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1 Abstract 

The reaction of fluid or gas flowing around an obstacle is a common engineering problem. 

Computer simulations are often used to measure and visualize the physical processes involved. 

In this report, we will discuss a parallel implementation of a simulation using the Smooth 

Particle Hydrodynamics (SPH) approach to fluid flow. We will discuss the design decisions 

made during development, problems encountered during implementation, and parallel 

performance issues. 

Section 2 will introduce the fluid flow problem, the SPH technique, and our project 

motivations. Section 3 will discuss our first O(N 2) serial version of the simulator. Section 4 

covers our improved O(N) grid-based serial version. In section 5, we will develop the MPI 

parallel simulation, discuss debugging issues, and provide results from our performance tuning. 

Section 6 describes our Java application client used to control the simulation. In section 7, the 

Java/C++ socket library used for communication with the client is discussed. We will conclude 

in section 8 with an evaluation of our successes and failures during the project and look at future 

directions for this work. 
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2 Introduction 

2.1 Overview of the problem 

The study of the behavior of fluids upon encountering an obstacle is an important one. The 

reaction of the fluid and the forces exerted upon the obstacle have practical implications on the 

design of many items such as bridge supports, hydrofoils, pipelines, fish ladders, etc. The 

complexity of the fluid dynamics problem makes it difficult or impossible to exactly solve for 

physical forces of a complex object in a flow. Approximate solutions can be obtained by 

construction and measurement of prototypes placed in a flow, or by use of a computer 

simulation. 

Since usage of prototypes can be prohibitively time-consuming and expensive, many have 

turned to computer simulations to provide insight during the engineering process. The use of 

computer simulations can also be a valuable aid for students learning fluid mechanics. Students 

can observe the mathematical theories in action and have the ability to alter simulation setup and 

parameters much more easily than one could with a real-world experiment. 

2.2 The SPH method 

There are two common types of numerical methods for doing fluid simulations: the 

Eulerian approach (or grid method) and the Lagrangian approach (or particle method) [21]. Our 

simulation will utilize a Lagrangian approach called Smoothed Particle Hydrodynamics (SPH). 

Using a Lagrangian approach allows us to use particles (or more accurately, interpolating nodes) 

to simulate the fluid rather than a more complicated grid-based computation. Particle methods 

such as SPH have proved to be better able to simulate complicated systems and handle 

unexpected situations. On the downside, particle methods tend to be less accurate then correctly 

tuned grid based techniques. 

SPH was originally created to study galaxy formation and other cosmology related 

problems [12] [8]. It has since been utilized to study a variety of fluid dynamic problems 

including viscous flows [19] and free surface flows [13]. For the details of the physics involved 

in SPH, the reader is referred to [3] [14]. For precise details of the physics used in our particular 

implementation, see [17]. For the purposes of this paper, we will abstract the SPH technique to 

the following high-level algorithm [18]: 
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1) Set initial conditions. 

2) If not the first time step, predict thermal energy , velocity, and density for each particle. 

3) Calculate pressure and speed of sound for each particle. 

4) For each particle i do 

For each particle j in the neighborhood of particle i do 

Calculate change in density j causes on i. 

Calculate change in artificial viscosity j causes on i. 

Calculate change in velocity j causes on i. 

Calculate change in thermal energy j causes on i. 

5) Update each particle's thermal energy, velocity, position and density. 

6) Increment time. 

7) Goto step 2. 

2.3 Project motivation 

There are numerous commercial fluid dynamic software packages available [10], but few 

) are designed for students (Dynaflow 's 2Dflow [11] being an exception). We found none that 

were freely available and none utilizing the SPH simulation approach. 

) 

We found several serial SPH implementations [15][1], but lacking powerful workstations, 

these serial versions would only be usable on simulations of limited scope. Using SPH to 

simulate fluid flow across an obstacle was a problem very amenable to solution by parallel 

distributed memory machines . 

At our department, we could utilize SW ARM, a Beowulf [2] cluster of 80 Pentium Ils 

running the MPI [7] message passing API. We found only one MPI parallel implementation of 

SPH [5]. This implementation was designed with non-uniform cosmology simulation in mind, 

not with a more uniform flow of a fluid past an obstacle. We contacted the authors, but source 

code was also not available for general use. 

Our project was thus motivated by the following two goals : 

1) Provide an easy-to -use tool for students to experiment with a SPH simulation. 

2) Provide an easy-to-understand parallel MPI implementation of SPH that might be 

reused and extended by others in the future . 
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3 Initial serial version 

3.1 Design considerations 

Our initial efforts in developing the SPH simulation were focused on creating the 

computational code necessary to carry out the physical interactions between particles in the 

simulation. We developed the code and data structures to provided the easiest method of 

implementing the SPH physics equations. This focus had both advantages and disadvantages. 

The primary advantages were: 

1) Allowed us to gain insight in to the intricacies and interdependencies present in the 

physics. 

2) Quickly obtain simulation results showing that our computational code was producing 

"reasonable" results. 

3) Demonstrate whether the problem was computationally intensive enough to justify a 

more sophisticated and/or parallel implementation. 

The disadvantages to focusing just on the physics problem were: 

1) Little time devoted to a well thought out design for the software infrastructure behind 

the physics. 

2) Designing code and data structures without concern about the scalability to larger 

problem sizes. 

3) Development of code and data structures that would be difficult to convert into parallel 

code. 

3.2 Implementation and results 

Our strategy of plunging straight into programming the project succeeded in some respects 

and failed in others. Within two weeks, we had a working simulation that was producing 

plausible results. We had developed classes to represent the fundamental objects in our 

simulation: smooth particles and boundary shapes. We had also coded functions to perform the 

calculations representing all the physics of SPH. 
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Figure 1: First successful simulation, an imitation of Monaghan's breaking dam. 

Lack of a well thought out class design before coding resulted in a fairly degenerate class 

structure and code distribution in the software. Nine separate classes were utilized in this initial 

version. A total of 2524 lines of code were created with 1216 (almost 50%) in the World class. 

The World class encompassed all the physics, reading and storage of simulation parameters, 

output generation, and simulation initialization . 

In an effort to make the code as simple as possible, various inefficiencies were introduced. 

In SPH, each particle only interacts with particles within a certain distance (the smoothing 

) length). To make this version as simple as possible, we checked each particle against every other 

particle. We did not employ any sort of grid or sorting of particles to avoid an all-pairs 

comparison . For N particles, this leads, of course, to an O(N 2) algorithm. In addition to this 

basic algorithmic inefficiency, there were also numerous redundant physical calculations present 

in the code. 
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Figure 2: Initial version performance curve: y = 0.0153x2 sec 
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A timing study was performed on the first version to determine the constant term and to 

allow us to estimate the wall-clock time required to run bigger simulations. Varying the number 

of particles, the simulation was run on an unloaded Sparc-20 workstation. The results (figure 2) 

showed that the running time (for 12,500 time steps) could be expressed by the equation: 

y = 0.0153x2 sec 

For physically accurate simulations, we expected to need simulations with on the order of 

10,000 particles and 100,000 time steps. A simulation of this magnitude equates to 141.6 days of 

computation. Clearly this was going to be much too slow. 
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Figure 3: Optimized version performance curve: y = 0.00923x2 sec 

An optimized version of the simulation was created, eliminating redundant physical 

calculations by caching results in global variables. While this saved us a significant number of 

cpu cycles, it also noticeably reduced the readability of our code. The optimization was 

successful in reducing the constant term to 0.0093. Our target simulation of 10,000 particles 

now took just 86.1 days. Reducing the constant term was of course not the solution to our 

efficiency problem, we needed to address the O(N2) nature of our algorithm. 

Probably the biggest advantage of doing a "quick-and-dirty" version was that by having a 

working example of how it could be designed, we were better able to see how it should have 

been designed. In our first attempt, we had failed to split up tasks into appropriate classes and 

) 



~ had failed to use an appropriate algorithm to avoid an all-pairs computation between the 

particles. It was now time to throw away this version, address the deficiencies, and start from 

scratch. 

) 
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4 Improved grid version 

4.1 Design considerations 

After our experience with the first version of the simulation, we had a much better idea of 

what needed to be done and how a new version could improve upon the old. We developed the 

following goals for the new version: 

1) Calculation of particle interactions needs to be O(N). 

· 2) There should be better separation of tasks between different classes. 

3) Interface to particle interactions should be atomic. We should be able to call one 

method to update a particle against another. 

4) Data structures and algorithms should be reusable in a parallel implementation with a 

minimum amount of modification. 

5) The code needed to be more readable. Others should be able to use and extend our 

simulation in the future. 

We also discussed the details of the implementation. It was apparent that a more 

complicated class structure was going to be necessary. This lead us to the following questions: 

1) What classes were needed and why? 

2) Which class ( or classes) contained the actual particle data? 

3) Which classes needed access to data in another class? How would they get to it? 

4) What classes could we add for an easy transition to parallel code? 

5) Which class would do the computations? 

Table 1 outlines the primary classes we decided upon to address the above questions. 

12 



Class name Purpose Contains objects of 

type 

World Main controlling class of the simulation. Parameter 
Responsible for reading in the simulation BPShape 

parameters, initializing and storing Grid 

SmoothParticles and BPShapes, telling 
Grid to run each time step and outputting the 
result. 

Grid Contains the Cells which track which part of SmoothParticle 
the Grid every free particle is at. Responsible Cell 

for moving particles between Cells, deleting Parameter 

particles that move out of the simulation, 
adding new particles. The Grid also contains 
an array of all the SmoothParticles. 

Cell Holds a collection of SmoothParticles FastLinkedList 
that represent the free and boundary particles in 
a particular region of the simulation. Stores in a 
FastLinkedList the indices of the particle 

) 
in the Grid array. 

SmoothParticle The actual particle object in our simulation. 
Contains all the physical attributes of the 
particle, knows how to update these attributes 
when interacted with other 
SmoothParticles. 

BPShape A collection of non-moving SmoothParticle 
SmoothParticles that make up some 
boundary shape (a cylinder or a line). 

FastLinkedList Provides a linked list with multiple current 
pointers for use during our inter-particle 
calculations. 

Parameter Contains all the simulation constants and 
parameters. 

Table 1: Main classes of our grid-based serial version. 

] 
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4.2 Implementation and results 

The coding of the new grid-based version went fairly smoothly, taking about two weeks to 

implement and debug. Careful consideration was given to what implications the choices made 

during implementation would have on a future parallel version. This slowed down the 

development process, but it was hoped this would yield significant time savings in the future. 
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Figure 4: Grid based version performance curve: y = 0.694x sec 

Another timing study was performed on the new grid-based version. Our new algorithm 

design was O(N) and the empirical results bore this out, yielding a curve of: 

y = 0.694x 

Our target simulation of 10,000 particles and 100,000 time steps could now be done in 

15.4 hours. The overhead of maintaining the grid information was increasing our constant term 

significantly, but the grid version still beat the O(N2) version for all simulations with more than 

75 particles. Despite our reduction of complexity, the simulation was still proving to be 

computationally intensive enough to warrant a parallel implementation. 
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) S Parallel version 

5.1 Design 

_) 

5.1.1 Domain decomposition and inter-processor communication 

While we had been careful to plan for future parallel version in our design of the serial grid 

version, the parallelization was still a formidable task. The first decision that needed to be made 

was exactly how to split the problem up among the processors . We had a two-dimensional grid 

of cells containing our particles. The particles could in general be assumed to be flowing from 

left to right during the course of the simulation . 

We decided that we would divide the total simulation grid into horizontal slices, giving one 

slice to each processor. Each slice would consist of smaller version of the global grid, containing 

the same number of grid cell columns, but fewer grid cell rows. This had the advantage of being 

simple, utilizing the same grid construct used in our serial version . It would also hopefully 

minimize the number of particles travelling across processor boundaries. The prevailing flow of 

the fluid would tend to keep particles on the same processor. 

Particle Flow 

Po 

Figure 5: Di vision of our simulation grid among processors. 

The main difficulty that now needed to be addressed was what was going to occur along 

processor boundaries. The particles near the top or bottom of a processor's slice would need to 

interact with particles that did not exist on that processor. The processor would either need to 

contact its neighboring processor and ask for the necessary information, or it would need to 

include some sort of overlap in particles near the boundaries. 
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We first considered the technique of selectively sending and receiving information along 

the boundary. This would require that a processor tell its neighbor which cells it needed particles 

from to complete its computation. While this strategy could reduce the overall quantity of 

information travelling between processors over the boundary (since a processor may only need a 

subset of the particles in a boundary row), it would also involve more complicated logic to 

determine exactly what needed to be sent. In addition, since one could typically expect that the 

boundary row would be uniformly full of particles, this would require the neighboring processor 

to send virtually all of the particles present in its boundary row to the other processor. 

.. , ........ .....• ..... .... , ........ ............ . 
: . ' . : 

: ; . : 
. ' : 

: ""i'"'" •···~·-··· : 

...... j r; i~;hh b~tt'.~r 

Figure 6: Example showing which rows each processor would contain. 
Shaded rows are duplicated on adjacent processors. 

Since we didn't expect much benefit from a more selective communication technique, we 

decided to solve the boundary problem by enforcing overlapping rows between adjacent 

processors. Each processor would have a set of rows that it was entirely responsible for 

maintaining. In addition, it would have buffer rows along the top and bottom of its section of 

grid. The buffer rows would allow a processor to update everything in its grid except for these 

buffer rows. After each time step, adjacent processors would exchange their top and bottommost 

rows for which they were responsible. These rows adjacent to the buffer rows we'll call fringe 

rows. 
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Besides exchanging buffer rows after each time step, processors may also need to 

communicate additional particles. Migrant particles are particles that have moved either into a 

processor's buffer row or completely out of a processor's rows. These migrants must be sent to 

the adjacent processor to insure consistency. The following example will help illustrate: 

Has copies of particles: a0 - 14. 

Updates particles in rowo - row2: ao, ar, a2 

Deletes particles in row3: a3, a4 

Sends particles in fringe row2 to P2: empty 

Sends migrants to P2: a2 

Receive particles in row3 from P2: a3 

Receive migrants from P2: as 

Has copies of particles: ao, ar, a2, a3, as. 

Ready for next time step. 

: ~-- :·• a6 
' : 
' 

Has copies of particles: a2 - a6. 

Updates particles in row3 - rows: a3, a4, as, a6 

Deletes particles in row2: a2 

Sends particles in fringe row3 to P2: a3 

Sends migrants to Pr: as* 

Receive particles in row2 from Pr: empty 

Receive migrants from Pr: a2 

Has copies of particles: a2, a3, a4, a6. 

Ready for next time step. 

* Note: normally particles should not jump across multiple rows. Such behavior would indicate 

that the simulation is running too rapidly. The system outlined above will handle multiple row 

jumps as long as an entire processor is not skipped. If a particle does skip over an entire 

processor, it will be deleted from the simulation. 
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5.1.2 Other design considerations 

We now had an overall idea of how the simulation would be split among the processors. 

The remaining design phase involved issues related to how to implement this idea. The 

following design points were developed: 

1) Server will consist of a master process and a number of slave processes. The master 

would have the following responsibilities: 

a) Communication with the client. 

b) Initializing of the simulation. 

c) Initializing of the slaves. 

d) Collecting results from the slaves. 

The slave processes would do the following: 

a) Compute the new particle positions for each step of the simulation. 

b) Communicating necessary information with adjacent slave processors. 

c) Periodically send the master an update of all the slave's particles. 

2) Isolate in separate classes, routines for communication from the master to the slave, 

from the slave to the master , and from the master to the client. 

3) At least initially, favor simple communication schemes that will be easier to get 

working correctly. 

4) Reuse as much functionality as possible from the serial version. Aside from 

communication of fringe rows, each slave could be considered to be running its own 

serial simulation. 

18 
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"" Class name Purpose Contains objects Contains 
, 

of type pointers to 

Master Provides main processing loop for master ClientLink 
process . MasterMPI 

World 

Slave Provides main processing loop for slave SlaveMPI 
processes . SlaveWorld 

ClientLink Handles communication between the Server World 
master and the client via a socket MasterMPI 

connection. 

MasterMPI Handles communication to the slaves via World 
MPI routines. Provides methods to 
initialize slaves, send commands to slaves, 
and receive updates from slaves. 

SlaveMPI Handles communication to the master via SlaveWorld 
MPI routines. Provides methods to 
receive commands from master, send and t 

" 
receive particles with adjacent slaves, and 

.I 
send master periodic updates . 

World Master's class controlling overall Grid 
simulation grid. Provides methods to Parameter 

initialize the Grid, to write output to 
disk, and to perform a time step in the 
simulation. 

SlaveWorld Slave's class controlling its portion of the Grid 
simulation grid. Provides methods to Parameter 

perform a step in the simulation and to 
pump in additional particles into the 
Grid. 
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Grid Grid will be used by the master process SmoothParticle .,- I 

for initialization and compilation of Cell 

results. Parameter 
FastLinkedList 

j 

Contains the Cells which track which 
part of the Grid every free particle is 
contained in. 

The Grid contains an array of all the 
SmoothParticles. The Grid will 
handle free space management of this 
array. 

SlaveGrid Subclass of Grid used by slave SmoothParticle 
processes. Cell 

Parameter 

Includes methods to read and delete 
FastLinkedList 

particles in the fringe rows, track particles 
heading to adjacent processors, obtain 
double arrays containing particle 
information, and to perform calculations 
on the particles. 

Cell Holds a collection of FastLinkedList I ) 
SmoothParticles that represent the 
free and boundary particles in a particular 
region of the simulation. Stores in a 
FastLinkedList the indices of the 
particle in the Grid array. 

SmoothParticle The actual particle object in our 
simulation . Contains all the physical 
attributes of the particle, knows how to 
update these attributes when interacted 
with other SmoothParticles. 

BPShape A collection of non-moving SmoothParticle 
SmoothParticles that make up 
some boundary shape (a cylinder or a 
line). 

FastLinkedList Provides a linked list with multiple 
current pointers for use during our inter-
particle calculations. 

, 
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"' Parameter Contains all the simulation constants and 
-

) 

_) 

parameters. 

Table 2: Main classes of the parallel version 

5.2 Implementation 

Once the design was complete, modifications began on the serial code. Rather than try and 

implement everything at once, a step-wise process was employed. In the first step, a version was 

designed that could receive the simulation parameters from the client. After receiving these 

parameters, the master MPI process would run the simulation in serial without utilizing any of 

the slave processes. This step allowed development and testing of the classes responsible for the 

client-master socket communication . 

In the second step, the master process initialized a single slave process. The master sent 

the slave all the necessary data and the slave would then run the simulation in serial. This 

allowed development and testing of the classes involved in master-slave communication, as well 

as a modified World class (SlaveWorld) that the slaves would utilize. 

The next step was the hardest: implementing the actual methods and data structures 

necessary for a parallel solution. This involved methods to handle sending and receiving 

particles between slave processors, deletion of particles within a processors fringe row, free 

space management of the fixed arrays holding particle data, and the division of the initial 

simulation grid by the master. At this phase, the problem of compiling results from all the slave 

processors was ignored; each slave simply wrote its output to a separate file. 

Finally, code was added to handle compilation of results. The slaves would periodically 

send all their rows (except for buffer rows) to the master. The master could then compile a 

complete global grid. Initially this was output to a single data file, but later it would be sent over 

the socket link to the client application for display . 
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Start----3>1 

Receive from master: 
Simulation parameters 
Grid information 
Free particles 
Boundary particles 

Send master update: 
Send all free particles 
in all rows except 
buffer rows 

Calculate new particle values 
f------' c:s,i For all rows except buffer rows. 

Update Grid: 
Move particles to proper cells 
If particle has moved into a 
buffer row, add to north or 
south bound list 

Delete particles in: 
Buffer rows 
North bound list 
South bound list 

Add particles to 
>- ------=,s,1 the left side of our 

Processor ID 

Send particles in buffer row 
and north/south bound list. 

Send north 
Receive south 
Send south 
Receive north 

No 

grid 

Send particles in buffer row 
and north/south bound list. 

Receive south 
Send north 
Receive north 
Send south 

Figure 7: Flow chart of the operation of a slave process. 

5.3 Debugging 

5.3.1 Initial problems 

A running parallel version of the code was produced fairly quickly from the serial 

program. As we began to use the parallel version however, problems soon began to arise. 
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Initially we had numerous bugs that caused the program to core dump. These turned out to be 

some of the easiest to fix; most were related to improper and out of range array indices. It was a 

simple matter to track the line of code responsible for the core dump, then backtrack out to 

explain why the index was bad. The nature of these errors dictated .that they would occur early 

in the simulation; one can't get away with using out of range array indices for very long. 

During this first stage of debugging, the code was modified to make use of the MPI 

debugging routines MPE_IO_Stdout_to_f ile. This allowed the standard output of each 

process to be redirected automatically to a file. From this point on, we would be able to place 

debugging print statements in our code and have them show up in the file corresponding to each 

node in our network. These print statements were our primary debugging tool, we did not 

employ any parallel debugging tools. 

After the initial rounds of bugs were eliminated, the bugs became more insidious. The 

next problem encountered involved the "bad" behavior of some of our particles during a 

simulation . Particles would occasionally disappear, reappear and just act plain crazy. It was 

often the case that the behavior would occur as particles crossed from one processor to another. 

) Initially this led us to believe that there was a mistake in how particles were being passed among 

processors . But after much investigation, it was finally discovered that particles leaving a 

processor were having their array index added twice to our free space linked list. This caused 

incoming particles to overwrite each other in unpredictable and incorrect ways. 

.J 

5.3.2 Searching for the cause of "cancer" 

All seemed well for a few weeks, but as longer and bigger simulation were tried, a new 

problem appeared. After a simulation had been running normally for quite some time, almost all 

the particles would suddenly disappear. At first the disappearance seemed fairly instantaneous, 

but this was due to the infrequency of our output to animation frames. We modified our code to 

increase the frequency of output frames around the time of failure. In this way, a finer grained 

picture of the events surrounding the failure could be seen. As we can see in figure 8, the 

disappearance of particles appears to start in localized regions and then spread to surrounding 

particles, eventually leaving only a few random particles bouncing erratically around the grid. 

This deadly spreading behavior of the bug earned it the affectionate title: the cancer. 
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Finding the cause of the cancer was no easy undertaking. The main problem was that ') 

failure seemed to occur only after the simulation had been running for tens of thousands of time 

steps. If one was not clever in how and when debug messages were displayed, output files 

would soar to hundred of megabytes. 

0 

Figure 8: Example of catastrophic propagation of bad values in the simulation. 

It was observed that some particles were jumping large distances in a single time step, 

jumping over several grid rows. This led to the discovery that these particles had very large 

velocity values. These high values would in tum effect any other particles that updated 

themselves against the offending particle. It was in this manner that the error seemed to 

propagate through all the particles. Once a particle had a high velocity, it would fly off the grid 

and be deleted, but not before "infecting" other particles with bad velocity values. 

In an attempt to correct the problem, the code was modified to delete particles if their 

velocity became too great in magnitude. This effectively cauterized the cancer, leaving a big 

hole in the grid of particles, but preventing it from catastrophically propagating. This was of 

course simply treating the symptoms of the problem and not the actual cause. 

The real breakthrough occurred when a small example was found in which a cauterization 

event occurred. With only around 100 particles in the simulation, it was easy to track the motion 

and deletions involved in the event. It was noticed that during the time step before deletion of 

particles began, a single particle had bounced backwards and crossed over the line x = 0. A test 

fix was applied, deleting all particles once they reached x = 0. This fixed the test case problem, 

but eventually the cancer still reappeared. A further fix was applied, deleting all particles that 

reached ax-coordinate of 1.0. Cancer had now been eliminated, but we understood little about 

the actual cause of the bug. 
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After several days of further analysis, we realized that the particles in the outermost cells 

of the grid (those with x-coordinates of less than 0.0 and more than 1.0) were being updated 

differently from other particles in the simulation. In our algorithm, some formulas are applied 

sequentially to all particles in our arrays (they do not depend on values of their neighbor 

particles). Other formulas are computed only between particles in adjacent cells . These outer 

cells do not have neighbors on one side and therefore were being skipped during particle-particle 

interactions. 

This inconsistent treatment of the border cells led to progressively bad values for particles 

within adjacent cells. Now that we understood the cause of the cancer, the most reasonable 

solution was the one we discovered earlier: deleting particles when they reached the outermost 

cells. 

5.3.3 Verification using different number of processors 

After our experience with the cancer, our faith in the correctness of the parallel version was 

shaken. It was decided to verify that the results of the simulation running on multiple slaves 

) matched the results of the simulation running on a single slave. The single slave version was a 

good benchmark as it did no complex inter-processor communication, it only periodically sent all 

of its particles to the master for output. Just by examination of the output animations, it could 

be seen that the multiple slave animation and the single slave animation were not exactly the 

same. 

) 

We needed more accurate tools to measure how and when the two simulations diverged. It 

would be handy to be able to track particular "problem" particles throughout the simulation. To 

do this, a unique ID field was added to every particle . A scheme was developed that allowed 

new particles flowing into the simulation to be assigned ID's in such as way that a particular 

particle would have the same ID regardless of the number of processors the simulation was 

running on. 

With the ID field in place, a debug file with the particle ID number and all physical particle 

attributes could be outputted. A Java program was written that would read in the debug files 

from two separate simulation runs. Since the order of the particle in the debug file varied with 

the number of processors, the particles had to be sorted by ID fields. A comparison could then 
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be done between particle to detect any difference between particle positions. Using these tools, 

the following bugs were found in the parallel implementation: 

1) Failing to send all relevant particle attributes between processors. 

2) Redundant particles were being pumped into processor buffer rows. 

3) Some migrant particles were being "bounced" back to the sending processor, allowing 

a double update for a single time step. 

Even after fixing these errors, it was still observed that occasionally data files would differ 

by very small amounts (on the order of 10-6). The output data file was increased to include all 15 

digits of precision afforded by doubles. This allowed us to see that values did get off by small 

amounts in the last decimal place from early in the simulation . 

Number of time steps Average particle position error Average particle position error 

Different linked list orders. One slave versus four slaves, 

same linked list order. 

5,000 8.956 X 10-!7 0.000 

10,000 8.131 X 10-lS 0.000 

15,000 3.278 X 10-lU 0.000 

20,000 1.901 X 10-Ull 2.630 X 10-lb 

25,000 5.903 X 10-UlJ 1.299 X 10-14 

30,000 1.884 X 10-Ull 1.346 X 10-lZ 

35,000 4.755 X 10-0? 2.699 X 10-IU 

40,000 7.262 X 10-u:, 2.533 X 10-Ull 

Table 3: Magnitude of error introduced by order of computation or by number of processors . 

We discovered that while particles were undergoing the same interactions, these 

interactions were occurring in different orders. The differences we saw in the last decimal place 

were being caused by rounding effects related to the order of the summations carried out by the 

simulation. In the version running on multiple processors, the linked lists containing the contents 

of a cell would become reversed in comparison to the version running on a single slave. We 

changed our linked list implementation so this would not occur and the difference was reduced 
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J substantially. The single and multiple processor runs still do differ, indicating that there are 

some calculations that are still occurring in different orders . 

As we can see from table 3, the magnitude of error introduced by our order of computation 

was very small. It is however growing exponentially as simulation time increases . While the 

differences caused by order of operations may only affect the least significant digits, the 

differences are propagated as they are used repeatedly in all future calculations. 

After our successful experience using this comparison tool to find bugs, we continued to 

use it to verify any code changes against a standard data set. In this way, we could be assured 

that the changes did not introduce any errors into the simulation (at least not any errors that 

produced noticeable differences in the values of our particles). 

5.4 Optimizations 

5.4.1 Initial performance and improvements 

Once the bulk of the debugging was complete, the next phase was to measure the parallel 

) performance of our implementation . Timing studies were performed, holding the simulation size 

constant at 10,000 particles while varying the number of processors used. Our measure of 

parallel performance will be parallelizability (16]. If the time it takes the parallel program to run 

on one processor is T 1 and the time it takes to run on p processors is Tp, then the parallelizability 

Pis given by: 

_J 
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Figure 9: Parallelizability of the initial parallel version. 

As one can see from figure 9, the parallelizability of the initial implementation was very 

poor. Running on 16 processors, we obtained a speedup of less than threefold. It was discovered 

that the slaves were often waiting for the master to finish writing an output frame to disk. The 

master was outputting to a text file and the file I/O was terribly slow. This text file output was 

only a temporary construct in the simulation; eventually the data would travel to the client for 

display. In the meantime, the text file output was replaced with a routine to output the frame to 

disk as a binary SGI image file. 

In addition to the faster file I/O, optimization was also done on the size of packets carrying 

particle information between slaves and between slaves and master. The size of a particle 

travelling between slaves was reduced from 14 doubles to 10. The size of particles travelling 

between a slave and the master was reduced even further, from 14 doubles to 3. Also, the 

blocking MPI_Send calls used by the slaves were changed to buffered non-blocking MPI_lbsend 

calls. 

5.4.2 Investigating problem size 

These improvements did provide somewhat better parallelizability, but we were still far 

from optimum. One possibility was that the simulation of 10,000 particles being used was not 

large enough. Increasing the problem size might well improve our parallelizability. A study was 

carried out measuring the efficiency of the program . If Pk is the parallelizability of the program 

running on k processors, then the efficiency is given by : 
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The simulation was run for 5,000 to 50,000 particles with a varying number of processors. 

Figure 10 shows that the efficiency drops off sharply for all problem sizes as the number of 

processors is increased. There does appear to be a sweet spot around 30,000 particles, but in 

general the efficiency was quite bad for any more than four processors . Our poor 

parallelizability does not appear to be a result of too small of a problem size. 

0 
0 
0 

'° Number of Particles 

1.00 

0.90 

0.80 
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Figure 10: Efficiency of the simulation with varying number of particles and processors. 

The generally improving trend as we go from 5,000 to 30,000 particles can be explained by 

the relative amounts of computation and communication we do for different problem sizes. For 

small number of particles, each processor can calculate new values for its particles quite quickly. 

But it must then communicate and synchronize with other processors. As we increase problem 

size, the computation costs grow quickly as each processor is responsible for more particles. Our 

communication costs grow more slowly since as the number of particles increase, the size of our 
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grid cells decrease, thus the fringe rows that need to be communicated don't contain significantly 

more information. 

Unfortunately , as we increase beyond 30,000 particles, our efficiency drops off. A more in 

depth study was carried out , measuring the parallelizability, average inter-slave packet size, 

percentage idle time per slave, and percentage communication time per slave . This study 

showed that the average packet size was increasing with problem size, but not at an alarming 

rate. The percentage idle time and percentage communication time were both decreasing with 

increased problem size. 
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Figure 11: Average packet size and idle time as problem size grows. 

We could not ascertain the exact cause of the performance drop. The increase we see in 

packet size is possibly significant. It could be that we exceeded some buffer or packet size limit, 

incurring additional delay in the sending, reception or transmission of messages. Other factors 

such as memory management or cache utilization may be at work, it is difficult to know for sure. 

5.4.3 Switching to blocking sends 

In the initial round of optimizations, the original blocking MPI_Send calls were replaced 

by their non-blocking cousin MPI_Ibsend. The user buffered version MPI_Ibsend had to 

be used since the normal non-blocking MP I_I send ran out of buffer space and resulted in 

erroneous values being transmitted. The non-blocking call allowed the slaves to send their 

update messages north and south without waiting for synchronization with the adjacent slaves. It 
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J also allowed the slaves to send the master update messages without waiting for the master to be 

ready . 
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Figure 12: Performance impact of using blocking and non-blocking MPI sends. 

It was just assumed that this would yield superior performance. This optimization was 

) bundled with the reduction of packet size and the net result yielded a performance improvement. 

But if the blocking and non-blocking sends are compared holding other things constant, the 

surprising finding is that the blocking sends are significantly faster. The reason for this is 

unclear; MPICH's implementation of the non-blocking must be inefficient in some way. 

5.4.4 Master reception order 

It was also found that performance could be improved by allowing the master to receive 

update messages from the slaves in any order. Allowing the master to start receiving incoming 

packets as soon as possible reduced the time slaves had to wait for their blocking sends to 

complete. 

An initial attempt was made using MPI_Probe to determine which slave's message was 

waiting and then executing a MPI_Recv with the waiting processor's number. While this 

method did not hang, sometimes the master would receive redundant message from one 

processor and no messages from another. What exactly was going on inside the MPI 

implementation was again not clear. The problem was resolved by eliminating the MPI_Probe 

_) call and using an increasing message tag number for each master-slave update step. 
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5.4.5 Exact lazy updates 

Another likely candidate for the cause of our lackluster parallel performance was the inter­

processor communication done at every time step. In order to prove this theory, the simulation 

was modified to allow "lazy" updates along processors boundaries. Instead of communicating 

buffer rows and migrating particles after every time step, the simulator could be set to 

communicate only every kth time step. 

These initial tests of lazy updates were purely for performance measurement, no care was 

taken to assure the correctness of the implementation. Figure 13 shows that the lazy updates do 

indeed improve performance, the parallelizability curves begin to approach optimal as we update 

less and less frequently. 
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Figure 13: Parallelizability with different frequencies of inter-processor updates. 

Since there was indeed performance to be gained by reducing the update frequency, we 

investigated how to achieve this without sacrificing the accuracy of our simulation. Our solution 

was to increase the amount of row overlap between adjacent processors. The following example 

will illustrate the technique. P 1 and P2 will start out with identical copies of the shaded rows and 

will run for two time steps without sending an update message. 
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Time Actions 

to P1 can exactly update rows r0 - rs 

P2 can exactly update rows r2 - r7 

t1 P1 can exactly update rows ro - r3 

P2 can exactly update rows r4 - r7 

t2 P 1 sends P2 rows r 1, r2, r3 and any particles that moved from r3 to r4 in t1 

P2 sends P1 rows r4, rs, r6 and any particles that moved from r4 to r3 in t1 

P 1 and P2 now have a synchronized grid again. 

Figure 14: Example showing how to maintain synchronized grids without updating every step. 

Note that we had to overlap three rows to extend updates to every two time steps. Initially 

it was thought an overlap of two rows would be sufficient for this. Consider the case that P1 

starts with only the rows r0 - rs. In to P 1 can update exactly rows r0 - r4 , but during this time step 

a particle could migrate from rs to r4. Only P2 would know about this as P 1 is unable to update 

this row (due to its lack of rows above rs). Since our whole goal is to avoid communication 

during this step, P2 cannot tell P1 about this migrant particle. Therefore in t1, P1 can no longer be 

assured that its update of r0 - r3 will be completely accurate. 

We also need to make the assumption that particles do not jump over multiple rows during 

a single time step. If this were to be allowed, we might need to communicate after every time 

step in order to send these fast moving particles to the responsible processor. A particle moving 

this fast is an indication that there is something wrong with the simulation and should not 

normally occur. We choose to simply print a warning message and delete any particle trying to 

jump too far. 
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This technique can be used to push out the need for communication as far as we wish to 

go. Each additional time step will require two more overlapping rows. The downside is that the 

greater the number of overlapping rows, the more computation each slave must do per time step. 

In addition, when updates do occur, the messages exchanged will be longer, proportional to the 

number of overlapping rows. 
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Figure 15: Comparison of the average number of rows needed per processor . 

As figure 15 shows, for a simulation of 10,000 particles, the extra row overhead incurred 

in order to push out updates to every other time step is significant. A version of the simulation 

was implemented using this increased row overlap to measure whether the advantages of less 

frequent communications would outweigh the costs of more computations. 
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Figure 16: Performance of exact lazy updates. 

Unfortunately, as figure 16 demonstrates , pushing out the communication by increasing the 

row overlap actually reduced our performance . For 10,000 particles, there is just too much 

redundant computation resulting from the extra rows on each processor. It is possible that for 

) larger simulation sizes, this method could prove more beneficial. At this point, we scrapped this 

exact method of lazy updates; it added significant complexity to our code and did not perform 

well for our target simulation size. 

5.4.6 Non-exact lazy updates 

While we failed to obtain a well performing method to do exact lazy updates, if we were 

willing to accept some amount of error in our simulation, we could employ a simpler policy . 

The simplest policy was similar to the one we used initially to demonstrate the performance 

benefit of lazy updates. We would only update every kth step, on steps in-between , use the old 

values of particles in the buffer rows . If particles needed to migrate between processors, we 

would simply hold them until we reached the next update step. 

Our first attempt resulted in highly divergent results when lazy updates were employed . 

By analyzing the animations and using our particle comparison utility developed during the 

debugging phase, we discovered there were some subtle problems with the technique. We had to 

modify our routines responsible for pumping new particles into the simulation and utilize two 

~ linked lists to track migrant particles ( one for the last time period and one of the current time 

period). 
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We measured the average positional difference between a version updating every time step 

and one updating less often. Eventually the number of particles between the simulation 

compared would differ. We chose to track the overall number of particles missing between the 

two runs, but we did not include these particles in our calculation of the average positional 

difference. 

Time steps Update every 2 Update every 4 Update every 8 

Position error Missing particles Position error Missing particles Position error Missing particles 

5,000 1.556 X lff:, 0 5.879 X lff:, 0 1.089 X 10-4 0 

10,000 1.050 X 10-J 3 1.643 X 10-J 2 1.696 X 10-J 4 

15,000 3.204 X 10-3 14 4.219 X 10-J 24 4.122 X 10-J 25 

20,000 5.004 X 10-3 50 6.235 X 10-3 58 5.748 X 10-3 49 

25,000 6.408 X 10-J 47 7.934 X 10-J 69 7.229 X 10-J 58 

30,000 8.076 X 10-J 74 9.668 X 10-J 68 9.185 X 10-J 71 

35,000 9.931 X 10-3 82 1.169 X 10-2 105 1.161 X 10-2 86 

40,000 1.268 X 10-2 105 1.431 X 10-2 116 1.444 X 10-2 125 

Table 4: Comparison of error introduced by simple lazy updates. 

As you can see in table 4, the simple implementation of lazy updates results in significant 

errors in the particle positions. If you consider that we typically had particles in the range (0.0, 

0.0) to (1.0, 1.0) and displayed our results at a screen resolution of 640 x 480, a positional 

difference of around 1.0 x 10-3 would be sufficient to alter the plotted position of a particle. 

After only 10,000 simulation steps, even updating every two steps was not sufficient to attain 

this accuracy. 

Our quantitative results showed that this simple method of lazy updates introduced 

noticeable amounts of error. But perhaps these numeric errors would not make a noticeable 

difference in the overall qualitative look of the simulation. To substantiate this claim, animations 

were created using update frequencies of 1, 2, 4, and 8. When the animations were compared 

side-by-side, little difference could be detected in the overall simulation. The fluid behaved in 

the same way regardless of the frequency of our updates. 
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Figure 17: Performance of non-exact lazy update method. 

Parallelizability timing tests were run for a simulation of 10,000 particles using update 

frequencies of 1, 2, 4, and 8. As figure 17 shows, updating every 2 steps produced a big gain in 

parallelizability. Updating every 4 steps improved things slightly more, while updating every 8 

) steps didn't seem to provide much further benefit. 

In all cases, as the number of processors increased beyond 12, there was no further 

reduction in the overall time required for the computation. We believe this is the result of the 

increasing number of redundant rows as we increase the number of processors. For our standard 

simulation of 10,000 particles, the entire grid consists of 37 rows. For 16 slave processors, each 

slave is responsible for around 4 rows, 2 of these being redundant overlapping buffer rows. 

Ideally we would like to reduce the amount of redundancy in the grid. Unfortunately this 

is not possible since the size of the grid cells is determined by the physics related to the number 

of particles in the simulation. The size of a cell represents the cut-off distance for physical 

interactions of our particles (the so-called smoothing length). The only way we can increase the 

total number of rows and achieve a reduction in the redundancy is to increase the total number of 

particles in the simulation. 

We ran another set of parallelizability tests using 30,000 particles, the sweet spot 

discovered in our efficiency contour plot (figure 10). Update frequencies of 1, 2, 4 and 8 were 

tested. We found that as expected, this number of particles provided much better performance 

even without using lazy updates. As the update frequency was increased, the trend was for the 
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parallelizability curve to improve, but not by large amounts (curves for frequencies 2 and 4 were 

omitted from figure 18 for clarity). 
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Figure 18: Performance using simple lazy updates and 30,000 particles. 

Comparing the results for lazy updates with a simulation size of 10,000 particles (figure 

17) and 30,000 particles (figure 18), we see that the necessity for using the lazy update feature is 

closely coupled to the problem size. For 10,000 particles, simulations without lazy updates 

perform very poorly and large gains are made by utilizing lazy updates. For 30,000 particles, 

simulations without lazy updates perform quite well and lazy updates only provide a small 

performance benefit. This is likely due to the relative amounts of time the simulation is spending 

in communication versus computation. For larger number of particles, each processor is 

spending a higher percentage of its time in computation, minimizing the overall effect of delays 

due to communication and synchronization. 

5.4. 7 Relative processor loading 

Another factor that could be harming our performance is the relative amounts of work each 

processor is performing. Our program splits up the work as evenly as possible in the beginning, 

but does not reevaluate that decision during the simulation. If one processor is performing 

slower than the rest, it will bring the whole simulation down to its speed since processors must 

synchronize with neighbors after every time step. 
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·) To investigate this potential problem, we instrumented our code to measure the percentage 

,) 

of time each processor was idle . If we let T be the total runtime of the simulation on a processor 

and Tc is the amount of time a processor spent calculating (includes everything except time spent 

waiting on blocking sends and receives) , then our idle percentage is given by: 
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Figure 19: Idle time using different MPI dispatch mechanisms. 

We started up our test simulation under three different environments. The first was our 

standard method using the mpisub command. The mpisub command goes through the 

cluster's LSF load balancing system. This assures us that the processors in our simulation will 

be unloaded by other mpisub jobs (though they could have users logged in locally taking up 

CPU cycles). This was compared with starting up the simulation using mpirun, bypassing the 

LSF system and loading onto processor regardless of jobs currently on those processors . Finally, 

we used mpirun but specified explicitly which processors we wanted, purposively loading two 

of these processors with another mpisub job. 

Figure 19 shows that the mpisub job and the normal mpirunjob have similar average 

idle time percentages. This indicates that at the time the mpirun job was running, all the nodes 

utilized were unloaded to begin with. When we forced the mpirun job onto several nodes that 

were loaded, we see the idle times increase dramatically. This demonstrates that our 

simulation's performance is highly sensitive to the relative performance of all the nodes in our 

MPI network. 
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To improve performance, we would need to implement some form of load balancing. One 

idea would be to have the master periodically redistribute the grid rows to all processors, giving 

fewer rows to processors that have been finishing last and giving more rows to those that have 

been finishing early. We decided against implementing load balancing in our simulation . We 

deemed that the added complexity would detract from the readable and reusability of code for 

future users of the software. 

5.4.8 Performance effect of boundary shapes 

Up to this point, all performance tests were conducted on a standard simulation world 

consisting of a cylinder in the middle of the fluid flow. Since our domain decomposition relied 

heavily upon the overall motion of particles travelling horizontally, the more vertical motion our 

fluid exhibited, the worse one could expect our simulation to perform. We conducted a set of 

experiments using different simulation worlds to measure how badly performance would degrade 

in more "difficult" situations. 

Figure 20: Four simulation worlds tested for performance. 

Parallelizability tests were run on the four worlds with differing numbers of cylinders. The 

results were remarkably similar. The world with no cylinder performed slightly better that the 

other three. The worlds with 1, 5 and 10 cylinders all performed almost the same. Further 
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investigation revealed that the average size of packets travelling between slave processors did 

not vary much. For O cylinders the average was 62K, 1 cylinder 58K , 5 cylinders 56K, and 10 

cylinders 54K. 

The differences in packet size appear to have more to do with the overall number of free 

particles in the simulation than with the configuration of the shapes. As more shapes are added, 

the amount of space available to initialize particles is reduced. In the case of no cylinders, we 

had 200-400 more free particles. While there may have been more particles migrating between 

processors in worlds with shapes, the cost of these migrations were minor in comparison to the 

costs of sending the buffer rows (which need to be communicated in their entirety regardless of 

the movement of particles between processors). 

We concluded that we didn't need to be too concerned with the overall configuration of the 

shapes in our world. Obviously it would be possible to construct degenerate examples that will 

cause our simulation to perform badly (i.e. creating a series of shapes funneling all the particles 

onto one processor), but we will assume our users would use more reasonable worlds. 
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6 Client application 

6.1 Motivation and design 

Scientific computer simulations, especially parallel ones, tend to be difficult to use 

programs that only the creators ever use. One of our project goals was to create an easy-to-use 

interface to our simulation software. This would allow others to experiment with the SPH 

method without having to learn the complexities of running parallel programs. Our goals for the 

interface were as follows: 

1) Cross platform, at least to the point of being able to run on a variety of workstations. 

2) A user should be able to connect to the server running on SW ARM without needing a 

CS-Research account. 

3) A novice user should be able to obtain a reasonable looking simulation run without 

knowing much about SPH or our software. 

4) The user would be able to save and load simulation parameters so as to be able to 

repeat and modify past experiments. 

5) The user should be able to save resulting animations for future viewing. 

The first two of the above design goals directly influenced the direction of our 

implementation. In order to be as cross platform as possible, we choose to implement the client 

in Java. On our campus, the JDK Java interpreter would be available on any workstation a user 

would be likely to be use. A disadvantage to using Java would be that we could expect slower 

performance than from a similar compiled C program utilizing a GUI API such as Tcl/Tk. 

Our second goal of utilizing our server on SW ARM from a remote machine proved to be 

challenging. We could not assume that the user would have an account on our CS-Research 

network, and even if they did, they might not be familiar with starting parallel jobs on SW ARM. 

Our server would therefore need to be already running on SW ARM, waiting for a connection 

from the client. Therefore, we would need some method of communication between the client 

and the server. 

Our first thought was to use MPI as the messaging API between client and server. This 

proved to be problematic for several reasons. First, MPI was only available on CS-Research 

machines and Department of Engineering workstations. While our target users would be likely 
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) to have access to a workstation running MPI , it would limit usage of the client to only these 

workstations. Secondly , due to security restrictions in place on the SW ARM cluster , it was not 

possible for an engineering workstation to communicate via MPI with SW ARM. Thus if we 

used MPI, the client would be limited to running on CS-Research workstations. 

Using socket communication was another option for the client/server communication . An 

investigation revealed that such socket communication was not subject to the security restrictions 

that prevented MPI from functioning . Using sockets also had the advantage of enabling the 

client to be run from literally anywhere. The client could communicate from any machine with 

an Internet connection. The main disadvantage to this technique was that we needed to develop 

a socket communication library between Java and C++ (see section 7). An additional 

disadvantage was that it precluded the possibility of using an applet. We would need to open an 

arbitrary network connection , a Java security exception for unsigned applets. An applet could be 

signed to alleviate this restriction , but presently the process for signing applets is annoyingly 

complex. We chose to write our client as a Java application. 

) 6.2 Implementation 

Developing a GUI can be a very tedious business . Each graphic element must be placed in 

exactly the right location and hooked up to interact with the software and other on screen 

elements . We decided to utilize a tool to assist in the GUI development. After evaluating 

several other products, we choose Symantec ' s Visual Cafe as the easiest IDE tool for developing 

our Java client. Visual Cafe provides a rapid application development environment for Java 

applications and applets. With little starting knowledge, the overall layouts of the GUI can be 

created by dragging and dropping components. Events can be specified for certain components 

and Visual Cafe provides the necessary code stubs for the listeners. 

It was discovered early on that a Java application created using the A WT toolkit did not 

port gracefully to other platforms. An application that looked perfect in Windows NT would be 

nearly impossible to use in X-windows due to truncated labels , buttons , and other visual 

anomalies. We switched to using the Swing library [4] for our GUI components . The look-and­

feel of the Swing components could be set to be the same regardless of the operating system. 

While we still found that there were occasionally visual quirks between operating systems even 
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with Swing, we could trust that our application would be at least useable between different 

platforms . 

Implementation went very smoothly, it was a refreshing change to be using Java instead of 

C++. We could avoid all the details of the memory allocation and focus on the functionality of 

the program. We were also able to implement threaded classes for reception and playback for 

our animation. This allowed the user to switch between different views and frames of the 

simulation even while new data was being received and post-processed. 

~SPH S1mulatron 1!!1~£1 

Figure 21: Velocity and density contour plot using the client application . 

We decided the client should receive the floating-point data for each output frame of the 

simulation rather than bitmap images. This allowed the client to perform computations and 

visualization on the data without the need for constant server support. The client could either 

receive the data during a live connection to the server, or it could later load data files saved by 

the server. The disadvantage to this was that if the server was sending frames to the client very 

quickly, the client could hold up the whole simulation while it performed the generation of 

bitmap images from the floating-point data. 

We added the ability to view not only the positions of our smooth particles, but also a 

contour plot of the density, pressure, and velocity. This aided greatly to our understanding of the 

physics of our simulation and helped us locate several mistakes in our formulas. We originally 

scaled the colors on our plots from blue to red based on the minimum and maximum values 

within a single frame. This was very misleading when the frames were displayed in sequence. 
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J Unfortunately, there was no way to know a priori what the global minimum and maximums 

would be for a particular attribute. We settled for allowing the user to view plots using the local 

minimum and maximum and provided a rescale function so plots could later be recalculated 

using the global minimum and maximum. 

) 

.) 
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7 Socket communication library 

7 .1 Design considerations 

In order to facilitate communication between our Java client application and the MPI 

server running on SWARM, we needed a library for socket communication. A fairly exhaustive 

search of the web revealed plenty of existing socket libraries for C, a few for Java, but none that 

were designed to operate between the two languages. It was therefore necessary to design and 

implement our own socket communication library. We utilized the Java socket class and C 

socket functions for the low-level socket communication, building a higher level API on top of 

these. The design goals of the library were as follows: 

1) Insulate the user from the low-level details of the socket communication. 

2) Allow sending and receiving of a variety of data types: strings, bytes, integers, floats 

and doubles. 

3) Provide similar interfaces to the library on both the Java and C sides. 

4) Communication throughput sufficient to avoid a bottleneck in the client-server link. 

7 .2 Implementation 

Development of the library began with learning the low-level socket calls needed in C and 

Java to achieve a simple 'Hello World' socket program. Modifying example code in [9] and [6], 

simple text socket messages could be sent between C and Java code. Once it was proved that the 

C and Java socket routines could indeed communicate, implementation of the actual library 

began. 

Since the Java side would have to be designed in an object-oriented manner, in order to 

provide consistent interfaces, the C side would also need to be object-oriented. A Client class 

was created in Java, and a Server class in C++. The library would be used by calling various 

methods on a Client or Server object. Since both Client and Server objects would 

need to send and receive all the supported data types, identically named methods were created in 

both the Java and C++ classes. This identical naming allowed the library interface to be almost 

the same on both the Client and Server. The only interface difference was in the 
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construction of the Client and Server objects : a Client object needs to know the port and 

system name to connect to, a Server object just needs to know the port to listen on. 

Difficulties began to emerge when the first version of the library was tested for 

performance. The performance test involved repeatedly sending and receiving blocks of data 

between the Client and Server . While initial simple testing of the libraries had worked 

reliably, the performance test program often hung. The problem was in transmitting multiple 

messages in one direction. To illustrate the problem, take the example of the Client sending 

two messages consisting of 100 integers each. The Server receives the first message, but the 

socket calls may read slightly into the second message, throwing the extra integers away. When 

the Server then tried to receive the second 100 integer message, there would not be enough 

data and the program would hang. 

The solution was to utilize acknowledge messages (ACKs) after completion of a 

send/receive. An ACK consisted of a single-byte message with the contents of the byte being 

irrelevant. After completion of each receive method, an ACK was sent to the other party. The 

receive method would then wait for an ACK from the other side. Symmetrically, after 

) completion of each send method, an ACK was waited for from the other party. The send method 

would then respond by sending its own ACK. This simple addition eliminated the unreliable 

behavior, allowing the client and server to call any number of sends or receives in a row. The 

Client and Server programs must still have sends and receives balanced, but this is true of 

most communication APis. 

7 .3 Performance issues and results 

The first three of our stated design goals had now been met; we had an easy-to-use method 

for sending and receiving various types of data between our Java client and C++ server 

programs . Our last design goal was that our socket library must provide enough communication 

throughput to avoid becoming a bottleneck in our simulation infrastructure. We wanted a 

transfer rate fast enough to allow the server to stream the results of the simulation real-time to 

the client. Exactly the data rate needed was an unknown quantity until we had the SPH 

simulation implemented. We estimated that for a 640 x 480 animation running at 5 frames per 

second, one byte/pixel, a data transfer rate of 1.5 MB/s would be required . 
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Timing studies were performed, measuring the overall data transfer rate on large blocks of 

various data types. The initial results were disappointing. Our library yielded a 16 KB/s transfer 

rate between two machines connected by fast Ethernet (with a theoretical transfer rate of 12.5 

MB/s). The initial version was performing 100 times slower than our target rate and 800 times 

slower than the theoretical rate. 

The main source of the slowdown was the socket routines used on the Java side. Java's 

Socket class provides methods to send and receive the primitive types: char, int, 

float, and double. These methods can only send or receive one data item at a time. For 

large blocks of data, these methods were simply called multiple times. This probably resulted in 

extremely short and inefficient packets being sent over the network. The C side avoided this 

problem since its socket functions send and recv only accepted a pointer to an array of 

chars. An array of data items of any type could be sent or received by simply casting the array: 

send(new_fd, (char*) buff, sizeof(double)*len, 0); 

The Java side did have a write method capable of sending multiple bytes, but the data to 

be sent must be in the form of a byte array. In Java, converting an array of some other data type 

to an array of bytes wasn't as easy as a cast in C. For sending, the original data must be filtered 

through several streams to obtain a byte array: 

ByteArray0utputStream bytestream = new 

ByteArray0utputStream(len*8); 

Data0utputStream = new Data0utputStream(bytestream); 

for (int i=O; i<len; i++) 

out.writeDouble(vals[i]); 

output.write(bytestream.toByteArray(), 0, bytestream.size()); 

In addition to changing to reading and writing blocks of bytes, the Java Inputs tream 

and OutputStream objects used were changed to BufferedinputStream and 

BufferedOutputStream. Benchmark tests were then done to test the overall transfer rate 

for various types of data (doubles, integers and bytes). The overall packet size was held constant 

at 64KB and 100 packets were sent from the server program on SWARM to a client program 

running on jasper. cs. orst. edu. These improvements resulted in 300-400 KB/s transfer 
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) rates for complex (non-byte) data types . Bytes could be sent much faster, 2.5 MB/s, indicating 

that the above routine converting between complex arrays and byte arrays is very costly. 

) 

Packet size / data type Average transfer rate (KB/s), 5 trials Standard deviation 

8192 doubles 330.75 0.50 

16384 integers 392.06 1.43 

65536 bytes 2480.96 32.47 

Table 5: Socket transfer rates between Java client and C++ server. 

To test whether the interpreted Java was to blame for our slow performance, a version of 

the Client class was written in C++. The same communication benchmark tests where then 

run using the C++ Server and C++ Client classes. 

Packet size / data type Average transfer rate (KB/s), 5 trials Standard deviation 

8192 doubles 2050.34 85.30 

16384 integers 2081.45 45.66 

65536 bytes 3332.04 93.57 

Table 6: Socket transfer rates between C++ client and C++ server. 

Comparing the results in table 5 and 6, we see that for doubles and integers, a six-time 

increase in throughput is seen using C++ on both sides. However, the performance gain for 

bytes is much less pronounced. This provided further evidence that the performance problem 

with double and integers is in the translation of the original data into a byte array. The overall 

speed of Java does not appear to be a significant limiting factor. 

The library so far was using only connection-oriented methods of network communication. 

While these connection-oriented services provide guaranteed delivery of messages, they also 

involve extra communication overhead . The Client and Server classes were further 

extended to allow sending and receiving of datagrams, connectionless network communications. 

) A transfer rate of 3097 KB/s was obtained using a combination of datagrams and 
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acknowledgement messages sent by guaranteed means. The acknowledgement messages were 

necessary to insure any packets that disappeared in transit would be resent. 

While we now had achieved our target rate of 1.5 MB/s , the library was still performing 

well below theoretical limits. The reasons for this are not clear. It may involve details of the 

network and operating system that are limiting the throughput. It could be that the send and 

receive socket routines are still breaking up each large packet into many smaller , inefficient 

network messages. 

7 .4 Example application using socket library 

Slave 0 

Java MPI Slave 1 

Client Master 
Process • • • 

Slave k 

Figure 22: Communication architecture of the SW ARM Performance Monitor. 

With the underlying socket classes complete , a simple application was created to 

demonstrate the viability of our overall project communication architecture. Client and server 

programs were developed to do a simple performance benchmark on nodes of SW ARM. The 

client program was designed to do the following: 

1) Establish a socket communication link with a remote server system on a specific port. 

2) Receive the names and a megaflop performance rating of all nodes running in the 

server's network . 

3) Display the received data 

The server program would be a MPI program consisting of a master process and a number 

of slave processes. The master would do the following : 

1) Accept a socket connection from the client on a specific port. 
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2) Receive commands from the client. The client could tell the server to: run a 

performance test on all its nodes, shutdown the server completely, or close the socket 

connection and wait for a new one. 

3) Inform the slave processes when they needed to perform a benchmark or if they were to 

shutdown. 

4) Collect benchmark data from the slaves and transmit to the client. 
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Figure 23: SWARM Performance Monitor application 

Since the socket libraries developed may be of use to others , the code has been made 

available on the web [20]. In addition to the Java client, C++ server, and C++ client written for 

this paper, a Java server was also written to complete the set. Sample programs demonstrating 

the basic use of each class were created in both Java and C++ and a Makefile provided . 
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8 Conclusions 

8.1 Meeting our objectives 

When we began this project, our objectives were to produce an easy-to-use learning tool 

for students and also to provide an extendable parallel implementation of SPH. Did we meet 

these objectives? 

For our simulation to be a useful learning tool for students, it should operate at interactive 

speeds. Someone just experimenting with the fluid dynamics problem is not going to be 

motivated enough to wait hours to see the results of a change in simulation parameters or object 

placement. As we discovered, the SPH method requires too much computation to provide the 

sort of speed necessary for an interactive simulation. 

While our simulation may not be of much benefit to the average fluid dynamics student, it 

may be valuable to researchers in fluid dynamics. People unfamiliar with SPH can use our 

software to setup and run simulations, without needing to code the details of the method 

themselves. These users will be much more tolerant of the time involved to generate results and 

will probably have access to more power computing resources than the typical student. 

We have succeeded in implementing the SPH method in parallel using MPI. As far as we ) 

know, we are the first to make freely available source code for an MPI parallel SPH simulator. 

We have gone through multiple revisions of our source code with the express purpose of 

improving the understandability for future users. While any software of this magnitude is bound 

to be complex, we have isolated the physics, MPI communication, and client-server 

communication such that modifications can be made by others without having to understand the 

entire program. 

8.2 Lessons learned 

The lure of quick coding can be an overpowering force. Often during the project we fell 

prey to this temptation, leading to poor design and numerous bugs. While at the time, it seems 

that formal design documents and procedures will unnecessarily slow down the development, 

I'm confident they would have resulted in a net time savings due to a much shorter debugging 

phase. 
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J The experience of working on a software development team (albeit a small two-person 

team) has been a learning experience. Simple things like different naming styles for class 

methods and attributes can become a major headache. It became difficult to guess the correct 

combination of capitalization, underscores and abbreviations that were used inconsistently 

throughout the source. Standards for coding and commenting should be established early in the 

software development cycle. 

We would have also benefited from a more sophisticated revision control system like RCS. 

The system we used involved periodically switching working directories, leaving copies of old 

source code intact. While we could back out to an older version, it was difficult to exactly 

enumerate the changes made between versions. RCS would have encouraged us to document 

changes during every check-in, providing a better audit trail. If changes were being made to 

code by both of us at the same time, we would periodically merge the changes using the Unix 

utility diff. RCS would have not helped much here as often changes were widespread enough 

that they would have required check-out of a large subset of the source files, precluding 

simultaneous development. 

) We learned that tuning the performance of a parallel program requires a lot of 

experimentation and guesswork. Sometimes the best results are obtained by counter-intuitive 

actions (such as using blocking send and receives instead of non-blocking). But the 

fundamentals are still the most important; reduce redundant computations and global 

synchronizations. 

8.3 Future work 

Further improvements could be made to the parallel performance of the simulation. 

Utilizing some sort of load balancing scheme would likely improve performance. It would also 

be interesting to investigate other distributions of the simulation grid to the processors. Our 

division into strips causes more cell overlap than a division into square blocks. Since we found 

that the amount of migration between processors had little effect on performance, a square 

decomposition may be the most efficient. 

Performance could also potentially be improved by a more careful analysis of cache 

coherence issues. While we tried to order our calculation in such a way as to stay as local as 

possible, we still made several passes over our particle arrays. It may be possible to combine 
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these loops and update a particle without these repeated passes. A tool to measure the cache 

hit/miss ratio of each processor's cache would be very helpful in such an optimization effort. 

The client side application we developed in this project was basic. There is a lot of room 

to improve and expand the capabilities of this application. The shapes in the simulation world 

could be created and modified visually, rather than with the text-based editing method we 

employed. Additional visualization tools could be added such as tracking of individual particles, 

graphing physical attributes over time, and plotting forces felt on the obstacles. 

We have provided a code foundation for others to extend and use our software for SPH 

based simulations. Our code may also be useful as a starting point for others solving n-body 

problems with a cut-off distance. The physics of SPH could be replaced by other equations to 

model different physical phenomenon. It is our hope that others will build upon our work, 

investigating new and interesting problems. 
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