
)

Design and Implementation of
a Hard Real-Time System Design Tool

By Lihua Zhao

A research paper submitted in partial fulfillment of the
requirements for the degree of Master of Arts in

Interdisciplinary Studies

Major Professor : Dr. T. G. Lewis

Department of Computer Science
Oregon State University

Corvallis, Oregon 97331

November 16, 1993

Abstract

Design and Implementation of
a Hard Real-Time System Design Tool

Lihua Zhao

Computer Science Dept.

Oregon State University

Corvallis, OR 97331-3902

zhaol@storm.cs.orst

We describe a CASE tool for designing hard real-time applications, called

HaRTS. The design tool supports a hierarchical design diagram which

combines the control and data flow of a hard real-time application. The design

hierarchy separates a design into self-contained subdesigns. Yet, the design

can be flatten to give you a global view. In a distributed environment, the

hierarchy provides a natural way for assigning subdesigns to different

) processors. The design diagram is quite intuitive, and yet it can be

automatically translated into Ada™ code and analyzed for scheduleablity.

This design tool has been implemented on Macintosh using an object-oriented

application framework, called Objex. Our experience has demonstrated that

such an object-oriented framework is quite useful in developing GUI

applications like HaRTS. The framework facilitates us in developing object­

oriented code which has better understandability. Essentially, every object you

see on the screen has a direct correspondent in the program. This helps both

programmers and maintainers understand the dynamic behavior of the

program. The software reusability of Objex, supported through inheritance

and dynamic binding, provides a powerful mean for reducing software

development cost and improving software quality.

Table of Contents

1 Introduction 1
1.1 The Design Tool - HaRTS .. 3

1.2 Implementation Environment .. 4
1.2.1 Objex. 4
1.2.2 The User-Machine Interaction Model 7

1.3 Deriving HaRTS .. 9

2 The HaRTS Design Diagram ... 10
2.1 Basic Design Components ... 10
2.2 More Design Components ... 15

2.2.1 Control Operators and Guards ... 15
2.2.2 Data Operators ... 17

2.3 Flattening a Design ... 18

3 The Implementation of HaRTS 20
3.1 The HaRTS User Interface .. 20

3.1.1 Creating New Designs .. 24
3.1.2 Decomposing a Composite Box .. 26
3.1.3 Flattening a Composite Box ... 29

3.2 The HaRTS Class Hierarchy .. 30
3.2.1 HaRTS Data Model Class Hierarchy .. 31
3.2.2 HaRTS Shape Class Hierarchy ... 37
3.2.3 The Scene Class .. 40
3.2.4 The GraphicsView Class ... 42

) 4 Conclusion and Future work ... 45

References .. 46

Acknowledgements 48

)

)

1 Introduction

This report describes work that is based on the design diagram for hard real­

time applications in [11]. The author designed and implemented the user

interface and storage structures of a hard real-time system design tool, called

HaRTS, which supports the design diagram . The implementation used the Objex

framework [6, 8, 9] and as a result demonstrated that Objex works.

In a hard real-time system , the computer periodically gets information from

the environment through sensors, updates its internal system states based on

the inputs and the current internal states, and generates control commands to

change the environment through actuators.

The single most important requirement for a hard real-time system is that it

must make correct response to environmental changes within specified time

intervals, called deadlines [1, 4, S]. Those deadlines, which by the design

specification must absolutely be met by the operational system, are called hard

deadlines. Missing any hard deadline can lead to catastrophic results. Nuclear

power plant control, missile control, etc ., are examples of such applications.

Due to the characteristics of hard real-time applications, deterministic system

behavior is a must .

A hard real-time software system consists of a set of state machines , also called

tasks or processes, which cooperate to achieve the system goal. These state

machines are responsible for reading the inputs from environment, storing

and updating the internal system states, and generating control commands to

control the environment . Each state machine is composed of a subset of the
system states (data) and an algorithm _for the state transformation. We call

these state machines tasks.

There are two kinds of tasks in hard real-time software: periodic and sporadic

(aperiodic) tasks. During run time, all tasks can be in only one of two states:

active or inactive . The tasks in the active state are eligible to be scheduled to

execute. The tasks in the inactive state are not. A periodic task enters its active

state periodically. On the other hand, a sporadic task becomes active by

responding to some event. An active task returns to its inactive state after it

)

finishes one execution. We shall use the term request or trigger to mean that

an inactive task enters its active state. Each time a task is executed, we say an

instance of it is generated. A task meets its deadline if only if all of its

instances meet their deadlines.

2

1.1 The Design Tool -- HaRTS

We build a graphical design tool for hard real-time applications, called HaRTS,

which supports a hierarchical design diagram which combines control flow

and data flow [11]. The combination enables us to easily obtain a whole picture

of a hard real-time application, which is difficult to achieve through

examining separate control flow diagram and data flow diagram.

The design method supported by HaRTS is different from earlier graphical

design methods in many aspects [11]. Traditional graphical software design

methods normally separate control flow from data flow [12]. Nor do they

support the strict timing requirements of hard real-time applications. [1]

introduced a graphical computation model which supports strict timing

constraints. However, it is still based on separate control flow diagram and

data flow diagram.

The design hierarchy separates a design into self-contained subdesigns. Yet,

the design can be flattened to give you a global view. When one processor can

) not satisfy the timing and precedence requirements of a design, the hierarchy

provides a natural way for assigning subdesings to different processors in a

distributed environment. The design diagram is quite intuitive, and yet it can

be automatically translated into Ada™ code and analyzed for scheduleability

[11].

It should be pointed out that our design methodology is based on the needs of

real applications. For example, a missile flight control application played a

major role in the design of HaRTS. We shall use the simplified version of this

application as an example in our presentation.

Developing a hard real-time application with deterministic behavior has been

a difficult problem. Under the traditional cyclic-executive approach [S],

programmers need to unnaturally cut the code into certain sized pieces that fit

into time frames of a schedule. Putting code pieces by hand into the right time

frames and in the right order is a time-consuming and error-prone process

[4]. This painful process must be repeated when the code is modified or

3

updated. On the other hand, under our approach, a hard real-time application

is developed by "What You See Is What You Get". The design requirements are

captured by the design diagram which can be automatically analyzed and

scheduled.

1.2 Implementation Environment

Our hard real-time design tool has been implemented using an object-oriented

application framework called Objex. In this section, we briefly describe Objex

and a user-machine interaction model adopted by Objex, called Model-View­

Control model.

1.2.1 Objex

The best known method of improving programmer productivity is to reuse

existing code rather than reinvent it [12]. Application framework is one of

approaches to achieving this goal.

) Objex was designed and implemented by a team in Oregon State University [8].

Figure 1.1 shows an overview of Objex. Objex consists of three parts: the

application framework classes, the data structure class library, and the shape

class library. They are all built on top of the Macintosh Toolbox. Figure 1.2

shows the class hierarchy of Objex. Figure 1.3 and 1.4 are the data structure

class hierarchy and the shape class hierarchy, respectively.

GUI Application

Objex Application Shape
Application Framework Class
Framework Classes Library
Class
Hierarchy I Data Structure Class Library I

Macintosh Toolbox

Figure 1.1 The Objex application framework architecture

4

)

ListMgr

Figure 1.2 The Objex application framework class hierarchy

The application framework classes define much of a Macintosh application's

standard user interface, generic behavior, and operating environment. Note

that the root of the data structure class hierarchy in Figure 1.3 is the

Collection class in Figure 1.2 and the root of the shape class hierarchy in

Figure 1.4 is the Shape class in Figure 1.2.

5

Set

BArrayCollection Dictionary

SortedObjList

Data Structure Class Hierarchy

DiclterValue Diclter DictiterKey

Iterator Class Hierarchy

Figure 1.3 The data structure and the corresponding iterator class hierarchy

6

)

)

)

The data structure class library supports general data structures, such as

array, list, set, stack, and queue. Corresponding to the data structure class

hierarchy, there is an iterator class hierarchy. The iterator for each

collection object is a mechanism used to inspect each element in the collection

[6]. It performs some basic operations such as inserting, retrieving, etc .. Each

collection class has a corresponding iterator.

ArrowLine

Square

Shape Library Class Hierarchy

Figure 1.4 The shape class hierarchy

The shape library supports various different kinds of graphical shapes, such

as rectangle, circle, line, oval, etc .. Each shape class provides the methods for

creating, drawing, growing, etc., the corresponding shapes.

1.2.2 The User-Machine Interaction Model

Objex adopts a user-machine interaction model, called the Model-View­

Controller (MVC) model, which is first used in the Smalltalk-80 environment

[10]. The MVC paradigm handles a set of interactive objects from three related

7

)

classes: Model, View and Controller. The Model class (object) contains the

domain specific data structure manipulated by a GUI application. The View

class (object) renders all or parts of the domain specific data on the screen.

The controller class (object) is responsible for accepting asynchronous inputs

from users and passing appropriate messages to the model and view objects [8].

Figure 1.5 illustrates message passing in the MVC paradigm. Views and

controllers can have only one model, but models may have many views and

controllers. Views and controllers are generally tied closely together.

Keyboard &
Mouse

I've Changed Message

Display

I've Changed Message

Figure 1.5 Model-View-Controller Communication

When multiple views of the same data model need to be manipulated

simultaneously, the power of the MVC paradigm is realized. This is illustrated

by the example in Figure 1.6 in which the data model has multiple views. The

change made to the data under one view is automatically reflected in the other

views. Existing views can be modified and new views can be added at any time .

8

)

)

Keyboard &
Mouse

I've Changed Message

splay

I've Changed Message

Figure 1.6 A Data Model with Multiple View-Controller Pairs

1.3 Deriving HaRTS

HaRTS is derived from Objex through the process of specialization, i.e.,

subclassing, overriding and extending the existing classes. For example, we

subclassed the Rectangle class to create a new class called MyRectangle. The

reason for the subclassing will become clear as we move on.

In our implementation of HaRTS, the reusability of Objex is not only reflected

in reusing code, but also in reusing design. For example, inheriting the MVC

user-machine interaction model for HaRTS has greatly reduced our effort in

design and programming. Like all Macintosh applications, HaRTS supports the

standard Macintosh user interface, such as windows, menus, dialogs, etc., and

generic application features, such as open/save a file, undo/redo a command,

print a window, etc..

The rest of this report is organized as follows. In section 2, we introduce the

HaRTS design diagram. In section 3, we fully describe the implementation of

HaRTS. In section 4, we conclude this report and suggest the future work.

9

)

)

)

2 The HaRTS Design Diagram

In this section, we describe the HaRTS design diagram. We first introduce the

basic design components of the design diagram and the design hierarchy

through an example application. Then, we describe the rest of the design

components. Finally, we show that a hierarchical design can be flattened to

give the global view of the design.

2.1 Basic Design Components

The design of a hard real-time application can be represented as a set of boxes,

arrows, operators and associated text which together define its control flow,

data flow, and timing constraints. Figure 2.1 shows the basic components of a

design diagram. The box represents a system state transformation function.

The control-in arrow on the top carries the control stimuli flowing into the

box and the control-out arrow on the right carries the control stimuli flowing

out of the box.

control-in

data-in function ~~ control-out

data-out

Figure 2.1: The basic components of our design diagram.

The control stimulus flowing into the box triggers the function to execute, and

when the execution finishes, a new control stimulus is generated and flows out

to trigger other functions to execute. The control stimuli of an application are

generated either by the control driving sources (i.e., timers or external

events), or by completing the execution instances of a box. Once a control

stimulus is generated, it flows along the control arrow until it reaches a box or

a control operator.

10

)

)

)

The data-in arrow on the left carries the data flowing into the box when the

function is executed and the data-out arrow on the bottom carries the data

flowing out of the box when the execution finishes. Each data arrow has an

associated variable which represents the data store for the corresponding

system state. There may be more than one data-in/data-out arrow attached to a

box.

The design components are organized hierarchically as shown in Figure 2.2.
The boxes with thinner borders are called atomic boxes and represent
functions. On the other hand, the boxes with thicker borders are called
composite boxes and are used to organize the design hierarchically. Each
composite box represents a set of lower-level design components. In a
complete design, each composite box has a corresponding design page showing
its decomposition.

There is a special composite box for each design, called context box, which is at
the highest design level and represents the interface with its environment.
The context box appears on the context page.

11

)

)

TM1 :rl :pl TM2:r2:p2

context [cmd]

z

Figure 2.2(a): The context box of the example application.

', TM1
' ' ' '.--------,

X

y--~ SP

' ' '
.. ___ _

NV ----,
V ' ' ' ' ----

TM2

GD 1------~ J
.._ __ __,,

w ' ' ' ' ' ,----''-----.

Bi----~ CT

Figure 2.2(b): The decomposition page of the context box.

[cmd]

The design components appearing on the decomposition page of a composite
box are called its direct components which may in turn be composite boxes
themselves. The container-component relation constitutes a design hierarchy
and is transitive. The direct components of a composite box is at a design level
one lower than its own level. Note that some arrows and texts may appear at
different design levels. For example, the control-in/out arrows in Figure 2.2(a)
are exactly those arrows entering/exiting the control part of Figure 2.2(b)
from the top/right and the data-in/out arrows in Figure 2.2(a) are exactly
those arrows entering/exiting the data part of Figure 2.2(b) from the
left/bottom. These arrows connect the design components on different design
pages. In the following, components either refers to direct components or all

12

)

components by the transitive container-component relation, depending on
the context.

Figure 2.2 shows the simplified design diagram for a missile control
application, where SP stands for sensor processing; NV navigation; GD
guidance and CT control. Figure 2.2(a) is the context box of the application
which is driven by two timers TMl and TM2 with the periods pl and p2,
respectively, reads two external inputs x and y from two sensors, generates
one external output z, and sends the control command to the actuator, where
the external output z is used. The two timers start to count at different times rl
and r2, where rl depends on the length of system initialization and r2 is offset
from rl by some constant. Figure 2.2(b) is the decomposition page of the
context box.

As illustrated by Figure 2.2(b), each design page consists of three parts: the
functional part, the control part and the data part. The functional part is
shown along the diagonal consisting of the boxes. The control part is shown
above the diagonal and the data part below the diagonal. Note that the dashed
line is not part of the design. It is only used to show the diagonal.

Each composite box constitutes a self-contained subdesign. The text in it
describes the functionality of the subdesign whose interface with other parts
of the design is defined by the attached arrows. See box NV in Figure 2.2(b).
The arrows on the top/right of a composite box carry control stimuli into/out
of the box. The arrows on the left/bottom carry data into/out of the box.
However, these control stimuli and data are for its components instead of itself,
in contrast to an atomic box.

It should be noted that a control arrow is a control-in arrow to its destination,
but it is a control-out arrow to its source. A control stimulus flows from its
source to its destination. All control stimuli are originated from the external
control driving sources: timers or sporadic events.

In addition to atomic boxes, guards and control operators also act on control

stimuli and appear in the control part, which will be introduced in section

2.2.1. However, to interpret the design in Figure 2, we need to explain the

control join operator in Figure 2(b) which is drawn as a circle with a J. The

stimuli flowing into a control join along the in-arrows flows out along the out­

arrow to the same destination (box CT in Figure 2(b));

13

)

Similar to a control arrow, a data arrow is a data-in arrow to its destination and

a data-out arrow to its source . The variable associated with the arrow is updated

by its source and is used by its destination.

In addition to data arrows and variables, data operators also appear in the data

part, which will be introduced in section 2.2.2. However, to interpret the

design in Figure 2.2, we need to explain the two data branch operators in

Figure 2(b) each of which is drawn as a circle with a B. The variable associated

with a data branch is updated by its source and is used by more than one

destination .

We now interpret the design in Figure 2.2. The external inputs x and y are to

be sampled at the regular rate of l/p1 . Each time x and y are sampled, u must be

recomputed by function SP with the new values of x and y. After SP, the

navigation related functions contained in box NV must be executed, whose

decomposition will be shown in section 2.3. Then, function GD and CT must be

executed in that order for guidance control. The internal state u is updated by

) SP and is shared by GD and some components of box NV. Similar interpretation

applies to w. v is updated by some components of box NV and is used by GD. In

addition to being driven by timer TM1 function CT is also driven by timer TM2.

When CT finishes its execution, it sends a control command to the actuator,

where the external output z is used.

Up to now, the reader should already obtain a clear picture about our design

diagram. We now further illustrate the design hierarchy through Figure 2.3 .

In the next section, we shall introduce more design components . The context

box 'ABC' in Figure 2.3 is decomposed into three boxes 'A', 'B' and 'C' which are

at the design level one lower than the context box. Boxes 'A' and 'C' are

themselves composite boxes and their decomposition pages are also shown in

Figure 2.3 . And so forth. Generally speaking, the "top" diagram is the more

"abstract", while the "bottom" diagram is the more "concrete".

Correspondingly, the top level hides the greatest amount of detail, while the

lowest level exposes the greatest amount of detail.

14

~ @]

@]

@]

Figure 2.3 Hierarchical decomposition of a design

) 2.2 More Design Components

We now introduce more control/data operators and guards. Guards are

introduced together with control operators because they all appear in the

control part and are typically used together.

2.2.1 Control Operators and Guards

Control operators act on control stimuli. There are six kinds of control

operators: control branch, control join, repeat, skip, if, and case operators. A

control branch is drawn as a circle with a B. See Figure 2.4(a). The stimulus

flowing in from the in-arrow is duplicated at the operator, one for each out­

arrow, and each resulting stimulus flows out along its out-arrow to its own

destination. A control join operator is drawn as a circle with a J. See Figure

2.4(b). The stimuli flowing into a control join along the in-arrows flows out

along the out-arrow to the same destination. See Figure 2.2.

15

~

lll
A----

B

C -----t
J ,__ _ __,._ D

(a) (b)

Figure 2.4 (a) A control branch operator; (b) A control join operator.

An if operator is drawn as a circle with an IF and a case operator is drawn as a

circle with a C. See figure 2.5. A sequence of if/case operators connected one

after another can be used to specify more than two choices. A sequence of

connected case operators has a single variable associated with them, which

takes a set of mutually exclusive values. On the other hand, the conditions

associated with if operators are more flexible. The conditions are given in the

brackets.

The expressions associated with if and case operators are guards which specify

) different system operation modes. The global variables in them are updated in

those functions which determine mode changes. The control stimulus entering

a if/case operator flows out along the out-arrow whose associated guard has

true value. An example illustrating how case operators and guards are used to

specify different system operation modes will be given in section 2.3 .

-----1~ IF .,__ ____ .., ____ ..,.. C .,__ ____,

[phase = first] [else] [phase = first] [second:

Fl Fl

F2 F2

(a) (b)

Figure 2.5 (a) An example of IF operator; (b) An example of CASE operator

16

)

A repeat operator is drawn as a circle with an R. See Figure 2.6(a). A control

stimulus entering a repeat operator repeatedly drives the box linked to the

bottom arrow for the number of times specified by the bound in the bracket.

Only when the repetition finishes, a control stimulus flows out along the right

arrow. If the box is a composite box, then its box-components must be on a

single execution path (single-in-single-exit). For example, box F in Figure

2. 7(a) is executed four times for each control stimulus reaching the operator

and only after that, a control stimulus flows out along the right arrow.

F F

(a) (b)

Figure 2.6 (a) An example of repeat operator; (b) An example of skip operator

A skip operator is similar to a repeat operator and is drawn as a circle with an

S. However, contrary to a repeat operator, it decreases the frequency by which

its destination is executed. For example, box Fin Figure 2.7(b) is executed only

once for every 4 control stimuli reaching the operator. Those skipped (not­

driving-box) control stimuli directly flow out along the right arrow . We need

the skip operator because in some applications, some functions do not need to

be executed as frequently as their predecessors.

2.2.2 Data Operators

There are two kinds of data operators: data branch and data join. A data branch

is drawn as a circle with a B and a data join is drawn with a circle with a J. See

Figure 2.4. Although a data branch/join and a control branch/join have the

same graphical representation, data operators appear in the data part of a

design page but control operators appear in the control part. See Figure 2.2.

Data operators represent data sharing but control operators act on control

stimuli. The variable associated with a data join operator is updated by more

17

than one source and used by one destination. On the other side, the variable

associated with a data branch operator is updated by one source and used by

more than one destination.

2.3 Flattening a Design

Although the design hierarchy helps to organize a design and focus attention

on just enough details at a time, a broader view than a design page allows us to

directly see how the components on different design pages are connected and

thus helps us examine the design.

Flattening a composite box enables us to obtain a broader view of a design. It is

a recursive process: (1) The composite box is replaced by its decomposition

page; (2) The resulting composite boxes are recursively replaced by their

decomposition pages until the result contains no composite boxes. It should be

noted that flattening the context box gives the global view of a design.

Figure 2.7 illustrates design flattening. Figure 2.7(a) completes the design in

) Figure 2.2, where AT stands for acceleration transformation; VPU velocity and

position update; and GM gravity modeling. Figure 2. 7 (b) shows the result of

flattening the context box.

u
AT

[phase = first] [second:
p

VPU

q

w GM

V

Figure 2.7(a) The decomposition of box NV in Figure 2.2(b)

18

X

y

)

TMl TM2

SP

AT
[second:

p

VPU

q

GM

V

GD

w

B CT
[cmd]

Figure 2.7(b) Flattening the design shown in Figure 2.2

In Figure 2. 7, the case operator specifies two different operation modes.

Function AT uses u (the output from the sensor processing) to decide the

operation mode. "phase" is a well restricted global variable updated by AT and

used by the case operator. In mode 1, function VPU and GM are executed after

AT in that order . In mode 2, Function GD is executed immediately after AT.

It should be pointed out that in Figure 2.7(b), the internal state w is used more

frequently than it is updated. In the real application, this is for reducing the

number of processors. Furthermore, in the real application, the boxes SP, GD,

and CT are all composite boxes. Due to the page limit, we simply present each as

an atomic unit here. We keep composite box NV to illustrate design flattening

and mode changes.

19

)

3 The Implementation of HaRTS

HaRTS has been implemented using Objex. In this section, we first show the

HaRTS user interface and illustrate how a hierarchical design is created. Then,

we describe how HaRTS has been derived from Objex through specialization.

3 .1 The HaRTS User Interface

Figure 3.1 shows the user interface when HaRTS is launched. The design

process by HaRTS is a top down design process. As a result, when you launch

HaRTS, the first thing you see is always the context page which contains the

context box. You always start your work from the context page.

II
D

L
RH£AT

SKIP

§-

File

A
0

7
IF

CASE

-§

Edit

□

Uiew Window

LEAP

Figure 3.1 The context window when HaRTS is launched.

Before we move on, we want to point out the difference between the terms

page and window. The term page is more design-oriented. On the other hand,

the term window is more application-oriented. A window can be opened and

closed. However, a design page is always there after it is created although at a

specific time, it may not be displayed on a window. In the following, we shall

20

)

not distinguish the two terms and use them freely. Indeed, when a design page

is displayed on a window, the two terms refer to the same thing.

In Figure 3.1 the left rectangle enclosing a collection of iconic symbols is a

palette. Like palettes in all GUI applications, this palette is used as the mean for

users to specify different operation modes: adding, selecting design

components. In the palette there are twelve iconic symbols used to select one

of the following different operation modes:

' A

D
D
~

' REPEAT
IF
SKIP
CASE
BRANCH
JOIN

selection tool

adding text

adding box

not using now

adding data arrow

adding control arrow

adding repeat control operator

adding if control operator

adding skip control operator

adding case control operator

adding data and control branch operator

adding data and control join operator

We shall show examples illustrating how to use the palette in the following

subsections.

The top of Figure 3.1 is a menubar which follows the standard Macintosh user

interface . It includes five menus, four of which are listed in Figure 3.2. We

omit the apple menu because it is a standard part of the Macintosh use

interface.

21

New XN Undo xz Doh1Rccess
Open XO Redo XR Closs
Close xw TeHt
Close RII XL Cut XH

Select RII XR Flatten XF
Saue XS
Saue Rs ... Clean up Window XU

Page Setup ...
Print XP

Quit XQ

Figure 3.2 Menu items.

We now briefly describe the functionality of each menu item.

File menu

New

Open

Close
Close All
Save

Save As

Page Setup
Print
Quit

Open a new window with a context box in it as shown in

Figure 3.1 to start a new design.
Read in a HaRTS design file and open a new window

showing the context page of the design. Note that HaRTS

can support several designs at the same time.

Close the front window.

Close all the window(s) of the current design.

Save the current design. If the design has not been saved,

do the same thing as Save As below.

Open a dialog asking users to input a file name and then

save the current design to a new file with that file name.

Note that the title of the context window of a design is kept

to be the same as the file name of the design.

Set printing parameters.

Print the design diagram in the front window.

Quit.

22

)

Edit menu

Redo Redo a command such as cutting, dragging, or growing an

graphical object.

Undo Undo a command.

Cut Delete the selected object.

Select All Select all objects in the front window.

Clean Up Window Recalculate the coordinates of the graphical objects

View menu

DataAccess
Class
Text
Flatten

in a window and redraw them so that all the boxes are

drawn along the diagonal of the window. Note that

when a box is created, the designer can put it

wherever he/she wants, not necessarily along the

diagonal.

Start a data access scene(not implemented)

Start a class scene(not implemented)

Start a text scene(not implemented)

Flatten the selected composite box and show the result in a

new window.

Window menu List all the title(s) of the open windows of the current

design.

In addition to the above functionalities, the design tool further supports

dragging and growing a graphical object. When a box/ operator is dragged, the

arrows connected to it are moved along the box/operator. That is, as a

box/operator is moved, the coordinates and the sizes of the arrows connected to

it are automatically adjusted. It should be pointed out that dragging an arrow

has different meanings in different situations, which will be further discussed

in the following subsections.

To grow an arrow, you need to point the cursor to the start/end point of the

arrow and then press the mouse and move the cursor to the other place. As the

result, if the mouse up location is inside other box (or operator), the source

/destination of the arrow has been updated. In other hand, the size of an

operator is fixed. That is, operators can not be enlarged or shrunk.

23

)

3.1.1 Creating New Designs

We now illustrate how to add new design components to a design and how to

change a design. For example, to add a control-in arrow to the context box in

Figure 3.1, the user clicks on the control-arrow icon in the palette, drags the

mouse from one point above the context box to the context box. Figure 3.3

shows the context window after a control-in arrow is added. Similarly, a

control-out arrow can be added by dragging the mouse from the context box to

a point on the right of it. But to add a data arrow, you must first click on the

data arrow icon. The data-in(out) arrow is added by dragging the mouse from a

point on the left of the context box(the context box) to the context box(a point

below the context box).

File

A

RH£AT IF

SKIP CASE

Edit Uiew

□

Window

LEAP

I

Figure 3.3 The context window after a control-in arrow is added.

To attach text to a box/arrow, first click on the A icon in the palette and then

click on the box/arrow. After that, a dialog appears to let you type texts. Figure

3.4 shows the context window after the text TMl is attached to the control-in

arrow in Figure 3.3.

24

) ; File Edit Uiern Window

□ LERP 0

~ ■
D 0

,~TM 1

L 7
RHfAT IF

SKIP CASE

~ --§

Figure 3 .4 The context window after TMl is attached to the control-in arrow.

Figure 3.5 shows the context window after more design components are added.

; File Edit Uiern Window

□ LEAP

~ ■
D 0

, ,TM 1, ,TM2

X ...
L 7

..

.... context
Cmds

.
REffAT IF

SKIP CASE
, .. z

~ --§

Figure 3.5 The context window after more components are added.

25

)

J

3.1.2 Decomposing a Composite Box

Double clicking on a composite box opens a new window which shows the

decomposition of the composite box. Figure 3.6 is the decomposition window of

the context box in Figure 3.5. Note that the window title is the same as the text

shown inside the composite box. The arrows in Figure 3.6 are exactly those

arrows connected to the context box in Figure 3.5. However, the arrows in

Figure 3.6 are shown in wider pen mode signifying that they are inherited

from the context box and have not been attached to any box/ operator on this

decomposition page, yet. Such inherited arrows are called external arrows

with respect to the design page. These arrows and the associated texts are

examples of a single data model with multiple views .

File

LIA
DO

L7
REf£AT IF

SKIP CASE

Edit

□

X

y

Uiew

►

►

Window

context

Cmdi.

Figure 3.6 The decomposition window of the context box

To add a box to the decomposition window in Figure 3.6, first click on the box

icon in the palette and then drag the mouse inside the window. The initial size

of the box is determined by the start point and end point of the dragging.

Figure 3. 7 shows the result after two boxes are added to Figure 3.6. Note that the

default type for a newly created box is atomic. To change an atomic box to a

26

)

J

composite, first click on the selection icon in the palette and then double click

on the box. After that, a dialog appears asking you to confirm the change.

File

~ A

l!I □
L7
REPcAT IF

SKIP CASE

Edit

□

X

H

Uiew

►

►

Window

context

iTM1

D
D

iTM2

Cmd,-

Al r·········· ·· ················ ················· · ················°jj..,.,_
v'I IIIJ '.:': :·:·:::::: • · • • • • ·:.·.· ·: • · · • · · • • • • · · • · · • · · • • • • • • • • • · • • • • • • • • • · · • • • "v" P-)

Figure 3. 7 The decomposition window after two boxes are added.

To attach an arrow in Figure 3. 7 to a box there, you simply need to drag the

arrow towards the box until the arrow touches the box. To create a control/ data

arrow which connects the two boxes in Figure 3.7, first click on the

control/ data arrow icon in the palette and then drag the mouse from the

source to the destination. Figure 3.8 shows the result after some of the arrows

in Figure 3. 7 are attached to the boxes and a new control arrow is added to

connect the two boxes. Those arrows whose source and destination are on the

same page are called internal arrows with respect to the page. Note that after

an external arrow is attached to a box, it is no longer drawn in wider pen mode.

27

)

File

A
DO

Lil
REf{AT IF

SKIP CASE

Edit

□

X
lj

Uiew

..._ I ~,

Window

context

,,TM1

I
I

I
, r

I
Cmd._

Figure 3.8 The decomposition window after the arrow change.

0

The boxes in Figure 3.8 can be dragged. When the boxes are dragged, the

arrows connected to them are also moved along the boxes and the size of the

internal arrow is automatically adjusted at the same time. You can also delete

the boxes and the internal arrow. However, you can only move but not delete

the external arrows and the associated texts because they are inherited from a

higher level design page. In general, a graphical object can only be deleted at

the design page where it is created.

Figure 3. 9 shows the decomposition window after more design components are

added and the external arrows are all attached. Adding (attaching an arrow to)

an operator is similar to adding (attaching an arrow to) a box. The only

difference is that you need to click on the corresponding operator type . If a

branch/join operator is added to a location above the diagonal of the window,

it is a control branch/join; otherwise, it is a data branch/join . Note that the

palette is omitted in Figure 3.9

28

)

J

context

TM1
TM2

SP

NV

V

GD

Cmds
CT

Figure 3.9 The decomposition window after more components are added.

Finally, it should be pointed that the design tool actually supports colored

design diagram. Boxes are drawn in blue color; The circles of operators in cyan

and the texts in them in black; control arrows in red; and data arrows in green.

3.1.3 Flattening a Composite Box

To flatten a composite box, first select a composite box, and then issue the

Flatten command from the View menu. After that, a new window is opened

showing the result of the flattening. Figure 3.10 shows the result of flattening

the composite box.

29

)

Fl etten

TMl

TM2

Cmd~

z

Figure 3.10 The result of flattening the context box.

3 .2 The HaRTS Class Hierarchy

We now describe how HaRTS is derived from Objex through specialization.

Basically, we have extended the Objex class hierarchy to handle our domain

specific information. The result of this is the HaRTS class hierarchy.

Implementing HaRTS is a process of specializing Objex through subclassing,

overriding, and extending. Some existing classes of the framework can be

directly utilized through instantiation. For example, the Application class in

Figure 1.2. Other classes need to be subclassed because more data fields or/and

new methods are needed, or/and existing methods need to be overridden. For

example, the Rectangle class in Figure 1.3 is subclassed. The Rectangle class of

the framework offers only a simple rectangle shape but nothing else.

30

)

.)

However, the rectangle for the box in our design diagram is much more

complex. New data fields and new methods are needed and existing methods

need to be overridden. For example, when a box is dragged, the connected

arrows need to be moved along with the box.

Furthermore, some brand new classes need to be created almost from scratch.

In general, such classes are needed to define the domain-specific data model.

For example, a box in our design tool is not simply a rectangle. It has its own

semantics. To keep track of its semantic information, (e.g., the direct

components of a composite box,) a new class is created directly under the root

class Object in Figure 1.2.

It should be pointed out that each graphical object on the screen has two

corresponding objects in the memory: one containing the semantic

information (e.g., box and arrow interconnection,) and the other containing

the graphical appearance information (e.g., shape type and coordinates on the

screen). The purpose of doing so is to separate view from data model. For

example, each box on the screen has two corresponding objects in the

memory, one being the instance of the class which we created from scratch

for storing the semantic information and the other being the instance of a

subclass of the Rectangle class for keeping the graphical appearance

information. In the following we first describe the HaRTS data model class

hierarchy and then the associated shape class hierarchy.

3.2.1 HaRTS Data Model Class Hierarchy

Figure 3.11 shows the class hierarchy defining the HaRTS data model. The

classes Box, Arrow and Operator are the direct subclasses of the class Object in

Figure 1.2. Those three classes and their subclasses · are all domain-specific

classes .

31

Figure 3 .11 HaRTS data model class hierarchy

We now briefly describe the main components (instance variables and

member functions) of the domain specific classes.

The Box Class

Instance Variables:

- fldentity

-tName

- fBoxType

- fShape

- fContainer

- fTheWindow

- fDatalnList

- fDataOutList

- fCntrlnList

- fCntrOutList

- fComponentList

the unique id of the box

the text shown inside the box

the box is either atomic or composite

the shape of the box

the direct container of the box

the decomposition window of the box if it is

composite

a list for the data-in arrows connected to the box

a list for the data-out arrows connected to the box

a list for the control-in arrows connected to the box

a list for the control-out arrows connected to the box

a list for the direct box components if the box is a

composite box

32

)

- fOperatorList

Member Functions:

- DoubleClick()

- FlattenABox()

-AddDatalnArrow()

- AddDataOutArrow()

- AddCntrlnArrow()

- AddCntrOutArrow()

- Getldentity()

- Setldentity()

- DecomposeABox()

- Adjust()

- Duplicate()

- Cut()

- UndoCut()

- DoWrite()

- DoRead()

- Is_a()

The Arrow Class

Instance Variables:

- fldentity

- ff ext

- fConnecton

a list for the direct operator components if the box is

a composite box

change the box type to be composite if it is an atomic

box or decompose the box if it is already composite

flatten the box, only useful for a composite box

add a data-in arrow to the data-in list

add a data-out arrow to the data-out list

add a control-in arrow to the control-in list

add a control-out arrow to the control-out list

get the box id

set the box id

display the decomposition of the box, only useful for

a composite box

inform the arrows attached to the box to adjust their

coordinates and sizes as the box moves

duplicate the box, used when a composite box is

flattened

delete the box

undo the delete action

save the box and the associated arrows to a file

read the box and the associated arrows from a file

return the object type (e.g., box, arrow, or operator)

the unique identity of the arrow

the text attached to the arrow

a dictionary storing the connection information of

the arrow

Note that an arrow may appear on more than one

design page. Each item of the dictionary contains a

33

J

Member Functions:

source, the source id, a destination, the destination

id and a shape of the arrow.

For example, Figure 3'.12 shows an arrow with three

different views. The window at the back shows the

context page. The window at the middle show the

decomposition of the contest box. And the window at

the front shows the decomposition of the composite

box 'A'. Although the three arrow shapes on the

different windows attach to the different boxes, they

belong to the same arrow. This is an example of a

data model with different views. Each item in the

dictionary for an arrow stores the information for

one view of the arrow. Other examples of arrows

with multiple views can be found in the above

figures, from Figure 3.3 to Figure 3.10.

It should be pointed out that the reason for us to

keep both the source/ destination and its id in the

dictionary is that when read a design from a file, we

obtain the ids first and we need to use the ids to

recover the design hierarchy.

- AddAConnection() add an item to the dictionary when a new view of

the arrow is generated, due to the decomposition of a

composite box

- SetSrcByShape() set the source of a dictionary item given the shape

Note that an arrow may have one source and several

destinations or vice visa. For example, in Figure 3.12,

the source of the arrow is the external

environment. The destinations are the context box,

the box 'A', and the box 'B', depending on the view of

the arrow.

34

)

X
context

-
X

□ A

X

►, B II
¢1 nn Ii·······=·················=············=·=··~~.~ ~

Figure 3.12 An arrow with three different views

- GetSrcByShape()

- SetDestByShape()

- GetDestByShape()

get the source of a dictionary item given the shape

set the destination of a dictionary item given the

shape

get the destination of a dictionary item given the

shape

SetSrcldByShape() set the source id of a dictionary item given the

shape

- GetSrcldByShape() get the source id of a dictionary item given the

shape

- SetDestldByShape() set the destination id of a dictionary item given the

shape

- GetDestldByShape() get the destination id of a dictionary item given the

shape

- GetShapeBySrc() get the shape of a dictionary item given the source

- GetShapeByDest() get the shape of a dictionary item given the

destination

35

)

)

- SetText()

- GetText()

- Duplicate()

- Cut()

- UndoCut()

- DoWrite()

- DoRead()

- Is_a()

attach text to the arrow

get text attached to the arrow

duplicate the arrow, used when a composite box is

flattened

delete the arrow

undo the delete action

save the arrow to a file

read the arrow from a file

return the object type

The DataArrow and ControlArrow classes are the direct subclasses of the Arrow

class. Some of the member functions of the Arrow class have been overriden

in its subclasses, e.g., Cut(), UndoCut(), Duplicate() and Is_a(), etc ..

The Operator Class

Instance Variables :

- fldentity

- fDatalnList

- tDataOutList

- fCntrlnList

- fCntrOutList

- fContainer

- fShape

Member Functions:

- Adjust()

- Cut()

- UndoCut()

- Duplicate()

the unique id of the opertor

a list for the data-in arrow(s) connected to the

operator

a list for the data-out arrows(s) connected to the

operator

a list for the control-in arrow(s) connected to the

operator

a list for the control-out arrows(s) connected to the

operator

the direct container of the operator

the shape of the operator

inform the arrows attached to the operator to adjust

the coordinates and sizes as the operator is moved

delete the operator

undo the delete action

duplicate the operator used when flatten a composite

box

36

- DoWrite()

- DoRead()

- Is_a()

save the content of the operator to a file

read the content of the operator from a file

return object type

All the data operators and control operators are the subclasses of the class

Operator. Note that the fields fDatainList and fDataOutlist of the Operator class

are used only by the DataOper subclass and fCntrinList and fCntrOutList are

used only by the CntrOper subclass. The reason to keep the four fields in the

Operator class is that this facilitates our implementation of flattening a

composite box. It should be pointed out that this way, an operator can be

treated just like a box.

3.2.2 HaRTS Shape Class Hierarchy

Corresponding to HaRTS data model class hierarchy, there is a HaRTS shape

class hierarchy, which is shown in Figure 3.13 . All the classes in this

hierarchy are the subclasses of the Shape class in Figure 1.4. In addition to

inheriting from the superclass, our classes contain new data fields, new

) methods and/ or overridden methods.

)

Figure 3.13 HaRTS shape class hierarchy

For each class in the model class hierarchy, there is a correspondent in the

shape class hierarchy. This correspondent relationship is shown in Figure

3.14. Note that all the operator classes correspond to the MyCircle class.

37

)

MODEL VIEW

~, MyRectangle

~ - - - -, DataLine

I ControlArrow ~ ----f Contro!Line

~
~-' -
~ ___ E
~ _ ~ : : :: : MyCircle

L=:J- -- ✓
--✓✓ ~- //

/

EY
Figure 3.14 The correspondence between the model and shape classes.

MyRectangle Class

The MyRectangle class provides the graphical shape for the class Box.

Instance Variables:

- ITheObj

Member Functions:

- Drag()

the box represented by the shape

move the box shape on the window and inform the

box

- Grow() grow the box shape on the window and inform the

box

- GetLabelPosition() calculate the coordinates of the text attached to the

box shape

- ls_a() return the shape type

38

)

DCLine Class

The DCLine class is the subclass of the Composite class. 'DC' means data and

control. The purpose of using the Composite class is to make a new shape from

several existing shapes. In our implementation, the shapes of the data and

control arrows are the combinations of the simple shapes. For example the

shape of the data arrow shown in Figure 3 .15 is the combination of a line from

a to b and an arrow line from b to c.

a

b l ______ ►► c

Figure 3.15 A example data arrow shape

Instance Variables:

- ITheObj

- fLabel

- fExternal

- flnOut

- f'StartPt

- fEndPt

Member Functions:

the arrow represented by the shape

the text shape attached to the arrow shape

the type of the arrow shape: internal or external

the direction of the arrow shape: entering the page

from the top or left or exiting from the right of

bottom, useful only for an external arrow

the start point of the composite shape

the end point of the composite shape

- Drag() drag the shape on the window

- Grow() grow the shape on the window

- GetLabelPosition() calculate the coordinates of the text attached to the

arrow

- DrawingRubberShape() draw the rubber shape

- Resize()

- ls_a()

Adjust the size of the shape according to the new

coordinates

return the shape type

39

)

)

Both the DataLine class and the ControlLine class are the subclasses of the class

DCLine. The methods GetLabelPosition(), Grow(), Resize(), and Is_a(), etc., have

been overridden in the subclasses.

MyCircle Class

The MyCircle class which supports the shapes of all the operators is the

subclass of the Composite class. The shape for each operator is the combination

of a circle shape and a label shape. For example, the shape of the IF operator

shown in Figure 3.16 is the combination of a circle shape and a IF label shape.

• ®
Figure 3 .16 A example IF operator

Instance Variables:

- fTheObj

Member Functions:

- Drag()

- Is_a()

3.2.3 The Scene Class

the operator represented by the shape

move an operator shape on the window and inform

the operator

return the shape type

In this section, we briefly describe the scene class of the framework which we

found quite useful in event handling and coordinating user interface

instances.

A scene object connects a menubar, a palette, and a serial of windows [9]. These

standard user interfaces are tied together through a scene. Figure 3.17 shows

an example of scene, which contains a menubar, a palette, and two windows.

40

)

File Edit

IIA
DO X

L7
REffAT IF

Uiew

....

Window ·

context

□ - context

SKIP CASE-------1 _x -►~ I _B _ __.

Figure 3.17 A example of scene

-

I
"°"

For each design, there is a corresponding scene object which connects its

) menubar, its palette, and its windows. Note that the number of windows of a

design is in general dynamically changing during the design and as a window

is opened or closed, it is added to or deleted from the scene. The scene object is

responsible for coordinating the interactions among the user interfaces (i.e.,

the menubar, the palette, and the windows,). This saves programmers much

effort in event handling and organizing user interfaces.

We now illustrate the usefulness of the scene concept through the example in

Figure 3.17, where the selection icon in the palette is currently being selected.

Now, if the user clicks on the window at the back, it becomes active. With the

new front window, users may select a different icon in the palette, say, the

'rectangle' icon . Then, if the user switches back to the original front window,

the status of the palette is automatically recovered, that is, the selection icon

becomes selected again . It is the scene object that is responsible for

remembering the different palette statuses associated with the different

windows.

41

The scene in Figure 3.17 is for one design. Now, assume that the user opens

) another scene (another design) by selecting the Open item in the File menu.

)

See section 3.1. As a result of this opening, the original front scene becomes

inactive and this is reflected by hiding the menubar and palette of the scene

and making its windows inactive. The new scene becomes the active scene. Its

men ubar and palette are visible and its context window becomes the front

window. Now, if the user switches back to the first scene by clicking on one of

its windows, its menubar and palette become visible automatically and their

statuses are restored. Again, it is the scene object that is responsible for

coordinating the change from one scene to another.

It must be pointed out that the Scene class should not be directly instantinated.

You must subclass it to use it because the following three methods of the Scene

class: CreateWindow(), CreateMenus() and CreatePalette() are virtual classes

and must be overridden. The reason that these three methods are virtual is that

different applications have different menus and different palettes.

The MyScene class, shown in Figure 3.18, is the subclass of the Scene class. The

methods CreateWindow(), CreateMenus() and CreatePalette() have all been

overridden in the MyScene class. The CreateWindow() is responsible for

creating a new window and adding the window to the scene. The

CreateMenus() is for reading the menus from the resource file, and adding

them to the menubar and then drawing the menubar. The CreatePalette() is for

reading the palette from the resource file and then drawing the palette.

Scene

Figure 3.18 HaRTS Scene class hierarchy

3.2.4 The GraphicsView Class

The GraphicsView class of the framework is responsible for handling events

J related to the graphical objects shown inside a window. For example, select or

42

)

drag a graphical object inside a window, etc .. MyGraphicsView is the subclass

of the GraphicsView class, in which new data fields and new methods have

been added and some existing methods have been overridden.

In terms of the MVC paradigm, HaRTS class hierarchy is the domain specific

model (M). HaRTS shape class hierarchy corresponds to the view (V). The

GraphicsView class corresponds to part of the control (C). The other classes

corresponding to the control include the Scene class, the Window class, the

Menu class, etc .. These classes except the Scene class can almost be used

directly and as a result, we omit discussing them here.

Instance Variables:

- fFirstSelectedShape the first shape selected when the mouse is

pressed down to add a new data/ control arrow

- fSecondSelectedShape the second selected shape when the mouse is up

in adding a data/control arrow

Member Functions:

The following methods are new methods:

- CreateABox() create a box

- CreateALabel() create a label (object) and attach it to a box/arrow

- CreateADCArrow() create an arrow

- CreateAnOperator()

- AttachAnArrow()

- ChangeSource()

create an operator

attach an external arrow to a box/ operaor

update the source of an arrow when the source of

the arrow is changed

- ChangeDestination()update the destination of an arrow when the

- Read.AB ox()

- ReadAnArrow()

- ReadAnOperator()

- Flatten()

destination of the arrow is changed

read a box from a design file

read an arrow from a design file

read an operator from a design file

detect the flatten command, open a new window and

then inform the selected composite box to flatten

itself

43

- CleanUpWindow() clean up a window by recalculating the coordinates

of the graphical objects so that the boxes are shown

along the diagnol of a window

The following methods are overriden methods:

- UserNewShape() create the application-specific shape

- UserBeforeTrackMove() do application-specific initializations after

the mouse is pressed down but before the

mouse is moved, e .g., storing the initial

position of the mouse, etc.

- UserDuringTrackMove() do application-specific actions after the

mouse is pressed down and moved but before

the mouse is up, e.g, drawing the rubberband

of a shape, etc.

- UserAfterTrackMove()

- UserCheckAction()

- DoubleClick()

- ReleaseMouse()

- DoWrite()

- DoRead()

- Cut()

- Undo()

- Redo()

do application-specific actions after the

mouse is up following a mouse down, e.g,

creating a box or arrow depending on the

current pallete status, etc.

determine the application-specific action

type, e.g., creating a box or an arrow, etc.

keep track of user clicking actions to

distinguish between single click and double

clicks

determine the user action type, e.g.,

dragging, growing, etc.

save the current design to a design file

read from a desing file and recover the

hierarchical design

delete the selected object

undo a command

redo a command

44

)
4 Conclusion and Future work

We have described a hard real-time system design tool, HaRTS, which supports

a hierarchical design diagram. The design hierarchy separates a design into

self-contained subdesigns and yet, the design can be flattened to give a global

view. In a distributed environment, the design hierarchy provides a natural

way for assigning subdesigns to different processors. The design diagram

combines the control and data flow of a hard real-time application and, as a

result, is quite intuitive.

We have illustrated the HaRTS user interface and described the

implementation of HaRTS. HaRTS has been implemented on Macintosh through

specializing an object-oriented application framework, Objex. Our experience

has demonstrated that Objex is quite useful in implementing GUI applications

like HaRTS.

The framework helps me in developing object-oriented code which has better

understandability. Essentially, every object you see on the screen has a direct

) correspondent in the program. This helps both programmers and maintainers

understand the dynamic behavior of the program. The software reusability of

Objex provides a powerful means for reducing software development cost and

improving software quality.

I must point out that there are some detailed implementations which are not

mentioned here. For each HaRTS specific class, in addition to the instance

variables and methods which we have listed in section 3.2, there are still more

instance variables and methods. For example, flattening a composite box is

quite complex. In the box class description in section 3.2.1, we have simply

mentioned the method FlattenABox(). Reading a design from a file is another

example. Recovering the design hierarchy from a linear file is not easy. The

interested readers can find more implementation descriptions in the header

files of the program.

There is still much work left to be done to complete the framework. As pointed

out in the introduction, the HaRTS design diagram can be automatically

translated into Ada™ code and analyzed for scheduleability [11]. The current

45

implementation of HaRTS should be extended to incorporate code generation

) and design analysis.

We believe that a kind of software database storing frequently used algorithms

for hard real-time applications, maybe in the form of a class hierarchy, will

be very useful in reducing the cost of developing such applications. Once such

a software database is added to our design tool, the functions specified in

atomic boxes can be either retrieved from the database or directly input by

programmers. As shown in section 3.2.3, there is a class scene reserved for this

purpose.

Furthermore, the design diagram is essentially control-oriented. The variables

associated with the data-in arrows of a box are read when a control stimulus

reaches the box and the variables associated with the data-out arrows are

updated when the box finishes its execution. To clearly see where each data is

used, a different view, data view, of the same design is needed. Under this view,

data access specifications are drawn around data stores. As shown in section

) 3.2.3, there is a data scene reserved for this purpose.

_)

References

[1] AK.Mok, "Fundamental Design Problems of Distributed Systems for the

Hard Real-Time Environment", Ph.D. Thesis, Massachusetts Institute of

Technology, May, 1983.

[2] Jiang _Zhu, T. G. Lewis, and Jean-Yves Colin, "Scheduling Hard Real-Time

Constrained Tasks on One Processor", Tech. Rep. #93-60-16, Computer

Science Dept., Oregon State University,June, 1993.

[3] Jiang Zhu, T. G. Lewis, Weldon Jackson and Russel L. Wilson, "Design and

Analysis of Hard Real-Time Applications in a Uniprocessor

Environment", Tech. Rep. #93-60-17, Computer Science Dept., Oregon

State University, June, 1993.

46

.)
[4] Liu Sha and John B. Goodenough, "Real-Time Scheduling Theory and

Ada", Computer, Vol. 23, No.4, April 1990, pp 53-62.

[S] T.P. Baker and A. Shaw, "The Cyclic Executive Model and Ada", Real-Time

Systems Symposium, Huntsville, AL, Dec. 1988, pp. 120-129.

[6] Ted G. Lewis, Huan-Chao Keh, Chung-Cheng Luo, "Software Design with

Frameworks Featuring The C++ Objex-by-Design Method", Computer

Science Dept., Oregon State University, 1992 .

[7] Chung-Cheng Luo and Ted G. Lewis, "Oregon Speedcode Universe 3.0

Programming Manual", Tech. Rep. #91-60-13, Computer Science Dept.,

Oregon State University, 1991.

[8] Walter I. Wittel Jr., "Integrating the MVC Paradigm into an Object­

Oriented Framework to Accelerate GUI Application Development", Tech.

Rep. #91-60-6, Computer Science Dept., Oregon State University, 1991.

[9] Qj.uhui Ke, "The Scene Model:Extending Functionalities of the Objex

Application Framework", Tech. Rep. #92-60-13, Computer Science Dept.,

) Oregon State University, 1992.

[10] Goldberg, Adele J. "Smalltalk-80:The interactive Programming Environ­

ment", Addison-Wesley, Reading, MA, 1984.

[11] Jiang Zhu, "Design and Analysis of Hard Real-time System", Ph.D. Thesis,

Oregon State University, Nov., 1993.

[12] Ted G. Lewis, "CASE: Computer-Aided Software Engineering", Van

Nostrand Reinhold, New York, 1991.

47

_)

Aclmowledgements

I would like to thank my major professor, Dr. T.G. Lewis, for his guidance and

discussions with me throughout the project.

My special thanks go to Chung-Cheng Luo, an expert on Objex, for his valuable

help in implementing HaRTS.

My gratitude to my parents can hardly be expressed in words. Their

encouragement and support are the real force that keeps me moving forward.

I am grateful of my husband, Jiang Zhu, for his confidence on me and his

support for me to pursue my academia.

48

