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Abstract 

Dataparallel C is a SIMD style data-parallel programming language for MIMD com
puters. Dataparallel C has been implemented on both shared memory (Sequent) and 
distributed memory (Intel and nCUBE) computers. Here we analyze the strengths 
and weaknesses of Dataparallel C by comparing the performance of compiled Data
parallel C programs with the performance of programs developed using other parallel 

} programming environments . 
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1 Introduction 

A data-parallel model of parallel computation is a SIMD model with an unbounded 
number of processing elements called virtual processors and a global name space. 
Dataparallel C is a parallel programming language based on the data-parallel model 
of computation. It is a superset of the C programming language. Dataparallel Chas 
been successfully implemented on different MIMD computers and reasonable perfor
mance has been achieved for several problems. 

Programs can be written in assembly language to improve performance. But there 
are other things like programmer productivity, code portability and maintainability 
which leads us to consider high-level languages. As parallel computing enters the 
mainstream, extracting every possible parallel cycle will become less important, and 
other issues will become more important [10]. 

Reasonable performance is a relative term, because there might be other lan
guages that perform b'etter or worse for similar problems under similar environments. 
So we wanted to ascertain how well Dataparallel C compares with other existing 
parallel paradigms, and in the process identify the strengths and weaknesses of the 
Dataparallel C language. 

In order to do this, we collected papers from conference proceedings and journals 
published in the last two years, which dealt with parallel paradigms for MIMD hard
ware. From this collection, we chose only papers which had performance results. In 
some cases we procured the source code from the authors and compiled and executed 
their programs on machines which supported both their compiler and a Dataparallel 
C compiler. This enabled us to directly compare the performance. In other cases we 
compared our times with the published execution times and speedups. 

2 Overview of the approach 

There are many factors one has to consider while comparing the performance of 
different languages or paradigms, especially if there are no ready-made benchmark 
problems. 

Almost any problem could be a candidate for parallel computation, and so one 
cannot cover all types of problems. But we can parallelize some problems which are 
of practical importance and try to measure their speedup against the best sequential 
program for those problems. Also, we can compare the speedup achieved with the 
theoretical speedup possible for that problem, but calculating the theoretical speedup 
may not be possible for all problems. 

Another way to evaluate the performance of a parallel language would be to take 
a problem and hand code it using a sequential language with message passing or 
synchronization primitives and then compare its performance with the performance 
of the high level parallel language to be evaluated, solving the same problem and 
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using the same algorithm. This way we can directly compare the execution time and 
program development time of the two approaches. This will indicate how efficient 
the parallel language is in comparison to the hand coded version in terms of perfor
mance and development time. But the difficulty in this approach is the complexity of 
developing an efficient hand coded version, though for toy problems this can be done. 

So, in the absence of an absolute yardstick to measure the performance of our 
language, we decided to evaluate its performance by comparing it with other existing 
parallel paradigms, which also include sequential languages with message passing or 
synchronization primitives. In this way, we would expose our language to a wide 
variety of problems, since the problems we choose on our own might consciously or 
unconsciously favor our language model. We solved the problems described in each 
paper using Dataparallel C, and then we compared the performance results of our 
language with the performance results published for the other language. 

We do several things to ensure a fair comparison. 

First of all, the environment under which the performance is compared has to be 
same. This avoids many problems, which will otherwise lead to inaccurate inferences. 
For example, the speedup achieved for a problem on a shared memory machine will not 
necessarily be the same if the same problem is implemented on a distributed memory 
machine with the same number of processors. The clock rates of the processors in 
the shared memory machine and distributed memory machine might be different. 
Even if the clock rates are the same, the time spent in synchronizations may not 
exactly correspond with the time spent in communications. Still other factors like 
cache performance complicate the matter. So the best bet would be to use the same 
model of the machine on which the benchmarking was done for the other paradigm. 
This way we could directly compare the execution times, and it is more intuitive and 
ensures correct inferences. For this reason we tried to procure the source code from 
the authors of the paper and then we chose machine sites where both our compiler 
and theirs existed, in order to do the performance comparison. In situations where 
we could not do this, we depended on the published performance results, but we took 
care to solve the same problem on the same machine model for which the results were 
published. 

Secondly, the general algorithm used for solving the problem in Dataparallel C has 
to be similar to the one described in the paper, though slight variations are unavoid
able because of the differences in the paradigm, and also because of the availability 
or lack of certain features. This essentially captures the strengths or weaknesses of 
the language and its implementation. 

Thirdly, the input data has to be identical or at least very similar, because in some 
cases variations in input data directly affects the time taken to solve the problem. 
One such example would be an iterative problem which has to meet a convergence 
criteria. Here the number of iterations performed depends on the input data itself. 

Finally, optimization issues like using pointers in place of array access play a 
major role in deciding the performance, especially if these operations fall inside an 
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iterative loop. So a bad performance is not always due to communication overhead or 
inefficient parallelization. Hence, optimizations which apply to sequential programs 
should be considered for parallel programs also especially if the parallel code is purely 
local to a particular processor. 

Since we did not choose the problems, but rather we selected the papers which 
had performance results , the problems explored do not fall under a set pattern, but 
instead have a wide variety. This really helped in testing the versatility of Dataparallel 
C. 
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3 Problem cases 

This section consists of 9 subsections each dealing with an individual problem case. 
The general format of presentation for each problem case is as follows: 

• Description of the problem 

• Primary references 

• Parallelism exploited 

• Description of the algorithm 

• Comparison of performance results 

• Conclusions 

The Appendix at the end of this report contains detailed timing information. 
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3.1 Matching Biological Sequences 

Description of the problem 

The problem to be solved is an assessment of the degree of similarity between two 
DNA sequences. The general method can be described as follows: Lets and t be two 
sequences. Construct a similarity matrix H, where H[i,j] is the maximum similarity 
of all subsequences of s ending at index i as compared against all subsequences of t 
ending at j. H[i, j] is compared by taking the maximum of three terms: 

• H[i - 1,j - 1] plus a weight that depends on s[i] and t[j]. Intuitively this 
corresponds to lengthening the match. 

• Consider all H[i',j] for i' < i. These values modified by a suitable penalty 
function give similarity values consequent to the deletion of various lengths in 
t. Choose the maximum. 

• Similarily consider all H[i, j'] for j' < j. 

When H is complete, its maximum entry is the similarity of the two sequences. 
To put in simpler terms, the value of H[i, j] depends on three values: the values of 
H[i - 1,j], of H[i,j - 1] and of H[i - 1,j - 1]. To start off with, we are given the 
value of H[O, j] for all values of j, and of H[i, O] for all values of i. These two sets of 
values are simply the two strings that we want to compare. In other words, we can 
understand the computation as follows: draw a two-dimensional matrix. Write one 
of the two comparands across the top and write the other down the left side. Now 
fill in the matrix; to fill in each element, you need to consider the element above, the 
element to the left, and the element above and to the left. 

Primary references : Carriero and Gelernter [3], Bjornson [1] and Gotoh [9]. 

The above references did not contain the full details. Hence we communicated directly 
with the authors Robert Bjornson and Nick Carriero, to clarify our doubts and further 
procure their C-Linda source code. 

Email references: bjornson@cs.yale.edu, carriero@cs.yale.edu. 

Parallelism exploited 

Study of the data dependencies in the above problem leads to the observation that 
a counter-diagonal of H can be computed as soon as the previous counter-diagonal 
is complete. The same observation holds if we deal with sub-blocks rather than 
individual elements of H: once the upper-leftmost block is completed, the blocks 
directly to the right and directly beneath can be computed, and so on. This is 
a wavefront type dependency. Individually each sub-block is treated just like the 

) orignal matrix as a whole. 

A given sub-block is computed on the basis of known values for the three sub
blocks immediately above, to the left, and above and to the left. When we say known 
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values , though, we don't need to know these entire sub-blocks, merely the upper 
block 's lower edge, the leftward block's right edge, and the bottom-right corner of the 
upper-left block. To eliminate the need for this one datum from the upper-left block , 
we can define blocks in such a way that they overlap their neighbors by one row or 
column. Hence we can compute a new sub-block on the basis of one row (from above) 
and one column (from the left). 

n 
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- - -L - - -L - - -L - - -1 I I I I 
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Figure 1: Wavefront Parallelism 

Description of the algorithm 

Each row of the H matrix is assigned to a Virtual Processor. The row elements 
are nothing but sub-blocks whose height and width have to be decided to attain the 
maximum parallelism. 

If we are comparing two sequences of different lengths, potential efficiency im
proves. The shorter-sized sequence determines the maximum degree of parallelism. 
But whereas, for a square matrix, full parallelism is achieved during a single time 
step only (namely the time-step during which we compute the elements along the 
longest counter-diagonal), a rectangular matrix sustains full parallelism over many 
time steps. The difference between the lengths of the longer and the shorter se
quence is the number of additional time steps during which maximum parallelism is 
sustained. 

Suppose our two sequences are length m ( the shorter one) and n, and suppose 
we are executing the program with m workers. The number of time steps for parallel 
execution, tpar, is given by 
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n +m-1, 

so for m,n ~ 1 

The sequential time, tseq, is given by m * n, and thus speedup, S, is 

tseq mn 

tpar m + n 

Suppose we define the aspect ratio, a, of a matrix to be the ratio of its width to 
its height, then 

and 

n 
a= -

m 

By adjusting the aspect ratio of the sub-block, the aspect ratio of the whole matrix 
can be set. First choose the height of the sub-block such that, all physical processors 
will have at least one row of the blocked matrix to themselves. If the number of 
blocked rows is R, then the sub-block width should be n/aR, where a convenient a 
is chosen which leads to high efficiency and less communication or synchronization 
overheads. 

Computation begins at the upper left block. After a virtual processor computes 
a sub-block, it proceeds to compute the next sub-block to the right. Thus the first 
virtual processor starts cruising along the top band of the matrix, computing sub
blocks. As soon as the upper-left sub-block is complete, the second virtual processor 
can start cruising along the second band, and so on. Only the bottom edge needs to 
be communicated to the next virutal processor, as the right edge of a sub-block will 
be used by the same virtual processor while working on its next sub-block. 

Comparison of performance results 

The following figures show the performance measured on a Sequent Symmetry and 
iPSC2. For the iPSC/2, the absolute timings for the C-Linda version were not avail
able. Only the speedup data for the 7000 x 7000 self comparison was available. The 
sequential time for C-Linda version on one node of the iPSC /2 was 776 seconds. 
The speedup for Dataparallel C version was computed using the sequential time of 
C-Linda version. We had access only to a 32 node iPSC /2. Detailed timings for 
different aspect ratios are given in the Appendix. 
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Execution times in seconds (Sequent Symmetry) 
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Figure 2: Side x Top = 3389 x 3389, Aspect Ratio= 10 

Execution times in seconds (Sequent Symmetry) 
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Figure 3: Side x Top = 6778 x 6778, Aspect Ratio = 10 
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Figure 4: Side x Top = 7000 x 7000, Aspect Ratio = 10 

Conclusions 

• From the above performance graphs, we see that Dataparallel C performance is 
very close to C-Linda performance, but on the average C-Linda performs better 
than Dataparallel C. One of the main reasons for the performance loss is due 
to the parallelism lost due to synchronizations. A virtual processor can start 
processing its sub-block n as soon as it gets the bottom edge of the sub-block 
n owned by the predecessor of this virtual processor. But in our case, due to 
the barrier synchronization, a virtual processor sometimes has to wait for other 
virtual processors to arrive at the barrier, even if it has the necessary data to 
proceed. This results in a loss of efficiency. 

• Keeping the problem size and aspect ratio constant, if the number of processors 
are increased, the size of the sub-block decreases. So the processing time for 
each sub-block decreases. Though the number of synchronizations increases, 
the processors reach the barrier faster, reducing the waiting time at the barrier. 
So the startup costs are reduced. This might be the reason why Dataparallel C 
timings are closer to C-Linda timings as the number of processors is increased. 

• There was no direct mechanism for staggered start up of computation. So we 
had to do a small trick in the "for loop" to accomplish that. 

• Initially, the Dataparallel C program performed poorly when compared to C
Linda version. The reasons, we found were the following: 

C-Linda version was using pointers instead of array accesses. 
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- The C compiler used by the C-Linda people was different than the one we 
used . 

The similarity() subroutine was an optimized version of the compare sub
routine which they had published. We realized this when we procured 
their source code. When we incorporated those optimizations, our timings 
improved . 

- Also the change of data structure for storing the sub-block was changed 
from a matrix to two one dimensional arrays, which led to improvement in 
performance . The matrix representation was too large to fit in the cache 
and hence resulted in poor performance. 

• The performance of Dataparallel C on iPSC/2 is almost same as C-Linda per
formance. Moreover the speedup for Dataparallel C version was measured using 
the sequential timings of C-Linda version. There is a decrease in efficiency as 
the number of processors increase. This is due to the sinking task granularity 
and also due to the decrease in amount of work per communication event. 

• The Dataparallel C program needs to be compiled whenever the aspect ratio is 
changed, whereas C-Linda version needs them only at run time. 

• Developing the Dataparallel C code for this problem was very easy. The syntax 
and semantics are exactly similar to the sequential model except for a few 
statements . 

• Debugging the program was also very easy and 'print£' statements were more 
than sufficient for the task. 

• The same code runs on iPSC/2 and nCUBE, which are distributed memory 
machines, and the Sequent Symmetry, which is a shared memory machine. 



) 

3.2 Laplace Equation Solver using Jacobi approach 

Description of the problem 

The problem is to solve Laplace's equation on a rectangle, where the rectangle is 
represented as a two-dimensional array of integers, V . The problem is governed by 
the equation 

a2v a2v 
ox2 + oy2 = 0, V(x, y) = constant on the boundary. 

We use the Jacobi iterative technique to solve this equation. There are three 
steps involved in this technique. 

1. initialize the matrix V (i.e. the grid points). 

2. repeat 
for each point in V 

lf; [ ] _ ½[x + 1, y] + ½[x - 1, y] + ½[x, y + 1] + ½[x, y - 1] 
i+i x,y - 4 

until l½+i[x, y] - ½[x, y]I < 8 forall V[x, y] EV 

3. print results 

In this particular problem all data points are initialized to a constant integer 
value and boundary conditions are kept constant. 

Primary references:- Lin and Snyder [16]. 

We procured the source code from Calvin Lin, who is one of the authors of the 
paper, and we did the benchmarking of their program along with ours on a Symmetry 
machine. (Calvin Lin's email: linc@minke.cs.washington.edu) 

Parallelism Exploited 

For an iteration i, the computation of local average for each data point depends on the 
values of iteration i-1 of its four neighbors (north, east, west and south). Suppose we 
solve this problem on a sequential computer, we would normally represent the data 
points as a two-dimensional matrix where each element of the matrix would maintain 
the current and previous iteration value. Each iteration would be an n 2 loop which 
calculates the averages for each data point. Within an iteration, the averages for the 
data points can be computed in any order, the only condition being that all data 
points have to be considered. Unlike the Gauss-Seidel method, where values of the 
north and west neighbors have to be of the current iteration, here all the neighbor 
values used are of previous iteration. Hence a parallel algorithm can utilize this fact 
to simultaneously compute the averages of all data points during each iteration. 

Depending on how we partition the problem, either cellwise, rowwise or blockwise, 
the neighbor values exchanged between virtual processors before each iteration will 
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be either single data point values or an edge of data point values. In the case of dis
tributed memory machines, these neighbor values have to be communicated, whereas 
in the case of shared memory machines, they can be directly accessed, provided there 
is barrier synchronization between iterations. Essentially there is a communication 
phase and a compute phase. Both these phases can be totally parallel. But in or
der to test the convergence criteria, there is a reduce phase which tests to see if the 
maximum of the error difference is less than the tolerance value. If so the algorithm 
terminates, else the next iteration continues. 

Description of the algorithm 

The partitioning of the problem can be done either cellwise, rowwise or blockwise. 
Each has its own advantages and disadvantages. The major factors to be considered in 
order to choose the partitioning are size of the problem, number of physical processors 
available, number of edges or cells that will be exchanged between iterations and the 
length of the edges. 

In case of cell wise decomposition each virtual processor is responsible for one data 
point. During the communication phase each virtual processor collects the values from 
its four neighbors (N, E, W, S). The virtual processors reponsible for the boundary 
points participate only during the communication phase. During the compute phase 
each virtual processor computes the new average of its data point and the error 
difference. Then during the reduce phase the maximum of the difference is found 
by the cooperation of all the virtual processors. Also since the virtual processor 
synchronize after or before each iteration, all virtual processors will be performing 
the same iteration step at any given time. 

In case of rowwise decomposition each virtual processor is responsible for a row 
of data points. During the communication phase each virtual processor collects an 
edge of values from its two neighbors (N and S), because the points (E and W) lie in 
the same processor. The virtual processors responsible for the boundary edges remain 
active only during the communication phase. During the compute phase each virtual 
processor computes the average for all the data points in the row it owns and also 
simultaneously computes the local maximum of the difference. During the reduce 
phase the local maxima are gathered and the global maximum of the difference is 
found. 

In case of blockwise decomposition each virtual processor is responsible for a 
square submatrix of data points. During the communication phase each virtual pro
cessor collects edges of values from its four neighbors (N, E, W, S), and this com
munication pattern is similar to the pattern due to cellwise decomposition the only 
difference being that instead of single value, 'edges of values' are exchanged between 
virtual processors. During the compute phase each virtual processor computes the 
average for all the data points in the submatrix which it owns and also simultane
ously computes the local maximum of the difference. During the reduce phase the 

_) local maxima are gathered and the global maximum of the difference is found. 

We notice that cellwise decomposition leads to fine grain parallelism, rowwise 
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decomposition leads to medium grain parallelism and blockwise decomposition leads 
to coarse grain parallelism. 

Comparison of performance results 

The following figure shows the performance on Sequent Symmetry for different square 
grid sizes. More timing details are given in the Appendix. The timings were taken 
on 4 and 16 processors. In the case of Dataparallel C, the decomposition is rowwise 
and in the case of Sequent C the decomposition is blockwise. The performance is 
plotted for rowwise decomposition because it gives almost the same performance as 
blockwise decomposition but the code size is pretty short compared to the blockwise 
approach . 

Execution times in milliseconds (Sequent Symmetry) 
32768 ..---------,,-----------.--------.. 

Sequent C 4 ~ 
16384 DPC 4 -t-

Sequent C 16 -B-
8192 DPC 16 -,f--

4096 

2048 
Time 

1024 

512 

256 

128 

64 .__ ______ _._ ______ ~------~ 

128 256 512 1024 
Width of the grid 

Figure 5: Laplace equation solver using Jacobi method (Rowwise) 

Conclusions 

• One of tHe first things we noticed was the vast difference in the length of the 
source code between Dataparallel C version and their version. Dataparallel C 
code is shorter by 4 to 8 times when compared with the Sequent C version. The 
cellwise decomposition leads to the shortest length code which is 72 lines and 
the blockwise decomposition leads to the longest which is 139 lines of code. The 
Sequent C version is 566 lines of code. Certainly the Dataparallel C version is 
compact and readable, and it has no machine dependent code. 

• The development time was very short. The maximum time taken was for the 
blockwise decomposition due to the code pertaining to the communication of 
the edges. It took less than two hours to finish the coding and debugging of 
the program. The rowwise and cellwise versions took even less time. We do not 
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know how much time it took for the developers of the Sequent C version, but 
we are sure that even to type around 500 lines would take a lot of time. Though 
their intention is not to promote the Sequent C version, at least for comparison 
purposes we can see that Dataparallel C is convenient from the point of coding 
and debugging. 

• From the above performance graph we see that rowwise decomposition offers 
the best of both worlds; i.e, good timing and ease of programming. Cellwise 
decomposition is good for smaller problem size since the overhead of virtual 
processors is not much. But for large problem size, the cellwise version is not 
suited. The blockwise decomposition may perform better for even larger prob
lem sizes. It also depends on whether we are running the program on a shared 
memory or distributed memory machine. The number of edges communicated 
before each iteration, the length of each edge communicated do matter in case 
of distributed memory machines. In case of shared memory machines the com
munication time may be equated with the time taken to copying of the buffers 
since the synchronizations depend only on the number of iterations and not on 
the number of edges communicated. 

• One more additional advantage of Dataparallel C lies in the communication 
macros like north(), south(), etc. These macros are independent of machine 
architecture from the point of view of the programmer and also they help in 
optimizing the communication since they indicate the communication pattern. 
The macros available can be used for large variety of problems, because they 
form a fairly comprehensive set of communication patterns exhibited by many 
parallel algorithms. 

• One more thing which is not reflected in the timing chart is the time taken for 
the initialization phase. For some reason the Sequent C version takes very long 
time for the initialization compared to the Dataparallel C version. 

• The cellwise version took around 18 seconds for 512 x 512 on 4 processors 
and around 33 seconds on 16 processors. This was with the default interleaved 
layout of virtual processors. When we changed the layout to contiguous, the 
timings were drastically reduced. It took around 7 seconds on 4 processors and 
around 4 seconds on 16 processors. The contiguous distribution reduces the 
number of times processors write to the same cache block. 

• For large sized problems, the swap space in the partition matters. This was re
vealed when we tried to run 1024 x 1024 problem using cellwise decomposition. 
So we copied the executable to /tmp and then executed the program. We have 
not yet found the reason for the extraordinarily slow performance of cellwise 
version for 1024 x 1024 problem size. 

14 
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Description of the problem 

The problem is to find the steady-state temperature distribution in a square plate, 
one side of which is maintained at 100°, with the other three sides maintained at 
0° as shown in the figure below. This is achieved by solving Laplace's equation in 
a rectangle. If each side of the square is divided into n increments '6.x( = '6.y ), the 
problem involves the solution of a system of ( n - 1 )2 simultaneous equations with the 
temperatures at the interior grid points as the unknowns. 

j = 0 T = 0° J=n 

1 = n 

(i, j) 

T = 100° T = 0° 

! 
X 

----+ & -+--

t 
i = 0 

..__ ____ .,.y T = 0° 

Figure 6: Heat conduction in a square plate 

The method of solution is to iterate through all the grid points, calculating a 
better approximation to the temperature at each point ( i, j). The following equation 
represents the computation at a grid point ( i, j) for kth iteration. 

Tk + yk + Tk-l + yk-l 
T,k. = i-1,j i,j-1 i,j+t i+l.j 

IJ 4 

i = 1,2, ... ,n - 1,j = 1,2, ... ,n - 1 

As soon as a new value of T is calculated at a point, its previous value is dis
carded. This is the Gauss-Seidel method of iteration. To start, a temperature of 0° 
is assumed everywhere within the plate. The process of iteration through all grid 
points is repeated until further iterations would produce very little change in the 

_} computed temperatures. The process stops when the maximum deviation of the tem
peratures from their previously computed values, over the entire grid falls below a 
small quantity €max· 
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Primary references : Kwan and Bic [14, 15], Carnahan, Luther, and Wilkes [2]. 
Email reference: kwan@ics.uci.edu. 

Parallelism exploited 

For an iteration k, the new temperature at a grid point can be computed as soon as 
the computed values of its north and west neighbors for that iteration are available. 
This is assuming that new values are generated from left to right, top to bottom of 
the rectangular grid. The usual method for solving this type of problem is to use a 
checker board block pattern. 

In this method, each virtual processor is responsible for a single grid point. There 
will be an intial delay before all virtual processors become active, due to the staggered 
start. But after that all virtual processors are kept busy till the convergence criteria 
is met. This method is too fine grain and may not be suitable for distributed memory 
machines. Also for each computation, four short messages need to be exchanged, and 
hence the time taken to initiate the message may be more than the time taken to 
exchange the message itself. On the iPSC /2, overhead for generating messages is the 
dominant factor in message latency, and not message length or message transmission 
distance [5]. So even if we partition the grid into smaller sub blocks, and each respon
sible for a subblock of grid points instead of single grid point, still the message length 
may not be big enough to compensate for the overhead in generating the message. 

The algorithm used here partitions the grid into rows and each virtual processor 
is responsible for an even number of rows. A row can be computed as soon as the 
row above it has generated its new values. This scheme also has the initial startup 
delay, but the message passing is more efficient and leads to coarse grain parallelism, 
which is essential for good performance on distributed memory computers. 

Description of the algorithm 

Each virtual processor is responsible for an even number of rows. The set of rows 
each virtual processor owns is split into two halves, namely upper and lower, each 
containing an equal number of adjacent rows. To start with, virtual processor zero 
computes the new values for the rows in its upper half. To do this it does not need 
any neighbor values from the north, since the topmost row corresponds to the top 
edge of the plate, and the neighbor values from west, east and south lie on the same 
processor. Once it computes the upper half, the lower half can be computed. This is 
possible because the last row of the upper half is the northern neighbor of the first 
row of the lower half. However to compute the values of its last row, it needs values 
from the virtual processor to its south. After virtual processor zero finishes with its 
lower half, virtual processor number one can start working due to the availability 
of new values from its northern neighbor. At the same time, virtual processor zero 
reverts to its upper half to calculate the new values for its next iteration. 

After the initial startup delay, all processors become busy and they alternately 
compute their upper and lower halves exchanging values of the bottom and top edges 
with their neighboring processors in between the computation phases. During the 
computation of the new values, the difference between the old value and the currently 
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generated new value is found and a local maximum of that difference is maintained. 
At the end of each iteration, the global maximum of the difference is found to check if 
the convergence is achieved. A single iteration is said to be complete when all virtual 
processors finish computing their upper and lower halves once. 

Comparison of performance results 

The following graphs show the performances of CAB paradigm and Dataparallel C 
for both 128 x 128 and 256 x 256 size Laplace Equation Solver on the iPSC/2. 

Time in seconds (iPSC/2) 
1024 ,---------.--------~------~ 

CAB~ 
Dataparallel C +-

512 

Time 256 

128 

64 L--------...L...---------'--------' 
4 8 16 32 

Processors 

Figure 7: Laplace Solver 128 x 128 

The detailed timings are given in the Appendix. The timings for processors less 
than 4 were not taken due to the long time it will take to complete ( on the order of 
6 hours for 256 x 256 size equation). 

Conclusions 

• Compute-Aggregate-Broadcast paradigm is meant for problems of this type 
which have a compute and aggregate-broadcast phase. Dataparallel C is a 
generic language for solving parallel problems, with a special stress on numerical 
iterative problems. The performance of Dataparallel C is better than CAB 
paradigm. We used the same algorithm used by the authors of CAB paradigm. 

• There are only three communication statements in Dataparallel C: two for ex
changing neighbor values and one for reduction and the rest of the code is like 

J regular 'C' code. 
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4096 
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4 8 16 32 
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Figure 8: Laplace Solver 256 x 256 

• Dataparallel C is ideal for such problems. Though there is a startup delay, it 
is amortized by the huge number of iterations needed for convergence (in the 
order of 12,000 for 256 x 256 size problem). 
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3.4 Quickmerge 

Description of the problem 

Quickmerge, a parallel sorting algorithm, is a combination of quicksort and a multi
way merge designed for tightly coupled multiprocessors. This algorithm was originally 
developed by Quinn [18] and implemented on a single-PEM Denelcor HEP using HEP 
FORTRAN. The performance of this algorithm was further investigated by Evans [7] 
on a Balance 8000 multiprocessor for various distributed pseudo-random data sets 
consisting of uniformly, exponentially, normally, ordered and reverse ordered data. 
Now we have implemented this algorithm using Dataparallel C and have run bench
marks on a Balance 8000 multiprocessor. We describe the algorithm and compare 
the performance of Dataparallel C with the performance results published in [7]. 

Primary references : Evans [7], Quinn [18] and Knuth[13]. 

Parallelism Exploited 

The quickmerge algorithm contains 3 distinct phases. The processes are totally in
dependent of each other during each phase and need to synchronize only at the end 
of each phase. There is no need for any synchronizations during the execution of a 
phase, though the processes do access non-local variables. These non-local accesses 
are read only, since the variables defined in the preceeding phase are used in the cur
rent phase. All variables which are read/write during a phase are local to a process. 
Since this is a shared memory implementation, the cost of the non-local memory ac
cesses is negligible, which may not be the case if this algorithm is implemented on a 
distributed memory machine. 

Description of the algorithm 

Quickmerge has three phases. In the first phase each of p processes sorts a contiguous 
set of no more than r n/ pl keys using the fast sequential quicksort algorithm. After this 
phase all processes synchronize. The n keys can now be seen to form p independent 
sorted lists of size approximately r n IP 1. 

In the first sorted list of f n/p l keys, p-1 evenly-spaced keys are used as dividers 
to partition each of the remaining sorted lists into p sublists. The second phase 
accomplishes the partitioning as follows. Each process i, where 1 ::; i ::; p - l , finds, 
for lists 2 through p, the index of the largest key no larger than the key located at 
index l in/ p2 J in list 1. After this phase all processes synchronize. At this point each 
of the sorted lists has been divided into p sorted sublists with the property that every 
key in every list's ith sorted sublist is greater than any key in any list 's ( i -1 )st sorted 
sublist, for 2 ::; i ::; p. 

In the third phase, each process i, where 1 ::; i ::; p, performs a p-way merge 
of the ith sorted sublists. Note that unlike phase one, in which each process sorts 
a contiguous block of keys, in phase three each process merges p lists stored in p 
different areas. Because of the demarcations established in phase two, these merges 
are completely independent of each other. After this phase all processes synchronize, 
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and the list is sorted. 

Virtual processor 1 Virtual processor 2 Virtual processor 3 

Initial I 99 2 22 33 44 51 24 8 I I 9 66 24 43 42 1 10 20 I I 31 99 22 24 1 13 16 84 I 

Virtual processor 1 Virtual processor 2 Virtual processor 3 

After Phase I I 2 8 22 24 33 44 51 99 I I 1 9 10 20 24 42 43 66 I I 1 16 22 24 31 13 84 99 I 

Virtual processor 1 l2wl 122 24 ~, I 44 57 99 I 

After Phase II Virtual processor 2 [TI I 9 10 20 24 I I 42 43 66 I 

Virtual processor 3 [TI I 16 22 24 31 I I 13 84 99 I 

After Virtual processor 1 Virtual processor 2 Virtual processor 3 

Phase III I 11 2 8 I I 9 10 16 20 22 22 24 24 31 33 I I 42 43 44 57 66 13 84 99 99 I 

Figure 9: Example of quickmerge 

The above figure illustrates a three-processor sort of a list of twenty-four elements 
using quickmerge. After the initial quicksort phase, the list consists of three sorted 
sublists of length 8. During the second step binary search is used to determine where 
the elements one-third and two-thirds of the way through the first sublist would fit in 
the other sublist. In the final phase each processor performs a three-way merge on its 
own set of sorted sublists. The merge step can be done using a heap, but currently 
we are using a simpler method. In this method virtual processor i repeatedly scans 
the ith sorted sublists of all the virtual processors and removes the element with the 
lowest magnitude and appends it to a result array which will be the final sorted list. 

The worst-case time complexity of this algorithm as calculated by Quinn [18] is 
0( ( n / p )2 + p log( n / p) + np + p). The worst-case time complexity for the merge phase 
is 0( np) for the method used here as opposed to ( n log p + p) when a heap is used. 

Comparison of performance results 

To compare the performance of the quickmerge version written using Dataparallel C 
with that of the performance results published in [7], we generated distributed pseudo
random data sets consisting of uniformly, normally (using the Polar method [13]), 
and ordered data. The ordered data was simply the sorted output of the uniformly 
distributed data. For each value of N where N = 103, 104 and 105 , one hundred runs 
were performed. We benchmarked the algorithm on 1 to 9 physical processors for each 
N on a Sequent Balance 8000 multiprocessor. The following figures plot the mean 
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execution times of the quickmerge algorithm for uniformly, ordered and normally 
distributed pseudo-random data consisting of 105 elements. We do not know the 
language in which the version published in [7] was written. For reference purposes 
we indicate the non-Dataparallel C version as Evans's version. Detailed timings for 
different values of N are given in the Appendix. 
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1 

Conclusions 

Mean elapsed execution times in seconds (Balance 8000) 

2 3 4 
Processors 

Evans ~ 
Dataparallel C +-

5 6 8 

Figure 10: Uniform Distribution 105 elements 

10 

• We were able to code this algorithm using Dataparallel C in a neat and easy 
way. Accessing a non-local variable through the virtual processor index is a nice 
feature that simplified coding this algorithm. 

• The member functions were useful in the sense that they clearly demarcate the 
three phases and hence the synchronization points. 

• From the performance graphs we see that except for the ordered distribution 
the Dataparallel C timings are better than the Evans's version of the same 
algorithm. This might be due to differences in the operating system or compiler, 
the pseudo-random data set generated, or the load variation of the system 
during the benchmarking. 

• We tried to use malloc() to dynamically allocate memory inside the member 
functions. But it was unpredictable, and the program stopped due to segmen
tation fault many times. So we used shmalloc(), which worked fine without any 
segmentation fault. 
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Figure 11: Ordered Distribution 105 elements 

Mean elapsed execution times in seconds (Balance 8000) 
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Figure 12: Normal Distribution 105 elements 
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• The Dataparallel C program has to be compiled each time the number of phys 
ical processors change, to get a better performance, instead of having a fixed 
number of virtual processors and running the once compiled program on a dif
ferent number of physical processors. This is due to the overhead of managing 
more number of virtual processors than needed. Suppose we run the example 
case shown in Figure 9 on one physical processor, then that physical processor 
has to emulate 3 virtual processors. Instead if we make the number of virtual 
processors equal to one, then the virtual processor overhead is reduced. 
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• We should be able to perform I/O in the context of the parallelism of the 
problem. There should be capability to read input data directly into poly 
variables and write output data from the poly variables in a predetermined 
order. The predetermined order might depend on the virtual topology of the 
problem . When support for new topologies is added, it should automatically 
support I/0 also for that topology. For implementing the I/O for Quickmerge, 
the data from the input is read in a sequential mode, but the data itself goes 
into the memory of appropriate virtual processors. This was done using the 
virtual processor index. Similarily, the sorted data is output in sequential mode 
by taking data from different virtual processor memories and outputting in a 
predetermined order. For a distributed machine architecture, the above method 
may not work efficiently. So the language should have the feature for doing I/0 
in the context of the parallelism of the problem. 
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3.5 Dynamic Load Balancing 

Description of the problem 

This is an implementation of a low-cost hypercube load-balance algorithm on an 
nCUBE/10 using Dataparallel C. The algorithm for this dynamic load balancing 
was originally developed by Gustafson et al. and implemented on an nCUBE/10. 
This algorithm was tested by them using a simple particle simulation application. 
We also tested the Dataparallel C version of the load balance algorithm using a 
particle simulator. The original authors claim that this technique appears applicable 
to the efficient parallelization of particle-in-cell methods, finite difference and finite 
element methods with adaptive meshes, molecular dynamics calculations, and other 
timestepping applications where dynamic load balancing is required. 

This is a divide-and-conquer approach to dynamic load balancing. The balancing 
is done with global information, and it is distributed over the ensemble rather than 
performed by a single processor. The model chosen to test this load balance algorithm 
is a two-dimensional particle simulation where the positions and velocities of the 
particles, initialized with a uniform random distribution, are a source of dynamic 
load imbalance throughout the simulation. The particles provide a measure of the 
work to be done. 

In a perfectly balanced state, every node controls an equal number of parti
cles, so that nodes do not sit idle at each time step, waiting for other nodes to 
finish moving their particles. At every timestep, balance is achieved by changing 
particle-to-processor assignment. Hence each processor is responsible for a region 
whose boundaries change, if required, to encompass a fixed number of particles for an 
ideal load balance. The key feature of this divide-and-conquer approach is the binary 
domain decomposition. 

The load-balance step requires 0( (log2 P)2) additional operations and 0(1) ad
ditional storage. 

We used X-windows to display the particle simulation graphically. 

Primary references : Dragon and Gustafson [5], Devine and Gustafson [4]. 

We also communicated with the authors for clarifying some of our questions. 
The email addresses of the authors are 

Jonh L. Gustafson: gus@tantalus.scl.ameslab.gov 
Karen D. Devine: kddevin@cs.sandia.gov 

Parallelism exploited 

In the problem described above, we see that the particles move over a rectangular 
domain. We can divide the domain into regions containing equal amounts of work, 
and map these regions onto the nodes of the hypercube. This leads to parallelism 
since all the nodes will be simultaneously working on their respective regions instead 
of one single processor working on the whole rectangular domain. However, since 
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the particles are constantly moving there is bound to be load imbalance after certain 
number of iterations. If the load balance algorithm uses the master slave method to 
maintain the balance then then we might lose the parallelism gained from distributing 
the work. This load balance algorithm depends only on the nodes and uses only 
neighbor to neighbor communication to achieve the balance. 

For each load balance operation there are D = log2 P levels of balancing. At 
the highest level, the balancer operates on the entire hypercube of dimension D. On 
the next level, subcubes of dimension D - 1 are balanced, and so on, down to the 
lowest level, where subcube of dimension 1 are balanced. At each level, balancing 
between any subcube pair is independent of other subcube pairs. Also the nodes 
in any subcube communicate only with their peers in the other subcube and are 
independent of other node pairs. This pattern of communication leads to high degree 
of parallelism which results in a low-cost load balancing algorithm. 

Description of the algorithm 

Consider a general two-dimensional problem to be solved on a hypercube of dimension 
D . The binary domain decomposition algorithm computes and co~pares the amount 
of work in each of the subcubes of dimension D - 1. If an imbalance exists, work is 
moved so that, after the operation, the two subcubes have equal amounts of work. 
Each of the D - 1 dimensional subcubes is then divided into two D - 2 dimensional 
subcubes; the amounts of work in the new subcubes are calculated; and work is 
exchanged between the subcubes. This dividing and redistributing process is repeated 
until the algorithm reaches one-dimensional subcubes. If a load imbalance still exists 
at some level of the hypercube, the algorithm repeats the redistribution process at 
the same level ; otherwise, the load balancing is done. All nodes in the hypercube 
have the same amount of work to do, within the granularity of the task size. Thus , 
the balance is "ideal", not partial. 

In particle simulations, the work to do is the calculation of the particles' positions 
and velocities. Let N be the total number of particles and P be the total number of 
processors. After the load balancing procedure, every node has N / P particles. The 
first level of the decomposition divides the N particles into two sets of N /2 particles 
along a line drawn vertically between the two particles nearest the middle of the 
particle distribution. The second level of the decomposition divides each set of N /2 
particles into two sets along horizontal lines drawn between the two middle elements 
in each set. This process continues, with alternating vertical and horizontal divisions, 
until the entire distribution of particles is divided into sets of size N / P. 

No node has knowledge of particles in the other nodes. The only shared infor
mation is the "extreme values" of particle coordinates in a subcube. For example, if 
a vertical division is to be established, the subcube to the right of the division identi
fies its leftmost two particles as extreme values 'smallest' and 'next-to-smallest'; the 
subcube to the left of the division identifies its rightmost two particles as extreme 
values 'largest' and 'next-to-largest'. Each node determines its local extreme values. 
Then, as the total number of particles in the subcube is calculated, the local extreme 
values are compared to the extreme values of the other nodes in the subcube, and are 
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updated by the most extreme values of the subcube. 

After the calculations, each node in the subcube knows the total amount of work 
in the subcube and the extreme values of the subcube. The two subcubes then ex
change their work totals and extreme values, and compare them with their neighbor's 
values. If no redistribution of work is needed, a new boundary is drawn between 
the subcubes' regions at the average of the extreme values for the subcubes, and 
the balancing procedure is done on the next level of subcubes. If the subcubes have 
the same amount of work, but their extreme values show their regions overlap, the 
extreme particles are exchanged, and the process is repeated at the same level. If 
a redistribution of work is needed, the subcube with less work takes its neighbor's 
extreme particle; the subcube with more work removes its extreme particle; the new 
boundary is established at the average of the extreme value and the next -to -extreme 
value of the subcube that had more work. If an imbalance exists after the redistribu
tion, a flag is set indicating that the balancer should return to that level. The process 
then moves to the next finer level. 

• 4 6 • 
• 14 e 12 

• 5 • 
• 15 • 3 

13 
1 • 

• • 11 9 

• • 2 

8 0. • 10 • 
Figure 13: Binary domain decomposition for particle simulation 

More detailed description of the algorithm is given in the original reference. 

Comparison of performance results 

The following figure shows the time taken to perform a single load balance step for 
different hypercube dimensions. In addition, the time spent on communication by 
the Dataparallel C version is shown. The timings are given in the Appendix. 
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Figure 14: Load balancing times on nCUBE/10 

64 

• From the timings, we observe that almost 80 to 90 percentage of the time is 
spent in communication. The communication is always between neighbors in 
the hypercube. Most of the time two subcubes communicate with each other. 
This cube communication is achieved using point-to-point communication which 
is more efficient than random read or random write. But still it did not give 
the expected performance, due to the the large time spent copying of buffers 
during communication. 

• When we used member functions inside a while loop, the performance was very 
poor. This happened because the compiler does not do interprocedural data 
flow analysis, instead every call to a member function results in a "global or" 
to synchronize the processors . When the member function was expanded and 
included inside the loop the "global or" vanished and the performance improved. 

• The point-to-point communication had to be achieved in a strange way by way 
of calling a sequential function inside a domain select, because the only virtual 
topologies supported by Dataparallel C are ring and mesh, not hypercube. 

• We had to use the nCUBE system call nfwrite() in order to output the graph
ics display data. Also we had to use the ntime() system call to measure the 
cumulated time spent in communication. 

• Since the compiler maps the virtual processors to the hypercube nodes using bi
nary reflected gray code, when defined as a one dimensional array, the mapping 
naturally fitted this problem. 
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• This problem can be used as a real test case for a parallel debugger. The 
debugging was a little tedious due to the dynamic nature of the problem. 

• The graphics display output had to be redirected to a file and then displayed 
using an X window program. We could not directly pipe the output of the 
parallel program to the display program because it resulted in a Segmentation 

fault for unknown reasons. 
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3.6 Linear Equation Solver using Jacobi approach 

Description of the problem 

The problem is to solve a system of simultaneous linear equations expressed in the 
following form: 

a11x1 + a12X2 + 
a21X1 + a22X2 + 

which is expressed in matrix notation as Ax = b. The matrix A is called the 
coefficient matrix of the system of equations. A system of equations is completely 
defined by its coefficient matrix A and right-hand-side vector b. 

The system can be solved using 'direct methods' like Gauss-Jordan elimination 
where the solution is obtained after a predeterminable number of steps. But here we 
are using the 'Jacobi iterative approach' where successive estimates of the solution is 
made to arrive at the desired solution eventually. 

The Jacobi iterative solution method determines an approximate solution for each 
element of the vector x, with the ( k + 1 )th approximation expressed as 

b· °"n a · ·x(k) 
x(k+l) = i - wj=l,#i iJ j 

i 

The above equations will converge to a solution provided that 

n 

I: laijl < laiil 
j=l,icf;j 

Primary references : Kwan and Bic [14, 15], Steinberg [20]. 
Email reference: kwan@ics.uci.edu. 

Parallelism exploited 

From the above equations we see that, for an iteration k, the computation of new 
approximations for the entries of vector x can be done in parallel. To compute an 
entry i of the vector x we need the coefficients from the row i of matrix A, an entry 
from row i of vector b and all entries of vector x of iteration k-1. Each process owns a 
set of rows and computes the approximations for the entries of vector x corresponding 
to the rows it owns. This way work is shared among processes and computation for 
different entries can proceed in parallel. 

_) Description of the algorithm 

Each virtual processor owns a single row of coefficient matrix A and a single entry 
of vector b corresponding to that row. Two x vectors, for previous and current 
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I iterations, are defined as a global array. At the end of each iteration , each virtual 
processor updates its x value on the corresponding location of the global array. Then 
all the virtual processors calculate the maximum deviation , since they all have access 
to the old and new generation values of the x vector. After convergence criteria is 
met , the program terminates after outputting the solution vector. 

) 

J 

Comparison of performance results 

The performance for the linear equation solver using Jacobi method for a 128 x 128 
system on an iPSC/2 for both CAB and Dataparallel C versions are shown below. 
The performance on an nCUBE is also shown in the next page. The reason for this 
is given in the next subsection. The timings are for 10 iterations in all the cases . 
CAB stands for Compute-Aggregate-Broadcast paradigm. The timings for the CAB 
version were noted down from a graph . 

Time 

2048 

1024 

512 

Time in milliseconds (iPSC/2) 

CAB(iPSC/2) +
DPC (iPSC/2 - Owner-Beast) +-

256 .___ ___ _._ ___ _._ ___ ___. ____ ....__ ___ __, 

1 2 4 8 16 32 
Processors 

Figure 15: System Solver 128 x 128 using Jacobi (iPSC/2) 

Conclusions 

• The x vector, which is stored globally, has to be updated after each itera
tion. The less expensive way for this situation is to use multi-reduce where 
each virtual processor updates the x value corresponding to its virtual proces
sor index, on the global array. Another way is to use owner-broadcast where 
the global x vector is broadcast after each element of the vector is updated. 
At the time of this benchmarking multi-reduce feature was malfunctioning on 
iPSC/2. Hence we used owner-broadcast to achieve the same functionality. On 
the nCUBE, multi-reduce feature was working properly, and so we have shown 
the performance of Dataparallel C on the nCUBE to give an indication of how 
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the performance on iPSC/2 will change when owner-broadcast is changed to 
multi-reduce. 
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Figure 16: System Solver 128 x 128 using Jacobi (nCUBE) 
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3. 7 Gaussian Elimination 

Description of the problem 

The problem is to solve a system of simultaneous linear equations expressed in the 
following form: 

a11x1 + a12X2 + 
a21X1 + a22X2 + 

which is expressed in matrix notation as Ax = b. The matrix A is called the 
coefficient matrix of the system of equations. A system of equations is completely 
defined by its coefficient matrix A and right-hand-side vector b. 

Elsewhere we have solved this problem using the Jacobi iterative approach. Here 
we will be using a direct method called Gaussian Elimination method to solve the 
above system of equations. Essentially, this method reduces the augumented matrix 
[A, b) to an upper triangular matrix possessing identical solution as the original 
system of equations. Then by using back substitution the unknowns are found. 

Primary references : Rivera [19), Hatcher and Quinn [10), Steinberg [20). 

) Parallelism exploited 

The performance of this problem depends on the way the matrix is partitioned. Each 
virtual processor can own a row, a column or a single element. In any case the 
maximum parallelism available is during the reduction of the augumented matrix to 
upper triangular form. One of the main considerations in solving this problem will be 
to reduce the communication without affecting the parallelism. If we are solving the 
problem on a shared memory machine, the communications will reduce to non-local 
accesses and we can get away with very few synchronization points (in the order of 
number of rows or columns). 

Description of the algorithm 

Given an N x N matrix A, where rows are numbered 1, 2 ... , N. The algorithm has 
N iterations. During iteration i, where 1 ::::; i ::::; N, Gaussian elimination forces to 0 
the column i elements in rows i + 1, i + 2, ... , N by multiplying the elements in each 
of these rows j by some multiple of the elements in row i. The pivot row is the one 
with the largest value in the column i, the pivot column. The element i in the pivot 
row is the pivot element. 

The back substitution solves Ux = B, where U is an upper triangular matrix 
and x and b are vectors. 

Each virtual processor is associated with a row of matrix A. The pivot row 
__ ) is identified by means of a tournament and then broadcast so that every virtual 

processor can reduce its rows in parallel. Then back substituition is achieved by 
means of repeated broadcasts. 
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Comparison of performance results 

We compared the performance of Dataparallel C with that of another SIMD style 
language called Array C LANguage (ACLAN) for this problem. The problem size 
was 120 x 120 and it was solved on an nCUBE hypercube. 
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Figure 17: Gaussian elimination with partial pivoting (120 x 120) 

Conclusions 

• From the performance graphs we see that Dataparallel C performs better than 
ACLAN except for 5 and 6 dimensions. This might be explained by the load 
imbalance because of some physical processors owning lesser number of rows 
than others due to the problem size chosen. (120 x 120). And this imbalance 
is magnified as the dimensions increase. But we do not know the exact reason 
yet. 

• The Dataparallel C code is more intelligible than ACLAN code because A CLAN 
extensively uses MASKS to enable or disable a processor from participating in 
a computation or communication step. 
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3.8 Matrix Multiplication 

Description of the problem 

The problem is to multiply two matrices A and B to yield matrix C. 

Primary references : Kale [12], Hatcher and Quinn [10]. 

Parallelism exploited 

Matrix multiplication is embarassingly parallel, because each element of the result 
matrix C can be computed independently of the others. Due to this high degree of 
parallelism, there are many ways to parallelize matrix multiplication. We are using 
an algorithm which is familiarly known as systolic matrix multiplication. 

Description of the algorithm 

The systolic matrix multiplication algorithm described here is better suited for dis
tributed memory multicomputers, though it performs well on shared memory mul
tiprocessors as well. On a shared memory machine, the matrices A and B can be 
stored globally and each processor need not have an individual copy of them. But 
on distributed memory computers, the global variables are stored in each physical 
processor. Given a small node memory, storing large matrices would be ruled out. 
For this reason we assume that every element of A, B, and C is stored only once in 
the parallel computer. Also the costs should not outweigh the reduction in memory 
costs. The systolic algorithm addresses both these above issues and hence gives a 
good performance. 

Though we have talked about physcial processors, we will be dealing with virtual 
processors while writing the algorithm. How big a matrix we can multiply and how 
efficient the algorithm can perform depends on the number of physical processors we 
choose to run the program. 

Let us consider the multiplication of two two-dimensional matrices A and B 
whose product will be another two-dimensional matrix C. 

( aoo ao1 ) x ( boo bo1 ) = ( aoo X boo + ao1 x b10 aoo X bo1 + ao1 x bn ) ( Coo Co1 ) 
a10 an b10 bn a10 x boo + an x b10 a10 x bo1 + an x bn = cm en 

Each virtual processor owns an element ( usually a block of elements) of matrix A, B 
and C. 

To start with, each virtual processor computes the product of a and b they own 
and add the result to their own c. In the next step, virtual processors send their 
a's to their west and b's to their north. Virtual processors on the west extreme send 
their a's to the virtual processors on the east extreme of same row and similarily 
virtual processors on the extreme north send their b's to the virtual processors on the 
extreme south of same column. Then, each virtual processor computes the product 
a x band adds the result to their own c. The following figure illustrates the process for 
a two-by-two matrix multiplication. When the values in the east and south extremes 
reach the west and north extremes respectively, the product is computed like in the 
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) previous steps and the process stops, and the result is available in the C matrix which 
is distributed among the virtual processors. 

The initial distribution of the elements a and b has to be skewed to get the right 
answers. 
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Figure 18: Systolic matrix multiplication 

Comparison of performance results 

X 

I 

L-----

The performance comparison was done on a Sequent Symmetry and on an iPSC /2 
for the multiplication of 256 x 256 matrices. We have compared the Dataparallel C 
performance with that of the Chare Kernel performance. The detailed timings are 
given in the Appendix. The graphs appear in the next page. 

Conclusions 

• We see from the graphs that the algorithm performs equally well in both the 
shared memory and distributed memory cases. 
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Figure 19: Performance of 256 x 256 matrix multiplication 

256 

128 

64 

32 

Time 16 

8 

4 

2 

1 
1 2 

Time in seconds (iPSC/2) 

4 8 
Processors 

Chare Kernel ~ 
Dataparallel C +-

16 

Figure 20: Performance of 256 x 256 matrix multiplication 
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• When we did a linear plot of Time vs Processors, it seemed that Dataparallel 
C started off with a better timing than Chare Kernel but the performance 
difference seemed to narrow down as the number of processors were increased. 
But when we did a linear log plot, we found out that Dataparallel C performance 
was better than Chare Kernel by a constant factor for all number of processors. 
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) 3.9 Prime Finder 

Description of the problem 

The problem is to find all the primes under a given number N. A prime number has 
the property that it is not divisible by any number other than itself and 1. To say if a 
given number i is prime or not we have to divide i by all possible factors it can have 
and if we find that there is no factor for i other than itself and 1 then we conclude 
i is prime . The largest factor a number can have other than itself is its square root. 
So it is enough to eliminate the factors up to the square root of a given number to 
verify its primality. 

If we directly implement the above method to test the primality, we will be 
wasting a lot of computation time in repeated divisions. This method might be 
useful to test if a given number is prime or not. But in order to find all the primes 
under a given N, we need a better algorithm which will avoid duplication of effort 
and also expensive computations. Here we are parallelizing the classical prime-finding 
algorithm, the Sieve of Eratosthenes, which uses less expensive computations, avoids 
duplication of effort and scales very well. 

Primary references : Kale [12], Bjornson [1], Hatcher and Quinn [10]. 

Parallelism exploited 

Each process is associated with a chunk of natural numbers. When a new prime 
value is found , each process independently strikes out the multiples of the newly 
found prime number. This way all processes can work in parallel and synchronize 
only to get the new prime value. Any increase in the problem size will increase the 
grain size also. 

Description of the algorithm 

Each virtual processor owns an array of boolean values whose indices correspond 
to the natural numbers they represent. Even numbers are implicitly left out from 
being stored, since they all are divisible by 2. To start with, all virtual processors 
eliminate the multiples of 3, which is the first prime number after 2. Usually the 
virtual processor zero will own all numbers :s; ,IN . So the successive prime values 
will be broadcast always by virtual processor zero. All the elements in the array are 
initially true. Making an element false is equivalent to striking out the number which 
it represents. After all the possible factors :s; ,IN have been considered, the natural 
numbers whose corresponding array elements are true are the prime numbers under 
N . 

Comparison of performance results 

The performance of Dataparallel C for finding primes less than 3 million and 7 million 
on an iPSC/2 are plotted below. The timing for the C-Linda version is available only 
for finding primes under 7 million and that too only on 32 nodes of iPSC /2. The 
performance of Chare Kernel, C-Linda and Dataparallel C version using a naive 
algorithm for finding primes is also shown. 

37 



) 

) 

_) 

Time in milliseconds (iPSC/2) 
32768 .-----~------.----~----~---~ 

16384 

8192 

Time 4096 

2048 

1024 

C-Linda 7 million ~ 
DPC 7 million+
DPC 3 million ,S.-

512 '------L----__,JL--------'-------'-----J 

1 

512 

384 

256 
192 

128 

Time 96 

64 
48 

32 

24 

16 
1 

2 4 8 16 
Processors 

Figure 21: Sieve of Eratosthenes 
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Figure 22: Performance of Prime Finder (naive algorithm) 
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Figure 23: Performance of Prime Finder (naive algorithm) 

Conclusions 

64 

• We see from the above performance graphs that Sieve algorithm is much faster 
when compared to the naive algorithm to find primes. However, Dataparallel C 
performs equally well for the naive algorithm when compared to Chare Kernel 
and C-Linda. 
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4 Strengths and Weaknesses of Dataparallel C 

From our experience with high-level sequential languages we have seen that flexibility, 
ease of programming, portability, modularity and maintainability are some of the 
major features of a well evolved language. These features are more important from 
the point of programmer productivity and maintenance costs, though they do not 
prevent generation of efficient code. So the primary consideration should be to design 
a language which is easy to program and maintain. The compiler should be mainly 
responsible for generation of efficient code. 

The above features are even more important for a high-level parallel program
ming language because it has to support expressions to specify parallel operations and 
interactions among those operations. This new dimension leads to a high degree of 
complexity in developing a parallel program. Though in the case of parallel program
ming, it is very hard to expect the compiler to do everything, it is still possible for 
the compiler to generate highly efficient code, especially if the language is explicitly 
parallel. 

Dataparallel C was designed with some of the above considerations . Dataparallel 
C has the following characteristics [11]. 

• Imperative style. 

• Explicit parallelism 

• Local view of computation 

• Synchronous execution of a single instruction stream . 

• Global name space 

As a result, Hatcher and Quinn claim that it has the following desirable attributes 
[11]. 

• Versatility 

• Practicality 

• Programmability 

• Portability 

• Reasonable performance 

From the experience of solving 9 different problems using Dataparallel C, we try to 
verify how well Dataparallel C has satisifed the above claims and what are its strengths 
and weaknesses when compared to other paradigms which we have encountered while 
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solving these 9 problems and what further improvements need to be done to the 
language and its compiler to make it more useful. 

All the problems we had chosen naturally fitted into data parallel category though 
some had control parallel solutions also. This corroborates with the view of Fox [8] 
that "domain decomposition" or "data parallelism" is the key to the success of most 
parallel applications. Also Fox [8] says that ~ 90% of the scientific and engineering 
applications are synchronous or loosely synchronous. The problems we had chosen 
belong to the category loosely synchronous because the grain size between synchro
nizations was macroscopic. Now we shall consider each claim in detail. 

Versatility 

The problems were chosen from papers published with benchmark results on shared 
memory (Sequent Symmetry & Sequent Balance) and distributed memory machines 
(nCUBE & iPSC/2). The following is the list of problems solved, the languages origi
nally used to solve the problem and the machines on which performance was measured. 

Problem Language Machines 
3.1 Sequence Matching C-Linda Symmetry, iPSC /2 
3.2 Laplace equation using Jacobi Poker Symmetry 
3.3 Laplace equation using Gauss-Seidel CAB iPSC/2 
3.4 Quickmerge Low-level Balance 8000 
3.5 Load Balancing Fortran nCUBE 
3.6 Linear equation using Jacobi CAB iPSC/2 
3. 7 Gaussian elimination ACLAN nCUBE 
3.8 Matrix multiplication Chare Kernel Symmetry, iPSC /2 
3.9 Prime finder C-Linda iPSC/2 

Chare Kernel 

We were able to solve all of the above problems using Dataparallel C and measure 
the performance on the same machines for which performance was published. Except 
for Problem 3.3 we could program all other problems with least difficulty. Problem 
3.3 in itself was a little complex problem due to its dynamic nature and the code 
size was around 850 lines. The problems encompass a wide range of communication 
patterns and different decompositions. So we can say that Dataparallel C is quite 
versatile. 

Practicality 

Sometimes we found that it is easy to directly write the parallel code instead of 
converting the sequential code to parallel code. This way we could avoid at least one 
level of nesting in loops. However some problems we wrote a sequential version and 
conversion to parallel version took little effort. After a little practice, one will find it 
easy to write the parallel code directly unless the sequential code is needed to verify 

) the solution etc. 

Programmability 
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Synchronous execution removes the main headache of race conditions and with a 
minimum understanding of machine architecture ( at least to the extent of knowing if 
we are programming for shared or non-shared memory) and the Dataparallel C model 
one can implement all the above algorithms without worrying about messages and 
locks. However for problem 3.3 we had to be aware of hypercube architecture because 
the algorithm exploits the node arrangement. This is also because Dataparallel C 
currently supports ring and mesh topologies only. It is debatable if a topology like 
hypercube need to be supported by a high-level language at all or a three-dimensional 
toroidal mesh mapped onto a hypercube would be sufficient for all practical purposes. 

Dataparallel C programs are pretty short when compared with other high-level 
and low-level parallel languages. 

Debugging is one issue which needs attention. When a Dataparallel C program 
is compiled and executed on a parallel machine and if the program comes out saying 
Segement violation or if the program hangs midway, it is hard to locate where exactly 
the problem would be. At present "printfs" are the only mechanism to locate a bug. 
A primitive mechanism to locate system errors and hangs would be of great help 
because other things can be managed with "printfs" at least till a complete debugger 
is developed. 

Since interprocedural analysis is not yet implemented in the compiler, using mem
ber functions inside loops generates synchronizations even in cases where it is not 
necessary. 

Portability 

We see from the above table that Dataparallel C works on nCUBE, iPSC/2, Sequent 
Symmetry and Sequent Balance. The same program runs on all the above machines 
without need to change. However, a Dataparallel C program written for a distributed 
memory machine will be more portable without sacrificing performance rather than 
writing first for shared memory and using it for distributed memory machine. This 
difference is due to the cost free non-local reads in the shared memory machines a 
feature which one would like to exploit. 

Reasonable performance 

From the performance results we see that Dataparallel C is close to the performance 
of other languages and in some cases better. There is still more scope for optimizing 
the code. Except for the Problem 3.3 where communication time is predominant, 
Dataparallel C performance is definitely reasonable and if coding effort is taken into 
consideration, the performance is more than reasonable. 

We see that Dataparallel C satisfies the above claims to a large extent and it 
is evolving in the right direction as we are able to program with ease many parallel 
problems. Now let us see what is its strength and weakness when compared to other 
parallel paradigms we have encountered. 

C-Linda [3] vs Dataparallel C 

The C-Linda program for the Problem 3.1 (Sequence matching) requires separate code 

42 



to be written for master and worker tasks. The data has to be dumped to the tuple 
space by the master process specifying the correct actuals and the worker processes 
have to read from the tuple space using the correct formals and appropriate tuple key. 
After that, the edges are communicated through the tuple space. The comparison 
itself is done by the program called "similarity .c" . In contrast, the Dataparallel C 
program uses only the logic of "similarity.c" and in addition has a successor() macro 
to communicate the edges. The C-Linda code is not synchronous in execution. The 
C-Linda model is not very intuitive for "data parallel" problems. So short code size, 
synchronous execution and intuitive to solve "data parallel" problems are some of the 
strengths of Dataparallel C which was helpful in programming this problem. 

The Dataparallel C supports only static decomposition whereas C-Linda can 
handle decompositions at run time. Hence we had to compile Dataparallel C programs 
each time a problem size or aspect ratio was changed. This was one of the weaknesses 
we encountered in this problem. 

Also we had a small loss of performance on Sequent due to the synchronization 
costs. Whereas on iPSC/2 the message passing itself acted as synchronization and so 
there was no extra cost to perform synchronizations . 

C-Linda offers a debugging tool called Tuplescope, but we do not know how useful 
it is for practical debugging. 

) CAB [17] vs Dataparallel C 

_) 

Compute-Aggregate-Broadcast is a paradigm specially meant for iterative problems 
which have a compute phase, aggregate phase and a broadcast phase [17]. The struc
turing technique [14] used for CAB paradigm has the concept of master and slave 
processes. The programmer has to keep in mind what the master process has to do 
and what the slave processes have to do. In contrast, Dataparallel C needs an initial 
specification of the decompostion and the same set of operations are performed on 
different data elements in a synchronous manner. The problem used for the compar
ison was solving Laplace rectangle using Gauss-Seidel iteration. We used the same 
algorithm as they had used. The decomposition was by rows. Again the commu
nication macros successor() and predecessor() were sufficient to exchange the edges. 
Dataparallel C does not have a means to specify staggered start. Whether it should 
be taken care of by the language or the programmer is an issue to be decided. 

ACLAN [19] vs Dataparallel C 

Array C LANguage is a SIMD style language for MIMD computers like Dataparallel 
C. However ACLAN has a notion of MASKS, which are used to enable or disable 
processes from participating in the comput ation or communication. These masks 
make the program hard to read. The virtual processor index used by Dataparallel C 
is a better way of accomplishing the same task. 

Poker [16] vs Dataparallel C 

The Laplace rectangle using Jacobi was solved by Snyder [16] using the C language 
and Poker style message passing using ports. Their code length is almost 5 times 
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longer than Dataparallel C code, since it was a complete implementation using Se
quent C language. From this we can see how difficult it is to program in a low-level 
language even with the help of some message passing constructs. 

5 Conclusions 

In general, the local view of computaion provided by Dataparallel C allows you to treat 
parallel programming just like sequential programming. Global name space allows 
you to forget about details of message passing. Synchronous execution facilitates 
easy debugging and coding. 

The problems considered here are small sized except for Problem 3.3, which we 
can say is medium sized. These problems did not require more than one domain 
instance, did not have multiple modules interacting with each other and there was no 
need for complex communication. But from this exercise we find that Dataparallel 
C performs equally well and sometimes better when compared with other paradigms 
for small sized problems. The future work would be to program big applications or 
benchmarks which are fairly complex and at least around 5000-10,000 lines. This way 
we can really test all the features and also know exactly what else needs to be done 
to make Dataparallel C a full-fledged parallel language. Of course, to develop bigger 

) applications we need some preliminary debugging tools also. 

_) 
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Appendix A - Performance timing charts 

Timings for problem 3.1 

The original C-Linda version of the algorithm was implemented both on a shared 
memory machine (Sequent Symmetry) and a distributed machine (iPSC/2). Since 
Dataparallel C was available on both the machines, we could compare our performance 
results with that of the C-Linda performance. The iPSC/2 timings for C-Linda ver
sion was not available. Instead we have compared the speedup achieved by C-Linda 
and Dataparallel C for a 7000 x 7000 self-comparison problem elsewhere in the doc
ument. 

Execution times on Symmetry (seconds) 
Side x Top Aspect Ratio Language Number of Processors 

10 12 14 16 18 20 

10 C-Linda 18.31 15.58 13.36 11.94 10.73 9.81 
DPC 21.65 17.99 15.03 13.26 11.75 10.66 

3389 20 C-Linda 17.88 14.94 12.91 11.42 10.49 9.61 
DPC 20.66 16.81 14.49 12.75 11.48 10.25 

X 30 C-Linda 17.53 14.96 12.73 12.28 10.29 9.49 
DPC 20.22 16.73 14.36 12.57 11.23 10.16 

3389 40 C-Linda 17.36 14.75 12.71 11.28 10.38 9.57 
DPC 19.63 16.52 14.20 12.55 11.22 10.18 

10 C-Linda 79.32 65.39 56.35 46.91 41.14 37.55 
DPC 85.69 76.27 59.67 53.06 48.25 42.23 

6778 20 C-Linda 71.46 64.24 55.79 45.91 41.47 35.12 
DPC 80.17 67.37 57.33 55.67 44.51 40.77 

X 30 C-Linda 71.93 58.5 49.17 44.48 38.46 37.07 
DPC 79.50 67.18 56.37 52.64 44.56 41.47 

6778 40 C-Linda 70.14 58.25 49.54 42.91 40.70 37.20 
DPC 83.63 74.14 62.52 50.11 45.14 39.59 

The above timings include the time taken to read the input data file from the 
disk. Due to some unknown bug, the DPC program gave segmentation fault, in two 
cases. Hence the two blank columns. 
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22 24 

9.16 8.86 
9.70 9.17 
8.83 8.65 
9.38 8.88 
8.78 9.72 
9.29 8.73 
8.92 10.56 

- -

33.71 31.31 
38.70 35.36 
32.25 30.03 
37.05 34.47 
32.76 29.55 
36.22 33.36 
31.94 29.99 
35.92 33.58 
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Timings for problem 3.2 

We did the benchmarking of their program and ours on a Sequent Symmetry. Their 
program was written using the C language + Sequent parallel library. Since they 
used getusclk() for taking the timing we also did the same thing to ensure a fair 
companson. 

Execution times on Symmetry (seconds) 
Language Decomposition Data Points Number of Processors 

4 16 

8 X 8 0.006 0.009 
128 X 128 0.46 0.12 

Blockwise 256 X 256 1.92 0.48 
139 lines of 512 X 512 7.72 2.01 
source code 1024 X 1024 31.07 8.00 

8 X 8 0.005 0.007 
128 X 128 0.35 0.10 

DPC Rowwise 256 X 256 1.47 0.45 
83 lines of 512 X 512 5.88 1.92 

source code 1024 X 1024 24.12 8.09 
8 X 8 0.005 0.006 

128 X 128 0.72 0.35 
Cellwise 256 X 256 2.86 1.63 

72 lines of 512 X 512 7.95 3.68 
source code 1024 X 1024 1025 800 

8 X 8 0.005 0.005 
128 X 128 0.42 0.10 

Sequent C Blockwise 256 X 256 1.72 0.43 
566 lines of 512 X 512 6.90 1.74 
source code 1024 X 1024 27.38 6.96 

The recorded timing is the time taken elapsed from the start to termination of 
the iterative loop. We noticed that if the decomposition is interleaved which is the 
default , then the performance becomes bad due to cache trashing. But contiguous 
decomposition improves the performance. This is prominent in cellwise decomposi
tion . 
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Timings for problem 3.3 

The timings for the 128 x 128 and 256 x 256 Laplace Equation Solver is given 
here for both Dataparallel C and Compute-Aggregate-Broadcast paradigm. The tim
ings were taken on a 32 node iPSC /2 . The timings for processors less than 4 are not 
given because it would approximately take around 6 hours for a 256 x 256 problem 
to complete. And the timings given here are sufficient indication of the performance. 
The timings for the CAB paradigm were noted down from a graph and hence the 
actual timings may be ±2% of the timings given below. 

Execution times on iPSC/2 (seconds) 
Size Language Number of Processors 

4 8 16 32 

128 X 128 CAB 650 320 190 110 
DPC 520.34 275.24 156.18 97.90 

256 X 256 CAB 5500 3000 1400 850 
DPC 4712.71 2396.51 1251.33 682.29 
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Timings for problem 3.4 

Mean elapsed times for the Quickmerge algorithm on Sequent Balance 8000 pro
cessor for number of elements N = 1000, 10 000 and 100 000 for three kinds of 
distributed pseudo random data sets namely uniform, ordered and normal. Data
parallel C version timings are indicated by DPC and the timings published by Evans 
[3] is indicated by Evans. 

Execution times on Balance 8000 (seconds) 
Dist Size Lang Number of Processors 

1 2 3 4 5 6 7 8 

1000 Evan s - - - - - - - -
u DPC .21 .12 .08 .08 .07 .07 .08 .08 
N 10000 Evans - - - - - - - -

I DPC 2.55 1.49 1.25 .998 .912 1.04 1.39 .71 
F 100000 Evans 47.50 24.00 18.00 14.50 12.40 10.00 8.00 7.50 

DPC 31.03 16.44 13.67 9.82 7.76 6.99 6.24 5.83 

1000 Evans .11 .16 .26 .35 .43 .51 .59 .68 
0 DPC .21 .11 .10 .11 .12 .13 .16 .17 
R 10000 Evans 1.73 1.03 1.17 1.35 1.44 1.56 1.67 1.77 
D DPC 2.21 1.18 1.10 1.15 1.24 1.54 1.79 1.88 

100000 Evans 21.44 11.24 11.43 12.12 12.60 12.54 12.83 13.08 
DPC 23.79 13.97 18.02 13.03 13.07 14.15 16.23 16.75 

1000 Evans .27 .25 .30 .35 .42 .48 .55 .62 
N DPC .20 .15 .12 .09 .08 .09 .09 .09 
0 10000 Evans 3.64 1.99 1.74 1.46 1.31 1.23 1.21 1.21 
R DPC 2.54 2.28 1.85 2.21 2.27 2.17 2.80 .71 
M 100000 Evan s 46.82 23.95 18.99 14.42 11.97 10.07 8.86 7.99 

DPC 32.35 16.54 16.92 9.99 7.79 6.98 6.29 5.85 

The dash es indicate data not available. 
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Timings for problem 3.5 

Execution times on nCUBE/ten (milliseconds) 
Language Timing breakup Number of Processors 

1 2 4 8 16 32 64 

DPC Total balance time 0.44 5.70 12.91 23.28 39.70 71.50 135.04 
Time spent in comm 0.00 4.12 10.21 19.43 34.74 65.25 127.49 

Fortran Total balance time 1.14 2.51 4.97 8.53 13.40 19.32 26.72 

The global domain was the rectangle with corner points (0,0) and (1024, 768). 
The number of particles per processor was held constant (8 particles per processor). 
The timings are for one time step excluding the graphics. Each component of the 
velocity was in the range (-1, 1). 
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Timings for problem 3.6 

The timings for the linear equation solver using Jacobi method for a 128 x 128 
system on an iPSC/2 for both CAB and Dataparallel C versions are given below. At 
the time of this benchmarking, multi-reduce feature was malfunctioning on iPSC /2. 
Hence we used owner-broadcast to achieve the same functionality. On the nCUBE, 
multi-reduce feature was working properly, and so we have shown the performance 
of Dataparallel C on the nCUBE to give an indication of how the performance will 
change when owner-broadcast is changed to multi -reduce. The timings are for 10 
iterations in all the cases. CAB stands for Compute-Aggregate-Broadcast paradigm. 
The timings for the CAB version were noted down from a graph. 

Execution times on iPSC/2 and nCUBE (milliseconds) 
Language Machine Number of Processors 

1 2 4 8 16 32 

CAB iPSC/2 2500 1300 700 480 310 300 
iPSC/2 1789 1290 1175 1260 1442 1688 

Owner Broadcast 
DPC nCUBE 3907 2574 2082 2033 2213 2512 

Owner Broadcast 
nCUBE 5534 2724 1429 818 533 417 

Multi-Reduce 
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Timings for problem 3.7 

The timings for the Gaussian elimination method to solve a 120 x 120 size sys
tem of equations on an nCUBE are given below for both Dataparallel C and ACLAN 
(Arra y C LANguage). The timings for ACLAN were noted down from a graph. 

Execution times on nCUBE (seconds) 
Language Hypercube Dimension 

0 1 2 3 4 5 6 

ACLAN 39.81 21.87 12.02 7.41 4.67 3.46 2.81 
DPC 16.37 9.09 5.92 4.32 3.85 3.82 4.10 
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Timings for problem 3.8 

The timings for the 256 x 256 matrix multiplication on a Sequent Symmetry and 
iPSC/2 are given below for both Dataparallel C version and Chare Kernel version. 

Execution times on Symmetry (seconds) 
Language Sequential Number of Processors 

1 2 4 8 16 

Chare Kernel 305 304.8 152.6 76.2 38.3 19.4 
DPC 156.11 164.00 82.12 41.20 20.76 10.54 

Execution times on iPSC/2 (seconds) 
Language Sequential Number of Processors 

1 2 4 8 16 32 

Chare Kernel 228 228 115 58.1 29.8 15.4 7.87 
DPC 87.882 112.733 57.308 28.440 14.334 7.255 3.728 
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Timings for problem 3.9 

The timings on an iPSC/2 for the sieve algorithm for both C-Linda and Data 
parallel C versions are given below. The dashes indicate timing not available . 

Execution times on iPSC/2 (seconds) 
Language Size Number of Processors 

1 2 4 8 16 32 

C-Linda 7 million - - - - - 1.87 
DPC 7 million 19.40 9.82 5.07 2.74 1.60 1.09 

3 million 8.14 4.16 2.19 1.23 0.78 0.59 

The timings for the naive algorithm to find primes under 3 million , is given below 
for C-Linda, Chare Kernel and Dataparallel C versions for Sequent Symmetry and 
iPSC/2 . 

Execution times on Sequent Symmetry (seconds) 
Language Number of Processors 

1 2 4 8 16 

Chare Kernel 344 174 87 43.7 21.9 
DPC 295 175.90 91.86 47.12 23.77 

Execution times on iPSC/2 (seconds) 
Language Number of Processors 

1 2 4 8 16 32 64 

C-Linda 421 255.15 131.56 63.78 31.89 15.94 7.97 
Chare Kernel 319.5 170.4 86 45.5 25 14 8.1 

DPC 279.447 167.416 88.531 45.39 22.90 11.524 -
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