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Abstract 

With sequential computing technology reaching its speed limits, parallel processing is emerg­

ing as the key to very-high-speed computation. However, developing a parallel program is 

by no means a simple task; neither is analyzing the performance of parallel programs. 

C*1 is a high-level data-parallel language that hides explicit message passing and provides 

an easy-to-understand virtual view of parallel computation . C* is a portable language for 

which a retargetable compiler has been implemented for mesh-connected MIMD multicom­

puters. Together with the compiler, a C* run-time library has been implemented using Intel 

NXlib . This project is aimed at developing a Cstar Development Environment - CSDE---for 

the Meiko CS-2 multicomputer. It includes three tasks. One is building a Meiko specific ver­

sion of the C* run-time library, another is comparing the performance of the Meiko version 

with the performance of the original one, and the last is developing a graphical tool for C* 

programming and performance analysis. This paper introduces the instruments in CSDE 

and discusses in some detail the major implementation issues. 

1C* is a registered trademark of Thinking Machines Corporation. 
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1 Introduction 

C* ( see-star) is a data-parallel extension of C. Since 1987, C* has undergone many changes 

and has been implemented on a variety of machines such as the CM machines (CM-200, CM-

5), Intel machines (iPSC/2, iPSC/860, Delta, Paragon, iWarp ), nCUBE machines (nCUBE 

3200, nCUBE 6400) and a cluster of UNIX workstations. The major goal of the University 

New Hampshire (UNH) C* project is to provid e users with a high-level data-parallel language 

independent of specific machin e architectures. 

Parallel applications can be programmed using either low-level calls to parallel libraries 

( explicit message passing) or high-level languag es. When programming at a lower level, 

users usually get better performance , because the y can fully exploit the underlying hardware , 

and they can choose solutions and optimizations best suited for their specific application. 

However, the advantages of using a higher level language are significant, too . The most 

important benefits are portability , understandability and maintenance. Freed from dealing 

with the idosyncrasies of the machine, programmers can produce code that is cleaner , easier 

to read, easier to understand , and hence easy to maintain. Because the code is machine 

independent , it can be ported to other systems with little change . 

In the UNH C* project, the goal of portability is achieved mainly in two ways: the compiler 

produces C code instead of object code; and it relegates the machine specific functions such 

as inter-processor communication to the run-time library. When porting the C* language 

to different parallel systems, only the run-time library needs to be changed. A C* run-time 

library has been developed together with the UNH C* compiler. It is built using NXlib, 

a message-passing interface compatible with the Paragon system [8]. Since the NXlib is 

supported on the Meiko CS-2, the UNH C* run-time library can be used on the Meiko 

as well. However, this library assumes mesh -connected processors and employs a set of 

hypercube message passing algorithms , which do not always fit well with the architecture of 
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the Meiko CS-2 . Moreover, it introduces some overhead by puting an extra layer of function 

calls between the C* run-time library and the lower level Meiko CS-2 message passing library . 

This project is aimed at developing a Cstar Development Envrioment ( CSDE) for the Meiko 

CS-2 multicomputer. It includes three tasks. One is building a Meiko CS-2 specific version 

of the run -time library, another is comparing the performance of the specific version with the 

performance of the original mesh-oriented one, and the last is developing a graphical tool for 

C* programming and performance analysis. For the sake of convenience , we call the Meiko­

specific version of the C* run-time library the OSU version , and the library implemented by 

the University of New Hampshire the UNH version. 

In this section, we briefly describe the data-parallel programming model. We then introduce 

some of the major features of C*. The section concludes with a more detailed description of 

our goals for this project. 

1.1 Data-Parallel Programming 

C* is a data-parallel language. Data parallelism is the use of multiple functional units to 

apply the same operation simultaneously to elements of a data set [7]. The data-parallel 

model is a SIMD machine with a front end and a back end. The front end is a uniprocessor , 

and the back end is logically comprised of a sufficiently large number of virtual processors 

(VPs) (Figure 1 ). The front end stores the program and the sequential variables . It executes 

the sequential portion of the program, issues parallel instructions to the back -end VPs and 

contols their execution. Theoretically, the back-end VPs work in a lock-step fashion, which 

means that no processor can proceed until all other processors finish the same operation . 

Since they execute identical operations simultaneously on different sets of data, parallelism 

and speed are achieved . In the SIMD machine, each back -end processor has a small amount 

of memory that can be used to store parallel variab les. All the VP memories, combined with 
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Figure 1: The data-parallel model. 

the front-end memory, form a global name space whereby the VPs can communicat e with 

each other . 

As strict and simple as it is, the SIMD model can be applied to many real life problems - in 

general , numerically intensive operations, in particular discrete simulation methods such as 

th e method of finite differences that "grid " up space . Moreover, the SIMD programming style 

can be implemented on a variety of non-SIMD machines. The UNH C* compiler implements 

C* in a loosely synchronous SPMD (Singl e Program Multiple Data) fashion using MIMD 

computers. Unlike the master-slave relationship of the front-end and back-end processors 

in the SIMD model, all processors in a MIMD machine are treated equally . Particularly in 

our project, every processor of the Meiko CS-2 stores a copy of the program , and parallel 

data are distributed among the processors. The inter processor communication is via explicit 

message-passing instead of through shared memory. 

1.2 The C* Language 

As a brief introduction to C*, this section only covers the rudimentary and relevant features , 

which are certainly far from embracing the full richness of this language. Interested readers 

are referred to [9] for a detailed description. 

All data in C* are divided into two kinds, scalar and parallel . Scalar variables behave like 

variables in a sequential program. Parallel variables are the source of data parallelism. C* 
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programming allows the user to express the processing of large amounts of parallel data 

with the illusion that there is an unbounded number of processors onto which the data can 

be mapped . The template of parallel variables is called shape, which is a multidimensional 

array representing the mesh of VPs. Each element of a shape is called a position. To define 

a parallel variable or to instantiate a shape can be imagined as to fill the positions with 

elements of a certain type. Below is a concrete example illustrating this concept: 

shape [128] [256] [2]shapeA; 

int : shapeA x, y, z; 

Here , a shape called shapeA is declared . It is a three dimensional mesh, with 128, 256 and 

2 positions along the 0th, 1st , and 2nd dimensions respectively. Three parallel variables , x , 

y, and z, are declared of shapeA. Each element of the three parallel variables is an integer, 

and each element resides on a VP . 

Parallel operations can be performed in parallel on parallel variables . C* inherits almost all 

data types and operators in C, while adding a new data type bool and new operators such 

as <? (minimum) and>? (maximum). The usual C operators are given new meanings when 

performing on parallel variables. For example, given the declarations above, we can write: 

X = 3; 

Z = 2 * X + y; 

[3] [5] [O]y += z; 

The first statement sets each element of x to 3. The second statement first multiplies each 

element of x with 2, then adds them onto the elements of y, and finally assigns the results 

to z. Figure 2(a) shows the operation similar to the one in this statement on variables of a 

2 by 3 shape. The third statement adds up all the elements of z, together with the element 
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Figure 2: C* examp les for a 2x3 shape. (a) z = 2*x + y, (b) [1][2]y += z. 

of y residing on VP (3,5,0), and assigns the result back to that position of y. Figure 2(b) 

gives an example of similar operation on a 2 by 3 shape. 

In C*, the programmer must specify the context of the parallel operations . This is done 

using with statements. For example : 

with (shapeA) { 

I* operations on pvars of shape shapeA *I 

} 

In many cases, we would like only a subset of the VPs to perform operations in parallel. In 

these situations we can use a where statement, which is analogous to the if statement in 

C. The condition of a where statement masks off the elements of parallel variables that are 

not to take part in the operations, while the rest of the elements execute the code segment 

inside the where blook. Also like the C if statement, a where statement can have an else 

clause. The elements masked off execute the code segment in the else clause. 

C* also has some built-in functions that programmers might find useful. One of them is 

pcoord (). This function takes on a parameter specifying the dimension number and returns 
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a parallel variable with each of elements being the position number along that dimension. 

1.3 Goals of this project 

This project started off as implementing a specific version of the C* run-time library for the 

Meiko CS-2 multicomputer in the Computer Science Department , Oregon State University. 

Our primary concern was to make the C* library as efficient as possible . 

After the code for the routing library was written , we began to test and analyze the perfor­

mance of the C* system. The process turned out to be tedious without a good method for 

retrieving large amounts of valid data , especially for problems with very large size and run 

on many processors . As a result, we decided to develop a profiler as part of the C* run-time 

library , and the profiler became our second goal in this project. The profiler is responsible 

for collecting timings during the execution of C* programs. It does minimum analysis of the 

data and "dumps" data in a reasonable manner. 

The creation of the C* profiler also led to our third objective in this project: devising a 

graphical development enviroment which automatically handles the timing data and dis­

plays them visually. Furthemore, the tool integrates all the tasks of editing, programming , 

compiling and running a C* program. 

Porting and optimizing the C* run-time library is dicussed first in this paper, then the 

profiler and the graphical tool are introduced and some of their implementation issues are 

described in detail. 
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2 Architecture of the Meiko CS-2 Multicomputer 

The Meiko CS-2 is a distributed memory MIMD computer. Each node can be considered 

a stand-alone workstation, because it is built from standard SPARC microprocessors (with 

optional vector processors for vectorizable applications), and runs standard Solaris 2.x kernels 

[1]. All the nodes are connected together by a high-speed interconnection network. To 

program the message passing among the nodes through the interconnection network, CS-2 

provides some libraries . The lowest level library is the Elan Widget library (EWlib ). In this 

section , we give brief introductions to the CS-2 processors , the communications network , 

and the EWlib . 

2.1 CS-2 Processors and Communications Network 

The Meiko CS-2 at Oregon State University currently has 17 processing nodes, each with its 

own computing processor and memory . The computing processors are built from SPARC mi­

croprocessors. All the processing nodes are fully connected by a multi-stage switch network, 

with the Elite Network Switches (ENS) being the crosspoints. Figure 3 gives the topology 

of the CS-2 network [5]. 

Notice that in Figure 3, all the higher stage switches have identical connections to the lower 

stage. This enables us to combine the four switches on the top and degenerate the multistage 

network to a "fat-tree" (figure 4). 

Besides reducing the number of switches at higher stages, the fat-tree network exploits the 

principle of "reference of locality". When a processor in a fat-tree network only references 

local data, the routing does not go through the higher stage of the network, whereas it does 

in a multistage switch network. Hence in a fat-tree network the bandwidth at higher stages 

is reduced . This property turns out to be extremely beneficial since parallel applications 
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Figure 3: The CS-2 multi-stage communication network . Although the switch component is 
an 8x8 crosspoint, the effective radix is 4 due to the bidirectional links. 

Crosspoint switch 

Crosspoint switch 

Proecssor node 

Figure 4: 16 node Meiko CS-2 network as a fat-tree . 
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usually show a high degree of local referencing . 

Since the network is nontrivial, programming it seems to be even more complicated . However , 

it is not necessary for us to get into that much detail. The actual routing through the fat­

tree is hidden by a set of higher level libraries provided by the CS-2. One of the lowest level 

library is the EWlib . 

2.2 The Elan Widget Library 

The Elan Widget Library (EWlib) provides a set of building blocks with which higher mes­

sage passing libraries can be constructed . Functions are provided to support the following 

types of operations which are used in the implementation of the C* run-time library [1]. 

• DMA operations. These functions allow th e user to read/write a continuous chunk 

of data directly from/to a remote processor, without requiring the cooperation of the 

remote process. They transfer data with the lowest latency. 

• Channel communications. These functions provide untagged blocking and non-blocking 

point-to-point message passing . Unlike network DMAs, channel communications re­

quire the cooperation of both sending and receiving processes . They provide the sim­

plest and lowest latency message passing with handshaking. 

• Collective communications. These functions provide operations that perform collective 

communications on groups, such as broadcast, reduction, and global exchange. 
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3 The UNH C* Compiler and Run-Time Library 

One major goal of the UNH C* compiler is portability. This is accomplished in two ways: its 

object code is C instead of machine or assembly language; and it relegates all the machine­

dependent jobs such as communication among the processors to the routing library. The 

C* compiler translates C* code into C code plus calls to a communication library at points 

where data transfer among processors is required . The C* run-time library forms an efficient 

interface between the C* compiler and the underlying architecture, and it facilitates the 

portability of the compiler - only a new library need to be installed when porting C* to a 

different system. The C code output from the compiler can be made available if desired 

by the user, thereby providing those who are very familiar with C* a way to debug or to 

improve their programs . 

The responsibilities of the C* run-time library can be grouped into two categories: mem­

ory related tasks and communication related tasks . The memory related tasks include the 

memory allocation for parallel variables, the distribution of parallel variables, and most im­

portantly, the mapping from the VPs to the physical processors. The communication related 

tasks mainly consist of the six operations that we shall discuss in the next section: broadcast, 

reduce, scatter, gather, grid-read and grid-write. 
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4 Porting and Optimizing the UNH C* Run-Time 
Library 

The construction of the Meiko C* run-time library (the OSU version) is based on the UNH 

version of the library. The algorithms in the UNH version can be found in [4]. The UNH 

version assumes processors are mesh-connected . In both the UNH version and the OSU 

version, the run-time support required by the C* compiler is the same. In this section, we 

describe in detail the optimization made by the OSU version. 

4.1 Data Distribution 

By data distribution, we mean the distribution of parallel variables across the physical pro­

cessors. Because the parallel variables correspond to VPs, data distribution is actually a 

problem of mapping from virtual processors to physical processors. In section 2.1, we have 

described the topology of the Meiko CS-2 processors. They can also be imagined as forming 

a linear array, while at the same time being fully connected to each other. With this view , 

the mapping is indeed natural and simple, since a linear array is a one-dimensional mesh. In 

the OSU version, the parallel variables are laid out only according to their first dimensions, 

and the rest of the dimensions are just allocated locally. Figure 5 shows this scheme . 

When developing a software, there are always some extreme cases to be considered. One of 

such cases is that the number of elements along the first dimension could be fewer than the 

number of physical processors the program executed on. The result would still be correct, 

but some efficiency is lost , because only part of the processors participate the computation. 

We did not try to solve this problem however, because this situation is very rare, and the 

effort of taking special care of it would not balance the speed we lose for the majority cases. 
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Figure 5: A 8x5 parallel variable is distributed on 5 physical processors only according to 
its first dimension . The second dimension is allocated locally. 

4.2 Broadcast 

In UNH C*, the scalar variables are duplicated on all processors . This strategy is adopted 

because the UNH C* is targeted at MIMD computers, so there is no real front-end processor 

to hold scalar variables for VPs to reference. Moreover, the duplication increases the locality 

of data. The problem incurred from this handling, however, is that all copies of scalar values 

need to be kept coherent among all processors. Therefore whenever one copy is changed on 

some processor, that processor needs to immediately broadcast the value to all others. 

A broadcast distributes a value residing on one processor to all other processors. An example 

of C* code that causes a broadcast call to be emitted by the compiler is the following: 

scalar_x = [5]pvar; 

This statement assigns the 5th element of parallel variable pvar to a scalar variable scalar _x. 
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Here we assume that the shape of pvar is a one-dimensional mesh. The actions caused by 

this statement are as follows: the processor which owns the [5] pvar is found out, and then 

it broadcasts the value to a compiler-generated scalar temporary variable on every processor, 

at which point each processor does the local assignment to its copy of scalar _x_ 

The Old Implementation 

The broadcast algorithm in the UNH version executes on a linear array of processors in log­

arithmic time, assuming multi-hop messages take constant time. Broadcasts are performed 

on meshes of arbitrary dimension by applying this algorithm to each dimension in turn . 

The algorithm assumes that each node has an id, with the source node's id being zero 

(This can always be achieved by rotating the source node 's id to zero and adjusting the 

others accordingly . For instance, suppose there are n processors. If a node has id I d0 1d, 

and the id of the source node is I dsource, then after rotation, the node has id: I dnew = 

(I d0 1d - I dsource + n )%n ). In each step of the algorithm, a jump or span is calculated with 

which the processors are to be divided. The algorithm proceeds by letting the source node 

send to its partner located in the "middle" of the array, and then in the following steps, the 

span is divided in half, and each new subdivision then participates in the communication. 

At each step, twice as many nodes are involved in the communication, and the span length 

is halved. At the last step the span is equal to one, and any node that has not yet received 

a message finally receives the value. Figure 6 shows this broadcasting process on six nodes, 

the broadcasting value being 5. 

The New Implementation 

The broadcast algorithm in the OSU version is simplified to a great extent. The EWLib 

provides a collective communication function called ew_bcast (), which does the one-to-all 

broadcast over a group of processors, and the data are transferred through DMA. This is 

called "hardware broadcasting". Not only is the hardware broadcasting much faster than 
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Step 1 

Step 2 

Step 3 

Figure 6: A broadcast of value 5 on a array of 6 processors. 

the software broadcasting algorithm (see Figure 25) , the resulting routine is reduced to only 

a few lines of code . 

4.3 Reduce 

Reduce is called when each active position of a parallel variable must contribute its value to 

some scalar expression. The code 

scalar_x += pvar; 

combines the sum of the active elements in pvar with scalar ..x. 

The Old Implementation 

The algorithm begins by calculating the largest power-of-two that "fits" within the actual 

processor array size. This marks a dividing point between processors on the "full" half and 

those on the "partial" half of the linear array. On the first iteration, all processors on the 

partial half send their values to those on the full half. These full-half nodes then perform a 

logarithmic time reduction [4], resulting in the final reduced value residing on each of those 

nodes . For the final step, th e full-half processors relay the final value to their partners on the 

partial half. When performing on meshes of arbitrary dimension, this algorithm is applied to 
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each dimension in turn. Figure 7 provides a visual representation of the algorithm executing 

on a linear array of six processors. 

Original values 0---+Gt---0---0-0---0 

Step 2 

Step 3 

Step 4 

0 

-G-0---0 

0-0--G-0-0---0 
V V 

Figure 7: A reduction on a linear array of 6 processors. 

The New Implementation 

As with the broadcast, EWlib has a collective communication function called "ew_reduce () ". 

Once the data type and reduction operation are specified (we shall explain this a little bit 

later), the final result can be achieved with just one function call. We replaced the old 

reduction algorithm with ew_reduce. The software overhead introduced by the sophisticated 

algorithm is eliminated and the performance is dramatically improved as shown in Figure 

26. 

Although the "hardware reduction" can greatly reduce the amount of code and speed up 

the reduction process, there is one thing that took our special treatment. The working of 

ew_reduce () relies on the supply of a user-defined reduction function, which is an argument 
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of ew _reduce() . It needs to use the actual data type and reduction operation ( add, multiply 

and maximum reduction, etc). The problem is that the run-time library cannot know this 

information until a program is actually compiled, yet the user-defined reduction function 

has to be supplied to ew__reduce() in programming time. As a solution, we set up a two 

dimensional table in which each entry is a pointer to a function, and each function represents 

a user-defined function of an ad hoc type and operation. Therefore, a function with operation 

op and type type can be obtained via table[op ][type ]. With this arrangement, it is left to 

ew__reduce () to find the correct user-defined function as its argument. 

4.4 Scatter and Gather 

Scatter and Gather are called when parallel values are to be distributed in an unpredictable 

pattern across the nodes. The following example demonstrates the C* code requiring calls 

to scatter and gather: 

[pv3] pv1 = pv2; 

pv1 = [pv3]pv2; 

I* Scatter *I 

I* Gather *I 

The first statement means that elements of parallel variable pv2 are sent to pvl, usmg 

elements in pv3 as indexes. The second statement means that each position of pvl gets 

an element from pv2 using pv3 as the index. Figures 8 and 9 give examples of these two 

operations. 

The Algorithm 

The algorithm for scatter is similar to the hypercube reduction algorithm, except in this case 

packets of data are sent instead of a single value. The processors are divided into two halves 

and the initial send is performed from the partial half to the full half. Once all packets 

are communicated to the full half, the scatter is performed in log step within the full-half. 
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0 1 2 3 4 

pv2 0 40 

pv3 1 2 

pvl 20 30 

Figure 8: [pv3] pvl = pv2 . The use of scatter operation to send elements of pv2 to pvl, 
using pv3 as an index. For example, since the 1st element of parallel index pv3 is 3, the 1st 
element of pv2 is sent to the 3rd position of pvl. 

0 1 2 3 4 

pv2 0 40 

pv3 1 2 

pvl 10 20 

Figure 9: pvl = [pv3] pv2. The use of gather operation to get elements of pvl from pv2, 
using pv3 as an index. For example, since the 1st element of parallel index pv3 is 3, the 1st 
position of pvl gets its value from the 3rd position of pv2. 
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Processor id's 0 1 2 3 4 5 

Original packets 0 0 0 
Step 1 0 
Step 2 0 0 0 
Step 3 0 0 G B 0 0 

'/ '/ 
Step 4 0 0 0 0 

Figure 10: Scattering packets on a linear array of 6 processors. The numbers inside th e 
circles indicate the destination nodes of the packets . The destination nodes and offsets of 
the source values are calculated before the actual scattering occurs. 
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Finally, any packets due to the partial half are commun icated on the final step. 

The gather algorithm requires two scatter operations . Initially, requests are scattered out to 

the nodes where the values reside, and then the actual values are scatter back. 

We do not describe the algorithm in a great detail here, as the describtion would be tedious 

and give no insight to the problem. Figure 10 is a good presentation of the scattering process 

on a linear array of 6 processors . 

Th e ne w im ple mentati on 

The scatter and gather algorithms of the UNH version was kept and we tried to improve the 

effectiveness of the message passing. The EWlib 's channel communication was adopted. A 

network of fully-connected channels are set up when a C* program starts running: processor 

p's channel i is connected to processor i's channel p. At the point where message passing is 

required, each processor uses the appropriate channels to transmit packets of data. 

Unfortunately , the resulting performance is not what we had expected - the new implemen ­

tation for scatter is a litt le slower than the old one (Figure 27) and the new gather is only 

marginly better (Figure 28) . 

4.5 Grid-read and Grid-write 

Grid -read and Grid -write are generalized neighbor communication functions. The grid op­

erations are invoked when expressions containing pcoo rd are used as a left index into a 

parallel expression . For example, 

pv1 = [ .+3] [ . -2]pv2 ; 

[ .+3] [ .- 2]pv1 = pv2 ; 

I* Grid-read *I 

I* Gri d-wr it e *I 

The first statement shifts the elements of pv2 down 3 positions along the first dimension and 
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second dimension 

0 1 2 3 4 

5 6 7 8 9 

10 11 12 13 14 

15 16 17 18 19 

pv2 

18 19 15 16 17 7 8 9 5 6 

3 4 0 1 2 12 13 14 10 11 

8 9 5 6 7 17 18 19 15 16 

13 14 10 11 12 2 3 4 0 1 

pvl pvl 

(a) pvl = [.+3][.-2]pv2; (b) [.+3][.-2]pvl = pv2; 

Figure 11: C* examples for (a) grid-read, and (b) grid-write . 

up 2 positions along the second dimension , then assigns the shifted elements to pv1. The 

second statement has the inverse meaning: it shifts all elements of pv2 up 3 positions along 

the first dimension and down 2 positions along the second dimension, and then puts those 

shifted values into pv1. Figure 11 is an example . 

The UNH Grid- Write Algorithm 

The UNH grid-write algorithm is summarized below: 
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1. Calculate how many messages to receive/send, and where from/to . 

The results are put into variables n_to_read, n_to_write, srcs[], 

and dest s [] ; 

2 . Scan through the values on this node ... 

if the value is active: 

put the local packets into CS __ read_buffer, 

and put the outgoing packets into CS __ keep_buffer ; 

3 . For (i = O; i < n_to_write; i++) 

scan through the keep buffer, 

separate the packets for dests[i] into CS __ write_buffer; 

send the packets in CS __ write_buffer to dests[i] ; 

4 . Do operations on the data received . 

Figure 12 is an example using this algorithm . 

The OSU Grid- Write Algorithm 

To optimize the grid-write operation, we introduced a CS_whole_buffer into the C* buffer 

pool. cs __ whole_buffer is an array of buffers: 

char *CS __ whole_buffer[CS __ MAXP]; 

Where CS_....MAXP is defined to be the maximum number of processors on Meiko. 

Using CS __ whole_buffer, we changed the grid-write algorithm into the following one: 
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[.+ 7] pvd = pvs 

) 
Physical processors 0 1 2 

pvd ~ ~ ~ 
) 

pvs Gv ~ ~ 
Step 1 Dest processors 1, 2 0, 2 0, 1 

) 

Step 2 cs _read_buffer 

cs _keep_buffer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

) 

Step 3 cs - write_buffer 0 1 2 5 6 10 11 

send to Pl to PO to PO 

cs - write_buffer 3 4 7 8 9 12 13 

) send to P2 to P2 to Pl 

Figure 12: An UNH grid-write example . 

) 
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1 . The same as before; 

2. Scan through the values on this node, 

if the value is active: 

put the local packets into CS __ read_buffer, 

and put the packets to nodex to CS __ whole_buffer[nodex]; 

3 . For (i = O; i < n_to_write; i++) 

send CS __ whole_buffer[dests[i]] to 

dests[i]'s CS __ whole_buffer[CS __ nodenum]; 

4 . The same as before . 

Moreover, the sendings in step 3 are implemented using DMA transmission. 

Figure 13 shows the same operation using the optimized OSU algorithm. 

The Grid-Read Algorithm 

For grid-read operations on parallel variables with fewer than two ranks, both the UNH 

version and the OSU version adopt an optimized algorithm , in which the data buffering and 

copying costs are saved: 

1. vpi = 0; 

2. Calculate the VP that vpi will receive from, say vpj; 

3. Figure out on which physical processor vpj is on, along with vpj's offset; 

4. Calculate the number of elements vpi is receiving from vpj: 

n = min (ilocal-vpi, jlocal-joffset) 

where "ilocal" is the number of elements on the physical node that vpi 

resides on; 

5. Get the elements; 

6. vpi += n, go to step2. Loop ends when vpi > ilocal. 
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cs _whole_buffer[l] : 0 1 2 cs _whole_buffer[0] : 5 6 cs _ whole_buffer[0]: 10 11 M 
.--i 

cs _whole_buffer[2] : 3 4 CS_whole_buffer[2] : 7 8 9 cs _whole_buffer[l]: 12 13 
il.) .... 
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Step 3 Send CS _whole_buffer[l] Send CS_whole_buffer[0] Send CS _ whole_buffer[0] 
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pvd = [.+ 7]pvs 

Physical processors 0 1 2 

lter 1: pvs ~ ~ ~ 
t t t 

VP to receive from 7 12 3 
PP to receive from 1 2 0 

# elements to receive 3 2 2 
fetch data to buffer 7 8 9 X X 12 13 X X X 3 4 X X 

lter2: pvs ~ ~ ~ 
t t t 

VP to receive from 10 0 5 
PP to receive from 2 0 1 

# elements to receive 2 3 2 

fetch data to buff er xxxlOll X X 0 1 2 X X 5 6 

pvd ~ ~ Gv 
Figure 14: A grid-read example. 

In Figure 14, we use the same operation as in grid-write to show how the grid-read algorithm 

works. 

DMA transmission is used in the OSU version in replace of the NXlib transmission used in 

the UNH version. 

The performance for grid-read and grid-write are given in Figures 29 and 30, respecively. 
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5 Profiling the Execution of C* Programs 

When the OSU version of the run-time library was coded, we started to test the C* system. 

Very soon we realized that we needed a profiler to collect and analyze performance data . 

For instance, we would like to know how the timings are distributed among the different 

parts of a program, where most of the execution time is spent on, what is the cause of the 

inefficiency of a program, how efficient is every operation, and how each processor performs 

differently towards different operations, etc. Without a profiler, most of these questions are 

impossible or at least very difficult to answer. 

The C* profiler is supported by the run-time library. It not only provides the compiler 

with profiling capabi litie s, but also can perform profiling on itself . While the compiler emits 

calls to begin and end profiling at a high level, the library is equipped to provide detailed 

information as to where the time is being spent inside the library. 

5.1 Profiling Data Structure 

The information for a profiling point is collected in a data structure called CS __ profile. This 

structure includes such information as the profiling type, the profiling name, the name of 

the source file, the line number in the source code that this profiling occurs, and the timing 

data, etc. The structures for all the profiling points in a C* program form a linked list. The 

fields in CS __ profile are shown below: 
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typedef struct CS __ p { 

unsigned long CS __ pro_count; I* number of times "activated." 

I* the structure's "type" 

} 

int 

char 

char 

int 

CS __ ProType 

CS __ ProType 

CS __ ProType 

CS __ ProType 

CS __ ProType 

CS __ ProType 

int 

int 

int 

CS __ pro_type; 

*CS __ pro_name; I* the structure's "name" 

*CS __ pro_file; I* C* file assoc. with the struct 

CS __ pro_line; I* C* line number assoc . w/struct 

CS __ pro_acc; 

CS __ pro_local; 

CS __ pro_send; 

CS __ pro_rcv ; 

cs __ pro_wait; 

I* timing "accumulator" 

I* time spent sorting/ doing local work *I 

I* time spent in MsgWrite *I 

I* time spent in MsgRead 

I* time spent waiting for msg to arrive *I 

CS __ pro_extend; I* time spent reallocating buffers *I 

CS __ pro_max_readbuf_len; I* final sizes of the buffers *I 

CS __ pro_max_writebuf _len; I* Note : if the size is 0, *I 

CS __ pro_max_keepbuf_len ; I* it's actually the original *I 

CS __ profile; 

For self-timing, the C* run-time library is primarily concerned with four fields in the profiling 

structure: CS_pro...local , CS __ pro_send, CS __ pro_rcv , and CS_pro_wai t. CS __ pro...local is 

used to accumulate the time it takes for each communication to perform all associated 

local work. CS_pro_send indicates the time required to perform the send operation and its 

counterpart CS __ pro_rcv provides the time required to perform the receive operation. The 

last one, CS_pro_wai t contains the time spent waiting for messages to arrive while no other 

work is going on. 
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5.2 Profiling Calls 

C* profiling is provided as an option to the users . If you want to collect some data, you only 

need to add the compile-time flag "-profile". With the profile switch turned on, the compiler 

inserts the function call cs _ _profileStart () before a profiling point and the function call 

cs _ _profileStop () after the point. The code below shows a simple example of the C code 

emitted by the compiler to profile a unary -reduce: 

static CS __ profile CS __ temp_8 = { 0, 'C ', "Unary-Reduce", "pi. cs" , 24 

I* Rest are zero'd by type *I}; 

I* Begin profiling *I 

CS ProfileStart (&CS __ temp_8); 

I* Communication code *I 

I* End profiling *I 

CS __ ProfileStop (&CS __ temp_8); 

In this example, a temporary variable called CS_temp_8 is created by the compiler to hold 

the profiling data. Its fields cs __ pro_count, cs __ pro_type, cs __ pro__name, cs __ pro_file and 

CS __ pro_line are initialized by the compiler, while the rest of the fields are to be filled in 

by the run-time library. If the program runs to a normal completion, then all the profiling 

information accumulated in the linked list are dumped out in a reasonable fashion. This is 

done by the function call cs _ _profileDump that is also emitted by the compiler. 
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5.3 Files Output from the Profiler 

If a C* program is compiled with -profile option, running the program will produce two 

profiling files: a .perf file and a .pix file. Both files contain the information dumped from 

the profiler, but in different formats. The .perf file has all the raw data that the profiler can 

get. It is actually the print-out of the profiling linked list in a nice way. No analysis of any 

sort is performed on the data. This file is intended to be used by the C* programmer. The 

.pix file, on the other hand, is more terse than the .perf file, yet the information inside is the 

result of some simple processing. For instance , the .pix file records the average time spent 

on a certain profiling point, whereas the .perf file has all the timings such as CS __ pro_local 

and CS __ pro_send for all the physical processors that this program was executed on. The 

.pix file is intended to be used by the performance analysis tool, which is discussed in the 

next section . 
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6 A Graphical User Interface for Performance Analysis 

The .perf file produced from the profiler can be used to help analyze the performance of 

a C* program, but it has some drawbacks. Usually a .perf file is at least twice as long as 

the correponding .cs file, and its size increases superlinearly relative to the growth of the .cs 

file. This makes searching, comparing, and processing profiling data more difficult for longer 

programs. Consider a situation in which you want to find out the time spent inside a C* 

program 's communication routines. If you were using X windows, you would open up two 

windows , one displaying the .cs file and one displaying the . perf file. You would scan through 

the .perf file, stop at each communication point , get its line number , go to that line in the 

other window and see what the code is , at t he same time perhaps recording the timing 

data somewhere else. When the two files are long , and there are many communications, 

this process could be very tedious. We have developed a graphical tool that simplifies this 

process . The tool is called CSDE. 

CSDE not only can provide performance data in graphical form, but also is capable of 

managing the other principle program development tasks : compiling , running and editing . 

This section shows what the tool can do and how it does them. 

6.1 A Tour through CSDE 

A snapshot of CSDE 

CSDE has five primary components: the menu bar , the performance window, the edit win­

dow, the build window (or compile-run window), and the message label. Figure 15 is a 

snapshot of CSDE with the five components layed out in order from top to bottom, and left 

to right. The label at the bottom indicates we are viewing a program named gaussian.cs 

in the edit window. In the performance window, some bars with different colors and sizes 
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are lined up with the code of gaussian.cs. One of the bars is being pressed down, causing 

the pop-up of a dialog box, which shows the profiling type, name, and cost that this bar 

represents . The message in the build window , generated while running the program , shows 

the total execution time of the C* program . 

What follows is a more detailed description of each field in the root window and its func ­

tionality . 

Invoking CSDE 

CSDE can be invoked in two ways. By just typing csde on the command line, the tool is 

started with empty windows. The second way is to add a C* program name as a command 

line argument . By typing csde <filename> , the tool is invoked with the specified file 

initialized in the edit window . Users can also specify some X resources on the command line 

via flags, for examp le, csde -fg black -bg wheat. 

The menu bar 

Once you are in the tool, you can use the ..E_ile menu to open a file. There are three menus 

on the menu bar: "File" , "Bui ld" and "Options", each being a pull-down menu. 

The File menu contains five it ems : "Open ", "New", "Copy", "Save", and "Qu it " . Clicking 

on "Open ", a FileSelectionDialog will pop up (Figure 16), which allows you to select a file 

for displaying in the edit window. "Save" is similar to "Open" in that a FileSelectionDialog 

will also pop up when invoked, but a file is choosen for saving instead of displaying. "New" 

clears all windows, allowing you to freshly start a new program; and "Quit" causes CSDE 

to terminate. Among all these menu items, "Copy" is the most interesting one. It is useful 

when the user wants to create multiple versions of the same program and compare their 

performance. The behavior of "Copy" is creating another root window of CSDE, we call it 

Copy Window, with the C* program being copied over to the Copy window. Then the user 
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Figure 15: A snapshot of CSDE. 
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Figure 16: The FileSelectionDialog popped up from "Open". 

can modify the copied code and use the Copy window to work on the new version of the 

program. All the Copy windows and the original root window existing during the life time 

of CSDE are equal and independent. A new Copy window can be created from any of the 

old ones or the orginal root window. 

The Build menu is for "building" -compiling and running a program. Two items are included 

under this menu: "Compile" and "Run". 

The Options menu is an auxiliary for Build. It also contains the two items "Compile" and 

"Run", but they have totally different behaviors. When "Compile" is invoked, the dialog 

shown in Figure 17 pops up, and when "Run" is invoked, the dialog shown in Figure 18 pops 

up. These two dialogs allow you to set up the options for compiling and running a program. 

Building a C* program 

If a program has already been loaded in the edit window, choosing Build-"Compile" causes a 
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Figure 18: The dialog for choosing Run options. 
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Figure 19: The compiling dialog, popping up when Build-Compile is invoked. 

Figure 20: The running dialog, popping up when Build-Compile is invoked. 

compiling dialog to pop up (Figure 19). If the program has already been compiled, choosing 

Build-"Run" causes a running dialog to pop up (Figure 20). The termination of compiling 

or running is indicated when the two dialogs change to compiled dialog and run dialog, 

respectively (Figure 21 and Figure 22). 

CSDE is designed so that when a program is being built, the user cannot interact with other 

parts of the tool except the dialogs. Clicking outside the dialogs causes a warning beep to 

be emitted. 

Both compiling dialog and running dialog contain a Cancel button, which enables the user 

to kill the building process if anything appears wrong. This is extremely useful when the 

Figure 21: The compiled dialog, popping up when compiling is finished. 
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Figure 22: The run dialog, popping up when a program has completed execution. 

running job is queued on Meiko. In such a case, CSDE is also suspended , and the user would 

be kept waiting. Getting more and more impatient, the user would try to click on something 

and see what happened ( this is why we disallow the interaction of other parts while building 

to prevent any abnormal situations or confusion). The Cancel button provides the user a 

way to take the job out of the queue. 

After the successful termination of the running process, the performance bars are automat ­

ically displayed in the performance window. 

The build window 

When the compiling or running is over, the compile-time and run-time messages will go 

to the build window, including the warnings and errors. The user can click on the error 

messages in the build window, and CSDE has the ability to locate the error in the source 

code. Figure 23 gives an example. In the program gaussian.cs, we delete the line "#define 

N 256", resulting in a list of errors produced in the build window after compilation. We 

then click on the error message "gaussian.cs:47: error ... " in the build window, and a small 

triangle appears next to line 4 7 of the source code. 

A more important use of this locating ability is to identify the code to which a messag e from 

the vector compiler pgcc refers. When running a C* program using pgcc, the line numbers 

in the compiler messages correspond to the C program emitted by the C* compiler , rather 

than the C* source code. For example, in Figure 24, the highlighted message in the build 
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• 1) = random(&se 
els.a(N] +• I • els.ap); 

} 

solution = TRUE; ,. 
for (i = o; i < N; i++){ 

for O = 0;j < N+l;j++) 
printf (:'o/o6.3f ", p]els.aD)); 

prtntf ("\n"); 
} 

*I 

CS_ Startllmer(); 
with (Row){ 

r Gaussian elimination •1 

for (i = 0; (i < N-1) && solu~on; i++) { 
where (!marked) { ' · 

maximum=>?= fabs(els.ap)); 
where (fabs(els.ap]) .... maximum) plc~d., (int) Id; 

· whem (picked ==: id) { 
marked = 1'; 
pivot= i; 

) 

} ' 
temp_an-ay .. (plcl<ed)els; 

If (fabs(terfip_an-ay.ap]) C EPSILON) { 
solution = FALSI:; 

) else where (!marked) { 
double:Row tmp; 

) 
) 

tmp 1" eJs'.aPJ / terhp_an-ay.ap]; 
for (j ,= i; j < N+1; j++) 
els.aO) -':" temp_an-ay.aD) * tmp; 

where (lmarl<ed) pivot= N-1; 

UNH C* compiler v:ersion 0.9277 built Tue Jun 6 11 :03:29 PDT 1995 
gaussian cs:H': error: u11defined identifier N 
.gaussian.cs:19: error: undefined identifier N 
gaussian.cs:46: eFror: undefined identifier N 
9aussian .cs :-'I/: err or : undefined ider rtifier N 

ssian.cs:49: error: undefined identifier N 
:66: eFror: undefined identifi 

/nfs/mica/u1/zhangch/project/mytool/gaussian.cs 

Figure 23: The error referred by message: "gaussian.cs:47: error . .. " is locat ed by placing a 
small triangle next to line 4 7 in the source code. 
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window is for line 393, yet the file gaussian .cs is no more than 200 lines long. The picture 

shows that by clicking on the message, a small triangle takes us to the corresponding source 

code . 

The edit modes 

The program in the edit window can be in one of two modes: editable or non-editable. Only 

in editable mode can the program be modified . The program in the edit window begins 

in the edit mode , but once the program has been run and the performance bars have been 

displayed , the program in the edit window is no longer editable . At this point , the only way 

to change the code is to create another Copy window . The bars w_ill not be copied , and 

hence the program in the new Copy window will be editable. 

Performance bars 

Performance analysis is the major feature of CSDE. The performance data are represented 

in the form of bars of different colors and sizes. A bar can have any of three different colors, 

representing three of the profiling types . Red represents type 'C ' ( communication , which 

has several subtypes), yellow represents type 'V ' (vp-loop), and white represents type 'A' 

(pvar -allocation). Other profiling types such as 'F ' (function) are not manipulated by this 

too l. The size of a bar is porportional to the cost of the profiling point . The longer the 

bar is, the higher the cost. Bars are drawn next to the code where the profiling occurs, 

so if a line has several profiling points, there would be several bars drawn next to it . The 

performance window is tied to the edit window via the scroll bar, thus both windows scroll 

simultaneously . 

A performance bar contains more information than its color and size. Other information can 

be unveiled by clicking on the bars. This is already shown in Figure 15, in which a bar is 

being pressed and a small info-dialog has popped up . The dialog stays as long as the bar is 

being pressed, and disappears once the bar is released . 
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• o; (I c N-1) && solution; I++ 
(!marked) { 

lmum .. >?• fabs(els.ap)); 
81'.8 (fabS(,els,!lPD == maximu 
ei'e (picked .... Id, 

marked= 1; 
plVO! = I; 

mp_ array = [picked) 

if (fabs(temp_array.ap]) C EPSl,LON) { 
solutlo-' = FALSE; 

} else v,here (!marked) { 
double:Row tmp; · 

} 
} 

tmp = els.aP) / temp_array.apJ; 
for O .. 1; j c N+1; )++~ 

els.aO) -= temp_array.aO) • tmp; 

where ~!marked) pivot a N-1; 

UNH C* compiler version 0.9277 ~uilt Tue Jun 
393, l1111er loop riot vectorized - urrsupported forrn of assi9rrrnerrt slrnt. 

634, Inner loop not vectorized .,;;, unsupported control flow, 
7 42, Inner loop m>t vectorized - unsupported form of assignment stmt. 
779, Inner loop parallelized, blocked .iteration allocation .. 

Inner loop vectorized for counts>=- 10, register size = ' 128 'elements 
' ' 

815, Inner loop parallelized_, blocked iteration allocation 

Figure 24: Locating the line corresponding to the message: "393: Inner loop not 
vectorized ... " generated by pgcc. 
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6.2 Major Implementation Issues 

CSDE is constucted mostly in Motif, with just a small portion of the code making use of low­

level Xlib functions. Many features in CSDE required much discussion and experimentation 

before we had a good implementation. In this section we focus on some of the more interesting 

and important issues . 

6.2.1 Performance Window 

Performance analysis is at the heart of this tool. Our initial goal was to represent the 

profiling data with bars aligned with the source code , so that it would be easy to determine 

how much time is spent in various portions of the program . Each bar would have a length , 

representing the cost of the represented profiling point; a color, representing type of activity; 

and a label , which would give more detailed information. 

In Motif, there is a ScrolledText widget, which is a perfect candidate for displaying and 

editing C* programs , but this widget cannot display bars. This led us to the decision to use 

another widget to draw the bars, and the further decision to use the DrawingArea widget 

for that purpose. We were left with two problems: how to display the bars, particularly the 

portion corresponding to the part of the program in the edit window; and how to make the 

two widgets, the DrawingArea widget and the ScrolledText widget, scroll together. 

One idea we had for solving the first problem was to draw all the bars on a pixmap, then load 

only the right portion of the pixmap to the DrawingArea. When the text was scrolled, the 

DrawingArea would need to be reloaded. This design had three problems. First, the memory 

required by the pixmap was too large to be handled by X. Second, when the performance 

window was resized, the bars were not. Third, the size of the pixmap had to be the maximum 

possible size of the performance window. Oth erwise, when the performance window got larger 
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than the size of the pixmap, an ugly gap would appear. 

Since the DrawingArea widget is drawable, we decided to discard the pixmap idea. Instead, 

we decided to draw bars directly on the DrawingArea widget. Each time the text is scrolled, 

the performance window is flushed and bars are redrawn. The concern about this method 

was the speed. Since each time we have to draw a windowful of bars one by one, if there are 

a lot of bars to draw , can the drawing speed catch up with the scrolling speed when the text 

goes very fast and flashes by? It turned out that the drawing speed is high enough to keep 

up with fast scrolling. There are advantages to this method. We do not need any buffering 

for the bars. When the performance window gets resized, the bars are also resized nicely. 

Moreover, the code is simpler. 

In CSDE, each performance bar represents a profiling point . Hence each bar contains several 

pieces of information associated with that point. We collect the information in a data 

structure called BarStruct. All the bars for a C* program are put together in a barList : 

typedef struct ProStruct 

{ char type; 

char *typeName; 

double time; 

int percentage; 

int barWidth; 

int barHeight; 

struct ProStruct *next; 

} BarStruct; 

BarStruct **barList; 

I* profiling type *I 

I* name of this type *I 

I* execution time *I 

I* percentage used for drawing the bars *I 

The most important field in BarStruct is the percentage, which is the ratio of the cost 

of this profiling point to the cost of the most expensive point in the program. Variable 
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percentage is used to calculate the bar length, which is of the same percentage of the 

maximum drawable width of the DrawingAr ea, after some margin is left out. The source of 

barList is the .pix file, it has the following format: 

<file name> <profiling type> <type name> <line number> <time> 

Variable bar List is allocated to be an array of linked lists. The size of the array is one greater 

than the length of the C* file. Linked list barList [i] groups together all the profiling points 

for line i of the C* program. After barList is loaded, CSDE draws bars in the performance 

window by invoking the function redraw() , using the following algorithm : 

1 . Get the width and height of the DrawingArea widget; 

2 . Clear the DrawingArea widget ; 

3 . Calculate the start line and the end line of the part of the program that is 

displayed in the edit window; 

4 . For each linked list between barList[start_line] and barList[end_line] : 

For each bar in this list : 

Calculate its coordinates , width and height; 

Draw the bar (with 3D effects). 

To scroll the DrawingAr ea widget and the ScrolledText widget together - the second problem, 

we also tried more than one approach. One was to use a Scrolled Window to manage the two 

widgets and to scroll them together. But this is difficult to implement and the complexity 

turned out to be unnecessary . We chose to let the Draw ingArea widget respond to the scroll­

bar of the ScrolledText widget. Or to put it in another way, the scrollbar of the ScrolledText 

controls both the DrawingArea and the ScrolledText. This may sound complicated, but the 

actual code is very simple: 
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I* get the vertical scroll bar of the textWidget *I 

XtVaGetValues (XtParent (textWidget), XmNverticalScrollBar, &vsb, NULL); 

/* add callbacks to the vertical scrollbar: the purpose here is to 

attach the scrollbar to both the text and the drawing area *I 

XtAddCallback (vsb, XmNvalueChangedCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNdragCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNincrementCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNdecrementCallback , scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNpageincrementCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNpageDecrementCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNtoTopCallback, scrollActionCbk, NULL); 

XtAddCallback (vsb, XmNtoBottomCallback, scrollActionCbk, NULL); 

The scrollActionCbk is just a few lines long: 

void scrollActionCbk ( 

Widget scrollbar, XtPointer client_data, XtPointer call_data) 

{ 

} 

XmScrollBarCallbackStruct *cbs = 

(XmScrollBarCallbackStruct *) call_data; 

line□ffset = cbs->value; 

redraw (); 

Therefore , whenever the scrollbar moves, scrollActionCbk is activated. It readjusts the 

DrawingArea or, more precisely, changes the values of the first--1ine and last--1ine in 

redraw() through the global variable line□ffset, and the bars are redrawn. This explains 

why the redrawing is fast enough to keep up with scrolling: the variable keeps track of the 
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offset of the text that is displayed in the edit window, or the number of lines above the 

portion of text in the edit window. Its value is obtained from the CallbackStruct of the 

scrollbar . Even if the text scrolls very fast, line□ffset is changed immediately and the bars 

are redrawn properly. 

6.2 .2 Calculation for bars 

In this section we explain how the calculation in steps 3 and 4 of redraw () is done. We 

shall see that the calculations for bars are somewhat meticulous. Nevertheless, none of the 

details are ignorable. Even if we miscalculate by one pixel , the bars would turn out to be 

malpositioned , and they might appear to be migrating up and down while the windows are 

scrolled . 

As shown in Figure 15, the top of the DrawingArea and the top of the ScrolledText are 

aligned under the menu bar. However, although the DrawingArea is drawable starting from 

right under the menu bar , the text is displayed some distance from the top of the edit 

window. Hence we also need to leave out the same amount of distance in the performance 

window. We refer to the distance as margin, which can be obtained from the function 

XmTextGetBaseline () . This function returns the y coordinate of the baseline of the first 

line of text in the specified text widget. Its returned value is relative to the top of the widget 

and it accounts for the margin height, shadow thickness, highlight thickness, and font ascent. 

Therefore, we have 

margin= XmTextGetBaseline(textWidget) - appFont->ascent 

where appFont is a global variable for the font of the text. 

Another important parameter for our calculation of bar positions is the height of a line in 

the text. For now we assume that the height is known as HEIGHT, then the start_line and 
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the end_l ine in step 3 of redraw() are given by: 

I* view _lines is the possible number of lines in the edit window *I 

view lines= (drawingarea_height - 2*margin)/HEIGHT; 

start line= line□ffset + 1; 

end line= (line□ffset + view_lines) > workFileLines? 

workFileLines : line□ffset + view_lines; 

Suppose a bar is to be drawn for the ith line (its barStruct is in the linked list barList [i] ), 

then its x,y coordinates, as well as its width and height are : 

x =margin+ 1; 

I* The selection of x has no other reason than trying to make the bars 

look nice *I 

y =margin+ (i-1-line□ffset)*HEIGHT + BAR_DESCENT; 

I* BAR_DESCENT is the tiny distance between the top of the bar and the 

top of the corresponding text line, also is the distance between the 

bottom of the bar and the bottom of the corresponding text line . 

This constant is defined so that there is some distance between the 

vertical adjacent bars and they will not merge together *I 

bar_width = ptr->percentage * (drawingarea_width - 2*margin) / 100; 

bar_height = HEIGHT-2*BAR_DESCENT; 

Now we look back at the HEIGHT. We claimed that this is the height of a line in the text, but 

we have not found a good way to get its value. Note that HEIGHT is not the height of the 

font; it is greater than the font size. However, based on our experience we have a hypothesis: 

HEIGHT is the cursor height in the edit window. Unfortunately, we were not able to prove 

it because we could not get the size of the cursor. We experimented with several different 
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fonts, each time a hypothesized cursor height is used for HEIGHT, the results were correct . 

Nevertheless, in order to solely solve the problem, we need to find a general formula to get 

the cursor size as a function of the font, so that whatever font the user chooses to use, the 

bars would be positioned correctly. Since the formula has not been found, the font in CSDE 

is hard coded and the HEIGHT is fixed . 

As for the mouse-clicking events in the DrawingArea widget, it is handled in the callback 

drawlnputCbk , which simply gets the coordinates of the mouse and calculates whether it is 

positioned on a bar. If it is, we reverse the bar 's shadow to make it appear being pressed, 

and pop up an information dialog box to display the timing data, profiling type, etc . 

6.2.3 Compiling and Running a C* program 

In CSDE, compiling and running a C* program is done in callbacks menuCompileCbk and 

menuRunCbk. The behavior of the two callbacks is designed as follows. A dialog box pops 

up when the program starts to compile/run. The box informs the user that the compi­

lation/running is in progress. It stays until the process is finished, forbidding the user to 

interact with other parts of the tool, and it also provides the user an alternative to cancel the 

process. When the compilation/running is completed, the dialog box changes its message 

to inform the user of the job's completion, and it allows the user to resume interacting with 

other components of CSDE. 

To forbid invoking other parts of CSDE while the tool is compiling/running, we only need to 

set the XmNdialogStyle resource of the dialog box to XmDIAL0G__FULLAPPLICATION_M0DAL. 

But to pop up the dialog box simultaneously with the starting of compilation/running is far 

more difficult than we expected. 

A nai've approach was to pop up the dialog box first, then immediately make a system call 

to do the compilation/running. However, the result was not right. The frame of the dialog 
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would appear, but the message inside the dialog box would not appear until the system call 

was over. By that time the dialog was already obsolete . It took us some time to figure out 

the reason : the dialog message will not show up until the event loop is completed, but since 

the event loop is caught by the system call, the X server is not able to get back to the dialog 

box until the system call is over . 

To attack the problem, we spawned a child process , which took over the responsibility to do 

the system call while the parent pops up the dialog box . We thought that by spawning a 

child process, the parent could get out of the event loop immediately to display the dialog 

box . But interestingly enough , the result was still as wrong as before. 

Finally, we hit upon the right idea . We replaced the system call in the child process with an 

exec call . Two programs APP_compile and APP_run are set up for compiling and running 

C* programs. They invoke the C* compiler and the prun via rsh or remsh , depending on 

the machine architecture. The callbacks menuCompileCbk and menuRunCbk spawns a child 

process, which does an exec call to APP_compile or APP_run, and the parent process goes 

ahead handling the dialog box and other interactive work. 

But then how does the parent know whether the child has finished so that it can change the 

dialog box to inform the user? Ordinarily the answer would be to let the parent wait for 

the child. However, this answer turned out to be incorrect in this particular case, because a 

wait also caused the abnormal behavior of the interface. The right solution is to use signals. 

Before the menuCompileCbk spawns a child process, a signal handler compileReset is set 

up: 

signal (SIGUSR1, compileReset); 

and before the menuRunCbk spawns a child process , a signal handler runReset is set up: 

signal (SIGUSR2, runReset); 

47 



) 

) 

) 

) 

) 

Signals SIGUSRl and SIGUSR2 are sent out by APP _compile and APP _run respectively when 

the compiling or running process terminates. Once the parent process catches the two signals 

( through the signal handler), it knows that the child terminates and replaces the dialog box . 

The implementation of "Copy" is under the similar vein . A new process is spawned and it 

does an exec call to CSDE itself. 

6.2.4 The Working Versions 

When a C* program is loaded into CSDE, the tool creates a "working copy" of it in directory 

/tmp . The copy is renamed with the id of the creating process attached. For instance, if the 

source program is called foo . cs , and the id of the process loading the program is 893, then 

the working copy is named foo __ 893. cs. Since the process id is unique, the working copy 

is also unique . Later all the work such as compile, run , etc, is done on the working copy 

instead of the orginal program. The changes made to the working copy can be saved and 

copied back to the source program via "Save". 

When a new Copy window is created by "Copy", another working copy of the program is 

made for it. For example if the process controlling the new Copy window has id 910, then 

the new working copy is foo __ 910. cs. 

After the program is compiled or run, some auxiliary files are created under /tmp. File 

*. compile contains compile-time messages that otherwise go to the stdout and stderr, and 

file *. run contains the run-time messages output from prun. The messages in these files 

are then parsed and displayed in the build window, which is implemented as a ScrolledList 

widget, so that users can click on the messages. A drawback of our handling of the compile­

time and run-time messages is that they do not appear simultaneously with the compilation 

or running process. Instead they go to the build window when the process is done. This is 

because we could map*. compile and *. run to the ScrolledList only after the messages are 
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completely redirected from stderr and stdout. 

6.2.5 Locating Error and Vector Messages 

With the technique of drawing bars being established, drawing a small triangle next to a 

certain line was easy. The hard part is parsing the error message clicked by the user in the 

build window to get the line number and scrolling that line into the edit window. 

Theoretically the error message can be an arbitrary string . As long as the whole sentence 

makes sense, a line number (if there is any) can be anywhere in the message without showing 

any pattern. Fortunately, the error messages are generated by a computer routine instead of 

by a person , so they always look the same. For examp le , an error containing a line number 

generated by the C* compiler looks like this: 

<filename> . cs :<lin enumber> : error: <reason>. 

How to parse a message like this is quite obvious. 

To scroll the error line into the edit window, we again make use of the start...line and 

end...line as described in redraw(). The algorithm is embedded in the code below: 
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I* Get the initial start_line and end_line *I 

view lines= (drawingarea_height - 2*margin)/HEIGHT; 

start line= line□ffset + 1; 

end line= (line□ffset + view_lines) > workFileLines? 

workFileLines : (line□ffset + view_lines); 

I* Scroll backward *I 

while (line_number < start_line) 

{ 

} 

line□ffset -= view_lines - 1; 

I* Scroll backward one page *I 

XmTextScroll (textWidget, 1-view _lines) ; 

start line= line□ffset + 1; 

end_line = line□ffset + view_lines; 

I* Scroll forward *I 

while (line_number > end_line) 

{ 

} 

line□ffset += view_lines-1 ; 

I* Scroll forward one page *I 

XmTextScroll (textWidget, view lines - 1); 

start line= line□ffset + 1; 

end line= line□ffset + view_lines; 

Locating the line numbers associated with messages from the pgcc compi ler is slightly more 

complex, because these line numbers refer to the int ermediate C program, not the user's C* 

program. Given the pgcc line number, we have to find the line number in the C* program. 

The method is based on the observation that the C* line number is the fifth field in the 

cs __ profile temporary variable. For instance, 
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I* A declaration of CS __ temp_12 in .c file produced by the C* compiler *I 

static CS __ profile CS __ temp_12 = { 0, 'V', "vp-loop", "pi2.cs", 26 

I* Rest are zero'd by type *I}; 

This vp-loop happens in line 26 of pi2. cs. Suppose the pgcc line number is n. We work 

through the . c file produced by the compiler , counting n newline characters, then back up 

to match the string "static CS Profile CS __ temp_" , and proceed to search for th e fifth 

field in the structure . 

In order to enable the vector location ability , CSDE always produces a . c file by default 

when compiling a program . 
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7 Comparing Performance of Run-time Libraries 

In this section we compare the performance of the two versions of th e C* run-time librari es. 

One utilizes the NXlib and is implemented by th e University of New Hampshire - the UNH 

version , and th e other is our OSU version implemented using the EWlib. 

7.1 Designing Benchmarks 

Before setting out to get the performance data , we need to decide how to write benchmark 

programs. There are several issues involved. First, what operations should the benchmarks 

contain ? Second , how should we tim e the operations ? Third, what data types should we 

use ? Fourth , what problem sizes should we use? 

Since our goal here is to compare the speed of the six communication operations instead 

of testing the correctness of the library ( of course , we should guarantee the correctness at 

first), we prefer "pure " benchmarks that only contain the particular operations to compare . 

Therefore, to compare the performance of the broadcast of two versions, we use a program 

that does nothing but broadcasts. 

To time the communications, we put the C* run-time library functions CS __ StartTimerO 

and CS __ StopTimer() around the compared operations, because it is the most likely way that 

a C* user would time his/her programs. One might ask why not use CSDE to measure the 

performance? First, CSDEprovides a very good environment for comparing the performance 

among different communications in the same program, and among different versions of the 

same program. It is not convenient for comparing performance of different run-time libraries. 

Second, because the running of a program is through remote shell , the timing data are not 

precisely accurate: they tend to be larger than they actually are. Third, the measurement 

using CSDE would take a tremendous amount of time. By using CSDE, although you can 
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compile/run C* programs anywhere you can use Motif, the compilation and running takes 

much longer than on the Meiko. Furthemore, the performance data have to be retrieved by 

clicking on the bars and have to be recorded manually, whereas if running on Meiko and 

using the timers, the data can be retrieved, recorded, and processed automatically . 

Since the principle domain of C* applications is scientific programming, and most scientific 

programs deal with doubles, we use double as the data type for our benchmarks . 

Generally people would eschew "toy programs" and favor benchmarks of decent sizes to test 

their software, but this is a different scenario. For most of the communication functions, we 

used the same or similar algorithms as in the UNH version , but we used different message 

passing methods. All algorithms spend most of the time calculating source and destination 

processors and and buffering data. The actual message transmission only takes a small 

percentage of the time , and the larger the data size , the smaller the percentage. Since we 

aim at comparing the difference of the two run-time libraries , we choose such benchmark 

programs that can minimize the overhead of the algorithms and focus on the difference . 

Therefore, we use relatively small but non-trivial problem sizes for the benchmarks. 

7 .2 Performance Comparison 

The benchmarks we have used for testing are attached in Appendix A. For each of the 

compared operations, we do one thousand iterations. The actual cost is the result averaged 

over one thousand. The ten iterations precede the one thousand iterations are to get rid of 

the first big timings that are due to the setup of the CS-2 network. In all the benchmarks 

the correctness of the operations are also tested to ensure the validness of the timing data. 

The results of the comparisons are given in Figures 25 through 30. 95% confidence intervals 

are drawn on all curves. 

Below is a summary of the comparisons. 
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Broadcast (Figure 25) 

• A different value is broadcast in each iteration. 

• The result shows that the performance of the OSU version is dramatically improved 

over the UNH version. 

• Since the UNH version adopts a logarithmic algorithm, the curve labeled UNH reflects 

the execution time being proportionate to flog pl, where pis the number of proc essors. 

reduce (Figure 26) 

• The result shows that the performance of the OSU version is dramatically improved 

over the UNH version. 

• Like broadcast , the UNH curve also shows that the execution time is proportionate to 

flog pl 

scatter (Figure 27) 

• The benchmark is designed such that each processor sends a value to every processor. 

Therefore the communication pattern is balanced. 

• The result shows that the OSU scatter is not as good as the UNH one for small number 

of processors. But as the processor number increases, the OSU version starts to gain 

speed. 

gather (Figure 28) 

• The benchmark is designed such that each processor gathers a value from every other 

processor . 
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• The result shows that the OSU gather is marginly better than the UNH version . Also 

with the increasing of the number of processors, the OSU version starts to gain more 

speed . 

grid-read (Figure 29) 

• The result shows that the OSU grid-read is better than the UNH grid-read. 

grid-write (Figure 30) 

• The result shows that the OSU version is better . 

Bandwidth and latency for broadcast (Figure 31) 

• This is to test the bandwidth and latency for the broadcast. The test is done on 16 

processors . 

• Approximate latency (to send one message) for the OSU version: 32.5 microsecond, 

for the UNH version: 147.5 microsecond. 

• Approximate bandwidth for the OSU version: 9 Mb/sec , for the UNH version: 6 

Mb/sec. 

Conclusions 

Generally speaking, the OSU routing functions execute faster than the UNH functions. Also 

from the comparisons broadcast and reduction operations, the performance of the library 

can be dramatically improved by implementing the C* run-time library using the lower level, 

Meiko-specific function calls. Therefore, the decision to write a Meiko-specific version of the 

C* run-time library was worthwhile. 
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8 Future Work 

There are a number of optimizations that have been provided for in the design of the tool, 

but are beyond the scope of this paper. These are outlined below. 

8.1 Improve Scatter and Gather 

In last section, we have seen that the performanc e of OSU scatter and gather operations are 

not satisfactory. We should study ways to improve them. 

8.2 Unifying Bar Percentages of Copy Windows 

Since the Copy windows and the original root window of CSDE are independent, the base 

cost of the bars - the value against which the percentage of bars are calculated - are not forced 

to be uniform across all windows. That is, the bar lengths of different window ,s are not 

proportional to the absolute times . This means that even if a profiling point of one version 

in one window takes less time than the same point of another version in another window , 

its bar may be longer. This situation may cause the user to draw false conclusions. As a 

problem to solve in the future, we will figure out how to maintain the same base value among 

the Copy windows and make the bar lengths consistent. 

8.3 Selecting Colors and Fonts 

A major goal of GUI tool development is to provide an as-pleasant-as-possible environment . 

If the user hates the font or color of the tool, he/she may not be happy to use it. Therefore, 

a list of fonts and colors will be provided for selection in the future. 
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8.4 Integrate CSDE into an Interactive Debugging Tool 

CSDE is actually a primitive interactive debugging tool. For example, for those who love 

to use printf's, it is very convenient for them to add printf statements into the program 

via the edit window, and watch the results through the performance and the build window. 

But certainly a real debugging tool has much more capabilities than that. For instance, our 

future GUI debugger may have a source-code instrumentor, which allows users to insert break 

points or monitoring routines to the source code. However, this is not a small project, as 

it involves many compiler modifications . Also , we need to further improve the performance 

analysis ability . For example , we could allow the user to specify the kind of data he/she 

needs such as mean, standard deviation, confidence intervals, etc . of some profiling cost , and 

then the tool would provide those data automatically . 
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A. Benchmarks for Performance Comparisons 

Broadcast 

I* File : broadcast.cs 
* Purpose: Benchmark program for comparing the performance of the broadcast 
* operation in the UNH and □SU versions of the C* routing library. 
*I 

#include <stdio .h> 
#define N 32 
#define REPEATS 1000 

main( ) 
{ 

} 

shape [N]sA; 
double : sA pv; 
double sv[REPEATS]; 
int 

with (sA) 
{ I* Initialize pv *I 

for (i = 0; i < N; i++) 
[i]pv = i*0.14; 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 

} 

*I 
for (i = 0 ; i < 10; i++) 

sv [i] = [i%N] pv; 

I* Real iterations come here . In each iteration, a 
* different value is broadcast . 
*I 

CS __ StartTimer(); 
for (i = 0; i < REPEATS; i++) 

sv[i] = [i%N]pv; 
CS __ StopTimer(); 

I* Check correctness *I 
for (i = 0; i < REPEATS; i++) 
{ if (sv[i] != (i%N)*0.14) 

{ fprintf (stderr, "Error: the value is not right!\n"); 
break; 

} 
} 
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Reduce 

I* File : reduce.cs 
* Purpose: Benchmark program for comparing the performance of the 
* reduction operation in the UNH and □SU versions of the 
* C* routing library . 
*I 

#include <stdio .h> 
#include <math.h> 
#define N 32 
#define REPEATS 1000 

main( ) 
{ 

} 

shape [N]sA ; 
double : sA pv ; 
double sv ; 
in t i ; 

with (sA) 
{ I* Initialize pv *I 

for (i = 0 ; i < N; i++) 
[i]pv = i*0 . 519 ; 

I* First 10 iterations to get r id of the big timings 
* due to the set-up of the CS-2 network 

} 

*I 
for (i = 0 ; i < 10 ; i++) 

sv = +=pv ; 

I* Real iterations come here . *I 
CS __ StartTimer() ; 
for (i = 0 ; i < REPEATS; i ++) 

sv = +=pv; 
CS __ StopTimer(); 

I* Test correctness of the reduction *I 
if (abs(sv - (N-1)*N/2*0.519) > 0 .000001) 

fprintf (stderr, "Error: the value is not right!\n"); 
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Scatter 

I* File: scatter.cs 
* Purpose : Benchmark program for comparing the performance of the 
* scatter operation in the UNH and the □SU versions of the 
* C* routing library. 
*I 

#include <stdio.h> 
#define MAXP 16 
#define N MAXP*MAXP 
#define REPEATS 1000 

main() 
{ 

} 

shape [N]sA; 
double : sA pvs, pvd; 
int : sA pvi; 
inti; 

with (sA) 
{ I* Initialize pvs, pvi *I 

for (i = 0; i < N; i++) 
{ [i]pvs = i*0 . 1; 

[i]pvi = (i/MAXP) + MAXP*(i%MAXP); 

} 

} 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 
*I 

for (i = 0; i < 10; i++) 
[pvi] pvd = pvs; 

I* Real iterations come here *I 
CS __ StartTimer(); 
for (i = 0; i < REPEATS; i++) 

[pvi] pvd = pvs; 
CS __ StopTimer(); 

I* Check correctness *I 
for (i = 0; i < N; i++) 
{ if ([i]pvd != ((i/MAXP) + MAXP*(i%MAXP))*0. 1) 

} 

{ fprintf (stderr, "Error: the value is not right!\n"); 
break; 

} 
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Gather 

I* File: gather.cs 
* Purpose : Benchmark program for comparing the 

gather operation in the UNH and the 
C* routing library . 

* 
* 
*I 

#include <stdio .h> 
#define MAXP 16 
#define N MAXP*MAXP 
#define REPEATS 1000 

main() 
{ 

shape [N]sA; 
double : sA pvs, pvd; 
int:sA pvi; 
inti; 

with (sA) 
{ I* Initialization *I 

for (i = 0; i < N; i++) 
{ [i]pvs = i*0 . 1; 

[i]pvi = (i/MAXP) + MAXP*(io/.MAXP); 
} 

performance of the 
□SU versions of the 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 

} 

*I 
for (i = 0; i < 10; i++) 

pvd = [pvi]pvs; 

I* Real iterations come here *I 
CS __ StartTimer(); 

} 

for (i = 0; i < REPEATS; i++) 
pvd = [pvi]pvs; 

CS __ StopTimer(); 

I* Check correctness *I 
for (i = 0; i < N; i++) 
{ if ([i]pvd != ((i/MAXP) + MAXP*(io/.MAXP))*0.1) 

{ fprintf (stderr, "Error: the value is not right!\n"); 
break; 

} 
} 
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Grid-read 

I* File: gridread.cs 
* Purpose: Benchmark program for comparing the performance of the 
* grid-read operation in the UNH and the □ SU versions of 
* the C* routing library. 
*I 

#include <stdio.h> 
#define N 32 
#define REPEATS 1000 

main() 
{ 

} 

shape [N]sA; 
double : sA pvs, pvd; 
inti; 

with (sA) 
{ I* Initialization *I 

for (i = 0; i < N; i++) 
[i]pvs = i*0 . 01; 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 
*I 

for (i = 0; i < 10; i++) 
pvd = [.+2]pvs; 

I* Real iterations come here *I 
CS __ StartTimer(); 

} 

for (i = 0; i < REPEATS; i++) 
pvd = [ . +2] pvs; 

cs __ StopTimer(); 

I* Check correctness *I 
for (i = 0; i < N; i++) 
{ if ([i]pvd != ((i+2)%N)*0.01) 

{ fprintf (stderr, "Error: the value is not right!\n"); 
break; 

} 
} 
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Grid-write 

I* File: gridwrite.cs 
* Purpose: Benchmark program for comparing the performance of the 
* grid-write operation in the UNH and the □SU versions of 
* the C* routing library . 
*I 

#include <stdio .h> 
#define N 32 
#define REPEATS 1000 

main() 
{ 

} 

shape [N]sA; 
double:sA pvs, pvd ; 
inti; 

with (sA) 
{ I* Initialization *I 

for (i = O; i < N; i++) 
[i]pvs = i*0 . 01 ; 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 
*I 

for (i = O; i < N; i++) 
[ . +2] pvd = pvs; 

I* Real iterations come here *I 
CS __ StartTimer() ; 

} 

for (i = O; i < REPEATS; i++) 
[ . +2]pvd = pvs ; 

CS __ StopTimer(); 

I* Check correctness *I 
for (i = O; i < N; i++) 
{ if ([i]pvd != ((i+N-2)%N)*0 .01) 

{ fprintf (stderr, "Error: the value is not right!\n"); 
break; 

} 
} 
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Bandwidth and Latency for the Broadcast 

I* File: bandwidth.cs 
* Purpose : 
* 
* 
*I 

Benchmark program for comparing the bandwith and latency 
for the broadcast operation in the UNH and □SU versions 
of the C* routing library. 

#include <stdio.h> 
#include <string.h> 
#define N 16 
#define REPEATS 1000 
#define SIZE 1000 

main() 
{ 

} 

shape [N]sA; 
struct foo {char x[SIZE] ;}; 
struct foo : sA pv; 
struct foo sv; 
int i, j; 

with (sA) 
{ I* Initialize VP values *I 

for (i = 0; i < N; i++) 

} 

{ for (j = 0; j < SIZE-1; j++) 
[i]pv .x[j] = 'A'+i; 

[i]pv .x[SIZE-1] = 0; 
} 

I* First 10 iterations to get rid of the big timings 
* due to the set-up of the CS-2 network 
*I 

for (i = 0; i < 10; i++) 
sv = [i%N]pv; 

I* Real iterations come here. In each iteration, a 
* different message is broadcast. 
*I 

CS __ StartTimer(); 
for (i = 0; i < REPEATS; i++) 

sv = [i%N]pv; 
CS __ StopTimer(); 

I* Test correctness of the broadcasting *I 
for (i = 0; i < SIZE-1; i++) 

if (sv.x[i] != 'A'+ (REPEATS-1)%N) 
{ fprintf (stderr, "Error: the value is not right!\n"); 

break; 
} 
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