
)

Nancy Currans

APPROVED:

~

A, Comparison 0£ eounting Methods For
Software Science And Cyclomatic Complexity

Priofessor of Computer Science in Charge of Major

Chairman of Department of Computei Science

Date res ear ch paper is compl eted __ J_5_fl ___ n_o_v_~_~ __ L_'<-A_ . __ (----+~-~- s_~ __

A COMPARISON OF COUNTING METHODS FOR

SOFTWARE SCIENCE AND CYCLOMATIC COMPLEXITY

Nancy Currans
Curtis Cook

Abstract

This paper reviews McCabe's cyclomatic complexity and

Halstead's laws; it discusses studies in current literature

) relating the metrics to software. The studies are reproduced

using data obtained from a large software project developed in

a major electronics firm. Problems that occur when deriving

the metrics are discussed; the result of computing the metrics

different ways is investigated.

This study shows that when the counting method is varied,

there is no significant difference in the bug-to-metric rela

tionship. A strong relationship is shown to exist between

Halstead's laws, McCabe's cyclomatic complexity, lines of

code, and the number of bugs reported in the project.

Table of Contents

I. Introduction •••••••••••••••• 1

II. McCabe and Cyclomatic Complexity •••••• 3

Ill. Halstead and Software Science • • • • • • • 7

IV. The Field Study •••.••••••••••• 19

v. Analysis of Data •••••••••••••• 25

VI. Summary and Conclusions ••••••••••• 39

Figures and Tables •••••••••••••••• 40

Bibliography •••••••••••••••••• 45

)

J

)

Chapter One: Introduction

The term "software complexity" means different things in the

field of computer science. The more traditional meaning deals

with computational complexity - the time and space complexity

of an algorithm. Time complexity is the amount of time it

takes an algorithm to compute. Space complexity is the amount

of memory an algorithm requires.

A second more recent meaning of complexity, or "psychological

complexity", relates to a human's performance when working

with or using a piece of software. It studies the difficulty

of a programmer working with (testing, modifying, debugging,

etc.) a program, the difficulty a user has in understanding

how to use the software, or the difficulty or ease of using

the computer due to the physical layout of the hardware.

This paper investigates the difficulty a programmer has work

ing with a program. The relationship between program charac

teristics and errors found in that program are studied. The

data was obtained from an electronics firm in the Pacific

Northwest: program characteristics were taken from the source

code and error data was collected when engineers analyzed

problem reports and made bug fixes.

Lines of code, along with two of the more popular software

complexity metrics are reviewed: McCabe's cyclomatic complex

ity, and Halstead's software science. Current studies relat

ing the metrics to software are summarized; they are then re-

-1-

)

j

peated using the data collected for this study. Problems that

occur in computing the metrics are discussed, and the resolu

tion to those problems for the purpose of this study is given.

Although it is dangerous to draw conclusions from one specific

study and then generalize them to all software, these results

support the conclusions of many published articles. McCabe's

metrics and Halstead's laws are computed different ways; the

results of the study show that the counting methods are

strongly related to each other, and the statistical results

are essentially the same no matter which counting method is

used. The popular metric lines of code without comments has

among the strongest relationship to errors when compared to

either McCabe's or Halstead's metrics.

Further studies must be performed using code from other actual

software projects for any conclusions to be drawn for all code

developed and implemented in industry.

-2-

Chapter Two: McCabe and Cyclomatic Complexity

It has been shown that about half of software product develop

ment time is spent in the testing phase [2], and that most of

the dollars spent on a product are spent maintaining it [5].

Thomas McCabe [22] was looking for a quantitative measure that

would indicate the difficulty of testing a program or module.

The metric McCabe developed, the cyclomatic complexity v(G),

is based on the program control graph. A program control graph

is a directed graph that represents the flow of control

through a piece of code. It has unique entry and exit nodes~

Each node corresponds to a sequential block of code that can

only be entered at the first statement, exited at the last

) statement, and has no internal transfer of control. Each arc

represents the flow of control between blocks. It is assumed

that each node can be reached from the entry node, and that

the exit node can be reached from any other node.

A formal definition of v(G) follows:

v(G) = e - n + (2 x p}

e: the number of edges in the graph

n: the number of nodes in the graph

p: the number of connected components

Berge's theorem [22] states that v(G) equals the maximum

number of linearly independent paths in a single component

graph G. V(g) measures the number of basic paths through G.

} Each path in a graph can be expressed as a combination of

-3-

)

basic paths. Below, v(G) is computed for the three basic con

trol structures: sequential, decision, and loop.

sequential

v(Gl = 1

decision

v(Gl = 2

loop

v(Gl = 2

McCabe showed that the cyclomatic complexity of a structured

program equals the number of predicates in the code plus one.

The cyclomatic complexity of a CASE statement adds the numbe~

of cases minus one to the computation. This is because any

N-way CASE statement can be simulated by N-1 IF statements.

N-way computed GO TO statements add N-1 to v(G). This is a

much simpler method of computing v(G) than counting nodes,

edges, and connected components in the program control graph.

Hence, the calculation of v(G) can be made entirely from the

syntactic characteristics of the program.

McCabe suggested that 10 is an acceptable upper bound on the

level of complexity. Any module with a complexity greater

than 10 should be rewritten, except possibly if it contains a

CASE or computed GO TO statement.

Although McCabe does not cite any studies relating v(G) to bug

rate, he analyzed 24 FORTRAN subroutines that were chosen be-

cause they were troublesome. v(G) for these subroutines

j ranged between 16 and 24. He reported a relationship between

-4-

)

v(G) and the reliability of the module. [22]

Myers (24] extended McCabe's work; he considered compound

predicates. McCabe counted each predicate in computing v(G);

Myers suggested counting each simple predicate or condition.

"In practice compound predicates such as IF 'cl AND c2' THEN

are treated as contributing two to complexity since without

the connective AND we would have IF cl THEN IF c2 THEN which

has two predicates". He states that "for this reason ••• it is

more convenient to count the number of conditions instead of

predicates when calculating complexity." (22)

Myers [24) does not cite any specific studies, but asserts

that cyclomatic complexity " ••• is consistent with studies

showing a high correlation between the number of decisions in

a module and the module's complexity and error-proneness."

There are problems with McCabe's metric. It is based entirely

upon the control flow graph. McCabe claims that two programs

containing the same number of IF statements have the same lev

el of complexity even if one has sequential IF statements

while the other has several levels of nesting. The number of

statements in the code has no impact on the measure of v(G).

A 1000-line single-routine program with 10 IF statements and a

20-line single-routine program with 10 IF statements both have

a cyclomatic complexity of 11. By defining the metric to be

based enirely on the control flow graph, McCabe ignores such

) program characteristics as data structures, variable names,

-s-

comments, the algorithm used, and parenthesizing.

McCabe's cyclomatic complexity is of interest primarily be

cause of its simplicity and ease of computation. His approach

appeals strongly to intuition. It seems reasonable that a

program module containing more paths through it would be

harder to test and maintain than another containing a fewer

number of paths. The control flow graph need not be drawn or

analyzed. Several studies have found a high correlation

between v(G) and the number of bugs in the code. The problems
I

with computing cyclomatic complexity, such as how to handle a

program with several subprograms, or counting predicates

versus simple predicates, and the relationship between v(G)

) and the number of problems reported, will be discussed in

chapter 5.

J
-6-

Chapter Three: Halstead and Software Science

Maurice Halstead [17] hypothesized that there are a set of in

variant laws that may be applied to algorithms. These can be

compared to the physical laws of science. His theories have

become known as "software science". The laws of software sci

ence are said to hold true for all implementations of algo

rithms.

Halstead's premise was that regardless of the language used,

implementations of algorithms have physical characteristics

that can be measured and calculated from four basic program

measurements:

nl: the number of distinct operators in a program

) n2: the number of distinct operands in a program

J

Nl: the total number of occurrences of operators in a program

N2: the total number of occurrences of operands in a program

The source code can be parsed into "tokens", which are divid

ed between operators and operands. Operands include constants

and variables. Operators are those tokens in the program that

affect the ordering or value of the operands.

The laws that Halstead proposed based on nl, n2, Nl, and N2,

are as follows:

VOCABULARY (n) is defined as the total number of distinct to

kens in a program:

n = nl + n2 [equation l]

-7-

)

)

LENGTH (N) is defined as the total number of tokens in a pro

gram:

N = Nl + N2 [equation 2]

Halstead's theory includes a length estimator that is strongly

dependent

and n2).

on the distinct number of tokens in the program (nl

He suggested that N can be estimated using the fol-

lowing equation:

Nhat = [nl x log2 (nl)] + [n2 x log2 (n2)] [equation 3]

There is no mathematical derivation known for this equation

[2,11,27].

VOLUME (V) is defined as the number of bits needed to

represent the program. The equation is as follows:

V = N x log2 (n) [equation 4]

The derivation of program volume is straightforward. The vo

cabulary (n) of the program is defined as the number of dis

tinct tokens in the implementation; log2 (n) is the number of

bits needed to uniquely represent every element of the vocabu

lary in binary. The length (N) is defined as the number of to

tal occurrences of all tokens in the source program. It fol

lows that the volume of a program is the total number of oc

currences of tokens in the program, multiplied by the number

of bits necessary to represent the number of distinct tokens

found in the program.

-8-

)

There are many ways to implement a given algorithm. There

fore, POTENTIAL VOLUME (V*) is defined as the most efficient

implementation of an algorithm in a given language.

PROGRAM LEVEL (L) relates the volume (V) to the potential

volume (V*) of a program implementation in the following way:

L = V* / V [equation 5)

L ranges between O and 1. A program level of one indicates

that the implementation of the algorithm is the most efficient

possible. The program level metric was intended to measure

the effort incurred writing the program, error-proneness, and

the understandability of the code. Halstead theorized that the

program level should increase with the number of distinct

operands (n2) and should decrease with both the number of oc

currences of operands (N2) and the number of distinct opera

tors (nl). [11) This led him to propose the PROGRAM LEVEL ES

TIMATOR, Lhat:

Lhat = (2 / nl) x (n2 / N2) [equation 6]

As the program volume increases, Halstead theorized that the

"difficulty" of the program implementation increases. [27]

DIFFICULTY (D) is defined to be inversely proportional to the

program level:

D = 1 / L or D = V / V* [equation 7)

Halstead theorized that the increase in program volume tends

-9-

)

to introduce poor programming practices such as redundant

operands; or it may indicate lack of higher-level programming

constructs. The result causes an increase in both program

volume and difficulty.

LANGUAGE LEVEL (lambda) was developed to measure the power of

a given language. Halstead hypothesized that the language

level is constant over all algorithms implemented in a given

language. It is defined as:

lambda= L x V* or, lambda= L x L x V [equation 8]

Assuming the same language, or a constant language level, the

program level decreases as the smallest possible program im

plementation increases. A more powerful language would re

quire a smaller minimum volume to implement a given algorithm.

As the potential volume decreases, the level of the program

increases proportionately.

Halstead defined the EFFORT (E), as the effort needed to im

plement an algorithm:

E = V / L or E = [N x log2 (n)] / L [equation 9]

He hypothesized that the difficulty of program implementation,

and hence the amount of effort needed to write the program,

increases as the volume of the program increases, and de-

creases as the program level increases. Effort was more

specifically defined as the number of mental discriminations

j made by the programmer during the implementation phase.

-10-

)

)

Theoretically, it can be used to predict the amount of time

needed to implement an algorithm. Using Stroud's 18 mental

discriminations per second [11], the estimated programming

time is calculated as Ep = E / 18.

The laws that Halstead proposed were intended to be tested,

somewhat like the physical laws of science. He suggested many

relationships between the metrics themselves, and between the

metrics and actual implementation of algorithms. His theories

have not gone without criticism.

Shen, Conte, and Dunsmore [6] mentioned the following:

1) Halstead incorrectly inferred that because two sets of data

were highly correlated, one can be used as a substitute for

the other.

2) The sample sizes used in the experiments should have been

larger for his statistical results to be valid.

3) The programs used in the study were too small, usually sin

gle modules of less than fifty statements, making it highly

debatable whether results can be generalized to multi-module

industrial programs.

4) Some experiments used college students. It is not clear

whether these findings can be generalized to the programmer

population as a whole.

Although the theoretical basis of software science may be

-11-

)

weak, many empirical studies have shown close relationships

between his laws and both errors and programming effort.

Halstead [11} studied the correlation between N and Nhat using

polished programs. He contended that Nhat was a good estima

tor of N, and that that any deviance between N and Nhat is due

to impure code. If the code being analyzed is impure, Nhat

will not be a good estimator of N. Impurites include cancel

ling of operators, ambiguous operands, synonymous operands,

common subexpressions, unnecessary replacements, and unfac

tored expressions. Elshoff [9) pointed out that if it is

true that Nhat best estimates N for well-structured programs,

then Nhat is an easy measure of structuredness. He measured

154 programs written at General Motors Corporation. They were

divided into two sets: 34 were written with "structured pro

gramming" techniques, the other 120 were written using "con

ventional techniques". The study encompassed measures of

volume ranging over several orders of magnitude. He found

that the correlation between the actual and estimated length

was higher for the structured programs.

There is much evidence suggesting a strong relationship

between the length and the length estimator. [27} This might

seem surprising because it is easy to create a program where

Nhat is not a good estimator of N. Nhat significantly over

estimates N if each unique token is used only once or twice.

Other studies using FORTRAN, COBOL, and PL/1 have indicated

_} that Nhat is sensitive to program length; it estimates N best

-12-

for programs in the 2000 to 4000 lines of code range. It

tends to be larger for smaller programs, and smaller for

larger programs (27].

One of the most comprehensive studies to date was performed on

429 FORTRAN programs that were obtained from the Purdue

University Library. The total sample contained a combined

count of operators and operands exceeding 240,000. The

lengths of the programs ranged between 7 and 10,611. The

correlation between the actual and predicted lengths of the

programs was 0.95. (41

In a similar study (11] testing the relationship between Land

Lhat, Halstead found that Lhat tended to overestimate the true

value of L by 18%, but that the correlation coefficient was

0.90.

Shen, Conte, and Dunsmore (27] reported on a study relating D,

the "difficulty" measure, to the number of bugs found in the

module. Their study involved 197 PL/1 programs where error

data was collected for two functionally equivalent programs,

one having a larger measure of difficulty. The program with

the larger measure of D had more errors associated with it.

Another study from IBM, using 30 program modules, where errors

were reported after software release showed D to be a good

measure of relative error-proneness. (27]

The language level metric was intended to serve as a method of

ranking the power of languages on a linear continuum. It

-13-

)

could be used to select a new language for a new application,

or for testing its power potential. Halstead computed the

language level for several languages: [12]

PL/1
Algol
FORTRAN
CDC Assembly

lambda

1.53
1.21
1.14
0.88

Table 1

std. dev.

0 .9 2
0. 7 4
0.81
0.42

The language rankings appeal to our intuitive notion of how

expressive each language is. The values lend only weak support

to Halstead's theories because the standard standard devia

tions are so large. [27]

c. T. Bailey and w. L. Dingee [l] did not believe that the

language level is constant for all algorithm implementations

across a given language. They believed that Halstead's work

was invalid because 1) his sample sizes were too small (sample

sizes for his studies ranged between 7 and 34), and 2) his

program volume range was too limited. (Program volumes in his

studies ranged between 200 and 64000; the majority of the pro

grams studied fell into the 200 to 2000 range.) They conducted

studies of their own using larger sample sizes of ESS programs

with a wider volume range. (ESS is a medium-level programming

language providing program control of machine registers.)

Their programs ranged in volume between 600 and 68000. The

J results from their studies showed that language level is high

-14-

)

ly dependent upon program length.

they grouped the modules by length.

lieved that the results from

This became apparent when

Bailey and Dingee be

their studies are better

representative of real development environments.

They went one step further by analyzing the language level

equation. At first glance, it appears to be dominated by the

program level L (see equation 8). On closer inspection, howev

er, we find that this is not always the case. The larger the

program, the greater the number of distinct keywords. This is

shown in equation 6 by an increase in nl. Intuitively, we can

reason that for larger programs, the number of repetitions of

operands (N2) will increase. As nl and N2 increase with the

volume of a program, the program level will tend to decrease

(see equation 6). As program level decreases, program volume

(V) will dominate the language level equation. In short, the

language level will decrease with program volume.

Several studies have shown E to correlate well to the number

of bugs found in a program [27,29]. Funami and Halstead [12]

counted the number of bugs discovered during a 100 man-month

software development project. The software science metrics

were collected for the nine modules that constituted the pro

ject, and correlated to E. The correlation coefficient was

0.982, showing a strong relationship between the number of

bugs found and effort. If, in fact, Eis related to the

number of mental discriminations a programmer makes, then the

) study also suggests a re l ationship between the number of men-

-15-

tal discriminations and the number of bugs.

Another study [13] looked at 46 programs written in FORTRAN,

COBOL, Algol, and PL/1. Each was re-written using good pro

gramming techniques, which resulted in 46 program pairs. Ef

fort was calculated for each program implementation. It de

creased in 40 out of 46 cases when the programs were rewrit

ten. The conclusion of the study was that effort is related

to good programming practices.

In a Purdue University study, [28] 48 programmers were asked

to study eight versions of the same program for a fixed time ·.

Subjects then answered a 20-question quiz, designed to measure

comprehension. Those who studied programs with the lowest ef-

) fort measure had the highest quiz scores. This implies a re

lationship between effort and comprehensibility.

J. D. Gould [16] studied the effort metric related to the

ability of a programmer finding a seeded bug in a program. He

asked ten experienced programmers to debug the same 12 FORTRAN

listings. Each subject was given 45 minutes to find one non

syntactical bug. If he incorrectly identified the problem, he

made an "error". For each listing, Gould determined the aver

age number of "errors" made by the programmers locating the

bug. The mean number of "errors" was correlated to E; the

correlation coefficient was 0.78.

One of the criticisms of Eis that it measures the number of

J mental discriminations made by a "fluent, concentrating pro

-16-

)

)

J

grammer". It does not consider the experience level of the

programmer, either in the implementation language, or in pro

gramming itself.

Other criticisms center around the theory behind the deriva

tion of Halstead's theories [7]. For example, effort equals

volume divided by program level. To derive the numerator of

the equation, Halstead assumed that the human mind uses a

binary search to locate each token used in the algorithm im

plementation. That implies that a programmer keeps a sorted

list of tokens in his mind. This is questionable; no research

has been done to substantiate this theory. Studies have in

vestigated how a person searches through memory to find a

fact. It is currently thought is that the search is sequen

tial, probably not exhaustive, but terminated when the infor

mation sought is found. The complaint is that Halstead tried

to apply computer science theory to the human mind.

Halstead confused short-term memory and long-term memory. [7]

Can we assume that a programmer searches short-term, rather

than long-term memory for the information he needs to imple

ment a program? While short-term memory has been studied,

long-term memory is still an active area of research. These

problems make the theoretical derivation of E hard to accept.

Not enough studies have been performed to substantiate

Halstead's theories. (l] Although empirical studies have

shown some positive results, there are too many underlying

-17-

.)

)

problems with Halstead's assumptions and the theories that he

proposed. While continued empirical investigations may be

worthwhile, including testing across a broad range of

languages and sample sizes, real progress will not be made un

til his basic theories are reformulated. [19]

We will compute Halstead's metrics several different ways and

compare our results with those in recently published studies.

The problems with Halstead's laws, and their computation, such

as how pairs of operators (2-word key words, parenthesis,

brackets), and global versus local variables should be count~

ed, along with the relationship between the metrics and the

number of bugs reported will be discussed in chapter S.

-18-

Chapter Four: The Field Study

The code obtained for this study was from a software project

developed by a , large electronics firm in the Pacific

Northwest, written in C to run on the UNIX (tm) operating sys

tem. The modules of code were broken down according to user

functionality; some examples included I/0, graphics, mass

storage, and math functions.

The study began approximately three months prior to the start

of the testing phase, while the code was still under develop

ment. This left a couple of months to plan and begin imple~

menting the tools that would be used to obtain and analyze the

data (figure 1).

) The software complexity metrics applied in this study assume

that 1) modules receive the same amount of initial testing or

debugging prior to entering the testing phase, and 2) all

modules receive the same amount of testing while error data is

being collected. This is consistent with the requirements sug

gested by Ottenstein when performing this type of study. (25]

Modules not meeting both criteria were not considered in this

study.

)

Collecting the Error Data

Prior to this project, the electronics firm handled bug re

porting manually. This can be detrimental to the data

gathering process because it is cumbersome and difficult to

-19-

) tabulate the data. Valid information can easily be lost.

To obtain valid data, bug reporting had to be practically ef

fortless. An automated system that would lend itself well to

inspection by both the development and test engineers was es

tablished. It allowed anyone to easily peruse the database of

bugs reported.

Time was of the essence, so the best solution was to utilize a

tool already in existence. It was decided to use UNIX notes

files to maintain bug reports. They can be organized and ti

tled however the programmer wishes. The basic structure con

sists of base notes and responses. (see figure 2) At the

time a base note is entered into the system, a title directly

) associated with the base note itself is entered. An index

page can be displayed listing the titles of each base note en

tered.

J

Next on the priority list was to define what error data needed

to be collected. Questions were outlined: 1) Is the problem a

new bug, or is it one that was previously reported? 2) Is the

problem a legitimate bug, or did the user misunderstand how

the product was designed to function? 3) Does the problem re

ported need to be fixed so the product fits the external re

quirements? Or, is it an enhancement request, that could be

either ignored or satisfied later. 4) If the problem reported

requires a change to the code (definition of a bug), how

severely would it have impacted the user? [The definition of

-20-

)

)

"severity" was established by the corporation, and could not

be changed for the purpose of this study.] 5) Which modules

were changed to fix the problem? 6) Where in the product

life-cycle was the problem introduced? Was it something that

was overlooked in the requirements, design, or coding phase?

Applying the base note concept to bug tracking, the bugs were

posted to the notes file as individual base notes. Each base

note contained the following information: a unique number

identifying the bug report, the name of the engineer reporting

the problem, the date the problem was reported, a description

of the system being used when the problem occurred, the confi

guration of that system, the version of the software being

used, and a detailed description of the problem. Figure 3 is

a copy of the problem report form used.

Bugs that were fixed had a response attached to the base note.

The information in the response that was utilized in this

study is as follows: the name of the engineer fixing the prob

lem (or the name of the engineer posting the response), the

names of the modules affected by the change, and the severity

of the problem, categorized as critical, severe, moderate, or

trivial. Figure 4 is a copy of the problem resolution report

form, which includes the corporate definitions for each level

of severity.

To enhance the clarity and ease of the reporting scheme,

several notes files were created to log the bugs found in the

-21-

)

project. Basically, each functional area was given a notes

file: mass storage, I/O, etc. In addition, the catch-all

"general" was created for errors that did not fit in any other

category. The choice to divide the bugs into categories by

functionality was good for the tester and design engineer.

The tester could easily peruse the file for a current bug to

see if it had been reported and/or fixed. The design engineer

could quickly browse the file for bugs reported against

specific modules of code.

The error data collected is largely self-explanatory. (See

figure 4) However, there are a couple of interesting things to

note. Choice number 4, "duplicate of reported problem", under

"PROBLEM CLASSIFICATION" may encompass two types of problems.

The bug reported may be identical to one already in the track

ing system, or it may be that one bug fix corrects two seem

ingly different problems. If two bugs are reported, and the

engineer makes one fix which corrects them both, he was in

structed to resolve one bug appropriately (answering all of

the questions), and the other as a duplicate of an already

reported bug. This is important, because without before-hand

instruction to the engineers, it is quite conceivable that the

same bug resolution information could be posted several times,

which would cause inflated error data.

Once the data was posted to the notes files, a simple way to

extract all pertinent information was needed. The solution

J was to utilize the UNIX tool LEX, which allows the programmer

-22-

to define extraction rules based on simple pattern-matching.

LEX takes the set of rules and creates a C-program. The pro

gram is then compiled and run against the data in the notes

files. The output was a simple ASCII data file. Each line of

the file represented one bug report. This information was in

put into a dBASE II database structure and a dBASE II program

was written to create a report summarizing the information.

The report included all of the information in figure 4, tal

lied by module. This is the data that was ultimately corre

lated to the complexity data.

Collecting the Complexity Data

) The correlation of error data to any complexity metric re

quired that there be an extraction technique to obtain the ap

propriate program characteristics. The program characteris

tics were obtained using a method known as the Reduced Form,

developed by Harrison and Cook. (20] It includes information

for each routine in the code system. Essentially, it includes

five parts:

1) An identification line which consists of the name of the

subprogram.

2) A declaration table, which lists the number of times each

type of declaration was used in the subprogram.

3) An operand table which lists an alias for each unique

-23-

)

J

string, constant and variable, and the number of times the

item was used.

4) An operator table which lists the operators used and the

function calls made, plus the number of times each was used.

5) A length line, which indicates the number of source lines

and the number of non-commentary source lines in the subpro

gram.

A program was written to take the list of tokens as input, and

compute the metrics for the purpose of this study.

-24-

)

Chapter Five: Analysis of Data

This study repeated software complexity metric studies found

in recent publications. The data obtained was analyzed and

compared with the published results. The uniqueness centered

around the use of the C programming language. No previous

publications studied the relationship between Halstead's laws

or McCabe's metrics and C, and most of the studies used either

FORTRAN or COBOL programs from a text book or controlled ex

perimentation, rather than code from industry.

Before discussing any results, a short description of bug

rates is needed. The bug rates in each module can be calcu

lated in several different ways. Recall that there are four

categories of bugs: critical, serious, moderate, and trivial.

It is possible to perform statistical analysis using the total

number of bugs found in each module, or to group them by

category. Rather than choose one particular method of group

ing the bugs, we used several different groupings. We consid

er the total number of bugs, the total number of non-trivial

bugs, the number of critical and serious bugs taken together,

and then each category by itself.

The table headings require an explanation. The following ab

breviations are used: "C" for critical, "S" for severe, "M"

for moderate, and "T" for trivial bugs. (For a review of the

bug classifications, refer to figure 4.) Table 1 shows the

total number of errors reported against each of the thirty

) modules by severity:

-25-

)

module

modl
mod2
mod3
mod4
mods
mod6
mod?
mod8
mod9
modlO
modll
modl2
modl3
modl4
modl5
modl6
modl7
modl8
modl9
mod20
mod21
mod22
mod23
mod24
mod25
mod26
mod27
mod28
mod29
mod30

C

1
3
5
0
1
0
0
0
0
3
1
1
3
0
0
1
3
4
0
0
0
7
0
0
3
1
0
0
1
0

s

3
6
9
1
2
1
0
0
1
8
3
4
3
1
3
0
5
8
0
0
0

17
3
0
2
2
1
0
2
1

Table 1

M

1
20

8
0
1
3
0
1
1
5
6

11
6
0
0
2
6

11
0
0
0

18
2
0
2
0
8
6
0
3

T

2
6
5
0
6
2
0
0
0
5
3
5
1
0
0
0
1
3
0
0
0
2
0
0
2
0
5

10
0
0

total

7
35
27

1
10

6
0
1
2

21
13
21
13

1
3
3

15
26

0
0
0

44
5
0
9
3

14
16

3
4

McCabe's Cyclomatic Complexity

It is not clear how to compute v(G) for a module with several

routines. Should, as McCabe suggested, v(G) be the sum of the

v(G)'s for each routine within a module, or should routine

boundaries be ignored?

Partial v(G)s can be computed for each routine, and then

summed across the module to compute the module's cyclomatic

) complexity. The alternative is to compute the module's v(G)

-26-

without regard to routine boundaries. These two alternative

approaches are demonstrated below.

Consider a module with a main routine that makes calls to two

procedures, but has sequential code otherwise. The program

control graph looks like diagram A below. Assume that the two

procedures called can be represented by control graphs Band

C:

routine "
v(Gl = 1

routine B

v(G) = 2

routine C

v(G) = 2

Using the first counting method, v(G) is computed for each

routine: v(G) [A] = 1, v(G) [B] = 2, v(G) [C] = 2. v(G) =

) v(G) [A]+v(G) [B]+v(G) [C]. v(G)=S. Computing v(G) as specified

in the second method ignores routine boundaries. v(G)=3.

(There are a total of two decisions in the module, add one,

and v(G) equals 3.)

If v(G) is calculated for each routine in the module, and the

partial v(G)s are added together, the cyclomatic complexity of

the module may be larger than if it had been computed over the

entire module, without consideration to routine boundaries.

This is because one is added to each partial v(G) computat i on.

When the partial v(G)s are added together, the cyclomatic com

plexity is increased by one for each routine included in the

summation.

Myers [24] extended McCabe's original work for complex condi

-27-

tions. Should v(G) be computed as the number of predicates in

the code, or as the number of simple predicates and condi

tions? Consider a module with entirely straight-line code ex

cept for the following line: "IF a<b AND b>c THEN ••• ". If

v(G) is defined as the number of decisions plus one, then the

cyclomatic complexity equals 2. If, on the other hand, it is

defined to include the number of conditions, v(G) equals 3.

Four different schemes for counting complex conditionals were

studied and computed from the program modules:

1) The number of predicates in the module plus one. Each of

the following keywords occurring in a module added one to the

complexity count: WHILE, IF-THEN, IF-THEN-ELSE, and FOR. N-

) way CASE statements increased the count by N-1.

2) The number of simple predicates or conditions, plus one,

where the predicates are as specified in 1) above. (CASE

statements were also handled as described above.)

3) A "partial" v(G) was computed for each routine in the

module, as described in 1) above. A summation was taken to

obtain the final v(G) value.

4) "Partial" v(G)'s were computed for each routine as

described in 2) above. A summation was taken to obtain the

final v(G) value.

The first two methods give no consideration to routine boun

j daries. The last two calculate v(G) for each routine, and use

-28-

a summation to compute the cyclomatic complexity.

McCabe did not specifically state any studies relating v(G) to

bug rate, although he did suggest that a simple ranking exists

between the cyclomatic complexity metric and the error-

proneness of 24 FORTRAN subroutines. [24] We compared the

four counting methods with various bug groupings. The corre

lations are given in Table 2.

metric CSMT CSM cs C s M T

Vl(G) • 763 • 771 .839 • 7 55 .854 .599 .330
v2(G) .776 .784 .840 .766 .851 .623 .340
v3(G) . 7 45 . 752 .828 • 751 .840 .574 .329
v4(G) .767 • 77 3 .835 .763 .844 .607 .346

Table 2

) The correlation coefficients suggest a strong relationship

between the bug rate and v(G). The relationship between v(G)

and the moderate or trivial bugs is not strong. The relation

ship between the bug rate and the critical and serious bugs

taken together, or the serious bugs alone is very strong.

J

Does any one method of counting cyclomatic complexity provide

additional information which is helpful in establishing a re

lationship between the bug rate and the metric? As a statist

ical test, correlation coefficients were computed between the

four metrics themselves with the following results:

metric v2(G) v3(G) v4(G)
------ ----- ----- -----
vl(G) • 995 .996 .99 3
v2(G) .993 .998
v3(G) . .996

Table 3

-29-

)

j

The high correlation coefficients suggest that the four varia

tions of computing the cyclomatic complexity are very strongly

related. Table 2 shows that the correlations for all of the

counting methods with the bug rate are very nearly the same.

Table 3 shows that a high correlation exists between all

methods of computation. Together, the tables indicate that

there is no difference between the four methods of computa

tion, and therefore, if v(G) is to be computed, the easiest

method should be used.

Halstead's Software Science

The most basic problem with Halstead's software science compu

tations (26} is the ambiguity of the counting rules when

deriving nl, n2, Nl, and N2. He relates his method of count

ing to implementations of algorithms. For example, declara

tions have nothing to do with the algorithm itself, and hence

do not impact the calculations. He worked with FORTRAN, which

has implicit declarations, so in his experimentation, this

question was not serious.

Another question concerns counting local versus global vari

ables. If a variable is declared global and then used locally

within a routine, or set of routines, is it counted as the

same variable, or as a distinctly different variable?

It is not clear if counting should be done by functional

-30-

module or by individual routine. Should nl, n2, Nl, and N2 be

calculated for each routine in each module? Potentially, each

routine uses the same operators; should they be counted as

unique for each routine? How does one combine measures to ob

tain one set of values for each module?

Even more elementary problems exist in defining an unambiguous

counting strategy. How are operators that occur in pairs,

such as IF-THEN, {}, and () counted? Is each half counted as

a distinct operator, or are they grouped together as one?

Should delimiters be counted, such as the semi-colon?

Elshoff investigated different ways of computing Halstead's

laws [8), varying the computations by addressing some of the

) questions stated above. The conclusions from his study did

not include a statement about which computation method was

best, but only that the results from a study may depend upon

the counting method utilized.

To solve the ambiguity problem for the purpose of this study,

several counting methods were defined. The list of rules fol

lowed for all counting strategies are:

1) Count only executable statements. This counting rule was

used primarily because Halstead based his theories on imple

mentations of algorithms. No consideration was given to

language-dependent overhead of implementing the algorithm in a

given language. (i.e. declaration of variables.)

-31-

2) Any pairs of symbols, such as parenthesis, are counted to

gether as one. They function as a single operator.

3) Count the semi-colon as a unique operator.

4) Count the tokens (operators and operands) the same in any

context. For example, the parenthesis pair in a decision

statement is no different from one used in an arithmetic cal

culation.

5) In the GO TO <label> statement, count the GO TO as an

operator, and the <label> as an operand. This is different

from Halstead's original treatment of each GO TO <label>. He

counted each occurrence of GO TO <label> as a unique operator.

) 6) Function calls are counted as operators.

Several variations of counting methods were used in this

study:

1) nl and n2 were calculated by the summation of the nl and n2

values calculated by routine, over the entire module. (see

figure 5) nl includes the distinct number of functions called,

keywords, and arithmetic or logical operators. n2 includes

all global and local variables, labels, and constants. Nl and

N2 were calculated by counting the total number of occurrences

of operators and operands, respectively, over the entire

module.

) 2) Method 2 is similar to method 1 except that it does not

-32-

)

)

)

consider routine boundaries. If a variable is global, it is

counted only once in n2. (In method 1, a global variable oc

curring in routines "a", "b", and "c" would add one to "n2a",

"n2b", and "n2c" (see figure 1). Ultimately, 3 would be added

to n2.) Operators are handled similarly. A minus sign adds

one to nl, regardless of how many routines it occu~s in. No

tice that Nl and N2 are identical for methods 1 and 2. They

represent the total number of occurrences of tokens, regard

less of how "distinctness" is defined.

3) Method 3 is an attempt to remove one variable from the cal~

culations. Prior to any coding, if the number of operators

used in the program is estimated, the only unknown needed to

calculate Nhat is the number of distinct operands that will be

used in the code. After the design phase of the project, an

estimation of the number of local and global variables, la

bels, and constants needed can be made Method 3 tests this

theory by calculating n2, as per the description in method 2;

it uses the constant 40 for nl. Forty was an estimate obtained

by counting the number of distinct operators used in random

samples of C-code.

Halstead [11] studied the relationship between his length es

timator (Nhat) and his length metric (N). Using polished

code, he asserted that Nhat is a good estimator of N, provid

ing the code is "pure". Following are the results of corre

lating N with Nhat for each of the three counting methods:

-33-

.,
,• }

)

metric

Nhat

Nl

.976

N2

.971

Table 4

N3

.951

The results from this study support the assertion that there

is a high correlation between Halstead's length and his length

estimator, no matter which counting method is used.

To test for a relationship between the length or length esti

mator and the bug rate, the following correlation coefficients

were computed:

metric CSMT CSM cs C s M T

Nl • 761 • 7 50 • 796 • 7 49 • 794 .604 .407
N2 .761 .750 .796 • 7 49 .794 .604 .407
N3 • 761 .750 • 796 • 7 49 • 794 .604 .407
Nhatl • 717 .703 .779 • 719 .784 .532 .398
Nhat2 • 702 .677 • 7 36 .692 • 7 34 .527 .435
Nhat3 .698 .675 • 743 .685 • 7 49 • 516 .424

Table 5

A strong relationship exists between both the length and bug

rates, and the length estimator and the bug rates. There is a

strong relationship between the metrics and the more signifi

cant bugs; the metrics are not strongly related to the trivial

or moderate bugs taken by themselves. The relationship

between all variations of computing length N and the bug rates

are identical. This is to be expected from the counting

rules. The number of tokens (Nl and N2) in the code is the

same for each counting method.

-34-

Correlation coefficients were calculated between Halstead's

volume and the bug rate. Table 6 shows the correlation coeffi

cients.

metric total bugs CSM cs C s M T
------ ----------
Vl • 763 • 7 53 .803 • 756 .802 .601 .406
V2 .763 .750 .799 .754 .796 .601 .410
V3 • 763 • 752 .802 • 754 .800 .601 .601

Table 6

Although no specific studies were found relating volume to the

bug rate, it is interesting to note that these include the

highest correlations found in our study. The critical and

serious bugs taken together have the strongest relationship to

volume. The moderate and trivial bug count is not related to

) the volume metric.

J

Shen, Conte, and Dunsmore [27] studied the relationship

between difficulty and the bug rate. Their studies ranked

modules according to their error-proneness, and observed

whether the difficulty measure increased accordingly. Correla

tion coefficients in Table 7 were computed to study the rela

tionship between the three difficulty measures and the bug

rate.

metric CSMT CSM cs C s M T

Dl • 7 24 • 712 .769 • 7 40 • 7 59 .559 .397
D2 .575 .563 .556 • 591 .522 • 495 .321
D3 .268 .280 .238 .249 .225 .287 .042

Table 7

-35-

)

_)

The counting method matters when computing the difficulty.

The first method shows the strongest relationship to the bug

rate. The other two methods do not indicate any relationship

at all.

Halstead proposed a language level metric that was intended to

be used as a mechanism to rank languages on a linear continu

um, according to their power. He computed the language level

for several languages; C was not among those studied. The

language level was computed three times, using each of the

proposed counting methods. The results are as follows:

method average standard deviation
------ ------- -------- ---------

Method 1 0.49 1.30
Method 2 0.97 1.05
Method 3 9.08 12.17

Table 8

The standard deviations computed are quite large. This sup-

ports the Dingee and Bailey (1) contention that language level

is not constant for all implementations of algorithms in a

given language. Shen, et. al. (27) would contend that the

results from this study lend weak support to

pothesis.

Halstead's hy-

Of all Halstead's metrics, effort (E) is most often correlated

to bug rate. The correlation coefficients suggest a strong

relationship between effort and bug rate. (Table 9)

-36-

)

metric CSMT CSM cs C s M T

El • 7 22 • 712 .778 • 7 42 • 77 2 .551 .389
E2 .696 .689 .691 .686 .673 .596 .367
E3 .760 • 761 • 784 • 753 • 775 .636 .364

Table 9

The strongest relationships exist between effort and the more

significant bugs (critical and serious). Strong relationships

do not exist between the moderate or trivial bugs and the ef

fort.

There is a strong relationship between the counting methods as

shown in the following table of correlation coefficients.

metric

El
E2

E2

.912

Table 10

E3

.922

.968

Comparative Study Between Complexity Metrics

Lines of code is a simple metric that has performed well in

many studies. Therefore, we investigated its relationship to

bug rate. Below is a table of correlation coefficients that

show this relationship. Lines of code has been computed two

ways. "LOCw" is the number of lines of code including com

ments, and "LOCwo" is the number of lines of code excluding

comments. For the purpose of this study, if a line of code

has comments on it, that line is counted in both the measures.

The only line of code that is not considered in the "LOCwo"

count is source code that only has a comment on it.

-37-

)

)

)

rnetr ic

LOCw
LOCwo

CSMT

• 787
.826

CSM

• 781
.819

cs

• 770
.830

C

• 716
.772

Table 11

s

• 77 3
.833

M

.687

.699

T

.424

.439

Lines of code, counted with and without the comments, corre

lated well to the number of bugs in the module. Lines of code

without comments has among the strongest relationship to bug

rate when compared with any of Halstead's or McCabe's metrics.

Going one step further, the relationship between all of the

metrics, computed using method one was investigated. Table 12

shows the correlation coefficients:

rnetr ic LOCwo v(G) N Nhat V D E
------ ----- -----
LOCw .982 .896 .907 .883 .909 .890 .975
LOCwo . .818 .903 .799 .832 .820 .810
v(G) .973 .960 .97 2 .950 .911
N . . .976 .998 .989 .948
Nhat983 .97 4 .959
V990 .962
D964

Table 12

There is a strong relationship between all three rnetr ics:

lines of code, Halstead's laws, and McCabe's cyclornatic corn-

plexity.

-38-

)

)

Chapter Six: Conclusions

The counting rules for software science and cyclomatic com

plexity seem obvious. This paper shows that there are many

choices to make. McCabe's cyclomatic complexity and

Halstead's software metrics are each computed different ways.

The relationship between these metrics and the bugs reported

against modules of code are analyzed in the body of this pa

per.

All of the metrics studied in this report correlate well to

the number of bugs reported against the code: lines of cod~

and variations on both McCabe's cyclomatic complexity and

Halstead's laws. The relationship between the metrics and the

bugs reported is strongest for the severe and critical bugs.

Comparing the correlations between the variations of the

metrics with the bug rates, we found that there was very lit

tle difference. No one counting method stood out as being

more strongly related to the bug rate than any other.

This paper shows that for the metrics studied, lines of code

and cyclomatic complexity have the strongest relationship to

bug rate. Since lines of code is so easy to compute, we sug

gest that it should be used over the other metrics as a bug

rate indicator.

-39-

Data Collection:

ERROR COMPLEXITY

Bug Report & •c• Code
Resolutions

~~ 1
Error Data

File LEX Program:

~l, Data aliased

ASCII File l
Generator

~~ Complexity

I
Data

)
ASCII File l
~~

Metric-Generation
dBASE II Program
Program 1 ~~

Error Data () Complexity Data
Report

Correlation

_)

-40-

title 1

title 2
0
0

title n

)

)

Diagram of a Notesfile

' /

basenotes

title 1

description
for bug #1

'\ v

title 2

description
for bug #2

l
0

0

title n

description
for bug #3

-41-

responses

' resolution
/

for
bug #1

' resolution
/

for
bug #2

' resolution
7

for
bug #n

PROBLEM REPORT FORM

<< PROBLEM ID>>

Unique identification for the problem report.
Set automatically when the problem is reported.

<< REPORT SUBMITTER>>

Identification of the person who discovers and reports the problem.

<< REPORT DATE>>

Date that the problem report is posted to the system.

<< SYSTEM IDENTIFICATION>>

J Hardware identification.
flakey hardware system.

<< SYSTEM CONFIGURATION>>

(Used to weed out problems due to a

System configuration was being used when the problem was discovered:
includes plugins, peripherals, and the amount of memory in the system.

<< SOFTWARE VERSION>>

version of the software that was being used when the problem
was discovered.

<< PROBLEM DESCRIPTION>>

Description of the problem in sufficient detail so that an attempt
could be made at duplication.

figure 3

-42-

)
PROBLEM RESOLUTION REPORT FORM

<< LAB ENGINEER ASSIGNED>>

Identification of lab engineer assigned to resolve the problem.

<< PROBLEM CLASSIFICATION>>

I

Identification of problem type by selecting an item from the
following list:

O - new problem (requirements)
1 - new problem (design)
2 - new problem (code)
3 side-effect of problem fix
4 duplicate of reported problem (problem id
5 - documentation problem
6 - enhancement request
7 - could not duplicate
8 - not a problem (user misunderstanding)

____)

,< PROBLEM SEVERITY>>

Indication of the severity of the problem taking into account
the destructiveness of the problem and its probability of occurrance.

1 - critical (severe impact, occurs in normal use)
2 - serious (degrades operation, occurs in normal use)
3 - moderate (degrades operation, special circumstances)
4 - trivial (minor impact, unlikely to occur)

<< AFFECTED MODULE(S) >>

Identification of all modules that require a change to fix problem.

figure 4

j
-43-

Method One

global declrs [ignored]

routine a n1a & n2a

routine b n1b & n2b

0

0

) 0

routine z n1z & n2z

n1 = n1a+n1b+ ... +n1z n2 = n2a+n2b+ ... +n2z
f9n5

)

-44-

)

}

BIBLIOGRAPHY

[1) Bailey, C. T. and W. L. Dingee, "A Software Study Using
Halstead Metrics," ACM Sigmetrics, pages 189-197, 1981.

{2) Boehm,B.W. "Software and it's Impact: A Quantitative As
sessment," DATAMATION, Vol. 19, pp. 48-49, May 1983.

{3) Brooks, Ruven E., "Studing Programmer Behavior Experimen
tally: The Problems of Proper Methodology," COMMUNICATIONS OF
THE ACM, Vol. 23, No. 4.

[4] Bulut, N., M. Halstead, and R. Bayer, "The Experimental
verification of a Structural Property of FORTRAN Programs," in
Proceedings of the ACM Annual Conferernce, 1974, New York.

[5] Cammack, W.B. and H.J. Rogers, "Improving the Programming
Process," IBM TECHNICAL REPORT TR 00.2483.

[6] Conte, Samuel D., "The Software Science Language Level
Metric," CSD TR 373, September 1981.

[7] Coulter, Neal s. "Software Science and Cognitive Psycholo~
gy," IEEE Transactions on Software Engineering, Vol. SE-9, No~
2 March 1983.

[8] Elshoff, James L. "An Investigation into the Effects of
the Counting Method Used on Software Science Measurements".

{9] Elshoff, J. L. "Measuring Commercial PL/I Programs Using
Halstead's Criteria," ACM SIGPLAN Notices, May 1976.

{10] Elshoff, James L. and Michael Marcotti, "On the Use of
the Cyclomatic Number to Measure Program Complexity," SIGPLAN
Notices, December 1978.

[11] Fitzsimmonds, Ann and Tom Love, "A Review and Evaluation
of Software Science," COMPUTING SURVEYS, Vol. 10, No.l, March
1978.

[12] Funami Y. and Halstead, M. H. "A
Analysis of Akiyama's Debugging Data",
University, Lafayette, Indiana, May 1975.

Software
CSD-TR144,

Physics
Purdue

[13] Gordon, Ronald D. "A Measure of Mental Effort Related to
Program Clarity," PhD Thesis, Department of Computer Science,
Purdue University, Lafayette, Indiana, 1977.

[14] Gordon, Ronald D. "Measuring Improvements in Program
Clarity", IEEE Transactions on Software Engineering, Vol. SE
S, No. 2, March 1979.

[15] Gordon, R. D. and M. H. Halstead, "An Experiment Compar
ing FORTRAN Programming Times with the Software Physics Hy
pothesis," in 1976 Fall Joint Computer Conference, AFIPS
Conference Proceedings, Vol. 45, Montvale, New Jersey: AFIPS
Press, 1976, pages 936-937.

-45-

)

[16) Gould, J. D. "Some Psychological Evidence on How People
Debug Computer Programs," International Journal of Man-Machine
Studies", 1975.

[17) Halstead, Maurice H. ELEMENTS OF SOFTWARE SCIENCE, El
sevier North- Holland. Inc., New York, 1977.

[18) Halstead, Maurice H., "Natural Laws Controlling Algorithm
Structure?," SIGPLAN Notices, February 1972.

(19] Hansen, Wilfred J., "Measurement of Program Complexity by
the Pair", SIGPLAN Notices, March 1978.

(20) Harrison, Warren, and Curtis Cook. "A Method of Sharing
Industrial Software Complexity Data," SIGPLAN Notices, Volume
20 Number 2, February 1985.

[21] Lassez, J. L., D. van der Knijff, J. Shepherd, and C.
Lassez, "A Critical Examination of Software Science," The
Journal of Systems and Software 2, 1981.

[22)
TIONS
1976.

McCabe, Thomas, "A Complexity Measure", IEEE
ON SOFTWARE ENGINEERING, Vol. SE-2, No. 4.

TRANSAC
December

[23) Myers, Glenford J. THE ART OF SOFTWARE TESTING, John Whi
ley, 197~.

[24) Myers, Glenford J. "An Extension to the Cyclomatic Meas
ure of Program Complexity", SIGPLAN Notices, October 1977.

[25} Ottenstein, Linda M. "Quantitative Estimates of Debugging
Requirements", IEEE Transactions on Software Engineering, Vol.
SE-5, No. S, September 1979.

[26) Salt, Norman F. "Defining Software Science Counting Stra
tegies", Department of Measurement, Evaluation and Computer
Applications, The Ontario Institute for Studies in Education,
SIGPLAN Notices, March 1982.

[27) Shen, Vincent Y, Samuel D Conte, and H. E. Dunsmore,
"Software Science Revisited: A Critical Analysis of the
Theory and its Empirical Support," Transactions on Software
Engineering, Vol. SE-9, No. 2, March 1983.

[28] Woodfield, S.N., H.E. Dunsmore, V. Y. Shen. "The Effect
of Modularization and comments on Program Comprehension",
Proceedings of the 5th International Conference of Software
Engineers, San Diego, CA., March 1981, pp. 215-223.

[29) zislis, P. M., "An Experiment in Algorithm Implementa
tion," Department of Computer Science, Purdue University, West
Lafayette, Indiana, Technical Report 96, June 1973.

-46-

