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I Introduction 

The problems of determinin g whether or not a digital circuit operates 

correctly, and of ensuring its correct opera tion even when some of it s parts 

fail are of both practical concern and theoretic a l interest. Present-day 

digital systems may be dis a bled by alm ost any internal f a ilure, and the 

trend toward . mini at uriz a tion makes the problems of maintenance and f au lt 

detection even more urgent • . · Digital systems may suffer two cl asses of faults: -

tempor ary faults, which occur due to noise and the nonide a l tr ansient be havior 

of switching components, and permanent faults, whJch result from component 

failures. We shall primarily be concerned with perm anen t faults due to 

component failures. It is assumed that other procedures will ·be employed 

to protect the circuit against the effects of transient faults. 

One way of determining whether a combinational circuit operates 

properly is by apply in g to the circuit a ll possible input combin a tion s 

and comparin g the resultin g outputs with either the correspondin g truth 

table or a faultless version of the same circuit. Any deviation in dica t es 

the presence of some fault. Moreov er, if a known relationship exists 

between the various possible faults and the deviations of output patterns, 

it is possible to diagnose the fault and to classify it at l east within a 

subset of f aults whose effects on the circuit outputs are identical. Such 

exhaustive tests are genera lly ver y lon g, and in many cases impractical. 

In order to arrive at fault-detection procedures which will be 

relatively easy to devise and short enough to be pr actica l, it is necessary 

to make several _simplifyin g assumpti ons. In this paper we sha ll develop 

procedures for circuits composed of loop -free interconn ecti on s of AND7 OR, 
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NOT, NAND, and NOR gates. That is, feedback: loops are not allowed in 

the circuits being tested. We shall be concerned primarily with procedures 

for the detection of single fault. All the tests are developed for irredund-

ant combinational circuits. If a circuit contains logical redundancies, not 

all faults are detectable, since a redundant connection may be cut without 

altering the logical value of the function. 

A permanently open diode, or a cut input connection to an ANTI or 

NAND gate, is logically equivalent to having the input 11stuck:-at-one 11 • 

A permanently open diode, or a cut input connection to an OR or NOR gate, 

is logically equivalent to having that input "stuck-at-zero". In design­

ing fault-detection tests we shall be concerned only with those faults 

which cause any wire to be (or appear logically to be) stuck-at-zero or 

stuck-at-one (abbreviated ·s-a-0 and s-a-1). Restricting our consider­

ation to just this class of faults is technically justified since most 

circuit failures fall in this class, and many other failures exhibit 

symptomatically identical effects. 

Now, several methods have been commonly used for the design of 

minimum length fault tests for combinational circuits. Most of the 

methods use either of the four techniques: 11Map11 , 11Tabular 11 , t1Matrix 11 , 

or 11 Scoring". There are four typical methods considered in the follow-

ing sections, and each of these corresponds to one of the techniques 

named above. Also, these four tyPical methods are relatively easy to 

use and result in tests that are short enough to be practical. However, 

there is no method that can give an absolutely minimum lenr,th fault test 

among all possible designs except those on the simple circuits cont ainin g 

only a few variables. 'rhe four methods we shall consider have been gleaned 

from the original literature and some critical comments on each original 
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paper will be provided. We discuss two-level circuits in sections II-1, 

II-2, II-3, and III, fo~ which the "map", "t abu lar", and "fixed schedule 

(F-4 G matrix)" methods are applied. Multilevel circuits are considered 

in section II-4 and IV, and for those the "tabular" and "scoring" methods 

are applied, 

II Map and Tabular method 

II-1 Boolean difference function ( 1) fault tests 

Before developing test generati on by this technique, let us first 

discuss the Boolean difference function itself, which is the theoretical 

support on wh.ich the map and tabular methods are based. 'l'he Boolean 

difference function can be expanded to fom two analytical expressions 

that can be used to calculate the tests for any s-a-0 and s-a-1 fault 

within combinational circuitso The map and tabular methods of developi~g a 

fault test can be developed directl.Y from these analytical expressi ons . 

The minimum test for the . complete circuit can then be taken directly from 

the map or table as we shall illustrate subsequently below. 

For svdtching function F, the Boolean difference function with 

respect to vari able x. is defined as: 
l 

.. ,dFJ~L. = F(x 1,x 2 , ••• ,:ic., ••• ,x- ) ,G).F(x 1 ~x2 , ••• ,x., .•. ,x) 
1 .n . 1 n 

l 

which describes the condition which by a change in a var iable xi will cause 

a change in the output. Of course Fis the lo gic a l function correspo!"lding 

to a combination a l circuit. Notice, the variable x . does not appear a t the 
l 

ri ght side of dl~~ ) , as follows immediat _ely from an argument based on tre 
l 

usual Shannon expansion about variable x 1 : 
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For 

F(x 1) = 

. dF(x 1) 

ax1 
= (x 1f 1+ x 1f 0 ) ~ (x 1f 1 + x 1f 0 ) 

= (xl 1+ x;f o) (x1f 1 + x lo)' + (xl 1 + x ; fo )' (x;f 1 + x~fo) 

= x1flo + x 1f 1f 0 + x 1f 0f 1 + xl1fo 

= flo + f 1f 0 

= g (x2, • • •, xn ) 

example: 

F(x,y) = x'y 

For x: For y: 

f1 = 0 f1 = x' 

r;. = 1 f' 1 = X 

fo = y fo - · 0 

f' 0 = y' f' 0 = 1 

dF(xtYL 
ax = f f' + f' f ' = 0 • y' 1 0 1 0 + 1 • y = y 

dF(xty~ 
dy = x' • 1 + X • 0 = ·-x 1 

This definition of the Boole an difference function has some di s­

advantages: the first · disadvanta ge is due to the fact that th e Boolean . 

differ en c e of a function with respect to a variable does not distin guis h 

between the effects of that variable changing from a one to a zero and 

from it changin g fr om a zero to a one. It a l so do esn I t give any in­

fomation about the effect of the variable perturb a tion on the output, 

i.e., whether the output changes from a one to a zero or a zero to a one. 

In order to overcome the problem of not knowing which test is valid for 
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a s-a-0 fault condition, the variable can be logically appended to the 

Boolean difference taken with respect to the variable question, i.e., 

' 
x. (dF(x)/dx.) will yield the equation for which a change in x. from one 

l l l 

to zero will cause a change in the circuit output. Conversely, the 

equation for a change in x. from zero to one can be obtained by 
l 

x. (dF(x)/dx.). We will use the symbols 'fJx.F for x. (dF(x)/dx.) and Ax.It' 
1 l l l l l 

for xi (dF(x)/dxi). 

The problem of detemining what the correct output should be for 

a given test can be solved by intersectin g the tests for a s-a-1 and 

s-a-0 with both the function and its inverse. We now define two equations 

that define completely the test for an individual fault: 

\]x.F = dF F) x. -- cf ... (1<., 
' (1) l l x. 

l 

/1x.F = - d}<-, 
(F F) (2) x. dx. ' l l 

l 

In these two equations, the tests for the variable x. s-a-1 and s-a-0 ar e 
l 

intersected with the ordered pair (F , E') • Equation ( 1) gives the test 

that will detect a s-a-0 f ault in variable x., and furthemore it partitions 
l 

these tests into tests correspondin g to a one or zero output for the overall 

circuit output F. Equation (2) yields the tests for variable x . s-a-1 and 
l 

partitions them according to their effect on the circuit output. Ji'or 

example, 

then 

F = A'B + BD + ACD 

dF a:r = (A I B + BD +ACD) (l) (AB +BD + A I CD) 

= (.A':B+BD+ACD)' (AB+BD+A1 CD)+(A1 B+BD+ACD)(AB+BD+A'CD)' 

= A'B'CD + ABD1 + A 1 BD1 + AB'CD 
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= B1 CD + BD1 

From this we see that 

dF V Al"= A a7r = AB'CD + ABD' 

So the test will be AB' CD (ADD' is undetemined on C, so neglected) for 

s-a-0 on A. Now, what should the output of F be if we apply AB' CD (i.e. 

1011) as an input? 

Since F = A1 B + BD + ACD 

whence F = A1 B1 + B'C' + B'D' + AD' 

by conventional a l geb r ai c methods. 

Now, AB'CD is intersect ed with F (since ACD is in F), but not with F, 

so the output of F will be 1 if we apply AB'CD (1011) as an input 0 

Also 

fl F =A_£_= A'B'CD + A1 BD1 
A dA 

A1 B1 CD is intersected with F (since A'B' is in Ii') , but not F, so the 

output of F will be 0 if we apply A'B'CD (0011) as an input to test A 

s-a-1. 

If we complete each derivative with respect to B, C, and D, then 

we will ge t a test set: 

(ABC'D 1), (AB1 CD 1), (A' BCD1 1) 

(ABCD' o), (A1 B1 CD o), (AB'C'D o) 

The one or zero in the se terms mean fault-free output. 

In following sections II-2 and II- 3, we wi ll discuss map and t a bular 

methods, and both of the[ ;e t wo method s are based on the Bool ean difference 

function. 
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II-2 Map method 

At first minimUJTI, two-level, sum-of-products circuits will be 

considered. We will discuss multilevel circuits later, sin ce they 

need "p a th sensitizing 11 techniques beside s those yielded by map and 

t abular techniques. Assume, then, th at we have a sum-of-product ex­

pression consistin g of three product term s : 

where x 1, x2 are literals th a t we wish to test, and x is another set 

of independent lit era ls. TT 1, TT2 , and TT 3 are in product forms . How, 

we examine the literal x1 • The Boole an diff erenc e with respec t t o x1 

is: 

and 

and also 

as illustr ated in se ction II-1 

Consid ering Vx1F carefully, one can easily find that the t est for x 1 

s-a- 0 must be chosen from the uniqu e minterms of th e function which 

is chos en from V x1F ( s ince there is no complement symbol on th e above 

of x 1Tt~ (x)). Unique mint erms of the function are the minterms in a 

gi v en term but not in any o ther term of the function. Simi l ar ly 9 a 

test for x 1 s-a- 1 must be chosen from/j_x 1F. Following these .ob servations, 

the map method for obt a inin g a complete an d minimum test for a sum-of-
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products implementation of a logic express ion is given by the following 

steps: 

Step 1: 

Step 2: 

Choose one unique mintern from each tern in the expression. 

Choose a set of x.- adjacencies from F that completely test 
l 

all literals of each term. 

Of these two steps, the more difficult is that of choosing the proper set 

f d . . 1 . t 2 o xi- a Jacencies ins ep • In lookin g for a minimum set of adjacencies 

we are in reality interested in looking for the adjacency with the most 

covera ge. (11 Coverage 11 is used here to mean that an adjacency is adjacent 

to more than one tern of the function.) To aid in the selection of 

adjacencies it is advantageous to label each adjacency with a number 

that corresponds to the nUJT1ber of terms to which it is adjacent. For 

example, consider the map in Fig. 2 for the circuit of Fig. 1. In the 

map of Fig. 2 the minterm A1 B1 CD is labeled with a 3 since it is adjacent 

to the terms BD, A I n, and ACD. Blank seq ares are not xi- adjacent to 

any term of F. 

A A =>-B 2 3 I I 
B 

C -F r i T· I IJ 
D 

2 I 3 2 

D- "---------' 

j 1 1 

C 

l<'ig.1 Circuit for J!"=A I B+BD+ACD J?ig.2 Map for circuit of Fig.1 

The minterms of AB1 C1 D and A1 B1 CD, labeled 2 and 3, respectively, 

are essential since AB1 C1 D is the only term that is C-adjacent to ACD. 
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As a by-product which are also TI-adjacent to BD and A' B. After choosin g 

these two essential tests we must choose the remaining tests so a s to 

complete ,the entire test schedule. We proceed by selecting the minterm 

with the highest number of in Fig. 2. In this case the 3 _c<?rresponding 

to the term ABCD' is investigated, it is D-adjacent to ACD, D-adjacent to 

BD, and A-adjacent to A'B, with the selection of test ABCD' we have a 

complete test as shown in Fig. 2. A minimum test is then 

(ABC1 D 1), {AB'CD 1), (A1BCD' 1) 

(ABCD' o), (A'B'CD o), (AB1 C1 D o) 

'11he one or zero in these terms indicates the fault-free output when the 

inputs are set to the value described by the associated minterrn. Now 

we have determined that the test schedule indicated is ( 1101, :1011, 0110, 

1110, 0011, 1001). 

Il-3 Tabular method(3) 

The procedure in the map method suffers from the limitation 

inherent in any operation involving a Karnaugh map. When the 

number of variables increases, the manipulation of the map becomes 

unwieldy. In this case the tabular method and other methods such 

as those described in the following sections must be considered. 

To apply the tabular method we shall construct a so-c a lled 

testin g table which consists of aJ1 array of u columns and v rows. 

In this context, u design a tes the total number of in puts to a ll 

the A~D gates, and v designates the number of possible s- a-0 ancl 

s-a- 1 tests. Each AND gate input defines a column headin g and 
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every possible test defines a row heading. The s-a-0 and s-a,-1 

tests are arran&ed in two disjoint gr oups and the column he adings 

are grouped by ga tes, as shown in Fig. 3 for the circuit of our 

runnin g example: 

f(A,B,C,D) = A1 C1 + C1 D + ABD + BCD' 

The table contains ten columns correspondin g to the ten AND gate 

inputs, and 13 rows (It should be 16 rows in the table. However 9 

1, 5, 13 are removed since they a re cont a in ed in two true subcubes) 

corres pondin g to the pos sible s-a-0 and s-a- 1 tests. (Reca,11 th at 

every input combination for which f=1 and which is cont a in ed i n onl y 

one true subcube is a valid s-a-0 test, and every input combination 

for which f =O and which is contain ed in a subcube adjacent to a tru e 

subcube is a valid s-a-1 t es t). The entries of the ith column in the 

table consist of x ' s placed a t the inters ect ion with the r ows th at 

correspond to s-a- 0 an d s-a- 1 te s ts fo r the i th input. The problem 

now is to select minim a l subsets of s-a- 0 an d s-a- 1 t ests, such th at 

each column contains at le as t one x in an s-a- 0 row and one x in an 

s-a-1 row correspondin g to the s elected sub .se ts . We can summarize t he 

process by showing how we first detemine · the essential tests and then 

proce ed to find a cover. (Sometime s, two or more t ests are va lid for 

detectin g the same f ault . In this case, only one of them is used.) In 

the pr esen t exampl e, t est 9 and 15 are esse nti a l in th e s-a- 0 group, 

and t es ts 7, ·11, and 12 a.re essen ti a l in the s-a-1 e;roup. The complete 

experiment consists of t he follo wing eight t es ts : 

{ 7, 9, 11, 12, 15, 0 or 4, 6 or 14, 2 or 10} 

10 
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I f on e uses the map method, the same result will obt a in, a s the interested 

reader can VPrify. Again, we can dis t inguish the faults betw een s-a-0 and 

s~a- 1 wit h the ab ov e eigh t i nputs. (Usua ll y, i t is unnecessary to mal<e 

th is di s t in c ti on, if we are only concer n about the f au lt de t ect.ion. ) 

q~ te. t G-ii te. 2. C:fAte. .3 tj-;ite 4 

Al I c/ J) A 13 J) B C J) I c.. . .,., 0 X. f.. ...., 
] 4 ~ X. 
a 6 X X ;<. 
I 9 X. ;,< 

((j" 14 ')( X X I 
V) 

I 5 -x :x'. /... 

2 1- X 
") _3 /.. 'K -1.) 

';J 7 '/-.. A X )<, 
...µ 

i X. '/... - X I /0 
r';S' 

I I f.. X. r 
V) 

/ 2 'A 1' X X 

Fi g .3 Testing Tab l e 

Alth ough this method vras demonstra t ed for the case of Al'ill-OR loe;ic, 

i ts extensi on to OTI-AliJD l ogic ~md NAND-NOR l ogi c is strai ght-for ward. 

and wil l not be discussed further. 

II-4 Mult i level Circuits 

II-4- 1. Path sensitizing (4) 

Before examininG the details for multilevel circuits, vre 

sha ll first discuss the idea of 11path sensitizin G" . The ma in id ea 

behind the path-sensitizing procedure will be i ll ustrated by deriving 

a t est which de t ects a s-a- 1 fault at input A of li'ig.4. 

11 
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A 
1 
1 

Fig.4 A portion of a circuit describing a sensitized path 

Suppose that this pa.th is the only one from A to the circuH output. 

In order to test a s-a-1 fault at input. A, it is necessary to apply 

a O to A and 11 s to all remaining inputs to the AND and NAND gates 

in the path, and O1 s to all remaining inputs to the OR and NOR c-ates 

in the path. This ensures that all the gates will allow the pro­

pagation of the signal from A to the circuit output, and that only 

this oignal will reach the circuit output. This assignment of values 

is sho1m in li'ig. 4. 1.rhe path is now said to be sensitized. 

If input A is s-a-1, then m, the output of the NAND gate, chan r,es 

from 1 to o, and this change propagates through connections n and p and 

results in point q changing from Oto 1. Clearly, in addition to detect­

ing a s-a-1 fault at A, this test also detects s-a-O faults at m, n, and 

p and a s-a-1 fault at q. A s-a-O fault at A is detected in a similar 

manner. A 1 is applied to A, while other . gate inputs remain as before. 

This second test would also detect the complementary set of faults to 

those detected b;y-the previous test on this path. IJ:'hus the two tests 

t ogether are sufficient to detect all s-a-O and s-a-1 faults on this 

path. 

Consequently, if we can select a set of tests which sensitize a 

set of paths containing all connections in the circuit, then it is 
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sufficient for the detection of just those faults which appear on 

the circuit inputs. In circuits in which each gate output is con­

nected t o just one gate input, there is only one path fr om each cir­

cuit inpu t to the output, and thus the set of paths originating at 

the inputs will indeed contain all connections. In circuits which 

do not possess the above property, care must be taken to include all 

connections in the selected set of sensitized paths. As we shall see, 

such sets of sensitized paths can be found for most circuits, but 

there is no guarantee that they exist for every circuit. For example: 

A 
1 ·➔ 0 

/➔ 0 

13 
I ,-- - --7 

I; ➔/ 1 I- - ___ j I --,, I 
F 

/➔0 
J) I 

I 
O ➔ I 

(_ 

If often occurs that an assignment of values to the circuit in­

puts sensitizes several paths simultaneously. Moreover, in general, 

a path may be sensitized by assigninG' values only to a subset of the 

circuit variables. (Since some other variables are not involved in 

through the sensitized path.) In many ca s es this makes possible the 

assignment o.f the remaining variables in such a way that several paths 

will be sensitized simultaneously in one test_ Unfortunately, no 

efficient direct methods are available for the selection of thes.e 

tests for multilevel circuits. In order to utilize these properties 

and t o find a good (i.e., nearly minima l) set of tests, it is necessary 

to first transform the circuit into its "equiv a lent norma l form 11 and 
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then to derive these tests .from the transformed circuit. 

The equivalent normal fom of a switching circuit is obt ained 

by expressin g the circuit output as a sum of products such that each 

path has a corresponding distinct product term. As an example, consid er 

the circuit of J?ig. 5, which has four input var iables, A, B, c, and D, 

and one out put T. The gates are numbered 1 throu gh 7, and the internal 

conn ections are l abeled by the letters i,j,k,m,u,v. 

The test that can be derived from the equivalent normal from are 

obtai ned by tracin g all paths from the circuit output to every circuit 

input, whi l e recordin g the ga tes throu gh which the paths pass. Starti ne; 

with gate 7, we obt ain 

I 

c' f0 A-.-~ J 
J)--- -L? t. I 

I 

I 
I 
I 
I 
I 
r 
I 

Level 5 

I 
I 

/_eve../ 4-

B----1 

I 

I 

I 
Le..ve/ 3 

I 
I 

I 
Leve.! 2 

Fig.5 A circuit to be te sted 
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where the subscript 7 identifies the gate throu gh which inputs u 

and v pass. Proceeding to the second level of gates, we find 

In a similar manner we expand Tin terns of inputs to remaining 

gate levels. 

T = ((Bj)4 + ((j')5(B' + D')3)6)7 

= ((B(A' + i) 2)4 + (((A' + 1)2)5(B' + D1 ) 3\) 7 

(3) 

= ((B(A' + (C'D)1)2)4 + (((A(C + D')1)2)5(B' + D')3)6)7 

The output T is now expressed as a function of onl;y- the external inputs. 

The subscript associated with each pair of parentheses is now 

"distributed" to all the terms within the parentheses, and as a 

result the expression for the equivalent norm a l form is obtained 

as follows: 

Each variable of the equivalent nomal form, together with its 

subscripts, uniquely specifies a path from the correspondin g circuit 

input to the output. For example, B367 in the third term of T 

specifies the pat h from input B' into ga te 3, throu gh gates 6 and 

. 7 to the . output, while literal A2567 identifies the path from input 

gate 2, throur;h cates 5, 6, and 7 to the output. In genera l, if the 

number of inver sion elements within a path (i. e., NO'l', NAl'JD1 ond NOR 

gates) is odd, the correspondin g variables wi ll appear in the equiv a lent 

normal form in a polarity opposite (say, A---=;- A 1 , or D'---? D, etc.) 

to the one it has in the circuit. If the number of inversion elements 
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is even, the polarity of the input variab le is unaltered. Although 

the circuit of Fig.5 is in minimal form, its corre _spondin g equivalent 

normal form cont ains several lo gically redundant terms, e.g., the 

fifth term. Note a lso that, for the prupose of fault detection, the 

literals D12567 and D367 are not equivale nt, since they identif y two 

different paths. 

We will also need the complemented equivalent normal form when we 

discuss the II Scorin g method" in section IV. , In that section, we only test 

the s-a-1 fault in both equi va.lent normal form and its complemented. 

equivalent normal form, instead of testin g the equivalent normal 

form for both s-a-0 and s-a- 1 faults. The complemented 0quiv'alent 

normal form for our running example is found by complementing Eq. 3 and ex­

pandin g it. This results .in 

'l'' = A2567B47 + A247'2567C1247 + A247A' 2567D1247 

+ Bl 1c12567D12567 + A247c1247c12567n12567 

+ A247c12567D1247n12567 + Bl1B367D367 

+ A247B367C1247D367 + A247B367D1247D367 

(5) 

A s-a-1 te st for A2567 in Eq. 5 is a s-a-0 test for A2567 in Eq. 4. 

In order to simplify the ·notation, let us replace the subscript 

sequences in Eqs. 4 and 5 as follows: 247~'1{, 47---t/!> , 1247--,,. Y, 

2567~ f, 367~ €., 12567--t °A. 'L'he mod_ified equations are repeated 

as follows: 

T = A);_Bp + B13c;fy + A;sCl\BJ + A,rC,1\DJ + A0 D;!_BJ + A;rD~DJ (6) 

16 
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'l'' = J\.}Bp + f\;_As--Cr + Ao1.A}D~ + B)C)~ + A.:,1.CyC~D,,_ 

+ Ao1..C{D~D-;-. + BP\'.DE- + Ao1.Be:Cl'De-+ J\.,,,<.BcD~De 

II-4-2 Design of the Experiment 

We shall now use the ideas of "path sensitization" and 

(7) 

11 equiv al ent normal form" for the design of fault-detection experi­

ments for multilevel combinational circuits. (These t wo ideas will 

also be used ag a in in section IV for desi gnin g tests by usin g the 

method ca lled the II Scoring Function".) An experiment will be designed 

for the equivalent norm a l form (two-level form) of the mutilevel 

circuit, and the experiment can be shovm to be valid for the 

original multilevel circuit as well ( 14). The technique is r a ther 

complicated, and involves separate computations for s-a-0 and s-a-1 

faults. It a lso depends on the order of testing of the liter a ls. 

This order is determined by assigning a score to each of the inputs 

of the equivalent normal fom, and, as is often the ca se, different 

scoring procedures yield different experiments. The testing method 

presented in this section (no scorin g is used) overcome s some of 

these limit a tions. However, like the method in reference (5), it 

does not guarantee minim a l experiments, nor is th ere a guarantee that a 

set of sensitized paths can be found for every circuit. The equivalent 

normal form of a switching circuit is obtained by expressin g the circuit 

output as a sum of products such that each path has a corresponding 

distinct product term. Thus the equivalent norm a l form for the 

circuit of fi g . 5 is shovm in Ii'ig.5-1. 
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'rhe techniques developed earlier for two-level circuits can now be 

applied except for the situation where the signal di verges into two 

differ ent paths and then reconverges. In our example AJ_ corresponds to 

the upper path and AcT corresponds to the lower one. 'rwo cases must now 

be considered: 

1) Both paths have either an even or an odd number of inversions in 

them. (An inversion is obtained by a NOT, a NAND, or a NOR gate. ) 

If these literals appear at different AND gates in the equivalent 

normal form, they may be tested simultaneously for s-a- 1 faults. 

Simultane ou s s-a-O tests, however, should be avoided. 

2) One path has an even number of inversions 9 while the other has an 

odd number of inversions. In this case no input combination can 
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be selected so as to test two complementary literals 

simultaneously for s-a-0 and s-a-1 faults. An immediate 

corollary is that if two complementary literals appear 

as inputs to the same AND gate in the equivalent normal 

form, no test can be found for any literal at the input 

of that gate. 

The fault-detection experiment for the equivalent normal form in Fig. 5 

will now be constructed. As before, we shall use the tabular method. 

Each distinct literal is assigned at the head of a column, and every 

s-a- 0 and s-a-1 test is assigned as a row heading. Literals associated 

with the same input but different paths (e.g., AJ, AO) are grouped 

tog.ether. The testing table is shown in Fig. 6. The table entries 

can be found with the aid of a map, Fig. 7, literal by liter a l. 
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All the procedures are the same as in the two-level circuit except 

for that the one special situation listed in page- 18 should be included. 

' 

As 3<n example, then, we shall consider two of the tests required 

in the test set on the circuit of Fig. 5. Only two examples wi ll be list ­

ed here for clarity: 

1) Literal AJ Form the map in Fig. 7 we observe that AJ is 

contained in only one subcube. 'l'heoretic a lly, the possible 

s'"'a-0 tests are 4, 6, and 7. But since 4 and 6 are adja c ent 

to a subcube cont ain.i:n g Ar, they are inv a lid te sts, beca us e 

each of them tests simultaneously the same original input in 

two complement ary forms for s-a-0 and s-a-1 ~ Thus th e only 

s~a-0 test is 70 The s-a-1 tests are determined by observing 

that 15 is the only a dj ace nt cell for whi ch T == O and in whic h 

the value of A . i s complementary to its va lue in the subcube 

bein g tested. We now enter the x in the te st in g table in 

column AJ rows 7 and 15. 

2) Liter a l~ : This literal is cont ained in two true subcubes. 

One of these subcubes is ArD~ DJ. But because thi s su bcub e 

contains t wo entries of the same variable (i. e., D'), which 

correspond to different inputs in th e orig in al cir cuit, none 

of the D' inputs in this subcube can be te sted .for s-a-1 faults. 

Hence the s-a- 1 test is 9. (Test 15 is invalid because it tests 

only the 11unt esta ble" A;, D~ DJ) the s- a-0 test is 8, because 

10 and 14 are cont a ine d in other true subcubes while 12 is 

adja ce nt to subcube BpC~ Dy and will simultaneously test Dv 

.for s-a- 1. 
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If we carry out this procedux·e we shall find th at the complete 

experiment is f7, B, 9, 11, 13, 15, (0 or 2 or 3),_ (12 or 14)] in this 

case. 

We will see that this result is the same as in section IV which 

discusses the 11 Scoring function" method. 

'rhe main reason for not being able to obtain minimal experiments 

is not due to the tesUng table, but to the way the equivalent normal 

form is constructed. A single circuit input may result in a number 

of different literals in the equivalent normal form. Eac h of these 

liter a ls must now be tested for s-a-0 and s-a-1 f ault s. This may 

result in redundant tests, which will increase the len gth of fault 

detection test. Again, we can distinguish between s-a-0 and s-a-1 f aults 

if the circuit does not operate properly. 

III Fixed schedule method: (F~ G matrix method) (6) 

The fixed-schedule solutions offered here can be carried out sat is­

factorily by hand for small networks, and on a di git a l computer for any 

combin a tional network . having up to eight to ten inputs, several outputs, 

and no more than about 100 faults. While some networks, much l arger th an 

this, can also be handled, at present there are no procedures for 

generatinc even reasonable good (almost minimum) test schedules for 

very large arbitrary networks. This problem and the problem of fault 

diae;nosis in sequential networks are considered to be the most imp ort ant 

subjects for further research on this area. 

Some of the procedures described below are cont a ined implicitly 
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in the literature (7), (s). 

Given a single-output combinational network; an analysis of it can 

be carried out in order to determine the effect that each of va rious hypo­

thetical faults has on its output. The result of such an analy sis may be 

expressed in a multioutput table of combinations like the one below: 

Xn - - - - - h X, f(, -f, f 2. - - . - . . f· - - - - -.) 

0 D 0 0 I 0 - - . - - - - - - 0 - - - - - --
0 D I I I () - - - - - - - 0 - - - . . . 

0 I 0 0 I 0 - - - - - - . I - - - - . -

I I I 0 0 0 ·- - - - - - I - - ~ - - . - -

where x1. x2, ..... ' X are the input variables to the network ; fo=f(x1 '½' .•. , n 

xn) is the the fault--free (correct) output, and f 1, f 2 , • • •• , fj'•••• a re 

the erroneous outputs, ea ch corr e spondin g to one of the pos sibl e f au l t s which 

the desired test sch edule is supposed to check. 'rh e left side of t he 

table simply lists all 2n possible combin a tions of the input va ri a bl e s. 

Since we are goin g to consider irredundant networks, no column f. is 
J 

identic a l to column f, also no two columns f .and f 1 are identic a l. So 
J <: 

all of the columns f = f 0 , f 1, r2 , ••• ., fm (s ay, form distinguis ha ble 

faults) will be different. V✓ e may collect the s e m+1 columns into a 2n 

row bin a ry "f ault t a ble" or "f ault matrix" F: 

; 
D I 0 -- - - - . 

i I 0 - - - - -

0 I 0 -- -- -··-

F = 

0 0 0 
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If a fixed schedule of input tests is to be employed to check a 

possibly faulty network, we are interested in economizing on the number 

of different test inputs (i.e., the "length 11 ) of such a test. The 

problem is therefore one of selecting a minimal subset of rows of the 

matrix F that preserves a certain degree of distinguishability among the . 

columns. More precisely, for the 11 detection 11 of any of the m faults, we 

want to delete from F as many rows as possible so that the first column is 

different from all other columns. 

We now show how the fault-detection problem may be converted to 

a familiar switching circuit minimization problem. Since we are only 

concerned about maintaining the distinctness between certain colunms of 

F, we may conveniently express each of the conQitions given above in terms 

of ma tri x G, each of tllo se columns is the modulo-2 Slilll of a cUfferent 

11 pair" of columns of F that are supposed to remain different. That i s, 

in the same row of both of the matrices F and G, a ·1 is entered in that 

column of ma trix G labeled with the pair (o, j) if the ~e;its in the two 

columns of matrix F labeled f 0 and f j are different, otherwise, a O is 

entered. When correspondi.ng rows of F and G are deleted during minimi­

zation, two columns of F will then remain distinct if and only if the 

corresponding single column of G does not become a column of all 0 1 s. 

Thus all the conditions stated before may be expressed as a single 

condition on the G matrix, namely: 

Delete from G as 1nany rows as po ss ible, so th a t every column 

is nonzero. (Condition X) 

The G matrix has just m columns, one for each column pair (f 0 , f .) 
' J 

( j = 1, 2, ••••• , m) in F. J◄'or the above example, we have 
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Condition X expresses precisely the problem of finding a minimal prime~ 

implicant cover of a given switching function from its prime-implicant 

table. Good so lutions to this problem are well known and have been 

programmed for execution on computers for quite lar ge talJles. (9) We 

shall now describe a version of this procedure which is adequate for 

solving simple problems by hand, and which also illustrates the two main 

steps in all of the programmed algorithms, as follows: 

1) Simplification of the table to delete certain superfluous rows and 

columns. 

2) Final selection of one or more minimal row subsets from the residual 

table. 

'I'he justification of the following simplifications for step 1) above is 

fairly obvious. 

a) Delete any row whose 1 1 s all fall in the same columns as the 11 s 

in some other row, that is, delete any row which is covered by, or 

is the same as, some other row. 

b) Delete any column which has 11 s in all of th e ro ws in which an other 

colwnn has 11 s. Tha,t is, delete an y column which covers, or is the 

same as, so me other column. 

'1'hese steps may be app li ed in any order until neither i s app lic a ble. 
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'fhe se lection of a minimal row subset S is made by first l abe lin g 

the rows of the simplified matrix G* with binary vari ables a, b, c, •••••• 

each of which will have the value 1 if its row is to be includ ed in s, 

otherwise its value will be o. We now fom a Boolean function L(G·*) as 

a product of sums, one sum per cohunn of G*, such that ea ch sum contains 

just those row variables assigned to rows in which the corres ponding 

column of G* has 11 s. The function L(G*) will therefore have the 

value 1 when and only when a sufficient subset of row variables a , b,c , ••• 

has the value 1, namely, vrhen every column G* is represented. Expa nsion 

of this product of sums into a sum of products then discloses as individu al 

products all of the a lternative row subsets which sa tisfy the column 

condition X. This allows the set S to be selected on the basi s of any 

product which has the least number of variables. 

As an example of this procedure, con sider the follovrln e ci r cuit fo r 

faults for which n = 4 and we have m == 4 the Ji' and G ma trice are thus: 

(Note: I use the same exa mple as in section II-2, i • e., F = A I B+BD+ACD) 

1 2 3 4 
A B C D 

/ 0 0 1 0 0 
0 0 1 0 0 
0 0 1 0 0 
0 1 1 0 0 
1 0 0 1 1 
1 1 0 1 1 
1 0 0 1 1 

F= 1 1 0 1 1 
0 0 0 0 0 
0 0 1 1 0 
0 0 0 0 1 
1 0 1 0 0 
0 1 0 0 1 
·1 1 0 1 0 
0 1 0 0 -1 

1 1 1 1 0 

a 0000 
b 0001 
C 0010 
d 0011 
e 0100 
f 0101 
r, 0110 
h 0111 
i 1000 
j 1001 
k 1010 
J. 1011 
m 1100 
n 1101 
o 1110 
p 1111 
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G = 

01 02 03 04 
0 1 0 0 
0 1 0 0 
0 -1 0 0 
1 1 0 0 
1 1 0 0 
0 1 0 0 
1 1 0 0 
0 1 0 0 
0 0 0 0 
0 1 1 0 
0 0 0 1 
1 0 1 1 
1 0 0 1 
0 1 0 1 
1 0 0 1 
0 0 0 1 

-------------- --·-• -
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After simplification by using rules (a) ftnd (b), we w:i.11 have: 

01 02 03 04 

u 1 0 n g 

G·* 
1 1 j 

= 0 1 1 
·1 0 n 

L(G*) -- (g V 1) (g V j ·v n) ('j ·V 1) (1 V n) 

= lg V lj V 1n V ••••• · 

One minimal set S therefore consists of rows 1 and g. (Each group 

separated by symbol V contains at least two items. Reader may verify 

it.) So the length of fault-detection test in this case is two, which 

is shorter than six obtained in section II-2. 

IV Scoring Function method (14): 

IV-1 The Underlying Principles and Scoring Procedure 

Our first task is to select, whenever possible, among all sets of 

paths which cover all network interconnections, one set to which there 

corresponds a minimal set of fault-detection tests. In order to obtain 

a minimal set of paths, it is generally necessary to check all of them, 

a task we try hard to avoid, since it implies, again, a covering problem, 

which has been sho,vn to be impractical for even medium-size networks. 

Instead, we aim for less and try to obtain a practically effective ex­

periment. In most cases, however, the experiments derived using the al­

gorithm presented in this section are nearly minimal, and often absolutely 

minimal. 

Consider the circuit in :F'ig. 8 (same as Fig. 5) and Eqs. 6a and 
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7a. The first test to be chosen will be one which tests for either s-a-1 

or s-a-0 for as many different literals of the equivalent normal form as 

possible. The tested literals are checked off, and the next test is 

chosen so as to test as many as possible of the remaining literals, and 

so on. The smallest number of tests so selected, which test at least 

one appearance of every literal for both s-a-1 and s-a-0 faults, constitutes 

the fault-detection experiment. 

In order to sensitize as many paths as possible in one test, values 

are initially assigned to the smallest possible number of input variables 

necessary for the sensitization of at least one path. Among the yet 

unassigned input variables, another minimal subset is selected, and 

values are assigned so as to sensitize one or more additional paths~ 

'rhis process terminates when values have been assigned to all input 

variables. The assignment of values is based on two cri teria 0 li'irst, 

a product term in the equivalent normal form (equivalent to a two-level 

circuit) containing the l east number of literals is chosen. This ensures 

th at the assignment of values to these literals will l eave as many literals 

as possible unassigned, thus retaining maximum freedom in assigning values 

in the remaining unassigned terms. Second, aornong the literals of the 

term selected for assignment, find the literal whose complement has a 

maximum number of appearances in oth er product terms of the equivalent 

normal form. Assign value O (for s-a- 1 test) to that literal and value 1 

to the remaining literals in the term. As a result, a large number of 

literals in other terms are assigned a value 1, thus improvin e; the ch an ces 

of sensitizing as many paths as possible in one test, because the desired 

condition for s-a-1 tests is to assign just a single O in each term and 
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assign the remainin g literals the va l ue 1. 

Again: 

I;,-----< 

J:3'---4 
:r/-----1 

Fig.8 A circuit to be tested 

u 

V 

I / / A ,, / . 
T = AJB,ti + B,sCvDr' + A.Yc.,..Bi + A;rC;xD~ + A,]),'\ 13~ + cA.DE: 

where ~~ ·247, (J ~ 47, Y-4- 1247 

r ~ 2567, E-~ 367, >---,. 12567 

T 

( 6a ) 

I~irst we note that the tern containing the least number of literals 

is A247B4r Next it is ne c essary to check whether the complement of A' 

(i.e., A) or that of B (i.e., B' ) has the larger number of appearances 

in the remaining terms. Since A appears in four other terns while B1 

appears in only two terns, A247 is assigned the va lue O and B47 is assigned 

1. This assigninent, which sensitizes one path in the circuit, specifies 

the va lue of varia b les A and 13 to 1 in all remaining terms and leaves 

the va lue s of C and D unspecified. The specification of the se l at ter 

variables is accomplished in a similar manner so a s to a chieve a maximum 

number of sens i tized paths .i.n one a ssignment of values. Before proceedin e; 
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with this example, we shall further develop the experiment-construction 

procedure. 'l'he construction of s-a-0 tests requires different criteria 

from the ones used .for s-a-1 tests. But since two sets of criteria may 

considerably complicate the procedure, it is preferable to find whether 

s-a-0 faults can be detected by employing just s-a-1 tYPe tests. This 

can indeed be accomplished by using the complemented equivalent normal 

form network. In fact, a s-a-0 test for a particular literal in the 

equivlaent normal form network is a s-a-1 test for the corresponding 

literal in the complemented normal form netvrork. Hence, instead of test­

ing the equivalent normal form for both s-a-0 and s-a-1 f aults, it is 

sufficient to test both the equivalent normal form and its complement 

for only s-a-1 faults. 

The complemented equivalent normal form of circuit Fig. 8 is 

T1 = A}BJ +11.oi. A}Cv+il.J. 11.}D?+B; c,~D)\ +A"' Cr C~D,._ 

+A,;. CJ._ DVD,,.+~; B~ D1: +Ac,1..B1= C .,iDe:-+A~ BE: DtDt 
7(a) 

'I'he determination of the order for the testing of literals ·cannot be 

accomplished effectively by mere inspection of the equations of T and 

T'. The problem becomes more involved because a s-a-1 test in T may 

detect in addition many s-a-0 faults, which are s-a-1 faults in T', as 

demonstrated by the analysis.of the sensitized path in the circuit of 

} 7ig.8. Therefore the next test is constructed according to the appearances 

of the unchecked literals in both the equivalent normal form and it s 

complement. r110 keep tr a ck of the order of testin g liter a ls, so th a t 

the previously specified criteri a will be sa tisfied, we derive a scor-

ing function which assigns a score to each literal appearance. At any 

stage of the construction of the tests, the literal to be assigned is 
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selected among those as yet unchecked 011 the nurnber of whose literal 

appearances possesses the highest score. 

It must be emphasized from the outs et that, like many other scoring 

functions, the function to be derived in th.is section is not unique. 1/fe 

have, however, confidence that different scoring functions, based on the 

above ideas, when appropriately derived, will assign identical, or " almost 

identical", relative scores. 

To illustrate the process, l et~ be the s-a-1 score for the kth 

liter a l in the equivalent normal form. Let n be the total number of 

variables, and w be the total number of literal appearances. Thus, in 

the equivalent normal form shown in Eq. (6a ),m = 4 and w = 17. 

Now define m. to be the number of distinct variables in the J'th term J . 

of the equivalent normal form, where this term contains the kth literal. 

Then the first criterion is covered by the term (1-m ./m) . Also let p 
J 

be defined in the following manner: 

p = l Number of unprimed appearances of the ith variable in the 
equivalent normal form, if the kth literal is primed. 

Number of primed appearances of the ith variable in the 
equivalent normal form, if the kth literal is unprimed. 

r.rhe relative weights due to the second criterion can thus be represented by 

the term p/ w. The scoring function is t heref ore given by: 

m. 
S == (1 - _____ J_) + _J2_ 
k m w 

Before assigning the scores of each variable, it is convenient to 

compute the number of primed and unprimed appearances of each variable 

30 



) 

in T, as shovm below: 

A= 4 

. . A'= 1 

B = 2 

B'= 2 

. C = 2 

C1= 1 

D = 1 

To find the score for A'fi in the last tern of Eq. (Ga), we write 

0 ( 2 ) 1 152 
UA-;= 1 - ✓.r + --rr = 272 

The common denominator 272 has been selected for the scores of the literals 

in both T and T1 • This denominator will subsequently be omitted. Note that 

m6 = 2 in that tern, although the number of literals in that term is 3. The 

scores for all literals in Tare found in a similar manner, as shown in the 

second row of table 1. 

IV-2 Deriving the tests 

Two tables are constructed in this process: Table 1 for the equivalent 

normal form, and table 2 for its complement. The first row in each t able 

lists the terms whose literals are test able for s-a-1 faults. Thus all six 

terns of T are listed in '11able 1, while only five of the nine terms of T' 

are listed, because none of the literals in the remainin g four terms are 

testable for s-a-1 faults, as will be explained l a ter. The sec ond row in 

each table cont ains the s-a-1 scores correspondin g to each literal appear­

ance, as derived ear lier. No score is associated with the two appearances 

of variable Din the l ast term of Table 1, becau se a s-a-1 test for either 

literal requires an assignment of O to both, vrhich inv a lid ates the entire 
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test. The third rovr of each table gives an orderinG of the literal 

appearances, derived accordi .ng to their scores, that is, the literal 

whose score is the hi ghest is labeled 1, the next highest 2, and so on . 

If two literals have identic a l scores, the orderin g is arbitrary. It 

will be convenient in the followin g discussion to refer to each literal 

by the number assigned to it in this row. The rem ainin g rows contain 

the bin ary values vvhich should be assigned to each literal so that a 

s-a-1 test is achieved. As an ex.ample, we shall now derive the first 

tests generated by the alg orithm . 

In the first step we select the literal appearance in the two tables 

whose score is the highest. This is literal 1 in Table 1, whose score is 

200. Consequently, the first test to be derived is determined by means 

of Ta ble 1. 'rhis test will detect at le ast s-a-1 faults in A1 whi thin 

the first term of '11 • Acc ordin g to the s..-a- 1 testing procedure, liter a l 

1 is assigned the value 0, an .d the remaining liter al in this term (i.e., 

1i teral 2) is assigned value 1. 1'his ct,ssignment specifies the value of 

inpu t variables A and B to be 1. Thus all appeara nces of the variables 

A and Bin table 1 are assigned accordingly. It is now necessary to check 

whether the values of adcli tional vari a bles are determined by the assign­

ment. In genera l , a test is unacceptable if a variable a ssignment i s such 

that it produces one or more terms all of whose liter a ls are assigned 1, 

because this implies that not a ll AND gates in the two-level equivalent­

normal-form hypothetical circuit are disabled, which is contr ary to the 

s-a-1 testing procedure. 'rhe l ast term in t a bl e 1 cle ar ly implies that 

the value of D must be 1. This assignment in turn implies that vari a ble 

C must be assigned 1. '11herefore a ll appearances of variables D and C 
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are assi8ned acc ordin gly, Since al l four variables have been assim-ied ,., 

values, the construction of the test is complete. 

Tt now remains to determine the faults that are detectable by this 

test. Any s-a-1 fault in literal 1 is cle ar ly detectable. Consequently, 

a 1 is placed above that literal appearance in table 1, to signify that 

it has been checked by test 1, Evidently, this test will also detect 

a s-a-1 fault at literal 6, because it is assigned value o, while all 

rem ai nin g liter a ls in the term are assigned 1. In a similar manner, we 

. find that four d..i.stinct literals have been tested, which is recorded by 

placing a 1 above each of them, a check mark is a lso pl8,ced above a ll 

other appearances of these literals in the first row of t ab le 1. Aga in, 

we can distinguish be-tween s-a-0 and s-a-1 f aults. 

It is now necessary to explain the reasons for ignoring the four 

terms of r.r1 while constructing table 2. Consider the ignored term 

AJ,A}Cr, which corresponds to A24 / 2567 c1247' An inspection of Fig,8 

reve a ls th at the paths ass ociated with A2~7 and A2567 emanate from gate 2, 

proceed throu gh the upper and lower paths, and reconver e;e in gate 7. 

Since only the lower path cont a ins an inverter, the va lues of A247 an d 

A2567 are complementar;r, regardless of whether their corresponding 

input A' to c-ate 2 is s-a-1 or is int act, Therefor'? neither A247 nor 

A2567 can be tested in this particular term. I✓Iorever, since one of 

them will have the value O a t all times, no other literal in this term 

can be tested. Consequently, the entire term can be disre ga rded when 

derivin g the tests, an in the third term of Eq. (7 a ). Simil ar ar{P.unents 

show that the fifth and sixth terms of Eq, (7a ) can also be ignored, 
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V Conclusions: 

Given the four methods described, let us compare the bounds on len gth 

of tests for each method. If n is the number of variables of a circuit (it 

doesn't matter if it is a two-level or a multi-level circuit), then, 

whatever method is chosen, an upper bound for a test sched ul e is obviously 

2n. Even if the number of places, m, of possible faults in a circuit might 

greater than 2n, the number 2n is still the maximum number of possible 

input combinations. Hence the upper bound is min(2m,2n), where 2m accounts 

for the two kinds of faults, s-a-1 and s-a - 0. A lower bound for the minimum 

len gth of tests schedule required for each method is obviously 1 . Those 

upper and lower bounds are valid for all of the four methods described 

before if we are only concerned with fault detection. (For fault location, 

the upper and lower bounds may be different if different methods are 

applied. (6)) So, in fact, no method is better than the others as measured 

by these bounds on the length of the test schedules. 

However, the fixed test schedule method is really better than the 

other methods if n ~ 5. The most important reason for recommending this 

method is that it is very easy to program once the F matrix is established. 

The only thing we have to do is to establish the B' matrix very carefully. 

One may g et a different fault - detection test set with the different order 

of applying reduction rules (a) and (b) listed in page 240 From L(G*), we 

also know that there are more than one choice of the test set. However, 

all the test sets obta ,ined from the fixed test schedule method must be a 

subset of the test set obtained from the map or tabular r,1ethod. /d0 0, all 
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J the methods except the fixed schedule method can make a conclusion whether 

the fault is s-a-1 or s-a-0 after the fault is detect.ed. A question is 

just what advantage or accrues if we can detect the two different faults. 

. ) 

) 

The fixed schedule method best for just detecting a fault and not determinin g 

whether it is s-a- 1 or s-a-0 fault. The best me'thod to use in order to 

determine the type of fault depends on the number of variables. If n ~ 4, 

the map method is applied ( explained in next paragraph). After considerin g 

those situations, the fixed schedule method seems to be more practical and 

yields a shorter t est for a two-level circuit, even thou gh it may talce some 

time to establish the F ma trix. The fixed schedule method can be carried out 

satisfactorily by hand for small networks, and on a dJ.gi tal computer for 

any combin a tional network having up to ei ght to ten inputs, sever a l outputs, 

and no more than about 100 f aults. (6) While some networks much l a r g er th an 

this can al so be handled, at present there are no procedures for g eneratin g 

even reasonable good (a lmost minimum) te s t sch edules for very l a r ge a rbit­

rary networks. 'l'his problem is considered to be a most important open 

problem on this area. 

For sma ll networks, n ~ 4, althou gh the fixed schedule solutions can be 

-carried out satisfactorily by hand, we pref er to use ma p method. The r ea son 

is that for n ~ 4, the Karn augh map can be dr awn very easily (at least ea sier : 

th an est ablishing the 1'1 ma trix), also the test s ets can be picked up from 

the .map directly with the two steps listed in pag e 8. 

The re a der may vronder why we don't u s e equ a tion s (1) an d (2) to 

derive f ault detection tests directly. If a lo gic a l expression cont a in s only 
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a few variables, then it will still be time consuming and impractical to 

apply eq_uations ( 1) and (2) on each literal (see example on page 5 and 6). 

Therefore the map method is more practical. 

It seems at present that the easiest way of designing minimal experi­

me,nts for multi-level circuits is by transfoming them into some sort of a 

two-level equivalent nomal fom, then using the method discussed in sect- • 

ion III; i.e., let computer finish the calculations, or develop a different 

scoring procedure. Perhaps a different definition of the eq_ui valent nomal 

fom, or another approach, may yield a more systematic procedure for obtain­

ing minimal experiments. 

For the multiple-output case, the entries in the f. columns of the 
J 

fault table F, as well as in the entire F matrix, are now q-digi t binary . 

numbers instead of single binary di gits. r.rwo entries of the fault table 

should be considered to be identical when and only when a ll of the corres­

ponding q digits of the two entries are identical. 'l'hus, two columns of the 

fault table can be considered to be the same only if all corresponding q­

digi t _entries in these columns are the same. As before, the matrix G will 

have .for its entries only single binary digits, according to the following 

rule: if two q-digit entries in the same row of F differ in any of their 

correspondin g di git s , then the correspondin g entry in G for these two columns 

is a 1; otherwise it is a o. This rule follows directly from the fact that a 

fault may be distinguished on any one or more of the q networks outputs. The 

rest of the minimi zat ion procedure on G is carried out just as it was for the 

single-output case. Note, however, that since the ma trix G now usu a lly 
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has a greater number of 11 s in it, we can expect the length N of the test 

schedule to be smaller, assuming that the other parameters remain the sarne. 

The following list summarizes some of the unsolved problems in this 

a re a of research: 

1) Development of techniques for selecting an economical small 

number of test points or additiona l input s for a given combinat­

ional network, in order to drastically reduce the l ength of · the 

t es t schedule required for fault detection. 

2) Development of practical procedures for deriving economica l test 

schedu le s for very large combin ational networks. 

3) Study of the ways i1;1 which the ori gina l design of a digital network 

or subsystem may be modified in ord er to make it more susceptible 

to the diagnostic procedures. 

4) Development of techniques for the design of special-purpose 

diagnostic circuitry, including estimates of the economies to 

be achieved through its use. 

The following alternative approaches might lead to further insight: 

1) Define another function which is different from the fuoJ.ean 

difference function so that one can detect a fault with minimal 

length tests. 

2) Develop a pro{s'I'am (i. e., give an algorithm) th at acc omplish es 

t;ystematically the procedures discussed in section III . 

3) Develop different definitions of the equivalent normal form, 

different sc orin g methods, or other different appr oa ch for 
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fault detection may yield better and more system a tic procedures 

for obtaining minimal experiments. 

So far we have been only concerned about the fault-detection of irred­

undant circuits. We would like to mention here that the fixed test schedule 

method can be extended and applied to fault-location of any irredundant 

circuit. Obviously, the estal)lishment of F ancl G matrices will be more 

complicated than to just detect a fault. (6) Also, one may possibly define 

another function different from the Boolean difference function so that it 

can be used to locate the fault. So, these techniques can be expanded to 

ttlocate" a fault in any irredundant circuit as well. 
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