewByName("CLGraphicsView"); 
aView->DoCut(); 
return cmdObj; 

// end of member function 

CLCommand * Menu_l30_3: :Doitem4() {//Copy 

121 



) 

) 

CLCommand 

Window 128 7 

*cmdObj = 0; 

*Window_l28_7Obj; 

Window 128 7Obj = (Window 128 7 *) gApplication-
>GetWindo;ByName("Window_128=7"); 

if (!Window_128_7Obj) return 0; 
EnableMenuitem(S); 
CLGraphicsView *aView = (CLGraphicsView *)Window_128_7Obj

>GetViewByName("CLGraphicsView"); 
aView->DoCopy(); 
return cmdObj; 

// end of member function 

CLCommand * Menu 130 3::DoitemS() {//Paste 
CLCommand *cmdObj = O; 

Window 128 7 *Window_l28_7Obj; 

Window 128 7Obj = (Window 128 7 *) gApplication
>GetWindo;ByName("Window_l28=7"); 

if (!Window 128 7Obj) return 0; 
CLGraphicsView *aView = (CLGraphicsView *)Window_l28 7Obj

>GetViewByName("CLGraphicsView"); 
aView->DoPaste(); 
return cmdObj; 

// end of member function 

CLCornrnand * Menu 130 3: :Doitem6() {//Select All 
CLCornrnand *cmdObj = 0; 

Window 128 7 *Window_l28_7Obj; 

Window_128_7Obj = (Window_128_7 *) gApplication-
>GetWindowByName("Window_l28_7"); 

if (!Window 128 7Obj) return 0; 
EnableMenuitem(3); 
EnableMenuitem(4); 
CLGraphicsView *aView = (CLGraphicsView *)Window_l28_7Obj

>GetViewByName("CLGraphicsView"); 
aView->DoSelectAll(); 
return cmdObj; 

// end of member function 

CLCommand * Menu_131_4: :DoMenuCommand(short pMenuitem) 
switch(pMenuitem) { 
case 1: 

return Doiteml(); 
case 2: 

return Doitem2(); 
case 3: 

return Doitem3(); 
} // end of switch(pMenuitem) 

// end of DoMenuCommand(pMenuitem) 

122 



) 

) 

CLCommand * Menu_131_4::Doiteml() (IIPatern=Black 
CLCommand *cmdObj = 0; 

Window 128 7 - - *Window_128_7Obj; 

Window 128 7Obj = (Window 128 7 *) gApplication-
>GetWindo;ByName("Window_l28=7"); 

if (!Window_l28_7Obj) return 0; 
CheckOnlyitem(l); 
CLGraphicsView *aView = (CLGraphicsView *)Window_l28_7Obj

>GetViewByName("CLGraphicsView"); 
aView->SetPattern(qd.black); 
return cmdObj; 

II end of member function 

CLCommand * Menu_131_4::Doitem2() (IIPattern=Gray 
CLCommand *cmdObj = 0; 

Window 128 7 *Window_l28_7Obj; 

Window_128_7Obj = (Window_l28_7 *) gApplication-
>GetWindowByName("Window_128_7"); 

if (!Window_128_7Obj) return 0; 
CheckOnlyitem(2); 
CLGraphicsView *aView = (CLGraphicsView *)Window_128_7Obj

>GetViewByName("CLGraphicsView"); 
aView->SetPattern(qd.gray); 
return cmdObj; 

II end of member function 

CLCommand * Menu_131_4::Doitem3() (IIPattern=White 
CLCommand *cmdObj = 0; 

Window 128 7 *Window_128_7Obj; 

Window_128_7Obj = (Window_128_7 *) gApplication-
>GetWindowByName("Window_128_7"); 

if (!Window_128_7Obj) return O; 
CheckOnlyitem(3); 
CLGraphicsView *aView = (CLGraphicsView *)Window_128_7Obj

>GetViewByName("CLGraphicsView"); 
aView->SetPattern(qd.white); 
return cmdObj; 

II end of member function 

II end of file myMenu.cp 

II 
II myWindow.h 
II 
tinclude "clpalette.h" 

123 



) 

) 

#include "clwindow.h" 

#ifndef MYWINDOW H 
#define MYWINDOW H 

class Window_128_7 : public CLWindow { 
public: 

Window_128_7(): (128) { SetName("Window_128_7"); 
class CLDocument * CreateDocument(); 

); II end of class Window 128_7 · 

class Palette_128_5 : public CLPalette { 
public: 

Palette.:....128_5 (): (128) { SetName ("Palette_128_5"); 
class CLCommand * DoMouseCommand(short pitemHit); 
class CLCommand * Doiteml(); 
class CLCommand * Doitem2(); 
class CLCommand * Doitem3(); 
class CLCommand * Doitem4(); 
class CLCommand * DoitemS(); 

}; II end of class Palette 128 5 

#endif MYWINDOW H 

II 
II myWindow.cp 
II 
#include "myWindow.h" 
#include "myApplication.h" 
#include "clGraphicsView.h" 

#pragma segment myWindow 

class CLDocument * Window_128_7::CreateDocument() 
return new CLGraphicsDocument(this, 'MNDR', 'MNDR'); 

) II end of CreateDocument() 

CLCommand * Palette_128_5: :DoMouseCommand(short pitemHit) 
switch(pitemHit) { 
case 1: 

return Doiteml(); 
case 2: 

return Doitem2(); 
case 3: 

return Doitem3(); 
case 4: 

return Doitem4(); 
case 5: 

return DoitemS(); 
} II end of switch(pitemHit) 

II end of DoMouseCommand(pitemHit) 

124 



) 

CLCommand * Palette_128_5::Doiteml() {//Selection Tool 
CLCommand *cmd0bj = 0; 

Window 128 7 *Window_128_70bj; 

Window_l28_70bj = (Window_l28_7 *) gApplication-
>GetWindowByName("Window_128_7"); 

if (!Window 128 70bj) return 0; 
Hilightitem(l) ;-
CLGraphicsView *aView = (CLGraphicsView *) Window_l28_70bj

>GetViewByName("CLGraphicsView"); 
aView->CLSetCurrentShapeTool(selectionTool); 
return cmd0bj; 

// end of member function 

CLCommand * Palette_l28_5::Doitem2() {//Rectangle 
CLCommand *cmd0bj = O; 

Window 128 7 *Window_128_70bj; 

Window_128_70bj = (Window_128_7 *) gApplication-
>GetWindowByNarne("Window_128_7"); 

if (!Window_l28_70bj) return O; 
Hilightitern(2); 
CLGraphicsView *aView = (CLGraphicsView *) Window_l28_70bj

>GetViewByNarne("CLGraphicsView"); 
aView->CLSetCurrentShapeTool(Rectangle); 
return crnd0bj; 

// end of member function 

CLCommand * Palette 128 5: :Doitern3() {//RoundRect 
CLCommand *crndObj ~ 0; 

Window 128 7 *Window_128_70bj; 

Window_l28_70bj = (Window_l28_7 *) gApplication-
>GetWindowByNarne("Window_l28_7"); 

if (!Window_l28_70bj) return 0; 
Hilightitern(3); 
CLGraphicsView *aView = (CLGraphicsView *)Window_128_70bj

>GetViewByNarne("CLGraphicsView"); 
aView->CLSetCurrentShapeTool(RoundRect); 
return crnd0bj; 

// end of member function 

CLCommand * Palette_128_5: :Doitern4() {//Oval 
CLCommand *crnd0bj = 0; 

Window 128 7 *Window_128_70bj; 

Window_128_70bj = (Window_l28_7 *) gApplication
>GetWindowByNarne("Window_128_7"); 

if (!Window_128_70bj) return O; 
Hilightitern(4); 

125 



) 

) 

CLGraphicsView *aView = (CLGraphicsView *)Window_128~70bj
>GetViewByName("CLGraphicsView"); 

aView->CLSetCurrentShapeTool(0val); 
return cmd0bj; 

// end of member function 

CLCommand * Palette 128 5::DoitemS() {//Line 
CLCommand *cmdObj ~ 0; 

Window 128 7 - - *Window_128_70bj; 

Window_l28_70bj = (Window_128_7 *) gApplication-
>GetWindowByName("Window 128 7"); 

if (!Window_128_70bj)-return 0; 
Hilightitem(S); 
CLGraphicsView *aView = (CLGraphicsView *)Window_128_70bj

>GetViewByName("CLGraphicsView"); 
aView->CLSetCurrentShapeTool(Line); 
return cmd0bj; 

// end of member function 

// end of file myWindow.cp 

II 
// main.op 
II 
#include "myApplication.h" 

MyApplication *theApplication; 

main() ( 
theApplication = new MyApplication; 
theApplication->Run(); 

126 



[Apple 85] 

[Budd 90] 

[Keh 91] 

) 

[Keh 90] 

[Lai 91] 

[Lewis 90] 

127 

8. References 

Apple Computer. Inside Macintosh, Volume I, Addison-Wesley, 

Reading, MA, 1985. Chapter 13, The Dialog Manager, pp. 397-403. 

Budd, Timothy. An introduction to object-Oriented programming. 

Addison-Wesley, Reading, MA, 1990. 

Keh, Huan-Chao. "Comprehensive Support for Developing Graphical, 

Highly Interactive User Interface Systems," Ph.D Dissertation, Dept. of 

Computer Science, Oregon State University, Corvallis, OR, 1991. 

Keh, Huan-Chao. Lewis, T.G. "Direct-Manipulation User Interface 

Modeling With High-Level Petri Nets," Tech. Report 90-60-17, Dept. 

of Computer Science, Oregon State University, Corvallis, OR, 1990. 

Lai, Chai. "Adding Object-Oriented Structured Graphics and Graphics 

Building Block to the MVC Paradigm Application Framework," 

Masters Paper, 91-60-16, Dept. of Computer Science, Oregon State 

University, Corvallis, OR, 1991. 

Lewis, T.G. CASE: Computer-Aided Software Engineering, Van 

Nostrand Reinhold, New York, NY, 1990. 



) 

[Lewis 89] 

[Li 91] 

[Luo 91] 

[Myer90] 

[Peter 81] 

[Roger 87] 

128 

Lewis, T.G., Hand.loser, F.T., Bose, S., and Yang, S. "Prototypes 

from Standard User Interface Management Systems," IEEE Computer, 

May 1989. 

Li, Tong. "OSU v3.0 Browser: Window into GUI Applications," 

Masters Paper, 91-60-6, Dept. of Computer Science, Oregon State 

University, Corvallis, OR, 1991. 

Luo, Chung Cheng, and Lewis, T.G. "Oregon Speedcode Universe 

3 .0 Programming Manual," Project Report, 91-60-31, Dept. of 

Computer Science, Oregon State University, Corvallis, OR, 1991. 

Myers, B.A. et al. Gamet-Comprehensive Support for Graphical, 

Highly Interactive User Interfaces, IEEE Computer 23, 11 (Nov. 

1990), 71-85. 

Peterson, J.L. Petri Net Theory and the Modeling of Systems. 

Prentice-Hall, Englewood Cliffs, NJ, 1981. 

Roger S. Pressman Software Engineering A Practitioner's Approach. 

MaGraw-Hill Book Co., 1987 

[Wilson 90] Wilson, David A. Rosenstein, Larry S. and Shafer, Dan. Macintosh 

Inside Out Programming with MacApp, Addison-Wesley, Reading, 

MA, 1990. 

[Yang 89] Yang, Sherry. "OSU: A High Speed Software Development 

Environment," Tech. Report 89-60-21, Dept. of Computer Science, 

Oregon State University, Corvallis, OR, 1989. 


	Lin_Fangchen_1992_03_16_A
	Lin_Fangchen_1992_03_16_B



