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We describe a CASE tool for designing hard real-time applications, called 

HaRTS. The design tool supports a hierarchical design diagram which 

combines the control and data flow of a hard real-time application. The design 

hierarchy separates a design into self-contained subdesigns. Yet, the design 

can be flatten to give you a global view. In a distributed environment, the 

hierarchy provides a natural way for assigning subdesigns to different 

) processors. The design diagram is quite intuitive, and yet it can be 

automatically translated into Ada™ code and analyzed for scheduleablity. 

This design tool has been implemented on Macintosh using an object-oriented 

application framework, called Objex. Our experience has demonstrated that 

such an object-oriented framework is quite useful in developing GUI 

applications like HaRTS. The framework facilitates us in developing object­

oriented code which has better understandability. Essentially, every object you 

see on the screen has a direct correspondent in the program. This helps both 

programmers and maintainers understand the dynamic behavior of the 

program. The software reusability of Objex, supported through inheritance 

and dynamic binding, provides a powerful mean for reducing software 

development cost and improving software quality. 
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1 Introduction 

This report describes work that is based on the design diagram for hard real­

time applications in [11]. The author designed and implemented the user 

interface and storage structures of a hard real-time system design tool, called 

HaRTS, which supports the design diagram . The implementation used the Objex 

framework [6, 8, 9] and as a result demonstrated that Objex works. 

In a hard real-time system , the computer periodically gets information from 

the environment through sensors, updates its internal system states based on 

the inputs and the current internal states, and generates control commands to 

change the environment through actuators. 

The single most important requirement for a hard real-time system is that it 

must make correct response to environmental changes within specified time 

intervals, called deadlines [1, 4, S]. Those deadlines, which by the design 

specification must absolutely be met by the operational system, are called hard 

deadlines. Missing any hard deadline can lead to catastrophic results. Nuclear 

power plant control, missile control, etc ., are examples of such applications. 

Due to the characteristics of hard real-time applications, deterministic system 

behavior is a must . 

A hard real-time software system consists of a set of state machines , also called 

tasks or processes, which cooperate to achieve the system goal. These state 

machines are responsible for reading the inputs from environment, storing 

and updating the internal system states, and generating control commands to 

control the environment . Each state machine is composed of a subset of the 
system states (data) and an algorithm _for the state transformation. We call 

these state machines tasks. 

There are two kinds of tasks in hard real-time software: periodic and sporadic 

(aperiodic) tasks. During run time, all tasks can be in only one of two states: 

active or inactive . The tasks in the active state are eligible to be scheduled to 

execute. The tasks in the inactive state are not. A periodic task enters its active 

state periodically. On the other hand, a sporadic task becomes active by 

responding to some event. An active task returns to its inactive state after it 
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finishes one execution. We shall use the term request or trigger to mean that 

an inactive task enters its active state. Each time a task is executed, we say an 

instance of it is generated. A task meets its deadline if only if all of its 

instances meet their deadlines. 
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1.1 The Design Tool -- HaRTS 

We build a graphical design tool for hard real-time applications, called HaRTS, 

which supports a hierarchical design diagram which combines control flow 

and data flow [11]. The combination enables us to easily obtain a whole picture 

of a hard real-time application, which is difficult to achieve through 

examining separate control flow diagram and data flow diagram. 

The design method supported by HaRTS is different from earlier graphical 

design methods in many aspects [11]. Traditional graphical software design 

methods normally separate control flow from data flow [12]. Nor do they 

support the strict timing requirements of hard real-time applications. [1] 

introduced a graphical computation model which supports strict timing 

constraints. However, it is still based on separate control flow diagram and 

data flow diagram. 

The design hierarchy separates a design into self-contained subdesigns. Yet, 

the design can be flattened to give you a global view. When one processor can 

) not satisfy the timing and precedence requirements of a design, the hierarchy 

provides a natural way for assigning subdesings to different processors in a 

distributed environment. The design diagram is quite intuitive, and yet it can 

be automatically translated into Ada™ code and analyzed for scheduleability 

[11]. 

It should be pointed out that our design methodology is based on the needs of 

real applications. For example, a missile flight control application played a 

major role in the design of HaRTS. We shall use the simplified version of this 

application as an example in our presentation. 

Developing a hard real-time application with deterministic behavior has been 

a difficult problem. Under the traditional cyclic-executive approach [S], 

programmers need to unnaturally cut the code into certain sized pieces that fit 

into time frames of a schedule. Putting code pieces by hand into the right time 

frames and in the right order is a time-consuming and error-prone process 

[4]. This painful process must be repeated when the code is modified or 

3 



updated. On the other hand, under our approach, a hard real-time application 

is developed by "What You See Is What You Get". The design requirements are 

captured by the design diagram which can be automatically analyzed and 

scheduled. 

1.2 Implementation Environment 

Our hard real-time design tool has been implemented using an object-oriented 

application framework called Objex. In this section, we briefly describe Objex 

and a user-machine interaction model adopted by Objex, called Model-View­

Control model. 

1.2.1 Objex 

The best known method of improving programmer productivity is to reuse 

existing code rather than reinvent it [12]. Application framework is one of 

approaches to achieving this goal. 

) Objex was designed and implemented by a team in Oregon State University [8]. 

Figure 1.1 shows an overview of Objex. Objex consists of three parts: the 

application framework classes, the data structure class library, and the shape 

class library. They are all built on top of the Macintosh Toolbox. Figure 1.2 

shows the class hierarchy of Objex. Figure 1.3 and 1.4 are the data structure 

class hierarchy and the shape class hierarchy, respectively. 

GUI Application 

Objex Application Shape 
Application Framework Class 
Framework Classes Library 
Class 
Hierarchy I Data Structure Class Library I 

Macintosh Toolbox 

Figure 1.1 The Objex application framework architecture 
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ListMgr 

Figure 1.2 The Objex application framework class hierarchy 

The application framework classes define much of a Macintosh application's 

standard user interface, generic behavior, and operating environment. Note 

that the root of the data structure class hierarchy in Figure 1.3 is the 

Collection class in Figure 1.2 and the root of the shape class hierarchy in 

Figure 1.4 is the Shape class in Figure 1.2. 
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Set 

BArrayCollection Dictionary 

SortedObjList 

Data Structure Class Hierarchy 

DiclterValue Diclter DictiterKey 

Iterator Class Hierarchy 

Figure 1.3 The data structure and the corresponding iterator class hierarchy 
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The data structure class library supports general data structures, such as 

array, list, set, stack, and queue. Corresponding to the data structure class 

hierarchy, there is an iterator class hierarchy. The iterator for each 

collection object is a mechanism used to inspect each element in the collection 

[6]. It performs some basic operations such as inserting, retrieving, etc .. Each 

collection class has a corresponding iterator. 

ArrowLine 

Square 

Shape Library Class Hierarchy 

Figure 1.4 The shape class hierarchy 

The shape library supports various different kinds of graphical shapes, such 

as rectangle, circle, line, oval, etc .. Each shape class provides the methods for 

creating, drawing, growing, etc., the corresponding shapes. 

1.2.2 The User-Machine Interaction Model 

Objex adopts a user-machine interaction model, called the Model-View­

Controller (MVC) model, which is first used in the Smalltalk-80 environment 

[10]. The MVC paradigm handles a set of interactive objects from three related 
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classes: Model, View and Controller. The Model class (object) contains the 

domain specific data structure manipulated by a GUI application. The View 

class (object) renders all or parts of the domain specific data on the screen. 

The controller class (object) is responsible for accepting asynchronous inputs 

from users and passing appropriate messages to the model and view objects [8]. 

Figure 1.5 illustrates message passing in the MVC paradigm. Views and 

controllers can have only one model, but models may have many views and 

controllers. Views and controllers are generally tied closely together. 

Keyboard & 
Mouse 

I've Changed Message 

Display 

I've Changed Message 

Figure 1.5 Model-View-Controller Communication 

When multiple views of the same data model need to be manipulated 

simultaneously, the power of the MVC paradigm is realized. This is illustrated 

by the example in Figure 1.6 in which the data model has multiple views. The 

change made to the data under one view is automatically reflected in the other 

views. Existing views can be modified and new views can be added at any time . 
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Keyboard & 
Mouse 

I've Changed Message 

splay 

I've Changed Message 

Figure 1.6 A Data Model with Multiple View-Controller Pairs 

1.3 Deriving HaRTS 

HaRTS is derived from Objex through the process of specialization, i.e., 

subclassing, overriding and extending the existing classes. For example, we 

subclassed the Rectangle class to create a new class called MyRectangle. The 

reason for the subclassing will become clear as we move on. 

In our implementation of HaRTS, the reusability of Objex is not only reflected 

in reusing code, but also in reusing design. For example, inheriting the MVC 

user-machine interaction model for HaRTS has greatly reduced our effort in 

design and programming. Like all Macintosh applications, HaRTS supports the 

standard Macintosh user interface, such as windows, menus, dialogs, etc., and 

generic application features, such as open/save a file, undo/redo a command, 

print a window, etc.. 

The rest of this report is organized as follows. In section 2, we introduce the 

HaRTS design diagram. In section 3, we fully describe the implementation of 

HaRTS. In section 4, we conclude this report and suggest the future work. 
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2 The HaRTS Design Diagram 

In this section, we describe the HaRTS design diagram. We first introduce the 

basic design components of the design diagram and the design hierarchy 

through an example application. Then, we describe the rest of the design 

components. Finally, we show that a hierarchical design can be flattened to 

give the global view of the design. 

2.1 Basic Design Components 

The design of a hard real-time application can be represented as a set of boxes, 

arrows, operators and associated text which together define its control flow, 

data flow, and timing constraints. Figure 2.1 shows the basic components of a 

design diagram. The box represents a system state transformation function. 

The control-in arrow on the top carries the control stimuli flowing into the 

box and the control-out arrow on the right carries the control stimuli flowing 

out of the box. 

control-in 

data-in function ~~ control-out 

data-out 

Figure 2.1: The basic components of our design diagram. 

The control stimulus flowing into the box triggers the function to execute, and 

when the execution finishes, a new control stimulus is generated and flows out 

to trigger other functions to execute. The control stimuli of an application are 

generated either by the control driving sources (i.e., timers or external 

events), or by completing the execution instances of a box. Once a control 

stimulus is generated, it flows along the control arrow until it reaches a box or 

a control operator. 
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The data-in arrow on the left carries the data flowing into the box when the 

function is executed and the data-out arrow on the bottom carries the data 

flowing out of the box when the execution finishes. Each data arrow has an 

associated variable which represents the data store for the corresponding 

system state. There may be more than one data-in/data-out arrow attached to a 

box. 

The design components are organized hierarchically as shown in Figure 2.2. 
The boxes with thinner borders are called atomic boxes and represent 
functions. On the other hand, the boxes with thicker borders are called 
composite boxes and are used to organize the design hierarchically. Each 
composite box represents a set of lower-level design components. In a 
complete design, each composite box has a corresponding design page showing 
its decomposition. 

There is a special composite box for each design, called context box, which is at 
the highest design level and represents the interface with its environment. 
The context box appears on the context page. 

11 



) 

) 

TM1 :rl :pl TM2:r2:p2 

context [cmd] 

z 

Figure 2.2(a): The context box of the example application. 

', TM1 
' ' ' '.--------, 

X 

y--~ SP 

' ' ' 
.. ___ _ 

NV ----, 
V ' ' ' ' ----

TM2 

GD 1------~ J 
.._ __ __,, 

w ' ' ' ' ' ,----''-----. 

Bi----~ CT 

Figure 2.2(b): The decomposition page of the context box. 

[cmd] 

The design components appearing on the decomposition page of a composite 
box are called its direct components which may in turn be composite boxes 
themselves. The container-component relation constitutes a design hierarchy 
and is transitive. The direct components of a composite box is at a design level 
one lower than its own level. Note that some arrows and texts may appear at 
different design levels. For example, the control-in/out arrows in Figure 2.2(a) 
are exactly those arrows entering/exiting the control part of Figure 2.2(b) 
from the top/right and the data-in/out arrows in Figure 2.2(a) are exactly 
those arrows entering/exiting the data part of Figure 2.2(b) from the 
left/bottom. These arrows connect the design components on different design 
pages. In the following, components either refers to direct components or all 
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components by the transitive container-component relation, depending on 
the context. 

Figure 2.2 shows the simplified design diagram for a missile control 
application, where SP stands for sensor processing; NV navigation; GD 
guidance and CT control. Figure 2.2(a) is the context box of the application 
which is driven by two timers TMl and TM2 with the periods pl and p2, 
respectively, reads two external inputs x and y from two sensors, generates 
one external output z, and sends the control command to the actuator, where 
the external output z is used. The two timers start to count at different times rl 
and r2, where rl depends on the length of system initialization and r2 is offset 
from rl by some constant. Figure 2.2(b) is the decomposition page of the 
context box. 

As illustrated by Figure 2.2(b), each design page consists of three parts: the 
functional part, the control part and the data part. The functional part is 
shown along the diagonal consisting of the boxes. The control part is shown 
above the diagonal and the data part below the diagonal. Note that the dashed 
line is not part of the design. It is only used to show the diagonal. 

Each composite box constitutes a self-contained subdesign. The text in it 
describes the functionality of the subdesign whose interface with other parts 
of the design is defined by the attached arrows. See box NV in Figure 2.2(b). 
The arrows on the top/right of a composite box carry control stimuli into/out 
of the box. The arrows on the left/bottom carry data into/out of the box. 
However, these control stimuli and data are for its components instead of itself, 
in contrast to an atomic box. 

It should be noted that a control arrow is a control-in arrow to its destination, 
but it is a control-out arrow to its source. A control stimulus flows from its 
source to its destination. All control stimuli are originated from the external 
control driving sources: timers or sporadic events. 

In addition to atomic boxes, guards and control operators also act on control 

stimuli and appear in the control part, which will be introduced in section 

2.2.1. However, to interpret the design in Figure 2, we need to explain the 

control join operator in Figure 2(b) which is drawn as a circle with a J. The 

stimuli flowing into a control join along the in-arrows flows out along the out­

arrow to the same destination (box CT in Figure 2(b)); 
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Similar to a control arrow, a data arrow is a data-in arrow to its destination and 

a data-out arrow to its source . The variable associated with the arrow is updated 

by its source and is used by its destination. 

In addition to data arrows and variables, data operators also appear in the data 

part, which will be introduced in section 2.2.2. However, to interpret the 

design in Figure 2.2, we need to explain the two data branch operators in 

Figure 2(b) each of which is drawn as a circle with a B. The variable associated 

with a data branch is updated by its source and is used by more than one 

destination . 

We now interpret the design in Figure 2.2. The external inputs x and y are to 

be sampled at the regular rate of l/p1 . Each time x and y are sampled, u must be 

recomputed by function SP with the new values of x and y. After SP, the 

navigation related functions contained in box NV must be executed, whose 

decomposition will be shown in section 2.3. Then, function GD and CT must be 

executed in that order for guidance control. The internal state u is updated by 

) SP and is shared by GD and some components of box NV. Similar interpretation 

applies to w. v is updated by some components of box NV and is used by GD. In 

addition to being driven by timer TM1 function CT is also driven by timer TM2. 

When CT finishes its execution, it sends a control command to the actuator, 

where the external output z is used. 

Up to now, the reader should already obtain a clear picture about our design 

diagram. We now further illustrate the design hierarchy through Figure 2.3 . 

In the next section, we shall introduce more design components . The context 

box 'ABC' in Figure 2.3 is decomposed into three boxes 'A', 'B' and 'C' which are 

at the design level one lower than the context box. Boxes 'A' and 'C' are 

themselves composite boxes and their decomposition pages are also shown in 

Figure 2.3 . And so forth. Generally speaking, the "top" diagram is the more 

"abstract", while the "bottom" diagram is the more "concrete". 

Correspondingly, the top level hides the greatest amount of detail, while the 

lowest level exposes the greatest amount of detail. 

14 



~ @] 

@] 

@] 

Figure 2.3 Hierarchical decomposition of a design 

) 2.2 More Design Components 

We now introduce more control/data operators and guards. Guards are 

introduced together with control operators because they all appear in the 

control part and are typically used together. 

2.2.1 Control Operators and Guards 

Control operators act on control stimuli. There are six kinds of control 

operators: control branch, control join, repeat, skip, if, and case operators. A 

control branch is drawn as a circle with a B. See Figure 2.4(a). The stimulus 

flowing in from the in-arrow is duplicated at the operator, one for each out­

arrow, and each resulting stimulus flows out along its out-arrow to its own 

destination. A control join operator is drawn as a circle with a J. See Figure 

2.4(b). The stimuli flowing into a control join along the in-arrows flows out 

along the out-arrow to the same destination. See Figure 2.2. 
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lll 
A---- .... 

B 

C -----t 
J ,__ _ __,._ D 

(a) (b) 

Figure 2.4 (a) A control branch operator; (b) A control join operator. 

An if operator is drawn as a circle with an IF and a case operator is drawn as a 

circle with a C. See figure 2.5. A sequence of if/case operators connected one 

after another can be used to specify more than two choices. A sequence of 

connected case operators has a single variable associated with them, which 

takes a set of mutually exclusive values. On the other hand, the conditions 

associated with if operators are more flexible. The conditions are given in the 

brackets. 

The expressions associated with if and case operators are guards which specify 

) different system operation modes. The global variables in them are updated in 

those functions which determine mode changes. The control stimulus entering 

a if/case operator flows out along the out-arrow whose associated guard has 

true value. An example illustrating how case operators and guards are used to 

specify different system operation modes will be given in section 2.3 . 

-----1~ IF .,__ ____ .., ____ ..,.. C .,__ ____ ...., 

[phase = first] [else] [phase = first] [second: 

Fl Fl 

F2 F2 

(a) (b) 

Figure 2.5 (a) An example of IF operator; (b) An example of CASE operator 
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A repeat operator is drawn as a circle with an R. See Figure 2.6(a). A control 

stimulus entering a repeat operator repeatedly drives the box linked to the 

bottom arrow for the number of times specified by the bound in the bracket. 

Only when the repetition finishes, a control stimulus flows out along the right 

arrow. If the box is a composite box, then its box-components must be on a 

single execution path (single-in-single-exit). For example, box F in Figure 

2. 7(a) is executed four times for each control stimulus reaching the operator 

and only after that, a control stimulus flows out along the right arrow. 

F F 

(a) (b) 

Figure 2.6 (a) An example of repeat operator; (b) An example of skip operator 

A skip operator is similar to a repeat operator and is drawn as a circle with an 

S. However, contrary to a repeat operator, it decreases the frequency by which 

its destination is executed. For example, box Fin Figure 2.7(b) is executed only 

once for every 4 control stimuli reaching the operator. Those skipped (not­

driving-box) control stimuli directly flow out along the right arrow . We need 

the skip operator because in some applications, some functions do not need to 

be executed as frequently as their predecessors. 

2.2.2 Data Operators 

There are two kinds of data operators: data branch and data join. A data branch 

is drawn as a circle with a B and a data join is drawn with a circle with a J. See 

Figure 2.4. Although a data branch/join and a control branch/join have the 

same graphical representation, data operators appear in the data part of a 

design page but control operators appear in the control part. See Figure 2.2. 

Data operators represent data sharing but control operators act on control 

stimuli. The variable associated with a data join operator is updated by more 
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than one source and used by one destination. On the other side, the variable 

associated with a data branch operator is updated by one source and used by 

more than one destination. 

2.3 Flattening a Design 

Although the design hierarchy helps to organize a design and focus attention 

on just enough details at a time, a broader view than a design page allows us to 

directly see how the components on different design pages are connected and 

thus helps us examine the design. 

Flattening a composite box enables us to obtain a broader view of a design. It is 

a recursive process: (1) The composite box is replaced by its decomposition 

page; (2) The resulting composite boxes are recursively replaced by their 

decomposition pages until the result contains no composite boxes. It should be 

noted that flattening the context box gives the global view of a design. 

Figure 2.7 illustrates design flattening. Figure 2.7(a) completes the design in 

) Figure 2.2, where AT stands for acceleration transformation; VPU velocity and 

position update; and GM gravity modeling. Figure 2. 7 (b) shows the result of 

flattening the context box. 

u 
AT 

[phase = first] [second: 
p 

VPU 

q 

w GM 

V 

Figure 2.7(a) The decomposition of box NV in Figure 2.2(b) 
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X 

y 

) 

TMl TM2 

SP 

AT 
[second: 

p 

VPU 

q 

GM 

V 

GD 

w 

B CT 
[cmd] 

Figure 2.7(b) Flattening the design shown in Figure 2.2 

In Figure 2. 7, the case operator specifies two different operation modes. 

Function AT uses u (the output from the sensor processing) to decide the 

operation mode. "phase" is a well restricted global variable updated by AT and 

used by the case operator. In mode 1, function VPU and GM are executed after 

AT in that order . In mode 2, Function GD is executed immediately after AT. 

It should be pointed out that in Figure 2.7(b), the internal state w is used more 

frequently than it is updated. In the real application, this is for reducing the 

number of processors. Furthermore, in the real application, the boxes SP, GD, 

and CT are all composite boxes. Due to the page limit, we simply present each as 

an atomic unit here. We keep composite box NV to illustrate design flattening 

and mode changes. 
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3 The Implementation of HaRTS 

HaRTS has been implemented using Objex. In this section, we first show the 

HaRTS user interface and illustrate how a hierarchical design is created. Then, 

we describe how HaRTS has been derived from Objex through specialization. 

3 .1 The HaRTS User Interface 

Figure 3.1 shows the user interface when HaRTS is launched. The design 

process by HaRTS is a top down design process. As a result, when you launch 

HaRTS, the first thing you see is always the context page which contains the 

context box. You always start your work from the context page. 

II 
D 

L 
RH£AT 

SKIP 

§-

File 

A 
0 

7 
IF 

CASE 

-§ 

Edit 

□ 

Uiew Window 

LEAP 

Figure 3.1 The context window when HaRTS is launched. 

Before we move on, we want to point out the difference between the terms 

page and window. The term page is more design-oriented. On the other hand, 

the term window is more application-oriented. A window can be opened and 

closed. However, a design page is always there after it is created although at a 

specific time, it may not be displayed on a window. In the following, we shall 
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not distinguish the two terms and use them freely. Indeed, when a design page 

is displayed on a window, the two terms refer to the same thing. 

In Figure 3.1 the left rectangle enclosing a collection of iconic symbols is a 

palette. Like palettes in all GUI applications, this palette is used as the mean for 

users to specify different operation modes: adding, selecting design 

components. In the palette there are twelve iconic symbols used to select one 

of the following different operation modes: 

' A 

D 
D 
~ 

' REPEAT 
IF 
SKIP 
CASE 
BRANCH 
JOIN 

selection tool 

adding text 

adding box 

not using now 

adding data arrow 

adding control arrow 

adding repeat control operator 

adding if control operator 

adding skip control operator 

adding case control operator 

adding data and control branch operator 

adding data and control join operator 

We shall show examples illustrating how to use the palette in the following 

subsections. 

The top of Figure 3.1 is a menubar which follows the standard Macintosh user 

interface . It includes five menus, four of which are listed in Figure 3.2. We 

omit the apple menu because it is a standard part of the Macintosh use 

interface. 
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New XN Undo xz Doh1Rccess 
Open XO Redo XR Closs 
Close xw TeHt 
Close RII XL Cut XH 

Select RII XR Flatten XF 
Saue XS 
Saue Rs ... Clean up Window XU 

Page Setup ... 
Print XP 

Quit XQ 

Figure 3.2 Menu items. 

We now briefly describe the functionality of each menu item. 

File menu 

New 

Open 

Close 
Close All 
Save 

Save As 

Page Setup 
Print 
Quit 

Open a new window with a context box in it as shown in 

Figure 3.1 to start a new design. 
Read in a HaRTS design file and open a new window 

showing the context page of the design. Note that HaRTS 

can support several designs at the same time. 

Close the front window. 

Close all the window(s) of the current design. 

Save the current design. If the design has not been saved, 

do the same thing as Save As below. 

Open a dialog asking users to input a file name and then 

save the current design to a new file with that file name. 

Note that the title of the context window of a design is kept 

to be the same as the file name of the design. 

Set printing parameters. 

Print the design diagram in the front window. 

Quit. 
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Edit menu 

Redo Redo a command such as cutting, dragging, or growing an 

graphical object. 

Undo Undo a command. 

Cut Delete the selected object. 

Select All Select all objects in the front window. 

Clean Up Window Recalculate the coordinates of the graphical objects 

View menu 

DataAccess 
Class 
Text 
Flatten 

in a window and redraw them so that all the boxes are 

drawn along the diagonal of the window. Note that 

when a box is created, the designer can put it 

wherever he/she wants, not necessarily along the 

diagonal. 

Start a data access scene(not implemented) 

Start a class scene(not implemented) 

Start a text scene(not implemented) 

Flatten the selected composite box and show the result in a 

new window. 

Window menu List all the title(s) of the open windows of the current 

design. 

In addition to the above functionalities, the design tool further supports 

dragging and growing a graphical object. When a box/ operator is dragged, the 

arrows connected to it are moved along the box/operator. That is, as a 

box/operator is moved, the coordinates and the sizes of the arrows connected to 

it are automatically adjusted. It should be pointed out that dragging an arrow 

has different meanings in different situations, which will be further discussed 

in the following subsections. 

To grow an arrow, you need to point the cursor to the start/end point of the 

arrow and then press the mouse and move the cursor to the other place. As the 

result, if the mouse up location is inside other box (or operator), the source 

/destination of the arrow has been updated. In other hand, the size of an 

operator is fixed. That is, operators can not be enlarged or shrunk. 
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3.1.1 Creating New Designs 

We now illustrate how to add new design components to a design and how to 

change a design. For example, to add a control-in arrow to the context box in 

Figure 3.1, the user clicks on the control-arrow icon in the palette, drags the 

mouse from one point above the context box to the context box. Figure 3.3 

shows the context window after a control-in arrow is added. Similarly, a 

control-out arrow can be added by dragging the mouse from the context box to 

a point on the right of it. But to add a data arrow, you must first click on the 

data arrow icon. The data-in(out) arrow is added by dragging the mouse from a 

point on the left of the context box(the context box) to the context box(a point 

below the context box). 

File 

A 

RH£AT IF 

SKIP CASE 

Edit Uiew 

□ 

Window 

LEAP 

I 

Figure 3.3 The context window after a control-in arrow is added. 

To attach text to a box/arrow, first click on the A icon in the palette and then 

click on the box/arrow. After that, a dialog appears to let you type texts. Figure 

3.4 shows the context window after the text TMl is attached to the control-in 

arrow in Figure 3.3. 
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Figure 3 .4 The context window after TMl is attached to the control-in arrow. 

Figure 3.5 shows the context window after more design components are added. 

; File Edit Uiern Window 
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Figure 3.5 The context window after more components are added. 
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3.1.2 Decomposing a Composite Box 

Double clicking on a composite box opens a new window which shows the 

decomposition of the composite box. Figure 3.6 is the decomposition window of 

the context box in Figure 3.5. Note that the window title is the same as the text 

shown inside the composite box. The arrows in Figure 3.6 are exactly those 

arrows connected to the context box in Figure 3.5. However, the arrows in 

Figure 3.6 are shown in wider pen mode signifying that they are inherited 

from the context box and have not been attached to any box/ operator on this 

decomposition page, yet. Such inherited arrows are called external arrows 

with respect to the design page. These arrows and the associated texts are 

examples of a single data model with multiple views . 

File 

LIA 
DO 

L7 
REf£AT IF 

SKIP CASE 

Edit 

□ 

X 

y 

Uiew 

► 

► 

Window 

context 

Cmdi. 

Figure 3.6 The decomposition window of the context box 

To add a box to the decomposition window in Figure 3.6, first click on the box 

icon in the palette and then drag the mouse inside the window. The initial size 

of the box is determined by the start point and end point of the dragging. 

Figure 3. 7 shows the result after two boxes are added to Figure 3.6. Note that the 

default type for a newly created box is atomic. To change an atomic box to a 
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composite, first click on the selection icon in the palette and then double click 

on the box. After that, a dialog appears asking you to confirm the change. 
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Figure 3. 7 The decomposition window after two boxes are added. 

To attach an arrow in Figure 3. 7 to a box there, you simply need to drag the 

arrow towards the box until the arrow touches the box. To create a control/ data 

arrow which connects the two boxes in Figure 3.7, first click on the 

control/ data arrow icon in the palette and then drag the mouse from the 

source to the destination. Figure 3.8 shows the result after some of the arrows 

in Figure 3. 7 are attached to the boxes and a new control arrow is added to 

connect the two boxes. Those arrows whose source and destination are on the 

same page are called internal arrows with respect to the page. Note that after 

an external arrow is attached to a box, it is no longer drawn in wider pen mode. 
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Figure 3.8 The decomposition window after the arrow change. 

0 

The boxes in Figure 3.8 can be dragged. When the boxes are dragged, the 

arrows connected to them are also moved along the boxes and the size of the 

internal arrow is automatically adjusted at the same time. You can also delete 

the boxes and the internal arrow. However, you can only move but not delete 

the external arrows and the associated texts because they are inherited from a 

higher level design page. In general, a graphical object can only be deleted at 

the design page where it is created. 

Figure 3. 9 shows the decomposition window after more design components are 

added and the external arrows are all attached. Adding ( attaching an arrow to) 

an operator is similar to adding ( attaching an arrow to) a box. The only 

difference is that you need to click on the corresponding operator type . If a 

branch/join operator is added to a location above the diagonal of the window, 

it is a control branch/join; otherwise, it is a data branch/join . Note that the 

palette is omitted in Figure 3.9 

28 



) 

J 

context 

TM1 
TM2 

SP 

NV 

V 

GD 

Cmds 
CT 

Figure 3.9 The decomposition window after more components are added. 

Finally, it should be pointed that the design tool actually supports colored 

design diagram. Boxes are drawn in blue color; The circles of operators in cyan 

and the texts in them in black; control arrows in red; and data arrows in green. 

3.1.3 Flattening a Composite Box 

To flatten a composite box, first select a composite box, and then issue the 

Flatten command from the View menu. After that, a new window is opened 

showing the result of the flattening. Figure 3.10 shows the result of flattening 

the composite box. 
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Figure 3.10 The result of flattening the context box. 

3 .2 The HaRTS Class Hierarchy 

We now describe how HaRTS is derived from Objex through specialization. 

Basically, we have extended the Objex class hierarchy to handle our domain 

specific information. The result of this is the HaRTS class hierarchy. 

Implementing HaRTS is a process of specializing Objex through subclassing, 

overriding, and extending. Some existing classes of the framework can be 

directly utilized through instantiation. For example, the Application class in 

Figure 1.2. Other classes need to be subclassed because more data fields or/and 

new methods are needed, or/and existing methods need to be overridden. For 

example, the Rectangle class in Figure 1.3 is subclassed. The Rectangle class of 

the framework offers only a simple rectangle shape but nothing else. 
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However, the rectangle for the box in our design diagram is much more 

complex. New data fields and new methods are needed and existing methods 

need to be overridden. For example, when a box is dragged, the connected 

arrows need to be moved along with the box. 

Furthermore, some brand new classes need to be created almost from scratch. 

In general, such classes are needed to define the domain-specific data model. 

For example, a box in our design tool is not simply a rectangle. It has its own 

semantics. To keep track of its semantic information, (e.g., the direct 

components of a composite box,) a new class is created directly under the root 

class Object in Figure 1.2. 

It should be pointed out that each graphical object on the screen has two 

corresponding objects in the memory: one containing the semantic 

information ( e.g., box and arrow interconnection,) and the other containing 

the graphical appearance information (e.g., shape type and coordinates on the 

screen). The purpose of doing so is to separate view from data model. For 

example, each box on the screen has two corresponding objects in the 

memory, one being the instance of the class which we created from scratch 

for storing the semantic information and the other being the instance of a 

subclass of the Rectangle class for keeping the graphical appearance 

information. In the following we first describe the HaRTS data model class 

hierarchy and then the associated shape class hierarchy. 

3.2.1 HaRTS Data Model Class Hierarchy 

Figure 3.11 shows the class hierarchy defining the HaRTS data model. The 

classes Box, Arrow and Operator are the direct subclasses of the class Object in 

Figure 1.2. Those three classes and their subclasses · are all domain-specific 

classes . 

31 



Figure 3 .11 HaRTS data model class hierarchy 

We now briefly describe the main components (instance variables and 

member functions) of the domain specific classes. 

The Box Class 

Instance Variables: 

- fldentity 

-tName 

- fBoxType 

- fShape 

- fContainer 

- fTheWindow 

- fDatalnList 

- fDataOutList 

- fCntrlnList 

- fCntrOutList 

- fComponentList 

the unique id of the box 

the text shown inside the box 

the box is either atomic or composite 

the shape of the box 

the direct container of the box 

the decomposition window of the box if it is 

composite 

a list for the data-in arrows connected to the box 

a list for the data-out arrows connected to the box 

a list for the control-in arrows connected to the box 

a list for the control-out arrows connected to the box 

a list for the direct box components if the box is a 

composite box 
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- fOperatorList 

Member Functions: 

- DoubleClick() 

- FlattenABox() 

-AddDatalnArrow() 

- AddDataOutArrow() 

- AddCntrlnArrow() 

- AddCntrOutArrow() 

- Getldentity() 

- Setldentity() 

- DecomposeABox() 

- Adjust() 

- Duplicate() 

- Cut() 

- UndoCut() 

- DoWrite() 

- DoRead() 

- Is_a() 

The Arrow Class 

Instance Variables: 

- fldentity 

- ff ext 

- fConnecton 

a list for the direct operator components if the box is 

a composite box 

change the box type to be composite if it is an atomic 

box or decompose the box if it is already composite 

flatten the box, only useful for a composite box 

add a data-in arrow to the data-in list 

add a data-out arrow to the data-out list 

add a control-in arrow to the control-in list 

add a control-out arrow to the control-out list 

get the box id 

set the box id 

display the decomposition of the box, only useful for 

a composite box 

inform the arrows attached to the box to adjust their 

coordinates and sizes as the box moves 

duplicate the box, used when a composite box is 

flattened 

delete the box 

undo the delete action 

save the box and the associated arrows to a file 

read the box and the associated arrows from a file 

return the object type ( e.g., box, arrow, or operator) 

the unique identity of the arrow 

the text attached to the arrow 

a dictionary storing the connection information of 

the arrow 

Note that an arrow may appear on more than one 

design page. Each item of the dictionary contains a 
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Member Functions: 

source, the source id, a destination, the destination 

id and a shape of the arrow. 

For example, Figure 3'.12 shows an arrow with three 

different views. The window at the back shows the 

context page. The window at the middle show the 

decomposition of the contest box. And the window at 

the front shows the decomposition of the composite 

box 'A'. Although the three arrow shapes on the 

different windows attach to the different boxes, they 

belong to the same arrow. This is an example of a 

data model with different views. Each item in the 

dictionary for an arrow stores the information for 

one view of the arrow. Other examples of arrows 

with multiple views can be found in the above 

figures, from Figure 3.3 to Figure 3.10. 

It should be pointed out that the reason for us to 

keep both the source/ destination and its id in the 

dictionary is that when read a design from a file, we 

obtain the ids first and we need to use the ids to 

recover the design hierarchy. 

- AddAConnection() add an item to the dictionary when a new view of 

the arrow is generated, due to the decomposition of a 

composite box 

- SetSrcByShape() set the source of a dictionary item given the shape 

Note that an arrow may have one source and several 

destinations or vice visa. For example, in Figure 3.12, 

the source of the arrow is the external 

environment. The destinations are the context box, 

the box 'A', and the box 'B', depending on the view of 

the arrow. 
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Figure 3.12 An arrow with three different views 

- GetSrcByShape() 

- SetDestByShape() 

- GetDestByShape() 

get the source of a dictionary item given the shape 

set the destination of a dictionary item given the 

shape 

get the destination of a dictionary item given the 

shape 

SetSrcldByShape() set the source id of a dictionary item given the 

shape 

- GetSrcldByShape() get the source id of a dictionary item given the 

shape 

- SetDestldByShape() set the destination id of a dictionary item given the 

shape 

- GetDestldByShape() get the destination id of a dictionary item given the 

shape 

- GetShapeBySrc() get the shape of a dictionary item given the source 

- GetShapeByDest() get the shape of a dictionary item given the 

destination 
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- SetText() 

- GetText() 

- Duplicate() 

- Cut() 

- UndoCut() 

- DoWrite() 

- DoRead() 

- Is_a() 

attach text to the arrow 

get text attached to the arrow 

duplicate the arrow, used when a composite box is 

flattened 

delete the arrow 

undo the delete action 

save the arrow to a file 

read the arrow from a file 

return the object type 

The DataArrow and ControlArrow classes are the direct subclasses of the Arrow 

class. Some of the member functions of the Arrow class have been overriden 

in its subclasses, e.g., Cut(), UndoCut(), Duplicate() and Is_a(), etc .. 

The Operator Class 

Instance Variables : 

- fldentity 

- fDatalnList 

- tDataOutList 

- fCntrlnList 

- fCntrOutList 

- fContainer 

- fShape 

Member Functions: 

- Adjust() 

- Cut() 

- UndoCut() 

- Duplicate() 

the unique id of the opertor 

a list for the data-in arrow(s) connected to the 

operator 

a list for the data-out arrows(s) connected to the 

operator 

a list for the control-in arrow(s) connected to the 

operator 

a list for the control-out arrows(s) connected to the 

operator 

the direct container of the operator 

the shape of the operator 

inform the arrows attached to the operator to adjust 

the coordinates and sizes as the operator is moved 

delete the operator 

undo the delete action 

duplicate the operator used when flatten a composite 

box 
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- DoWrite() 

- DoRead() 

- Is_a() 

save the content of the operator to a file 

read the content of the operator from a file 

return object type 

All the data operators and control operators are the subclasses of the class 

Operator. Note that the fields fDatainList and fDataOutlist of the Operator class 

are used only by the DataOper subclass and fCntrinList and fCntrOutList are 

used only by the CntrOper subclass. The reason to keep the four fields in the 

Operator class is that this facilitates our implementation of flattening a 

composite box. It should be pointed out that this way, an operator can be 

treated just like a box. 

3.2.2 HaRTS Shape Class Hierarchy 

Corresponding to HaRTS data model class hierarchy, there is a HaRTS shape 

class hierarchy, which is shown in Figure 3.13 . All the classes in this 

hierarchy are the subclasses of the Shape class in Figure 1.4. In addition to 

inheriting from the superclass, our classes contain new data fields, new 

) methods and/ or overridden methods. 

) 

Figure 3.13 HaRTS shape class hierarchy 

For each class in the model class hierarchy, there is a correspondent in the 

shape class hierarchy. This correspondent relationship is shown in Figure 

3.14. Note that all the operator classes correspond to the MyCircle class. 
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Figure 3.14 The correspondence between the model and shape classes. 

MyRectangle Class 

The MyRectangle class provides the graphical shape for the class Box. 

Instance Variables: 

- ITheObj 

Member Functions: 

- Drag() 

the box represented by the shape 

move the box shape on the window and inform the 

box 

- Grow() grow the box shape on the window and inform the 

box 

- GetLabelPosition() calculate the coordinates of the text attached to the 

box shape 

- ls_a() return the shape type 
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DCLine Class 

The DCLine class is the subclass of the Composite class. 'DC' means data and 

control. The purpose of using the Composite class is to make a new shape from 

several existing shapes. In our implementation, the shapes of the data and 

control arrows are the combinations of the simple shapes. For example the 

shape of the data arrow shown in Figure 3 .15 is the combination of a line from 

a to b and an arrow line from b to c. 

a 

b .... l ______ ►► c 

Figure 3.15 A example data arrow shape 

Instance Variables: 

- ITheObj 

- fLabel 

- fExternal 

- flnOut 

- f'StartPt 

- fEndPt 

Member Functions: 

the arrow represented by the shape 

the text shape attached to the arrow shape 

the type of the arrow shape: internal or external 

the direction of the arrow shape: entering the page 

from the top or left or exiting from the right of 

bottom, useful only for an external arrow 

the start point of the composite shape 

the end point of the composite shape 

- Drag() drag the shape on the window 

- Grow() grow the shape on the window 

- GetLabelPosition() calculate the coordinates of the text attached to the 

arrow 

- DrawingRubberShape() draw the rubber shape 

- Resize() 

- ls_a() 

Adjust the size of the shape according to the new 

coordinates 

return the shape type 
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Both the DataLine class and the ControlLine class are the subclasses of the class 

DCLine. The methods GetLabelPosition(), Grow(), Resize(), and Is_a(), etc., have 

been overridden in the subclasses. 

MyCircle Class 

The MyCircle class which supports the shapes of all the operators is the 

subclass of the Composite class. The shape for each operator is the combination 

of a circle shape and a label shape. For example, the shape of the IF operator 

shown in Figure 3.16 is the combination of a circle shape and a IF label shape. 

• ® 
Figure 3 .16 A example IF operator 

Instance Variables: 

- fTheObj 

Member Functions: 

- Drag() 

- Is_a() 

3.2.3 The Scene Class 

the operator represented by the shape 

move an operator shape on the window and inform 

the operator 

return the shape type 

In this section, we briefly describe the scene class of the framework which we 

found quite useful in event handling and coordinating user interface 

instances. 

A scene object connects a menubar, a palette, and a serial of windows [9]. These 

standard user interfaces are tied together through a scene. Figure 3.17 shows 

an example of scene, which contains a menubar, a palette, and two windows. 
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For each design, there is a corresponding scene object which connects its 

) menubar, its palette, and its windows. Note that the number of windows of a 

design is in general dynamically changing during the design and as a window 

is opened or closed, it is added to or deleted from the scene. The scene object is 

responsible for coordinating the interactions among the user interfaces (i.e., 

the menubar, the palette, and the windows,). This saves programmers much 

effort in event handling and organizing user interfaces. 

We now illustrate the usefulness of the scene concept through the example in 

Figure 3.17, where the selection icon in the palette is currently being selected. 

Now, if the user clicks on the window at the back, it becomes active. With the 

new front window, users may select a different icon in the palette, say, the 

'rectangle' icon . Then, if the user switches back to the original front window, 

the status of the palette is automatically recovered, that is, the selection icon 

becomes selected again . It is the scene object that is responsible for 

remembering the different palette statuses associated with the different 

windows. 
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The scene in Figure 3.17 is for one design. Now, assume that the user opens 

) another scene (another design) by selecting the Open item in the File menu. 

) 

See section 3.1. As a result of this opening, the original front scene becomes 

inactive and this is reflected by hiding the menubar and palette of the scene 

and making its windows inactive. The new scene becomes the active scene. Its 

men ubar and palette are visible and its context window becomes the front 

window. Now, if the user switches back to the first scene by clicking on one of 

its windows, its menubar and palette become visible automatically and their 

statuses are restored. Again, it is the scene object that is responsible for 

coordinating the change from one scene to another. 

It must be pointed out that the Scene class should not be directly instantinated. 

You must subclass it to use it because the following three methods of the Scene 

class: CreateWindow(), CreateMenus() and CreatePalette() are virtual classes 

and must be overridden. The reason that these three methods are virtual is that 

different applications have different menus and different palettes. 

The MyScene class, shown in Figure 3.18, is the subclass of the Scene class. The 

methods CreateWindow(), CreateMenus() and CreatePalette() have all been 

overridden in the MyScene class. The CreateWindow() is responsible for 

creating a new window and adding the window to the scene. The 

CreateMenus() is for reading the menus from the resource file, and adding 

them to the menubar and then drawing the menubar. The CreatePalette() is for 

reading the palette from the resource file and then drawing the palette. 

Scene 

Figure 3.18 HaRTS Scene class hierarchy 

3.2.4 The GraphicsView Class 

The GraphicsView class of the framework is responsible for handling events 

J related to the graphical objects shown inside a window. For example, select or 
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drag a graphical object inside a window, etc .. MyGraphicsView is the subclass 

of the GraphicsView class, in which new data fields and new methods have 

been added and some existing methods have been overridden. 

In terms of the MVC paradigm, HaRTS class hierarchy is the domain specific 

model (M). HaRTS shape class hierarchy corresponds to the view (V). The 

GraphicsView class corresponds to part of the control (C). The other classes 

corresponding to the control include the Scene class, the Window class, the 

Menu class, etc .. These classes except the Scene class can almost be used 

directly and as a result, we omit discussing them here. 

Instance Variables: 

- fFirstSelectedShape the first shape selected when the mouse is 

pressed down to add a new data/ control arrow 

- fSecondSelectedShape the second selected shape when the mouse is up 

in adding a data/control arrow 

Member Functions: 

The following methods are new methods: 

- CreateABox() create a box 

- CreateALabel() create a label (object) and attach it to a box/arrow 

- CreateADCArrow() create an arrow 

- CreateAnOperator() 

- AttachAnArrow() 

- ChangeSource() 

create an operator 

attach an external arrow to a box/ operaor 

update the source of an arrow when the source of 

the arrow is changed 

- ChangeDestination()update the destination of an arrow when the 

- Read.AB ox() 

- ReadAnArrow() 

- ReadAnOperator() 

- Flatten() 

destination of the arrow is changed 

read a box from a design file 

read an arrow from a design file 

read an operator from a design file 

detect the flatten command, open a new window and 

then inform the selected composite box to flatten 

itself 

43 



- CleanUpWindow() clean up a window by recalculating the coordinates 

of the graphical objects so that the boxes are shown 

along the diagnol of a window 

The following methods are overriden methods: 

- UserNewShape() create the application-specific shape 

- UserBeforeTrackMove() do application-specific initializations after 

the mouse is pressed down but before the 

mouse is moved, e .g., storing the initial 

position of the mouse, etc. 

- UserDuringTrackMove() do application-specific actions after the 

mouse is pressed down and moved but before 

the mouse is up, e.g, drawing the rubberband 

of a shape, etc. 

- UserAfterTrackMove() 

- UserCheckAction() 

- DoubleClick() 

- ReleaseMouse() 

- DoWrite() 

- DoRead() 

- Cut() 

- Undo() 

- Redo() 

do application-specific actions after the 

mouse is up following a mouse down, e.g, 

creating a box or arrow depending on the 

current pallete status, etc. 

determine the application-specific action 

type, e.g., creating a box or an arrow, etc. 

keep track of user clicking actions to 

distinguish between single click and double 

clicks 

determine the user action type, e.g., 

dragging, growing, etc. 

save the current design to a design file 

read from a desing file and recover the 

hierarchical design 

delete the selected object 

undo a command 

redo a command 
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4 Conclusion and Future work 

We have described a hard real-time system design tool, HaRTS, which supports 

a hierarchical design diagram. The design hierarchy separates a design into 

self-contained subdesigns and yet, the design can be flattened to give a global 

view. In a distributed environment, the design hierarchy provides a natural 

way for assigning subdesigns to different processors. The design diagram 

combines the control and data flow of a hard real-time application and, as a 

result, is quite intuitive. 

We have illustrated the HaRTS user interface and described the 

implementation of HaRTS. HaRTS has been implemented on Macintosh through 

specializing an object-oriented application framework, Objex. Our experience 

has demonstrated that Objex is quite useful in implementing GUI applications 

like HaRTS. 

The framework helps me in developing object-oriented code which has better 

understandability. Essentially, every object you see on the screen has a direct 

) correspondent in the program. This helps both programmers and maintainers 

understand the dynamic behavior of the program. The software reusability of 

Objex provides a powerful means for reducing software development cost and 

improving software quality. 

I must point out that there are some detailed implementations which are not 

mentioned here. For each HaRTS specific class, in addition to the instance 

variables and methods which we have listed in section 3.2, there are still more 

instance variables and methods. For example, flattening a composite box is 

quite complex. In the box class description in section 3.2.1, we have simply 

mentioned the method FlattenABox(). Reading a design from a file is another 

example. Recovering the design hierarchy from a linear file is not easy. The 

interested readers can find more implementation descriptions in the header 

files of the program. 

There is still much work left to be done to complete the framework. As pointed 

out in the introduction, the HaRTS design diagram can be automatically 

translated into Ada™ code and analyzed for scheduleability [11]. The current 
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implementation of HaRTS should be extended to incorporate code generation 

) and design analysis. 

We believe that a kind of software database storing frequently used algorithms 

for hard real-time applications, maybe in the form of a class hierarchy, will 

be very useful in reducing the cost of developing such applications. Once such 

a software database is added to our design tool, the functions specified in 

atomic boxes can be either retrieved from the database or directly input by 

programmers. As shown in section 3.2.3, there is a class scene reserved for this 

purpose. 

Furthermore, the design diagram is essentially control-oriented. The variables 

associated with the data-in arrows of a box are read when a control stimulus 

reaches the box and the variables associated with the data-out arrows are 

updated when the box finishes its execution. To clearly see where each data is 

used, a different view, data view, of the same design is needed. Under this view, 

data access specifications are drawn around data stores. As shown in section 

) 3.2.3, there is a data scene reserved for this purpose. 

_) 
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