
~

l
n

n
n
I
l

l I
I
f1
;]
£ j

11

t

u
u

A Genetic Dominance Simulation Program and Its Distribution Web
Site for Estimates of Population Genetic Statistics

Junyuan Wu

A research paper submitted in partial fulfillment of the
requirements for the degree of Master of Science

Major Professor: Dr. Timothy Budd

Department of Computer Science
Oregon State University

Corvallis, Oregon

March 13, 2001

A Genetic Dominance Simulation Program and Its Distribution Web
Site for Estimates of Population Genetic Statistics

Junyuan Wu,
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331

Junyuan@cs.orst.edu

Abstract

In order to aid comparison of estimates of genetic parameters between dominant and

codominant makers for population genetics society, we developed a genetic dominance

simulation program to determine how the dominance and biallelism could affect the

estimation of population genetic statistics. The simulation indicates that genetic

diversities within populations based on allozyme allele frequencies that were transformed

into biallelic dominant data were significantly lower than for nontransformed multiallelic

codominant data, while population differentiation was biased upwardly in each

experimental species. Microsoft Active Server Pages (ASP) is combined with Active

Data Objects (ADO) to create a dynamic web site for the distribution of the simulation

program. The user's information is required to be registered into a database and they can

also register their published papers to be shared with genetics community.

Keywords: Genetic dominance simulation, Active Server Pages, Active Data Objects

1

n
n
f l
'1
)

)

. l

)

l

J

J

1

n
n
n
n
I l
l
\

I

I u

I r

lJ
IJ

u
~

.1

u
Ll

LI

Acknowledgement

I would like to express my deep appreciation to my major professor, Dr. Timothy

Budd, for his constant encouragement, patience and great advice. Special thanks are due

my minor professor Dr. Gregg Rothermel and Dr. Bella Bose for their wondeful teaching,

for reading through the report, and for helpful guidance. I am also indebted to Dr. Steven

Strauss and Dr. Konstantin Krutovskii for their invaluable input, time and discussion.

2

Table of Contents

1. Introduction .. . 4

2. Genetic Dominance Simulation Program 5

2.1 Simulation Rationale ... 6

2.2 Implementation of the Simulation Program ... 6

2.3 Simulation Results ... 9

3. Program Distribution Web Site 12

3.1 Overview of ASP and ADO ... 12

3 .1.1 Acti ver Server Page. 12

3.1.2 Active Data Objects 13

3.2 Implementation of the Web Site ... 14

3.2.1 The Include Files 14

3.2.2 Global.asa File 17

3.2.3 Logging and Registration 18

3.2.4 Web Site User Options ... 26

4. Conclusions and Future Work 32

5. References 33

6. Appendix: Source Code 36

6.1 Genetic Dominance Simulation Program .. 36

6.2 ASP Web Pages ... 56

3

}

7
~

n
n
I I

I
l

'
. l

l
n
fl
n
n
l l
)

)

: i

r

q

1 l

u
j

1

u
u
u

1. Introduction

The advent of PCR-based molecular markers has led to a rapid expansion in studies

describing the levels and distribution of genetic variation among populations at the DNA

level. Randomly amplified polymorphic DNA (RAPD; Williams et al. 1990) and

amplified fragment length polymorphism (AFLP; Vos et al. 1995) markers are now

commonly used in population genetic studies (e.g., Aagaard et al. 1998; Isabel et al.

1995; Liu and Fumier 1993; Mosseler et al. 1992; Peakall et al. 1995; Szmidt et al. 1996;

Travis et al. 1996; Wu et al. 1999). However , these PCR-based markers have limitations

compared to allozymes, which had been the prevalent means for population studies prior

to the use of PCR. At the majority of RAPD and AFLP loci the dominant allele masks

the presence of the null allele in heterozygotes when assaying diploid tissues (Krutovskii

et al. 1998), thus sampling variance for dominant allele frequencies is typically greater

than that for codominant alleles (Lynch and Milligan 1994). The frequencies of null- and

dominant alleles are inferred from the frequency of null-allele homozygotes; the

precision of their estimation therefore depends on mating system assumptions and is

strongly affected by the .sample size. Empirical studies have also suggested that

dominant markers can bias estimates of genetic diversity and differentiation among

populations (e.g., Isabel et al. 1995; Szmidt et al. 1996).

Although RAPD markers have proven to be useful for population studies, and their

gross patterns of diversity usually agree with that of allozymes, the levels of genetic

variation, differentiation , and fine-scale genetic structures, often differ (e.g., Baruffi et al.

1995; le Corre et al. 1997; Dawson et al. 1996; Heun et al. 1994; Lanm'lr-Herrera et al.

1996; Latta and Mitton 1997; Liu and Fumier 1993; Peakall et al. 1995; Puterka et al.

1993). To help assess whether these differences are biological or a simple consequence

of the dominance and biallelism of RAPD and AFLP markers, we developed a

dominance simulation program using Visual Basic 6.0 that transforms codominant

population data into a biallelic dominant data set. The program then estimates population

genetic statistics with which dominant and codominant markers can be directly

compared.

The simulation program is intended to be distributed over the internet so that users can

freely download it. However, we want users ' information to be recorded and stored into a

4

database before they are able to download the program. In addition, we want users to

register their published papers generated from this simulation program so that other users

can share updated information. The majority of dynamic pages that use databases on the

web are probably created using Common Gateway Interface (CGI). However, CGI has

several disadvantages. One is that it adds another level of indirection to the client-server

interaction, as the server is forced to call a CGI program. Such languages as Perl and C++

tend to be among the more complex programming languages. Second, the code that CGI

receives and transmits isn't easily manipulated by a lot of programming languages. Third,

CGI often isn't the fastest method of accessing databases.

Active Server Pages (ASP) with the power of Active Data Objects (ADO) provides the

opportunity to combine the database and the World Wide Web and has emerged as the

Microsoft Solution for web databases over the past few years (Homer, 2000). ASP is

actually an extension to the web server that allows server-side scripting. At the same time

it also provides a compendium of objects and components, which manage interaction

between the web server and the browser. ASP is a server-side scripting environment that

enables you to combine HTML, server-side scripting and COM (Component Object

Model) objects, to create interactive, dynamic web applications relatively easily. ADO is

a general object model that provides a programming interface for universal access to data

stores provided by OLE DB. ADO enables ASP (as well as many programming

languages) to read and write to data stores. Thus the combination of ASP and ADO will

bring together the power of databases with the universality of the web. In addition, ASP

ADO solutions sit on the server thus reducing the complexity of accommodating multiple

browser types.

The rest of this report is organized as follows. Section 2 describes the dominance

simulation program . Section 3 introduces the web site for distributing the simulation

program. Section 4 concludes the report and discusses future directions.

2. Genetic Dominance Simulation Program

The main simulation program involves primarily with mathematical simulation and

calculation. We will divide this chapter into three sections: simulation rationale,

implementation of the simulation, and the simulation experimental results.

5

l
n
n
n
n
l

l
I

l

I
l

f

I I
l I

j

I
J

I
n
CT

In
n
.l
)

)

\ ~
I rl

n
J
{l
, IJ

J
iJ
!j

.J
'J

2.1 Simulation Rationale

The objective of this simulation is to determine how dominance and biallelism could

affect the estimation of genetic parameters. The simulation will also allow us to

determine how sample size affects the estimation of genetic parameters. Thus assuming

Hardy-Weinberg equilibrium and no linkage among loci we first use codominant multi

allelic allozyme data to generate N basic populations of up to 1,000 individuals each with

multi-locus genotypes that maintain the specified allele frequencies within populations.

A total of S subpopulations (Smax = 400) of n individuals (n = 10-200) are then drawn

with replacement for each of the N populations. The sampling is done in two different

ways - by sampling subpopulations of size n with replacement directly from the initially

generated basic population, and by resampling subpopulations of size n with replacement

within the first sampled subpopulation of n individuals (bootstrap resampling).

Population genetic parameters (Hs, HT, and GsT) are then calculated for each cycle of

resampling in three ways. First, for a codominant data set, calculations are made

considering all alleles and genotypes present in the subpopulations. Second, the same

subpopulations and data are used to simulate a dominant biallelic data set by randomly

selecting one allele as dominant, with the rest treated as recessive to it. The synthetic null

allele frequency is then calculated from the null homozygote frequencies assuming

Hardy-Weinberg equilibrium. Finally, null allele frequencies are corrected for dominance

using Lynch and Milligan's (1994) equation 2a, and their asymptotically unbiased

estimate of FsT recommended for dominant markers is also calculated following their

equation 14a.

2.2 Implementation of the simulation program

The simulation program is implemented using Microsoft Visual Basic 6.0. Its

Graphic User Interface allows user to identify input and output data files, select

simulation parameters including size of base populations (500-1000), size of

subpopulations, and number of sampling and resampling times. Different options can be

chosen for estimation of genetic parameters. Gene diversity is evaluated using Hs

(within-population diversity) and HT (total diversity within species) , either unmodified

(Nei 1973) or modified (Nei and Chesser 1983) for the sample size. Genetic

6

differentiation is evaluated via 8w (Theta_w) (Weir and Cockerham 1984) and GsT

parameters that are either unmodified (Nei 1973), modified for the sample size (Nei and

Chesser 1983), or modified for both the sample size and population number (Nei 1986).

The screenshot for the simulation program is shown in Figure 1.

Implementation of the program is composed of the following main functions and/or

procedures. They are described as follows.

I. openFile

OpenFile is used to read data into the program from an input data file that includes

original allele frequency based on codominant allozyme markers.

II. theoretical_value

Theoretical_ value is used to calculate theoretical values of Hs, Ht, Gst and 8w based

on original allele frequencies. It calls other two functions/procedures. The procedure

calc_theor _diversity is to calculate Hs and Ht, while the function calculateTheta is to

calculate 8w. Gst is calculated based on Hs and Ht values.

Ill. popGenerate

PopGenerate is used to generate basic populations of up to 1,000 individuals each

with multi-locus genotypes that maintain the original allele frequencies within

populations.

IV. empirical_value

Empirical_ value is used to calculate empirical values of Hs, Ht, Gst and 8w based on

allele frequencies in generated sets of 1000 individuals. These values can be compared

with theoretical values to confirm base populations are generated correctly.

Empirical_ value first calls getFrequency procedure to obtain allele frequencies in base

population based on generated genotypes from popGenerate procedure.

Calc_empiri_diversity and calculateTheta are then called to calculate Hs, Ht, Gst and 8w,

V. Sampling

Implementation of the sampling procedure is divided into several steps:

(1) Subpopulations of size n (10-200) are sampled with replacement directly from the

initially generated basic population. Genotypes for all sampled individuals are generated.

(2) For a codominant data set, the getFrequency procedure is called to obtain multiallelic

allele frequency based on genotypes generated in Step 1.

7

n

)

tJ
i I

i I
u

J
u

111i Genetic Dominance Simulat ion Program Bir;J II:i
file Bun 8bout l::!elp _

Unmodified [Nei, 1973]
Modified for sample size [Nei & Chesser, 1983]
Modified for sample size and population number [Nei, 1986]
Theta [Wyir & Cockerham,_ 1984) _

Figure 1. Graphical user interface of the genetic simulation program

8

(3) For simulating a dominant data set, the get_indir _cor Jreq procedure is called to

obtain diallelic allele frequency by randomly selecting one allele as dominant, with the

rest treated as recessive to it. A corrected allele frequency data set is also obtained

through this procedure based on Lynch and Milligan's (1994) equation 2a.

(4) Calc_empiri_diversity and calculateTheta are then called to calculate Hs, Ht, Gst and

Sw based on the three kinds of allele frequency data sets.

(5) Variance of genetic parameters is calculated based on a number of sampling circles.

VI. Resampling

Resampling is used to resample subpopulations of size n with replacement within the

first sampled subpopulation of n individuals (bootstrap resampling). Its implementation

process is very similar to that of sampling.

2.3 Simulation Results

Three California Closed-cone Pine species were used as an example for our

simulation. We simulated dominance and biallelism in their allozyme data sets. The data

sets included 4, 5 and 3 populations of Pinus attenuata, P. muricata, and P. radiata,

respectively. From allozyme allele frequencies within populations, we generated

simulated populations of 1000 individuals each, and a total of 400 subpopulations of n

individuals were drawn with replacement from each of the populations. The program

also performed 400 bootstrap resamplings using a subpopulation of size n. Population

genetic parameters (Hs, HT, GsT, Sw) were then calculated for each set of 400

subpopulations in the three ways described above. The results of the simulations are

summarized in Figures 2 and 3. The simulations showed that diversity measurements (Hs

and HT) were likely to be underestimated by dominant biallelic markers approximately

two-fold regardless of sample size. For the genetic differentiation, the estimates for the

simulated dominant markers converge toward the estimates for codominant multi-allelic

markers at large population sizes, but were always significantly higher. Our results

demonstrate the importance of simulations to help compare and interpret the results of

population studies with dominant markers.

9

n
I i
l
fl
l
l
l

(

1

f

I
l

l

', l

,n

f1 Pinus muricata
0.16

n 0.14 T

~ 0.12 .1..

'i!?
QI 0.10 -+- Codominant
> "' c e. 0.08 -- Dominant

IT
QI
C -A- RAPD
QI

0.06 CJ

0.04

1 0.02

0 10 25 40 55 70 85 100 200

i
Pinus muricata

0.16

) 0.14 T

~ 0.12 .1..

f
') QI 0.10 -+- Codominant

~~
0.08 ---------Dominant QI ._,

C -¼-- RAPD
QI

0.06 CJ

0.04

I, 0.02

0 10 25 40 55 70 85 100 200

1

J Pinus radiata
0.20

0.18 T

t
~ 0.16 .L

-~ 0.14
QI

> "' 0.12 -+- Codominant c e.
---- Dominant QI 0.10

C
--.- RAPD

' ~
QI

CJ 0.08

0.06

0.04

I i, 0 10 25 40 55 70 85 100

Number of Individuals Sampled

j Figure 2. Genetic diversity averaged over populations of each California Closed-Cone
Pine species for multiallelic allozymes and simulated dominant markers.

J
d
u 10

Pinus attenuata
0.45

C
0 0.40

!
C 0.35 I!!
Cl)
ii: I-
•- Ill 0.30
C CJ
C .._,

--+- Codominant

---- Dominant
0 0.25 i

---.1>-RAPD

'3
a. 0.20 0
11.

0.15

0 10 25 40 55 70 85 100

Pinus muricata

0.60
C
0 0.55
i 0.50 :;::
C
I!! 0.45
Cl) --+- Codominant ii: I-
·- Ill 0.40 C CJ ---- Dominant C.....,

0.35 _._. RAPD 0

i 0.30 '3
a.

0.25 0
11.

0.20

0 10 25 40 55 70 85 100 200

Pinus radiata
0.30

C
0

! 0.25

C
I!! 0.20
GI .-..
ii: I-
•- Ill
C CJ 0.15 C .._,
0

--+- Codominant
-- Dominant
-1,;- RAPD

i 0.10 '3
a.
0
11. 0.05

0 10 25 40 55 70 85 100

Number of Individuals Sampled

Figure 3. Genetic differentiation among populations for each California Closed-Cone
Pine species for multiallelic allozymes and simulated dominant markers.

11

l
,/

il
n
l

l

l
J

l

J

j

_)

]I
l

·~t

CT

n.
IT
,1
1

r· ..•

f,_)

'1}
,-,

J
u
J

~ ~
i

.J

u

3. Program Distribution Web Site

We used the combination of ASP and ADO to develop a Genetic Dominance

Simulation Web Site. There are four main functions performed on this web site. The first

is to have the user login. Next the user has the option of downloading the simulation

program, registering a newly published paper, and listing registered papers.

3.1 Overview of ASP and ADO

3.1.1 Active Server Page

ASP is a new server-based technology developed by Microsoft and designed to build

dynamic, interactive applications for the Web or LAN-based intranet. When a request for

an ASP page is sent to the web server, the web server pulls the file from its location on

the server, and feeds it to the ASP Engine (ASP.DLL) on the server. The ASP engine

then executes the scripting on the page and returns the dynamically-created HTML to the

server, which in tum, streams it to the browser. The whole process can be illustrated in

Figure 4.

Browser

COM
objects

#1: Browser requests
ASP page from Server

#7: Server returns
HTML to Browser

#6: ASP engine returns
HTML to server

#4: ASP engine calls
COM objects (if any)

#5: COM objects do
their thing

Server

#2: Server sends page
to ASP engine

ASP #3: ASP engine

Engine executes server
side scripts

Figure 4. Flowchart of the interpretation of ASP page

12

As the HTML is output by the ASP Engine to the server, the server outputs the HTML

in a stream to the browser. Because the page can look entirely different, depending on the

results of the server-side scripting, it is called a dynamically generated page.

There are six Active Server Objects, each of which deals with a specific aspect of

interactivity between the web server and the browser:

1. The Request object is used to deal with a request that a user might make of a site

or application;

2. The Response object is used to deal with the server's response back to the browser;

3. The Application and Session objects are used to manage information about the

application that is currently running and the unique instances of the application,

which individual users run , known as sessions;

4. The ObjectContext object is used with Microsoft Transaction Server;

5. The Server object is used to provide several commonly used functions, by far the

most important is its ability to create new objects or components.

Most of these objects will be utilized in our application.

3.1.2 ActiveX Data Objects

ADO is what is known as an application-level programming interface for database

programming. It doesn't interact with databases directly, but instead interacts with a

system-level programming interface called OLE DB. Figure 5 illustrates how an ASP

script interacts with databases through an ADO interface.

ADO itself is a COM component, and therefore can be used in any COM compliant

languages such as C++, Visual Basic, Java or JavaScript and VBScript. ODBC (Open

Database Connectivity) provides an interface for applications to access relational

databases, while OLE DB can access both relational and non-relational data sources.

Eventually OLE DB should be able to replace ODBC, but for now it sits on top of ODBC

and allows you to use existing ODBC drivers.

ADO has three core objects: Connection, Command and RecordSet. The Connection

object is used to make a connection to the data store. The Command object is designed to

run commands against the database by providing the SQL statement or Stored Procedure

13

.,
l

"'I

.)

n
n

l
J;

·I

l [

J
Li

n

I
n
,. 1

J

l
[J

u

along with any parameters. The RecordSet object is used to hold the data returned by a

query. It has many properties and methods and is the most used object in ADO.

ASP Script

ADO

OLEDB

ODBC/SQL Server

Database

Figure 5. The interaction between ASP and a Database through ADO

3.2 Implementation of the web site

We have divided this development into three main sections, or groups of web pages.

These three sections are the include files, logging on and registration, and web site user

options.

3.2.1 The include files

In order to keep the code in our web pages at a minimum, we will make extensive

use of include files. These contain common functionality that is used in a number of

places. Seven include files are implemented. Three of them will be described in detail

below. The other four include files are used for disconnection from the database,

common functions, menu options and ADO constants.

14

f

I. Error handling

This include file (ErrorHandler.inc) will be included at the top of every web page

that uses the database. The file contains a function called CheckForErrors that will be

called after every call to the database. It will be used after connecting to the database, and

after executing action stored procedures and simple-selects that are used in recordsets.

The code for ErrorHandler.inc file is listed below .

<script language =vbscript runat=server>
Function CheckForErrors(objConnection)

'Declare variables
Dim blnDisplayErrMsg

If objConnection.Errors.Count > 0 Then

'Create the FileSystemObject and open the error log
Set objFile = Server.CreateObject("Scripting .FileSystemObject")
Set objLog = objFile.OpenTextFile(_

Server .MapPath("ProductionErrorLog . txt ") ,8, True)

'Check for an open error from VBScript
If Err.Number > 0 Then

Response.Write "Error opening log file<P>"
Response .Write "Error Number:" & Err.Number & _

", Error Description: " & Err.Description
End If

'Create an error object to access the ADO errors collection
Set objErr = Server.CreateObject("ADODB.Error")

'Log all errors to the error log
For Each objErr In objConnection.Errors

If objErr.Number = 0 Then
blnDisplayErrMsg = False

Else
objLog .WriteLine(objErr .Number & "I" & _

objErr.Description & "I" & objErr .Source & "I" & _
objErr.SQLState & "I" & objErr.NativeError)

blnDisplayErrMsg = True
End If

Next

'Close the log file and dereference all objects
objLog.Close
Set objLog = Nothing
Set objFile = Nothing
Set objErr = Nothing

If blnDisplayErrMsg Then
'Display a graceful message to the user
Response.Write "An unforseen error has occurred and processing" & _

"must be stopped. You can try your request again later or " & _

15

"you can call our Help Desk at 888-888-1234"
'Halt Execution
Response .End

End If
End If

End Function
</script>

Notice that Errors received from ADO are handled by ADO Errors Collection of the

Connection object. Connection and Error are actual objects while Errors is actually a

collection of the Error objects. If errors exist , a textfile is created to log all of the errors.

The file is then opened using the OpenTextFile method of the FileSystemObject. The

Server.MapPath function is used to place the ProductionErrorLog.txt file in the same

directory as the web pages. An ADO Error object is created to access the ADO Errors

collection. All the information about ADO errors from the Errors collection is logged

into a ProductionErrorLog .txt file using the WriteLine command, and we display a

graceful message for the user, letting them know we had an error. Once the message is

displayed, the further execution of the code will be stopped by the End command of ASP

Response object.

The other error object (Err) in the above code is used to check for an open error from

VBScript. It ensures that the file has indeed been opened and no error is received. Since

the ASP object model doesn't support error handling, script errors are handled by the

built-in error object of the script language. This VBScript Error object is very limited in

that it only supports the "On Error Resume Next" statement. If a script error is received,

it is written to the web page using the Write command of ASP Response object.

II. Authentication Checking

One of the security features used to prevent unauthorized access to our web pages is

to see whether the user has logged in and has been authorized. We check to see if a

Session variable called Authenticated has been set to a value of true. If the value has not

been set to a value of true, we redirect the browser to the Default.asp web page using the

redirect command of the Response object. The code for AuthenticationCheck.inc is listed

as below.

16

<%
'Authentication check
If Session("Authenticated") <> True Then

Session("ErrorMessage") = "You Have not properly logged in."
Response.Redirect "Default.asp"

End If
%>

III. Connecting to the database

The database is going to be connected in the same manner most of the time. It makes

sense to place this common code in an include file. The connect.inc file, shown below,

sets up our script error handling with the On Error Resume Next statement, and then an

ADO Connection object is created and the database is opened. We are using an

application level variable to hold our connection string. This variable is defined in the

Global.asa file, which will be discussed next.

<%
'Instruct VBScript to ignore the error and continue
'with the next line of code
On Error Resume Next

'Create and open the database object
Set objConn = Server.CreateObject("ADODB.Connection")
objConn.Open Application("ConnectString")
%>

3.2.2 Global.asa File

Global.asa is an optional file in which we can declare objects and variables that have

application and session level scope. This file must reside in the root directory of our web

application. We use Application_OnStart procedure to set the ConnectString variable,

which will be used by all web pages needing to connect to the database. The code in this

procedure gets executed when the application is accessed for the first time and the

variables that are set stay active the entire time. The code for Global.asa is listed follow.

<SCRIPT LANGUAGE="VBScript" RUNAT="Server">
Sub Session_OnStart
End Sub

Sub Session_OnEnd
End Sub

17

Sub Application_OnStart
Application("ConnectString") = "DSN=simulation" //DSN : ODBC Data Source Name

End Sub

Sub Application_OnEnd
Application("ConnectString") = '"'

End Sub
</SCRIPT>

3.2.3 Logging on and Registration

We want this web site to have minimum security . However, we want our users to be

automatically logged in if we find a cookie on their machine . If we don't find a cookie

then we will prompt the user for their login values. If the user has not registered before, a

hyperlink will be provided on the login page to a registration page . Figure 6 illustrates the

flow of the login process. The implementation of a few web pages shown in the

illustration is discussed as follows.

I. Default.asp page

The Default.asp web page is shown in Figure 7. It has three functions. First it checks

to see if a cookie exists on the user's machine. If it does, it will redirect the browser to the

WelcomeBack.asp page. The second function is to display a login form if no cookie has

been found. The last function is to provide a hyperlink to the Registration.asp page if the

user has not registered before . Below is the code for checking for a cookie and redirecting

the web page using the ASP Response object.

<%
'Check to see if a cookie exists for this user

IfLen(Request.Cookies("Simulation")("UserName")) > 0 Then
'Cookie exists

'Authenticate the user for other web pages
Session("Authenticated") = True

'Redirect the browser to the welcome back page
Response.Redirect "W elcomeBack .asp"

End If
%>

18

I USER I
Requests a

default pag

User clicks on
hyperlink to register

•
e
-

~

Check for a cookie

Default.asp
Cookie found, redirect

Welcomeback.asp

to W elcomeback.asp

...

Us er submits login details

Login Verify.asp
Redirect to def ault.asp if verification fails

User submit

Register.asp RegisterConfirm.asp

registration details

Figure 6. Flowchart of the user login process

19

Verfiy user details
against database. Write
cookie if successful
and display menu
options

Insert user details into
the database and write
a cookie. Display
menu options

L!i
Favorites

Genetic Simulation of Effects of Dominance

Enter login info1mation and click submit.

UserName

Password

Submit

If you don't have a login ID and password you can register here.

Figure 7. The Default web page

II. Register.asp Page

This page allows us to enter all of the required user information, and eventually click

on a submit button which will submit all user details to be recorded in the database by the

RegisterConfirm.asp page. Two steps for the Register .asp page are shown in Figure 8.

We use this Register .asp page to show how multiple steps can be processed in a

single Active Server Page. In step one we have set up a hidden field on our form called

FormAction. This field contains the value of the next step to process in the page. The first

time we access this page, this field does not exist and the code in step one is executed.

We start building a form (FrmRegisterl) by specifying that the form will post the results

to the Register.asp page, which is the current page . We then start building a table to input

user information. Clicking the "Continue" button causes the page to be executed again,

but this time the field FormAction has a value of step2 and this section of the code is

executed. The user will get their information from step one, input additional information

20

UJ

Genetic Simulation of Effects of Dominance

Please Enter Registration Infonnation

First Name

Organization

Country

LastNamel

Professional Class @ Professional c, Student 0 Other

ffil
Home Search Favorites

ress @] http://georgew/geneticsimulation/register .asp

-----~

Genetic Simulation of Effects of Dommance

Please Select Your UserName and Password

User Name

Password

Retype Password

Submit

- - J

Figure 8. User registration interface

21

on form FrmRegister2, and then submit the data input from two sections to the

RegisterConfirm.asp page. The following lists the partial code from step one and step

two.

<%
'***
'Step 1: Display the registration form for user input
'***
If len(Request.Form("FormAction")) = 0 then
%>
<form action=register.asp method=post name=FrmRegisterl>
<Input type=hidden Name=FormAction value=step2>
<table>

<tr>
<td height=50 colspan=2>Please Enter Registration Information

<lfont><ltd>
<!tr>
<tr>
<td> <ltd>
<!tr>
<tr>
<td>First Name</td>

<%
'**
'Step2: Continue to enter user information: UserName and Password
'**
ElselfRequest.Form("FormAction") = "step2" then
%>

<!-- #include file="Connect.inc" -->

<%
'Get the registration information entered in step I
Dim txtFirstName, txtLastName, txtOrganization, txtCountry, optClass
txtFirstName = Request.Form("txtFirstName")
txtLastName = Request.Form("txtLastName")

%>
<form action=registrationConfirmation.asp method=post name=FrmRegister2>

<table align=center>
<tr>
<td height=50 colspan=2>Please Select Your UserName and Password

<lfont></td>
<!tr>
<tr>
<td> <ltd>
<!tr>
<tr>
<td >User Name<ltd>

12

Before the user submits the form for processing, we use client-side scripts to validate

all data that has been entered correctly. For example, when the user clicks the Submit

button, the following script will be executed. If the user has not entered any data or

entered data incorrectly, we prompt them to reenter some data using the Alert function.

After all data are validated, the Submit method is called on the form FrmRegister2. This

submits the values entered, and calls the page that is specified in the ACTION property of

the form.

<Script Language= VbScript>
Sub btnSubmit_OnClick()
<%

do while Not objRS .EOF

'Verify if other users have used this user name
If frmRegister2 .txtUserName .value="<%=objRS("UserName")%>" Then

Alert "This user name has been taken"
frmRegister2 .txtUserName.focus
Exit Sub

end if
<%

objRS .MoveNext
loop

'Verify all fields that have been entered
IfLen(frmRegister2.txtUserName.value) = 0 Then

Alert "You must enter a user name"
frmRegister2 .txtUserName.focus
Exit Sub

ElselfLen(frmRegister2.txtPassword .value) = 0 Then
Alert "You must enter a password"
frmRegister2.txtPassword.focus
Exit Sub

Elself Len(frmRegister2.txtRetypePassword.value) = 0 Then
Alert "You must retype your password"
frmRegister2. txtRetypePassword. focus
Exit Sub

Elself frmRegister2. txtPassword. value <> frmRegister2. txtRetypePassword. value then
Alert "Retyped password doesn't match"
frmRegister2.txtPassword.value = ""
frmRegister2.txtRetypePassword.value = ""
frmRegister2. txtPassword. focus
Exit Sub

End If

'If we get to this point all is OK, submit the form
Call frmRegister2.submit()

End Sub
<!script>

23

u
I

j

ll

1

n

I l

u
1 l
' 1

IJ
lJ
j

Li

Li

III. RegisterConfirm.asp Page

The RegisterConfirm.asp page reads all of the form fields from the request form

which is the Register.asp page. It builds the parameters to a stored procedure and

executes that stored procedure, writing all of the information to the database. Upon

successful completion of this it writes a cookie to the user's machine, and gives them a

list of options to execute. The page looks like the following screenshot in Figure 9.

Genetic Simulation of Effects of Dominance

Registration Successful

Please select an following option

Download this simulation program
Register a new paper which used the simulation program

Display related papers

Figure 9. Screenshot for Registration confirmation page

Stored procedures have a number of benefits. They provide better maintainability

since code for stored procedures resides in the database. They are highly reusable since

multiple web pages and/or programs can use the same stored procedure, and they can be

used for implementing business rules. Stored procedures can also greatly improve the

application performance since they are considered compiled once they are created in the

database, and they reduce the network traffic by the use of fewer in-line SQL statements.

24

Several stored procedures are used in this application for selecting records and

updating databases. We use this web page to demonstrate how an Active Server Page

calls stored procedures. Following is the code for the stored procedure qlnsertPerson.

PARAMETERS FirstName Text, LastName Text, Organization Text, Country Text, ProfessionalClass
Long, UserName Text, Password Text;
INSERT INTO People (FirstName, LastName, Organization, Country, ProfessionalClass, UserName,
Password)
SELECT [FirstName] AS Exprl, [LastName] AS Expr2, [Organization] AS Expr3, [Country] AS Expr4,
[ProfessionalClass] AS Expr5, [UserName] AS Expr6, [Password] AS Expr7;

First we define parameters specifying the parameter name and data type. Next we

build the INSERT statement specifying the table and column into which we are inserting

data. Finally we SELECT the parameters as expressions. In the RegisterConfirm.asp file,

We then build all parameters in the SQL string, call the stored procedures and execute the

SQL string using the ADO Connection object. The code is listed as follow.

<!-- #include file="Connect.inc" -->
<%
'Check for database errors
Call CheckForErrors(obj Conn)

'Set the parameters for the insert stored procedure
strSQL = "qinsertPerson ("' & CStr(Request.form("txtFirstName")) & _

"',"' & CStr(Request.form("txtLastName")) & _
'","' & CStr(Request.form("txtOrganization")) & _
'","' & CStr(Request.form("txtCountry")) & _
'"," & CLng(Request.form("optClass")) & _
","' & CStr(Request.Form("txtUserName")) & _
'","' & CStr(Request.Form("txtPassword")) & "')"

'Execute the stored procedure to insert the person
objConn.Execute strSQL,,adCmdStoredProc

'Check for database errors
Call CheckForErrors(obj Conn)
%>

After the user record is inserted into the database, we write a cookie on the user

machine using the ASP Response object. The cookie is then set to expire on December 31

of the current year. The user is then authenticated for access to other web pages. The code

is listed as follow.

<%
'Save the user information to a cookie
Response.Cookies("Simulation")("UserName") = Request.Form("txtUserName")
Response.Cookies("Simulation")("Password") = Request.Form("txtPassword")

25

J
l

l

J

J

}

l

l

j

!l
n
8

J

u

'Set the expiration date of the cookie to the last day of the current year
Response.Cookies("Simulation").Expires = "December 31," & Year(Now)

'Authenticate the user for other web pages
Session("Authenticated") = True
%>

3.2.4 Web Site User Options

The Options.asp page contains the options that are available for the user. They can

click on any of the hyperlinks to jump to another page in the web site. There are currently

three options: download the simulation program, register a paper and display the related

papers. The screenshot is shown in Figure 10.

Genetic Simulation of Effects of Dominance

Please select an following option

Download this simulation program
Register a new paper which used the simulation program
Display related papers

Figure 10. User options interface

· anet

The option for downloading a program is simply linked to a download.html file to

download an executable simulation program. We will discuss the web pages of other two

options here.

26

I'

I. RegisterNewPaper.asp Page

This web page allows a user to register their published paper utilizing the simulation

program on the web site. This page also includes two steps. It contains a form that the

user can fill in with their paper information. When they click on the submit button, the

form will post the data back to the RegisterNewPaper.asp page, which will then be

recorded into the database for completion of the registeration. This is shown in the

following two screenshots in Figure 11.

The common code for this page includes four include files at the top of the page. The

first include file adds ADO constants and the second file checks to see if the user has

been authenticated and redirects the browser to the Default.asp page if they have not. The

third include file contains some common functions that can be shared with other pages.,

and the last include file contains error handling functions. These include files were put

into the top of web page as follows.

<!-- #include file="adovbs.inc" -->
<!-- #include file="AuthenticationCheck.inc" -->
<!-- #include file="CommonFunctions.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
<!HEAD>
<BODY>

This page calls two stored procedures. The first is qAllPaperClasses which selects all

of the different paper classes from the Paper table in the database. An ADO Recordset is

created and filled with the data selected from the stored procedure. The code for opening

a recordset through the stored procedure is listed as follow.

<%
'Check for database errors
Call CheckForErrors(obj Conn)

'Create the recordset object and open the recordset
Set objRS = Server.CreateObject("ADODB.Recordset")
strSQL = "qAllPaperClasses"
objRS.Open strSQL, objConn, adOpenForwardOnly,, adCmdStoredProc

'Check for database errors
Call CheckForErrors(objConn)
%>

27

l=l

1
l

l
n
0
n

n

u

!
J

'

...
Back

~
Forward

...

Agdress ~ http://georgew/geneticsimule.tion/RegisterNewPe.per.e.sp

Favorites

Genetic Simulation of Effects of Dominance

New Paper Registration

Author
Name

Published I
Year --~

Journal
Name

Title I __ _

Class

Volume

Page NO. ·-------~

---- --

Genetic Simulation of Effects of Dominance

Your paper has been registered

Return to Options Page

Done Local inlranet

Figure 11. Screenshots for paper registeration

28

This recordset (objRS) is then used to load data into a paper class combox by a

special Window_OnLoad event coded as client-side script. This is the first event to fire

when the page loads on the user's browser. An Option element is created and assigned

with text and value from the recordset. The option is then added to the combo box. After

executing this event, we will have a combo box with a drop down list of all the available

paper class names by looping through the recordset. The code for Window_OnLoad

event is listed as follows.

<script language=vbscript>
Sub Window_OnLoad()
<%

Do While Not objRS.EOF

Set objOption = document.createElement("OPTION")
objOption.text = "<%=objRS("ClassName")%>"
objOption.value = "<%=objRS("ClassName")%>"
document.all.cboClass.add objOption

objRS.MoveNext
Loop

<!-- #include file="Disconnect.inc" -->
Set objOption = Nothing

End Sub

The second stored procedure is qlnsertPaper which is to insert the new paper details into

the Paper table. Following is the code for setting the SQL string with the name of the

stored procedure to execute and pass it the appropriate parameters. Once the SQL string

has been built, it is executed through the ADO Connect object to insert the new paper to

the Paper table. Since all string parameters must be enclosed in single quote marks, the

common function ConvertString is used to replace all single quote marks with two

consecutive single quote marks.

'Check for database errors
Call CheckForErrors(obj Conn)

'Run the paper title through the string conversion routine
'just in case there are any single quotes
strTitle = ConvertString(Request.Form("txtTitle"))

'Set the parameters for the insert stored procedure
strSQL = "qlnsertPaper ("' & CStr(Request.Form(txtAuthorName))& _·

"',"' & CStr(Request.Form("cboClass")) & _
"'," & CLng(Request.Form("txtPublished")) & _

29

Q

f1

f f

)

I
1
1,

u
J
u

","' & CStr(Request.Form("txtVolume")) & _
'","' & CStr(Request.Form("txtJourna!Name")) & _
"',"' & CStr(Request.Form("txtPageNo")) & _
"',"' & CStr(strTitle) & "')"

'Insert the new boat
objConn .Execute strSQL,,adCmdStoredProc

'Check for database errors
Call CheckForErrors(obj Conn)

II. DisplayPapers.asp Page

This is the last web page in our web site and this page selects all papers from the

database based on selection parameters, and displays the data in a table formatted with

multiple table headers and rows. Thus this page is also divided into two steps. The first

step is to present a form for the user to input selection parameters for related published

papers. The second step is then to display the paper information by searching through the

database. Two screenshots are shown in Figure 12.

In this web page, the stored procedure qAllPaperClasses is again used to populate a

paper class combo box for the user to select the type of paper they need. The other stored

procedure called in this procedure is qDisplayPapers which is to select all papers based

on the user's criteria. Its code is listed as follows.

PARAMETERS Class Text, From Year IEEEDouble, To Year IEEEDouble;
SELECT paper .AuthorName, paper.paperClass, paper.publishedYear, paper.Journa!Volume,
paper.Journa!Name, paper.PageNo, paper.PaperTitle
FROM paper
WHERE (((paper.paperClass)=[Class]) and ((paper.publishedYear)>=[FromYear]) and
((paper. publishedY ear)<= [To Year]))
ORDER BY paper .publishedYear, paper.AuthorName;

30

~
Search Favorites History

Genetic Simulation of Effects of Dominance

Please Select Related Parameters for Displaying Papers

Paper Class

Published Year:

From Year(>=2000):

To Year:

Submit

!Plant El

Genetic Simulation of Effects of Dominance

Published papers on Plant from year 2000 to 2001 using the simulation program

2000 Genetics vol.9
234-
248

Comparison of genetic diversity and
opulation differentiation estimated by

D and allozyme markers

Steve Struass 2 01 Appli~d
Genetics

ol.8
1123-
1128

Comparison of genetic diversity and
opulation differentiation estimated by

D and allozyme markers in Douglas-

Done Local intranet

Figure 12. Screenshots for paper display

31

' n

l

J

1

I

' J

l
}

J

l

l

r

1 I
t

j

I
t
!
d
l
u

In this page we used an ADO Command object to pass value to the above stored

procedure. The code is listed as follow. We first create an ADO Command object, then

set its ActiveConnection property to the Connection object that we have created. Using

the stored procedure we created earlier, we set the commandText property of the

Command object to call the stored procedure and pass all of the parameters. Finally, a

Recordset object is created to hold the records that will be returned when we execute the

Command object. All of the records held in the recordset will be displayed in our web

page.

<%
'Check for database errors
Call CheckForErrors(obj Conn)

Set objCmd = server.CreateObject("ADODB .command")
Set objCmd.ActiveConnection=objConn
objCmd.CommandText=" { Call qDisplayPapers ("' &strPaperClass & _
"'," &intFromYear & "," &intToYear &")}"
Set objRS = objCmd.execute

'Check for database errors
Call CheckForErrors(obj Conn)
%>

4. Conclusions and Future Work

The simulation program we implemented can quantitatively determine how the

dominance and biallelism could affect the estimation of population genetic statistics. It

will thus allow us to make a more accurate comparison of estimation of genetic

parameters between dominant and codominant markers. Our results demonstrate the

importance of simulations to help compare and interpret the results of population studies

with dominant markers. Thus the simulation program is currently highly needed by the

genetics society. The dynamic web site generated by Active Server Pages in combination

with Active Data Objects (ADO) provides the users with an opportunity to register their

information and papers into the database, search for other related papers from the

database, and download the simulation program.

Although the simulation program and the web site meet our initial requirements, they

can be improved in some areas in the future. Currently our backend database is Microsoft

Access. Its maximum number of concurrent users is 255, and in many cases you would

only be able to manage much smaller numbers. If the web site becomes popular in the

32

future, the database can be moved to a SQL server system that will have better

performance than the Access database. All script files should be reusable with minimal

modifications. In addition, users may require more functionality and features from the

simulation program, advanced versions can be developed accordingly and distributed

through the web site.

5. References

Aagaard JE, Krutovskii KV, and Strauss SH, 1998. RAPDs and allozymes exhibit
similar levels of diversity and differentiation among populations and races of Douglas
fir. Heredity 81:69-78.

Homer Alex, 2000. Alex Homer's Professional ASP 3.0 Web Techniques. Wrox Press
Inc. Chicago, USA.

Baruffi L, Damiani G, Guglielmino CR, Bandi C, Malacrida AR, and Gasperi G, 1995.
Polymorphism within and between populations of Ceratitis capitata: comparison
between RAPD and multilocus enzyme electrophoresis data. Heredity 74:425-437.

le Corre V, Dumolin-LapIIgue S, and Kremer A, 1997. Genetic variation at allozyme
and RAPD loci in sessile oak Quercus petraea (Matt.) Liebl.: the role of history and
geography. Mol Ecol 6:519-529.

Dawson IK, Simons AJ, Waugh R, and Powell W, 1996. Diversity and genetic
differentiation among subpopulations Gliricidia sepium revealed by PCR-based
assays. Heredity 74:10-18.

Heun M, Murphy JP, and Phillips TD, 1994. A comparison of RAPD and isozyme
analyses for determining the genetic relationships among Avena sterilis L. accessions.
Theor Appl Genet 87:689-696.

Isabel N, Beaulieu J, and Bousquet J, 1995. Complete congruence between gene
diversity estimates derived from genotypic data at enzyme and random amplified
polymorphic DNA loci in black spruce. Proc Natl Acad Sci USA 92:6369-6373.

Krutovskii KV, Vollmer SS, Sorensen FC, Adams WT, Knapp SJ, and Strauss SH, 1998.
RAPD genome maps of Douglas-fir. J. Heredity 89:197-205.

Lann-th-Herrera C, Gustafsson M, and Bryngelsson T, 1996. Diversity of wild Brassica
oleraceae as estimated by isozyme and RAPD analysis. Genetic Resources and Crop
Evolution 43:13-23.

33

'

}

l
l
l

f

J

1

J

l
J

q

H

I
f

lj

I J

~j

J
u

Latta RG and Mitton JB, 1997. A comparison of population differentiation across four
classes of gene marker in limber pine (Pinus flexilis James). Genetics 146: 1153-1163.

Lewis PO, 1994. GeneStat-PC 3.3. Department of Statistics, North Carolina State
University, Raleigh, North Carolina.

Li P and Adams WT, 1989. Range-wide patterns of allozyme variation in Douglas-fir
(Pseudotsuga menziesii). Can J For Res 19: 149-161.

Liu Zand Fumier GR, 1993. Comparison of allozyme, RFLP, and RAPD markers for
revealing genetic variation within and between trembling aspen and bigtooth aspen.
Theor Appl Genet 87:97-105.

Lynch Mand Milligan BG, 1994. Analysis of population genetic structure with RAPD
markers. Mol Ecol 3:91-99.

Mosseler A, Egger KN, and Hughes GA, 1992. Low levels of genetic diversity in red
pine confirmed by random amplified polymorphic DNA markers. Can J For Res
22:1332-1337.

Nei M, 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci
USA 70: 3321-3323.

Nei M, 1986. Definition and estimation of fixation indices. Evolution 40:643-645.

Nei Mand Chesser RK, 1983. Estimation of fixation indices and gene diversities. Ann
Hum Genet 47:253-259.

Peakall R, Smouse PE, and Huff DR, 1995. Evolutionary implications of allozyme and
RAPD variation in diploid populations of dioecious buffalograss BuchloN dactyloides.
Mol Ecol 4:135-147.

Puterka GJ, Black IV WC, Steiner WM, and Burton RL, 1993 Genetic variation and
phylogenetic relationships among worldwide collections of the Russian wheat aphid,
Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers.
Heredity 70:604-618.

Szmidt AE, Wang X, and Lu M, 1996. Empirical assessment of allozyme and RAPD
variation in Pinus sylvestris (L.) using haploid tissue analysis. Heredity 76:412-420.

Travis SE, Maschinski J, and Keim P, 1996. An analysis of genetic variation in
Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using
AFLP markers. Mol Ecol 5:735-745.

34

Vos P, Rogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J,
Peleman J, Kuiper M, and Zabeau M, 1995. AFLP: a new technique for DNA
fingerprinting. Nucl Acids Res 23:4407-4414 .

Weir BS and Cockerham CC, 1984. Estimating F-statistics for the analysis of population
structure. Evolution 38: 1358-1370.

Williams JG, Kubelik AR, Livak KJ, Rafalski JA, and Tingey SV, 1990. DNA
polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl
Acids Res 18:6531-6535.

Wu J, Krutovskii KV, and Strauss SH, 1999. Nuclear DNA diversity, population
differentiation and phylogenetic relationships in the California closed-cone pines
based on RAPD and allozyme markers. Genome 42: 893-908.

35

'

1

l

l

t

J

l

1

I

J

n

n

')

l 1

J

u
!
u

6. Appendix: Source code

6.1. Genetic dominance simulation program

'variable names must be explicitly declared before use.
Option Explicit

'first element in array starts at index 1
Option Base 1

'inputFile is an input file which imports original allele frequency
'outputFile is an output file which outputs the calculated results
Public inputFileName As String, outputFileName As String

'basePopSize: size of generated basic populations
'subPopSize: the number of individuals sampled from the population
'Nsam: the number of times the generated base population is sampled_
'Nresam : the number of times the sampled subpopulations is resampled _

by bootstrap resampling

Public basePopSize As Integer , subPopSize As Integer, _
Nsam As Integer, Nresam As Integer

'Npop: number of populations; Nloc : Number of locus_
Nalle: number of alleles; MaxNalle: maximum number of alleles among all loci
Public Npop As Integer, Nloc As Integer
Dim Nalle() As Integer, MaxNalle As Integer

'Options to calculate genetic diversity and differention
Dim diversityOption As Integer, differenOption As Integer

'Allele frequency
Dim AlleFreq() As Double

'two alleles at each locus for individuals in generated base populations
Dim allele!() As Integer, allele2() As Integer

'allele frequencies based on generated base populations
Dim baseAlleFreq() As Double

'Allele! and allele2 for the individuals in the sampled populations
Dim sarnAllelel() As Integer, sarnAllele2() As Integer
'Allele! and allele2 for the individuals in the bootstrap-resampled populations
Dim resarnAllelel() As Integer, resamAllele2() As Integer

'nth population number, e.g. popNo(l), popNo(2)
'Dim popNo() As Integer

'used for random number generator
Public ranintl As Integer, ranint2 As Integer, ranlnt3 As Integer

'used for storing scrollbar values
Dim xl As Integer, x2 As Integer, x3 As Integer, x4 As Integer

Private Sub Form_Load()
TxtPopSize.Text = 1000
TxtSubPopSize.Text = 20
TxtNoSam.Text = 200
TxtNoResam.Text = 200
x 1 = x2 = x3 = x4 = 0
'Open "c:\simulation\optionsl.prg" For Output As #5

36

End Sub

Private Sub mnuAbout_Click()
Dim Aboutstr As String, crlf As String
'Chr$(13):carriage return; Chr$(10) :newline
crlf= Chr$(13) + Chr$(10)
Aboutstr = "Population genetic dominance simulation program" & crlf _
& "Designed and programmed by: Junyuan Wujunyuan@cs.orst.edu" & crlf
MsgBox Aboutstr, vbOKOnly, "About the program"
End Sub

Private Sub mnuHelp_Click()
Dim HelpStr As String, crlf As String
'Chr$(13):carriage return; Chr$(10) :newline
crlf = Chr$(13) + Chr$(10)
HelpStr = "How to use the system :" & crlf _
& "I. Select an input datafile under file menu" & crlf _
& "2. Select an output datafile under file menu" & crlf _
& "3. Run calculation under run menu" & crlf _
& "4. Wait until the message 'calculation finished' shows up" & crlf _
& crlf
& "The structure of input datafile (see the format of sample .dat):" & crlf _
& "First line: the number of populations" & crlf _
& "Second line : the number ofloci" & crlf
& "Third line: the number of alleles for each locus" & crlf
& "Follwoing lines : allele frequencies in each locus" & crlf
MsgBox HelpStr, vbOKOnly, "Help"
End Sub

Private Sub SimuFrame_DragDrop(Source As Control, X As Single, Y As Single)

End Sub

Private Sub TxtPopSize_Change()
Dim intpress As Integer
If Clnt(TxtPopSize .Text) > 1000 Or Clnt(TxtPopSize .Text) < 500 Then

intpress = MsgBox("value should be between 500 and 1000", vbOKOnly, "population size")
End If
End Sub

Private Sub TxtSubPopSize_Change()
Dim intpress As Integer
IfClnt(TxtSubPopSize.Text) > 200 Or Clnt(TxtSubPopSize.Text) < IO Then

intpress = MsgBox("value should be between 10 and 200", vbOKOnly, "Subpopulation size")
End If
End Sub

Private Sub TxtNoSam_Change()
Dim intpress As Integer
If Clnt(TxtNoSam.Text) > 400 Or Cint(TxtNoSam.Text) < 100 Then

intpress = MsgBox("value should be between 100 and 400", vbOKOnly, "Number of Sampling")
End If
End Sub

Private Sub TxtNoResam_Change()
Dim intpress As Integer
If Cint(TxtNoResam.Text) > 400 Or Clnt(TxtNoResam.Text) < 100 Then

intpress = MsgBox("value should be between 100 and 400", vbOKOnly, "Number of Resampling")
End If
End Sub

Private Sub VScrollPopSize_Change()

37

I

l

j

J

J

7
n

A

1j

l f

u

u

Ifxl < VScrollPopSize .Value Then
TxtPopSize .Text = TxtPopSize .Text + I

Else
TxtPopSize .Text = TxtPopSize .Text - I

End If

xl = VScrollPopSize .Value
End Sub
Private Sub VScrollSubPop_change()
Ifx2 < VScrollSubPop.Value Then

TxtSubPopSize .Text = TxtSubPopSize.Text + I
Else

TxtSubPopSize.Text = TxtSubPopSize.Text - I
End If

x2 = VScrollSubPop .Value
End Sub
Private Sub VScrollNsam_change()
Ifx3 < VScrollNsam .Value Then

TxtNoSam .Text = TxtNoSam .Text + I
Else

TxtNoSam .Text = TxtNoSam .Text - I
End If

x3 = VScrollNsam.Value
End Sub
Private Sub VScrollNresam_change()
Ifx4 < VScrollNresam .Value Then

TxtNoResam .Text = TxtNoResam.Text + I
Else

TxtNoResam .Text = TxtNoResam .Text - 1
End If

x4 = VScrollNresam .Value
End Sub
Private Sub rnnuFileExit_Click()
Unload Me
End
End Sub

Private Sub rnnuFilelnput_Click()
'Dim inputFileName As String
cdbDialogOpen.DialogTitle = "Choose an input file"
cdbDialogOp en.Filter = "All Files(*.*)"
'cdbDialog .filename = "*.dat"
cdbDialogOpen .ShowOpen
inputFileName = cdbDialogOpen.lnitDir + cdbDialogOpen .FileName
'Write #5, inputFileName

End Sub

Private Sub rnnuFileOut_Click()
'Dim outputFileName As String
CdbDialogSave.DialogTitle = "Choose an output file"
CdbDialogSave .Filter = "All Files(*.*)"
'cdbDialog.FileNam e = "*.out"
CdbDialogSave.ShowSave
outputFileName = CdbDialogSave.lnitDir + CdbDialogSave.FileName
'Write #5, outputFileName

End Sub

38

t-

Private Sub mnuRunCalculate_Click()
'The number of items in the list box
Dim nCnt As Integer, intpress As Integer
For nCnt = 0 To DiversityList.ListCount - 1

If DiversityList.Selected(nCnt) Then
diversityOption = nCnt + 1

Else
diversityOption = 1 'default

End If
Next

For nCnt = 0 To DifferentiationList.ListCount - 1
If DifferentiationList.Selected(nCnt) Then

differenOption = nCnt + 1
nCnt = DifferentiationList.ListCount

Else
differenOption = 1 'default

End If
Next

basePopSize = Clnt(TxtPopSize .Text)
subPopSize = Cint(TxtSubPopSize .Text)
Nsam = Clnt(TxtNoSam .Text)
Nresam = Cint(TxtNoResam.Text)

Call openFile

'Calculate theoretical values of Hs, Ht, Gst and theta
Call theoretical_ value

'Generate populations with 1000 individuals each based on original_
allele frequency
Call popGenerate

'Calculate empirical values of Hs, Ht, Gst and theta based on allele frequencies in _
generated sets of 1000 individuals
Call empirical_ value

Call sampling

Call Resampling

Close #2

intpress = MsgBox("The calculation is completed", vbOKOnly, "Finished running")

End Sub

Private Sub openFile()
Dim i As Integer
Dimj As Integer
Dim k As Integer
Dim intpress As Integer

'Reading input data from inputFile
Do While inputFileName = ""

intpress = MsgBox("You need to select an input data file", vbOKOnly , "Select input data file")
Call mnuFileinput_Click

Loop

Open inputFileName For Input As #1
'Open inputFile For Input As #1

39

I

]

J

l
J

j

j

J

7
n

fr

I

J

Li

Input #1, Npop, Nloc

'declare dynamic array Nalle()
ReDim Nalle(Nloc)

For i = 1 To Nloc
Input #1, Nalle(i)

Next i

'get the largest number of alleles among all loci
MaxNalle = GetMaxNalle(Nalle, Nloc)

'declare dynamic array AlleFreq()
ReDim AlleFreq(Npop, Nloc, MaxNalle)

'read allele frequency from input dada file
For i = 1 To Nloc

For j = 1 To Nalle(i)
For k = 1 To Npop

Input #1, AlleFreq(k, i, j)
Nextk

Nextj
Nexti

Close #1

Do While outputFileName = ""
intpress = MsgBox("You need to select an output data file", vbOKOnly, "Select output data file")
Call mnuFileOut_Click

Loop

Open outputFileName For Output As #2
Print #2, "Genetic parameters are calculated based on follwing fomulas:"
If diversityOption = 1 Then

Print#2 , "Hs & Ht- unmodified(Nei 1973)"
Else

Print #2, "Hs & Ht - modified for sample size(Nei & Chesser 1983)"
End If
Select Case differenOption:

Case 1: Print #2, "Gst - unmodified(Nei, 1973)"
Case 2: Print #2, "Gst - modified for sample size(Nei & Chesser 1983)"
Case 3 : Print #2, "Gst - modified for sample size and population number(Nei 1986)"
Case 4: Print #2, "Gst - is actually Theta(Weir & Cockerham 1984)"

End Select
Print #2, "Fst - calculated only for simulated dominant biallelic data sets(Lynch & "
Print #2, Tab(7); "Milligan 1994)"
Print #2,
Print #2, "Last letter denotes for genetic parameters (Hs, Ht, Gst) :"
Print #2, "c - based on corrected allele frequencies from Lynch & Milligan(1994)"
Print #2, "d - based on simulated codominant multiallelic data sets"
Print #2, "e - based on generated base population data sets"
Print #2, "i - based on simulated dominant biallelic data sets"
Print #2,
End Sub

Function GetMaxNalle(A() As Integer, B As Integer) As Integer
Dim i As Integer
Dim C As Integer
C=O
For i = 1 To B

If C < A(i) Then
C = A(i)

40

t

I

End If
Nexti
GetMaxNalle = C
End Function
Private Sub theoretical_ value()
'Hs:within-population genetic diversity;_
Ht:total genetic diversity ; Gst:population differentiation
Dim Hs As Double , Ht As Double, Gst As Double
Dim outString As Variant

Call calc_theor_diversity(AlleFreq , Nalle, Hs, Ht)

If differenOption <= 2 Then
Gst = t - Hs / Ht

Else
If differenOption = 3 Then

Gst = Npop * (Ht - Hs) / (Npop * Ht - Hs)
Else

Gst = calculateTheta(AlleFreq, Nalle, basePopSize)
End If

End If
Print #2, "Generated base population size: "; basePopSize
Print #2, "Theoretical values based on initial allele frequencies from input data file"
Print#2 , Spc(l); "Hs"; Tab(ll); "Ht"; Tab(t9) ; "Gst"
Print#2 , Format(Hs, ".0000"); Tab(lO) ; Format(Ht, ".0000"); Tab(l8); Format(Gst , ".0000")
Print #2,
End Sub
'Calculate theoretical genetic diversity
Private Sub calc_theor_diversity(freq() As Double, nAllele() As Integer, _

Hs As Double , Ht As Double)
Dim i As Integer
Dimj As Integer
Dim k As Integer
Dim Hs l As Double , sumt As Double
Dim Htt As Double , sum2 As Double
Dim Pkt As Double, Pk2 As Double

Hs=0
Ht=0
For i = t To Nloc

sumt = 0
sum2 = 0
For j = t To nAllele(i)

Pkt =0
Pk2=0
For k = t To Npop

Pkt = Pkt + freq(k, i, j) * freq(k, i, j)
Pk2 = Pk2 + freq(k, i, j)

Nextk
Pkt = Pkt / Npop
Pk2 = Pk2 I Npop
sumt = sumt + Pkt
sum2 = sum2 + Pk2 * Pk2

Nextj
Hsl = t - suml
Htt = t - sum2
Hs = Hs + Hst
Ht= Ht+ Htt

Nexti
Hs = Hs/ Nloc
Ht= Ht/ Nloc

41

1

J

l
l
l

l
J

J

g

n

d

I
J

J

u

End Sub
'Calculate Theta value
Function calculateTheta(A() As Double, B() As Integer, nSize As Integer) As Double
Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim m As Integer
'average allele frequency"
ReDim qa(Nloc, MaxNalle)
Dim suml As Double, sum2 As Double
Dim s As Double, H As Double
Dim h_s As Double, a_li As Double , b_li As Double, c_li As Double

For i = 1 To Nloc
For j = 1 To B(i)

qa(i, j) = 0
Fork = 1 To Npop

qa(i, j) = qa(i , j) + A(k, i, j)
Nextk
qa(i , j) = qa(i, j) / Npop

Nextj
Nexti

suml = 0
sum2 =0
For i = 1 To Nloc

For j = 1 To B(i)
s=0
H=0
Fork = 1 To Npop

s = s + (A(k, i, j) - qa(i, j)) /\ 2
h_s =0
Form= 1 To B(i)

If m <> j Then h_s = h_s + A(k, i, m)
Nextm
H = H + A(k, i, j) * h_s

Nextk
s = s / (Npop - 1)
H=2 *H/Npop
IfNalle(i) > 2 Then H = H / (Nalle(i) - 1)
c_li =0 .5 * H
a_li = s - 1 / (nSize - 1) * (qa(i, j) * (1 - qa(i , j)) _

- (Npop - 1) * s / Npop - 0.25 * H)
b_li = nSize / (nSize - 1) * (qa(i, j) * (1 - qa(i, j)) _

- (Npop - 1) * s / Npop - 0.25 * (2 * nSize - 1) / nSize * H)
suml = suml + a_li
sum2 = sum2 + a_li + b_li + c_li

Nextj
Next i
calculateTheta = suml / sum2

End Function

Private Sub popGenerate()
'for each population , generate a number of individuals(basePopSize)each with_
multi-locus genotypes that maintain the original_
allele frequencies within populations

ReDim allelel (Npop, basePopSi ze, Nloc)
ReDim allele2(Npop , basePopSize, Nloc)
Dim i As Integer
Dimj As Integer

42

Dim k As Integer, n As Integer
Dim sum As Double, ran Value As Double

'initialize the random-number generator with a seed based on_
the system timer (without argument)
Randomize

For i = 1 To Npop
For j = 1 To basePopSize

Fork = 1 To Nloc
'generation of first allele in each locus _
for all individuals

ran Value= Rnd
'rnd returns a random value between 0 and 1
sum=0
For n = 1 To Nalle(k)

sum= sum + AlleFreq(i , k, n)
If ran Value< sum Then GoTo Labell

Nextn
Labell: allelel(i, j, k) = n 'get the first allele number

'generation of second allele in each locus _
for all individuals
ran Value= Rnd
sum=0
For n = 1 To Nalle(k)

sum= sum+ AlleFreq(i , k, n)
If ran Value< sum Then GoTo labelll

Next n
labelll : allele2(i, j , k) = n 'get the second allele number

Nextk
Nextj

Nexti

End Sub
Private Sub empirical_value()

Dim Hse As Double, Hte As Double, Gste As Double

'Hsl:diversity unmodified ; Hs2:diveristy unbiased for sample size
'Htl :diversity unmodified ; Ht2:diveristy unbiased for sample size
Dim Hsl As Double , Hs2 As Double , Htl As Double , Ht2 As Double

ReDim baseAlleFreq(Npop, Nloc, MaxNalle)
Call getFrequency(allele 1, basePopSize, allele2, baseAlleFreq)
Call calc_empiri_diversity(baseAlleFreq, Nalle, basePopSize , Hsl, Hs2, Htl , Ht2)
If diversityOption = 1 Then

Hse = Hsl
Hte = Htl

Else
Hse = Hs2
Hte = Ht2

End If

Select Case differenOption
Case 1: Gste = 1 - Hsl / Htl
Case 2 : Gste = 1 - Hs2 / Ht2
Case 3: Gste = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gste = calculateTheta(baseAlleFreq , Nalle , basePopSize)

End Select

43

J

n

]

f
J

J

l
J

l
I

J

I

u

Li

Print #2, "Empirical values based on allele frequencies from generated populations of 1000 indivudals"
Print #2, Spc(l); "Hse"; Tab(l l); "Hte"; Tab(l9); "Gste"
Print #2, Format(Hse, ".0000"); Tab(IO); Format(Hte, ".0000") ; Tab(l 8); Format(Gste, ".0000")
Print #2,
End Sub

Private Sub calc_empiri_diversity(freqO As Double, nAlleleO As Integer , nPopSize As Integer,_
Hsel As Double, Hse2 As Double, Htel As Double, Hte2 As Double)

Dim i As Integer
Dim j As Integer
Dim k As Integer
Dim Hsl As Double, Hs2 As Double, Pkl As Double, suml As Double
Dim Htl As Double, Ht2 As Double, Pk2 As Double, surn2 As Double
Hsel = 0
Hse2 =0
Htel = 0
Hte2 = 0
For i = I To Nloc

suml =0
surn2 = 0
For j = I To nA!lele(i)

Pkl =0
Pk2=0
For k = I To Npop

Pkl = Pkl + freq(k, i, j) * freq(k, i, j)
Pk2 = Pk2 + freq(k, i, j)

Next k
Pkl = Pkl I Npop
Pk2 = Pk2 I Npop
suml = suml + Pkl
surn2 = surn2 + Pk2 * Pk2

Nextj
Hsl = I - suml
Htl = I - surn2
Hs2 = (I - suml) * 2 * nPopSize / (2 * nPopSize - I)
Ht2 = 1 - surn2 + Hs2 / (2 * nPopSize * Npop)
Hsel = Hsel + Hsl
Hse2 = Hse2 + Hs2
Htel = Htel + Htl
Hte2 = Hte2 + Ht2

Next i
Hsel = Hsel I Nloc
Hse2 = Hse2 I Nloc
Htel = Htel I Nloc
Hte2 = Hte2 I Nloc

End Sub
Private Sub getFrequency(AO As Integer, m As Integer, BO As _
Integer, CO As Double)
'Calculate allele frequencies based on generated individuals(basePopSize), _
they should be very similar to those from original data input file_
cO return values to calling procedure

Dim i As Integer
Dim j As Integer
Dim k As Integer, n As Integer

For i = 1 To Npop
For j = I To Nloc

Fork= I To NalleU)
C(i,j, k) = 0

44

Forn = I Tom
If A(i, n, j) = k Then C(i, j, k) = _

C(i,j, k) + I
If B(i , n, j) = k Then C(i , j, k) = _

C(i,j, k) + I
Nextn
C(i, j, k) = C(i, j , k) Im I 2

Nextk
Nextj

Next i

End Sub
'Sample subpopulations of size subPopSize with replacement from generated basic population
Private Sub sampling()

Dim i As Integer, j As Integer
Dim k As Integer, n As Integer, s As Integer
Dim ran Value As Double

ReDim samAllelel(Npop, basePopSize , Nloc) , samAllele2(Npop, basePopSize , Nloc)

'initialize the random-number generator
'Randomize ranint2
Randomize

'Parameters calculated based on codominant allele frequencies
Dim Hsd() As Double , Htd() As Double, Gstd() As Double
ReDim Hsd(Nsam), Htd(Nsam), Gstd(Nsam)

'Parameters calculated based on dominant and null allele frequencies
Dim Hsi() As Double, Hti() As Double, Gsti() As Double
ReDim Hsi(Nsam) , Hti(Nsam) , Gsti(Nsam)

'Parameters calculated based on corrected allele frequencies _
based on Lynch & Milligan's formula
Dim Hsc() As Double , Htc() As Double, Gstc() As Double
ReDim Hsc(Nsam), Htc(Nsam), Gstc(Nsam)

'Fst value based on Lynch & Milligan's formula
Dim Fst() As Double
ReDim Fst(Nsam)

'A varage value of those parameters
Dim A vgHsd As Double , A vgHtd As Double , A vgGstd As Double
Dim A vgHsi As Double , A vgHti As Double , A vgGsti As Double
Dim A vgHsc As Double , A vgHtc As Double, A vgGstc As Double
Dim A vgFst As Double

'Standard Deviation of those parameters
Dim StdHsd As Double, StdHtd As Double, StdGstd As Double
Dim StdHsi As Double, StdHti As Double , StdGsti As Double
Dim StdHsc As Double, StdHtc As Double, StdGstc As Double
Dim StdFst As Double

'the number of sampling
For i = I To Nsam

For j = 1 To Npop
For k = I To subPopSize

ran Value = Rud

'n will be between I and basePopSize
n = Int(ranValue * basePopSize) + I

45

For s = 1 To Nloc
samAllele 1 (j, k, s) = allele 1 (j, n, s)
samAllele2(j, k, s) = allele2(j , n, s)

Next s
Nextk

Nextj
Call calculate_sampling(i , Hsd , Htd, Gstd, Hsi, Hti, Gsti, Hsc, _

Htc, Gstc, Fst)
Next i

'Get parameters' average values over number of samplings
AvgHsd = average(Hsd, Nsam)
AvgHtd = average(Htd, Nsam)
AvgGstd = average(Gstd, Nsam)
AvgHsi = average(Hsi, Nsam)
AvgHti = average(Hti, Nsam)
AvgGsti = average(Gsti , Nsam)
AvgHsc = average(Hsc, Nsam)
AvgHtc = average(Htc, Nsam)
AvgGstc = average(Gstc , Nsam)
AvgFst = average(Fst , Nsam)

StdHsd = Stdev(Hsd, Nsam)
StdHtd = Stdev(Htd, Nsam)
StdGstd = Stdev(Gstd , Nsam)
StdHsi = Stdev(Hsi , Nsam)
StdHti = Stdev(Hti, Nsam)
StdGsti = Stdev(Gsti , Nsam)
StdHsc = Stdev(Hsc, Nsam)
StdHtc = Stdev(Htc , Nsam)
StdGstc = Stdev(Gstc , Nsam)
StdFst = Stdev(Fst , Nsam)

Print #2, "Number of sampling: "; Nsam; "cycles"
Print #2, "Sample size for each population : "; subPopSize
Print #2, Tab(2); "Hsd"; Tab(9); "Htd"; Tab(l6); "Gstd"; Tab(23); "Hsi";_

Tab(30) ; "Hti"; Tab(37); "Gsti"; Tab(44); "Hsc"; Tab(Sl) ; "Htc" _
; Tab(58); "Gstc"; Tab(65) ; "Fst"

For i = 1 To Nsam
Print #2, Format(Hsd(i) , ".0000"); Tab(8); Format(Htd(i), ".0000") ; _

Tab(15); Format(Gstd(i), ".0000"); Tab(22); Format(Hsi(i), ".0000"); _
Tab(29); Format(Hti(i), ".0000"); Tab(36) ; Format(Gsti(i), ".0000"); _
Tab(43) ; Format(Hsc(i), ".0000"); Tab(S0) ; Format(Htc(i), ".0000"); _
Tab(57); Format(Gstc(i) , ".0000") ; Tab(64) ; Format(Fst(i), ".0000")

Next i
Fori = 1 To 70

Print #2, "-";
Next i
Print #2, "-"
Print #2, "Average Values:"
Print #2, Format(AvgHsd , ".0000"); Tab(8) ; Format(AvgHtd, ".0000"); _

Tab(15); Format(AvgGstd, ".0000"); Tab(22); Format(AvgHsi, ".0000"); _
Tab(29) ; Format(AvgHti , ".0000"); Tab(36); Format(AvgGsti , ".0000"); _
Tab(43); Format(AvgHsc, ".0000"); Tab(S0) ; Format(AvgHtc, ".0000"); _
Tab(57) ; Format(AvgGstc, ".0000"); Tab(64); Format(AvgFst , ".0000")

Print #2, "Standard deviation:"
Print #2, Format(StdHsd, ".0000") ; Tab(8) ; Format(StdHtd , ".0000") ; _

Tab(15); Format(StdGstd, ".0000"); Tab(22); Format(StdHsi, ".0000"); _
Tab(29); Format(StdHti, ".0000"); Tab(36) ; Format(StdGsti, ".0000"); _
Tab(43); Format(StdHsc , ".0000"); Tab(S0) ; Format(StdHtc, ".0000"); _
Tab(57); Format(StdGstc, ".0000"); Tab(64) ; Format(StdFst, ".0000")

46

For i = I To 70
Print #2, "-";

Nexti
Print #2, "-"
Print#2 ,

End Sub
'After sampling, calculating Hs, Ht, and Gst values directly and indirectly
Private Sub calculate_sampling(A As Integer, Hsd() As Double, Htd() As Double, _

Gstd() As Double, Hsi() As Double, Hti() As Double , Gsti() As Double, _
Hscor() As Double, Htcor() As Double , Gstcor() As Double, Fst() As Double)

Dim i As Integer
Dim samAlleFreq() As Double
ReDim samAlleFreq(Npop, Nloc, MaxNalle)

'declare allele frequencies for dominant and null alleles
Dim indir_freq() As Double
ReDim indir_freq(Npop, Nloc , 2)

'declare corrected allele frequencies for dominant and null alleles _
based on Lynch and Milligan 's(l994) equation 2a
Dim cor_freq() As Double
ReDim cor_freq(Npop, Nloc , 2)

'number of alleles in each locus for simulated data set
Dim simu_nalle() As Integer
ReDim simu_nalle(Nloc)

Dim Hsl As Double , Hs2 As Double , Htl As Double , Ht2 As Double

'For simulated data, each locus has two alleles (one dominant , one null)
For i = I To Nloc

simu_nalle(i) = 2
Nexti

Call getFrequency(samAllele I , subPopSize , samAllele2 , samAlleFreq)
Call calc_empiri_diversity(samAlleFreq , Nalle, subPopSize , Hsl, Hs2, Htl , Ht2)

If diversityOption = I Then
Hsd(A) = Hsl
Htd(A) = Htl

Else
Hsd(A) =Hs2
Htd(A) = Ht2

End If

Select Case differenOption
Case I : Gstd(A) = I - Hsl / Htl
Case 2: Gstd(A) = I - Hs2 / Ht2
Case 3: Gstd(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gstd(A) = calculateTheta(samAlleFreq, Nalle, subPopSize)

End Select

Call get_indir_cor_freq(samAllelel , samAllele2, indir_freq, cor_freq)

Call calc_empiri_diversity(indir_freq , simu_nalle, subPopSize, Hsl, Hs2, Htl, Ht2)
If diversityOption = I Then

Hsi(A) = Hsl
Hti(A) = Htl

Else
Hsi(A) = Hs2

47

Hti(A) = Ht2
End If

Select Case differenOption
Case 1: Gsti(A) = 1 - Hsl / Htl
Case 2: Gsti(A) = 1 - Hs2 / Ht2
Case 3: Gsti(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gsti(A) = calculateTheta(indir_freq, simu_nalle, subPopSize)

End Select

Call calc_empiri_diversity(cor_freq , simu_nalle , subPopSize, Hsl , Hs2, Htl, Ht2)
If diversityOption = 1 Then

Hscor(A) = Hsl
Htcor(A) = Htl

Else
Hscor(A) = Hs2
Htcor(A) = Ht2

End If

Select Case differenOption
Case 1: Gstcor(A) = 1 - Hsl / Htl
Case 2 : Gstcor(A) = 1 - Hs2 / Ht2
Case 3: Gstcor(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gstcor(A) = calculateTheta(cor_freq , simu_nalle , subPopSize)

End Select

Fst(A) = Lynch_Fst(indir_freq, cor_freq)
End Sub
'Resample subpopulations with bootstrap resampling
Private Sub Resampling()

Dim i As Integer, j As Integer
Dim k As Integer , n As Integer, s As Integer
Dim ran Value As Double

'Parameters calculated based on codominant allele frequencies
Dim Hsd() As Double, Htd() As Double, Gstd() As Double
ReDim Hsd(Nresam) , Htd(Nresam) , Gstd(Nresam)

'Parameters calculated based on dominant and null allele frequencies
Dim Hsi() As Double, Hti() As Double , Gsti() As Double
ReDim Hsi(Nresam), Hti(Nresam), Gsti(Nresam)

'Parameters calculated based on corrected allele frequencies _
based on Lynch & Milligan's formula
Dim Hsc() As Double, Htc() As Double, Gstc() As Double
ReDim Hsc(Nresam), Htc(Nresam), Gstc(Nresam)

'Fst value based on Lynch & Milligan's formula
Dim Fst() As Double
ReDim Fst(Nresam)

ReDim resamAllelel(Npop , basePopSize , Nloc) , resamAllele2(Npop , basePopSize, Nloc)

'initialize the random-number generator
Randomize ranint2

'A varage value of those parameters
Dim A vgHsd As Double , A vgHtd As Double , A vgGstd As Double
Dim A vgHsi As Double , A vgHti As Double , A vgGsti As Double
Dim A vgHsc As Double , A vgHtc As Double, A vgGstc As Double

48

Dim A vgFst As Double

'Standard Deviation of those parameters
Dim StdHsd As Double, StdHtd As Double , StdGstd As Double
Dim StdHsi As Double , StdHti As Double , StdGsti As Double
Dim StdHsc As Double , StdHtc As Double, StdGstc As Double
Dim StdFst As Double

For i = 1 To Nresam
For j = 1 To Npop

For k = 1 To subPopSize
ran Value = Rnd
n = Int(ranValue * subPopSize) + 1
For s = 1 To Nloc

resamAllelel(j, k, s) = samAllelel(j, n, s)
resarnAllele2(j, k, s) = sarnAllele2(j , n, s)

Next s
Nextk

Nextj
Call calculate_resampling(i, Hsd, Htd, Gstd, Hsi, Hti, Gsti, Hsc, _

Htc, Gstc, Fst)
Nexti

'Get parameters' average values over number of samplings
A vgHsd = average(Hsd, Nresam)
A vgHtd = average(Htd, Nresam)
A vgGstd = average(Gstd, Nresam)
A vgHsi = average(Hsi , Nresam)
A vgHti = average(Hti, Nresam)
A vgGsti = average(Gsti, Nresam)
A vgHsc = average(Hsc , Nresam)
A vgHtc = average(Htc , Nresam)
A vgGstc = average(Gstc , Nresam)
A vgFst = average(Fst , Nresam)

StdHsd = Stdev(Hsd, Nresam)
StdHtd = Stdev(Htd, Nresam)
StdGstd = Stdev(Gstd, Nresam)
StdHsi = Stdev(Hsi , Nresam)
StdHti = Stdev(Hti, Nresam)
StdGsti = Stdev(Gsti, Nresam)
StdHsc = Stdev(Hsc, Nresam)
StdHtc = Stdev(Htc , Nresam)
StdGstc = Stdev(Gstc , Nresam)
StdFst = Stdev(Fst, Nresam)

Print #2, "Number of bootstrap resampling: "; Nresam ; "cycles"
Print #2, "Sample size for each population : "; subPopSize
Print #2, Tab(2) ; "Hsd"; Tab(9); "Htd"; Tab(16) ; "Gstd" ; Tab(23); "Hsi"; _

Tab(30); "Hti"; Tab(37) ; "Gsti"; Tab(44) ; "Hsc"; Tab(51) ; "Htc" _
; Tab(58); "Gstc"; Tab(65); "Fst"

For i = 1 To Nsam
Print #2, Format(Hsd(i) , ".0000"); Tab(8) ; Format(Htd(i), ".0000"); _

Tab(15) ; Format(Gstd(i) , ".0000") ; Tab(22); Format(Hsi(i), ".0000"); _
Tab(29) ; Format(Hti(i) , ".0000") ; Tab(36); Format(Gsti(i) , ".0000") ; _
Tab(43); Format(Hsc(i) , ".0000") ; Tab(50) ; Format(Htc(i) , ".0000") ; _
Tab(57) ; Format(Gstc(i), ".0000"); Tab(64); Format(Fst(i) , ".0000")

Next i
Fori = 1 To 70

Print #2, "-";
Next i
Print #2, "-"

49

Print#2, "Average Values :"
Print #2, Format(AvgHsd, ".0000"); Tab(8) ; Format(AvgHtd , ".0000"); _

Tab(l5) ; Format(AvgGstd, ".0000"); Tab(22) ; Format(AvgHsi , ".0000"); _
Tab(29) ; Format(AvgHti , ".0000"); Tab(36) ; Format(AvgGsti , ".0000"); _
Tab(43) ; Format(AvgHsc, ".0000") ; Tab(50) ; Format(AvgHtc , ".0000"); _
Tab(57) ; Format(AvgGstc , ".0000"); Tab(64) ; Format(AvgFst , ".0000")

Print #2, "Standard deviation :"
Print #2, Format(StdHsd , ".0000") ; Tab(8); Format(StdHtd, ".0000") ; _

Tab(l5); Format(StdGstd , ".0000"); Tab(22) ; Format(StdHsi , ".0000") ; _
Tab(29) ; Format(StdHti, ".0000"); Tab(36); Format(StdGsti , ".0000") ; _
Tab(43); Format(StdHsc, ".0000"); Tab(50); Format(StdHtc , ".0000"); _
Tab(57); Format(StdGstc , ".0000") ; Tab(64) ; Format(StdFst, ".0000")

For i = I To 70
Print #2, "-";

Next i
Print #2, "-"
End Sub
'After resampling , calculating Hs, Ht, and Ost values directly and indirectly
Private Sub calculate_resampling(A As Integer, Hsd() As Double , Htd() As Double,_

Gstd() As Double, Hsi() As Double , Hti() As Double , Gsti() As Double, _
Hscor() As Double, Htcor() As Double , Gstcor() As Double , Fst() As Double)

Dim resamAlleFreq() As Double
ReDim resamAlleFreq(Npop , Nloc , MaxNalle)
'declare allele frequencies for dominant and null alleles
Dim indir_freq() As Double
ReDim indir_freq(Npop , Nloc , 2)

'declare corrected allele frequencies for dominant and null alleles _
based on Lynch and Milligan's(l994) equation 2a
Dim cor_freq() As Double
ReDim cor_freq(Npop , Nloc, 2)

'number of alleles in each locus for simulated data set
Dim simu_nalle() As Integer
ReDim simu_nalle(Nloc)

Dim Hsl As Double , Hs2 As Double , Htl As Double, Ht2 As Double
Dim i As Integer

'For simulated data, each locus has two alleles (one dominant, one null)
For i = I To Nloc

simu_nalle(i) = 2
Nexti

Call getFrequency(resamAllele I, subPopSize, resamAllele2, resamAlleFreq)
Call calc_empiri_diversity(resamAlleFreq, Nalle, subPopSize, Hsl , Hs2, Htl , Ht2)

If diversityOption = I Then
Hsd(A) = Hsi
Htd(A) =Htl

Else
Hsd(A) = Hs2
Htd(A) =Ht2

End If

Select Case differenOption
Case I : Gstd(A) = I - Hsl / Htl
Case 2: Gstd(A) = I - Hs2 / Ht2
Case 3: Gstd(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gstd(A) = calculateTheta(resamAlleFreq, Nalle, subPopSize)

End Select

50

Call get_indir_cor_freq(resamAllele 1, resamAllele2, indir_freq, cor_freq)

Call calc_empiri_diversity(indir_freq, simu_nalle, subPopSize, Hsl, Hs2, Htl, Ht2)
If diversityOption = 1 Then

Hsi(A) = Hsl
Hti(A) = Htl

Else
Hsi(A) = Hs2
Hti(A) = Ht2

End If

Select Case differenOption
Case 1: Gsti(A) = 1 - Hsl / Htl
Case 2: Gsti(A) = 1 - Hs2 / Ht2
Case 3: Gsti(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4: Gsti(A) = calculateTheta(indir_freq, simu_nalle, subPopSize)

End Select

Call calc_empiri_diversity(cor_freq, simu_nalle, subPopSize, Hsl, Hs2, Htl, Ht2)
If diversityOption = 1 Then

Hscor(A) = Hsl
Htcor(A) = Htl

Else
Hscor(A) = Hs2
Htcor(A) = Ht2

End If

Select Case differenOption
Case 1: Gstcor(A) = 1 - Hsl / Htl
Case 2: Gstcor(A) = 1 - Hs2 I Ht2
Case 3: Gstcor(A) = Npop * (Ht2 - Hs2) / (Npop * Ht2 - Hs2)
Case 4 : Gstcor(A) = calculateTheta(cor_freq, simu_nalle, subPopSize)

End Select

Fst(A) = Lynch_Fst(indir_freq, cor_freq)
End Sub

Private Sub get_indir_cor_freq(A() As Integer, B() As Integer, _
indir_freq() As Double, cor_freq() As Double)

'Calculate allele frequency either based on simulated dominant _
biallelic data set by randomly selecting one allele as dominant, with the_
rest treated as recessive to it, or based on Lynch & Milligan's formula

Dim i As Integer, j As Integer, k As Integer, s As Integer

'random allele in each locus
Dim ranAlle() As Integer
ReDim ranAlle(Nloc)
Dim count As Integer

'Pick up a random allele as dominant allele for each locus
Randomize
For i = 1 To Nloc

ranAlle(i) = Int(Rnd * Nalle(i)) + 1
Next i

For i = 1 To Npop
For j = 1 To Nloc

count= 0

51

Fork = 1 To subPopSize
If ((A(i, k, j) <> ranAlle(j)) And (B(i, k, j) <> ranAlle(j))) Then
count = count + 1
End If

Nextk
indir_freq(i, j, 1) = Sqr(count I subPopSize)
indir_freq(i, j, 2) = 1 - indir_freq(i, j, 1)
cor_freq(i, j, 1) = 8 * subPopSize * (indir_freq(i, j, 1) "3) _

/ (indir_freq(i , j, 1) "2 * (8 * subPopSize + 1) - 1)
cor_freq(i , j , 2) = 1 - cor_freq(i, j , 1)

Nextj
Next i

End Sub

Function Lynch_Fst(indir_freqO As Double, cor_freqO As Double) As Double

Dim i As Integer, j As Integer, k As Integer, 1 As Integer , s As Integer

'The proportion of sampled individuals(subPopSize) with null homozygotes
Dim XO As Double
ReDimX(Npop, Nloc)

'Gene diversity(Hj) within population(j)
'Between-population diversity(H)
'Mean witn-population divesity(Hwithin)
'Mean between-population gene diversity(Hbetween)
'Total gene diversity(Htotal)
'Variance of Hwithin(varHw)
'Variance ofHbetween(varHb)
Dim HjO As Double , HO As Double
Dim Hwithin As Double , Hbetween As Double , Htotal As Double
ReDim Hj(Npop), H(Npop , Npop)

'Vb represents the variance among diversity measures involving_
nonoverlapping population pairs (e.g. Hl2, H34,)
'Cb represents the covariance among diversity measures involving _
overlapping population pairs (e.g. [Hl2 , H23], [Hl2, Hl4],)
Dim Vb As Double, Cb As Double

'Number of nonoverlapping and overlapping diveristy pairs
Dim Nnonoverlap As Integer, Noverlap As Integer

Dim sum As Double, sumo As Double , suml As Double
Dim sum2 As Double, sum3 As Double, sum4 As Double

'Sampling covariance of the within- and between-population estimates _
of gene diversity
Dim varHw As Double, varHb As Double , covHbHw As Double

'Get null homozygote frequency
For j = 1 To Npop

For k = 1 To Nloc
X(j, k) = indir_freq(j, k, 1) "2

Nextk
Nextj

'Calculate heterozygosity between populations j and k
For j = 1 To Npop

For k = 1 To Npop
H(j, k) = 0
For 1 = 1 To Nloc

52

H(j, k) = H(j, k) + (cor_freq(j , 1, 1) - cor_freq(k, 1, 1)) A 2
If (X(k, 1) > 0) Then H(j, k) = H(j, k) - (2 - X(j, 1) - X(k, 1)) / (4 * subPopSize)

Next 1
H(j, k) = H(j, k) / Nloc

Nextk
Nextj

'Calculate gene diversity for each population(Hj)
For j = 1 To Npop

Hj(j) = 0
For k = 1 To Nloc

Hj(j) = Hj(j) + 2 * cor_freq(j, k, 1) * cor_freq(j, k, 2)
If (X(j , k) > 0) Then Hj(j) = Hj(j) + (1 - X(j, k)) / (2 * subPopSize)

Nextk
Hj(j) = Hj(j) / Nloc

Nextj

'Calculate Hwithin
Hwithin = 0
For j = 1 To Npop

Hwithin = Hwithin + Hj(j)
Nextj
Hwithin = Hwithin / Npop

'Calculate Hbetween (averaged over all distinct pairs of populations)
Hbetween = 0
For k = 1 To Npop

For j = k + 1 To Npop
Hbetween = Hbetween + H(j, k)

Nextj
Nextk
Hbetween = 2 * Hbetween / (Npop * (Npop - 1))

'Calculate Htotal
Htotal = Hbetween + Hwithin

'Calculate varHw
varHw=O
For j = 1 To Npop

varHw = varHw + (Hj(j) - Hwithin) A 2
Nextj
varHw = varHw / Npop / (Npop - 1)

'Calculate varHb
varHb =0
'when more than three populations are used, nonoverlapping population _
pairs exist (e.g. H12, H34). Vb is calculated .
If Npop >= 4 Then

suml = 0
sumO=O
If (Npop I 2 * 2 = Npop) Then

For j = 1 To (Npop - 1) Step 2
suml = suml + H(j, j + 1) A 2
sumo= sumo+ H(j, j + 1)

Next
Nnonoverlap = Npop / 2

Else
For j = 1 To (Npop - 2) Step 2

suml = suml + H(j,j + 1) A 2
sumO =sumo+ H(j, j + 1)

Nextj
sum2 = 0

53

For j = 2 To (Npop - 1) Step 2
sum2 = sum2 + H(j, j + 1) "2

Nextj
suml = (suml + sum2) I 2
Nnonoverlap = Npop / 2

End If
Vb= (l / Nnonoverlap) * (suml - sumo" 2 / Nnonoverlap)

'Calculate Cb
sum2 =0
sum3 = 0
sum4 = 0
Noverlap = 0

For j = 1 To Npop - 2
Fork = j + 1 To Npop - 1

sum3 = sum3 + H(j, k)
For I = k + 1 To Npop

sum2 = sum2 + H(j, k) * H(j, I)
Noverlap = Noverlap + 1

Next!
Nextk

Nextj

For j = 1 To Npop - 2
For I = j + 2 To Npop

sum4 = sum4 + H(j, I)
Next!

Nextj
Cb= l / Noverlap * (sum2 - sum3 * sum4 / Noverlap)
varHb = 2 / (Npop * (Npop - 1)) *(Vb + 2 * (Npop - 2) * Cb)

End If

'calculate covHbHw
covHbHw=O
IfNpop >= 3 Then

sum=O
For j = 1 To Npop

suml =0
Fork = 1 To Npop
Ifk <> j Then

suml = sum+ H(j, k)
End If
Nextk
sum= sum+ Hj(j) * suml

Nextj
covHbHw = l / Npop * (l / (Npop * (Npop - 1)) * sum - Hwithin * Hbetween)

End If
Lynch_Fst = Hbetween / Htotal * (1 + (Hbetween * varHw - Hwithin * varHb _

+ (Hbetween - Hwithin) * covHbHw) / Hbetween / Htotal "2)" (-1)

End Function

Function average(A() As Double, n As Integer) As Double
Dim k As Integer
Dim sum As Double

sum=O
Fork= 1 Ton

sum = sum + A(k)
Nextk

54

average = sum / n

End Function

Function Stdev(A() As Double, n As Integer) As Double
Dim k As Integer
Dim sum As Double, avg As Double

sum=O
avg = average(A, n)
Fork= 1 Ton

sum = sum + (A(k) - avg) A 2
Nextk
sum= sum/ (n - 1)
Stdev = Sqr(sum)

End Function

,-

0

J

I

J
I

55

f I
I l

I

l

-l

f I

j

l l
ll

J

u

6.2. ASP web pages

(1) Include files:

//ProductionErrorHandler.inc:

<script language=vbscript runat=server>
Function CheckForErrors(obj Connection)

'Declare variables
Dim blnDisplayErrMsg

If objConnection.Errors.Count > 0 Then

'Create the FileSystemObject and open the error log
Set objFile = Server.CreateObject("Scripting.FileSystemObject")
Set objLog = objFile .OpenTextFile(_

Server.MapPath("ProductionErrorLog. txt"),8, True)

'Check for an open error from VBScript
If Err.Number > 0 Then

Response.Write "Error opening log file<P>"
Response.Write "Error Number: " & Err .Number & _

", Error Description: " & Err .Description
End If

'Create an error object to access the ADO errors collection
Set objErr = Server.CreateObject("ADODB.Error")

'Log all errors to the error log
For Each objErr In objConnection.Errors

If objErr.Number = 0 Then
blnDisplayErrMsg = False

Else
objLog.WriteLine(objErr.Number & "I" & _

objErr .Description & "I" & objErr.Source & "I" & _
objErr .SQLState & "I" & objErr.NativeError)

blnDisplayErrMsg = True
End If

Next

'Close the log file and dereference all objects
objLog.Close
Set objLog = Nothing
Set objFile = Nothing
Set objErr = Nothing

IfblnDisplayErrMsg Then
'Display a graceful message to the user
Response.Write "An unforseen error has occurred and processing" & _

"must be stopped . You can try your request again later or" & _
"you can call our Help Desk at 888-888-1234"

'Halt Execution
Respon se.End

End If
End If

End Function
<!script>

56

II AuthenticationCheck.inc:

<%
'Authentication check
If Session("Authenticated") <> True Then

Session("ErrorMessage") = "You Have not properly logged in."
Response.Redirect "Default.asp"

End If
%>

//Connect.inc:

<%
'Instruct VBScript to ignore the error and continue
'with the next line of code
On Error Resume Next

'Create and open the database object
Set objConn = Server.CreateObject("ADODB .Connection")
objConn.Open Application("ConnectString")
%>

//CommonFunctions.inc:

<script language=vbscript runat=server>
Function ConvertString(strlnput)

DimintPos
intPos = I
Do

intPos = lnStr(intPos, strlnput, ""', vbTextCompare)
If intPos > 0 Then

strlnput = Left(strlnput, intPos) + Right(strlnput, Len(strlnput) - (intPos - 1))
intPos = intPos + 2

End If
Loop While intPos > 0
ConvertString = strlnput

End Function
</script>

I /Disconnect.inc:

<%
'Close and dereference database objects
If IsObject(obj RS) Then

obj RS.Close
Set objRS = Nothing

End IF
obj Conn .Close
Set objConn = Nothing
%>

//MenuOptions.inc:

<table>
<tr>
<td height=50>Please select an following option<lfont><ltd>
<!tr>
<tr>
<td><a href="Download .html"

onmouseover="window.status='Download this simulation program"'

57

1

g

r

j

n
l

l
j

)

)

J

j

J

1

n
Q

n

J

(J

11

J

l j
lJ
1

I J

onmouseout="window.status="">
Download this simulation program<lfont><ltd>

<!tr>
<tr>
<td><a href="RegisterNewPaper.asp"

onmouseover="window .status='Register a new paper which used the simulation program" '
onmouseout="window .status="">
Register a new paper which used the simulation program<lfont><ltd>

<!tr>
<tr>
<td><a href="DisplayPapers.asp"

onmouseover="window.status='Display related papers "'
onmouseout="window .status="">

<!tr>
</table>

Display related papers<lfont><ltd>

(2) Login and registration:

/ /Default.asp:
<%
'Check to see if a cookie exists for this user

If Len(Request.Cookies("Simulation")("UserName")) > 0 Then
'Cookie exists

'Authenticate the user for other web pages
Session("Authenticated") = True

'Redirect the browser to the welcome back page
Response .Redirect "WelcomeBack.asp"

End If
%>

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
<!HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<%
'Check for an error message which indicates the previous
'login attempt failed
If Len(Session("ErrorMessage")) > 0 Then

Response .Write "" & _
Session("ErrorMessage") & "<lfont>
"

End If
%>

<!--Display login form-->
<form action=loginverification .asp method=post name=frmDefault>
<table>

<tr>
<td colspan=2>Enter login information and click submit.<ltd>

58

</tr>
<tr>
<td> <ltd>
</tr>
<tr>
<td>User Name<ltd>
<td><input type=text name=txtUserName size=15><itd>
</tr> ·
<tr>
<td>Password<ltd>
<td><input type=text name=txtPassword size= 15></td>
</tr>
<tr>
<td> <ltd>
</tr>
<tr>
<td><input type=submit name=btnSubmit value=Submit><ltd>
</tr>

</table>
</form>

If you don't have a login ID and password you can
<a href="register .asp"

onmouseover="window .status='Register on the Genetic Dominance Simulation Web Site"'
onmouseout="window.status="">register here.<la>

</BODY>
</HTML>

I fW elcomeBack.asp:

<!-- #include file="AuthenticationCheck.inc" -->
<!-- #include file="adovbs.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
</HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lbig><lbig>
</div>

<!-- #include file="Connect.inc" -->

Welcome Back

'check for database errors
Dim strUserName
strUserName=Request.Cookies("Simulation ")("UserName")
call CheckForErrors(objConn)

set objCmd=Server .CreateObject("ADODB .Command")
set objCmd.ActiveConnection=objConn
objCmd.CommandText=" { CALL qparmUserName ("' & cStr(strUserName) & '")}"
set objRS=Server .CreateObject("ADODB .Recordset ")
set objRS=objCmd.Execute

59

J

n
J

n
1

J

}

J

J
u

1

n
g

fl

u
I I

! j
(l

l I

ll

u

call CheckForError s(objConn)
%>

<%=objRS("FirstName") %> ;
<%=objRS ("LastName") %><lfont>

<!-- #include file="DisConnect.inc" -->
<!-- #include file="MenuOptions .inc" -->

</BODY>
</HTML>

//Register.asp:

<!-- #include file="adovbs.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
</HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<%
'***
'Step 1: Display the registration form for user input
'***
If len(Request.Form ("ForrnAction")) = 0 then
%>
<form action=register .asp method=post name=FrmRegisterl>
<Input type=hidden Name=FormAction value=step2>
<table>

<tr>
<td height=50 colspan=2>Please Enter Registration Information

<lfont><ltd>
</tr>
<tr>
<td> ;<ltd>
</tr>
<Ir>
<td>First Name<ltd>
<td><input type=text name=txtFirstName size=15><1
td>
<Id width=50><ltd>
<td>Last Name<ltd>
<td><input type=text name=txtLastName size=15><ltd>
<ltr>
<Ir>
<td>Organization<ltd>
<td><input type=text name=txtOrganization size=30><ltd>
</tr>
<tr>
<td>Country<ltd>
<td><input type=text name=txtCountry size=30><ltd>
</tr>
<tr>

60

r
I
I

r

<td>Professional Class<ltd>
<td colspan=4>

<input type=radio name=optClass value=! checked>Professional
<input type=radio name=optClass value=2>Student
<input type=radio name=optClass value=3>Other

<ltd>
</tr>
<tr>
<td> <ltd>
</tr>
<tr>
<td><input type=button name=btnContinue value=Continue><ltd>
</tr>

</table>
</form>

<Script Language=VbScript>
Sub btnContinue_OnClick()

'Verify all fields have been entered
If Len(frmRegisterl.txtFirstName.value) = 0 Then

Alert "You must enter a first name"
frmRegisterl .txtFirstName.focus
Exit Sub

Elself Len(frmRegisterl.txtLastName.value) = 0 Then
Alert "You must enter a last name"
frmRegister 1. txtLastN ame.focus
Exit Sub

ElselfLen(frmRegisterl.txtOrganization .value) = 0 Then
Alert "You must enter an organization name"
frmRegister 1. txtOrganization.focus
Exit Sub

ElselfLen(frmRegisterl.txtCountry.value) = 0 Then
Alert "You must enter a country name"
frmRegister 1. txtCountry .focus
Exit Sub

End If

'If we get to this point all is OK, submit the form
Call frmRegisterl .submit()

End Sub
</script>
<%
'**
'Step2: Continue to enter user information : UserName and Password
'**
Elself Request.Form("FormAction") = "step2" then
%>

<!-- #include file="Connect.inc" -->

<%
'Get the registration information entered in step!
Dim txtFirstName, txtLastName, txtOrganization, txtCountry , optClass
txtFirstName = Request.Form("txtFirstName")
txtLastName = Request.Form("txtLastName")
txtOrganization = Request.Form("txtOrganization")
txtCountry = Request.Form("txtCountry")
optClass = Request.Form("optClass")

'Check for database errors
Call CheckForErrors(objConn)

61

n

l
J

J

J

ll
g

n
Ll

J

f I

l l
I j

u
J

'Create the recordset object, set the SQL string and open the recordset
Set obj RS = server .CreateObject(" ADODB.recordset ")

strSQL = "qAllUserName"
objRS .Open strSQL, objConn , adOpenForwardOnly, , adCmdStoredProc

'Check for database errors
Call CheckForErrors(obj Conn)

%>
<form action=registrationConfirmation.asp method=post name=FrrnRegister2>
<Input type=hidden Name=txtFirstName value='<%=txtFirstName%>'>
<Input type=hidden Name=txtLastName value='< %=txtLastName %>'>
<Input type=hidden Name=txtOrganization value='< %=txtOrganization %>'>
<Input type=hidden Name=txtCountry value='<%=txtCountry%> '>
<Input type=hidden Name=optClass value=<%=optClass%>>
<table align=center>

<tr>
<td height=50 colspan=2>Please Select Your UserName and Password

<lfont><ltd>
<!tr>
<tr>
<td> ;<ltd>
<!tr>
<tr>
<td >User Name<ltd>
<td><input type=text name=txtUserName size=15><1
td>
<!tr>
<tr>
<td >Password<ltd>
<td><input type=password name=txtPassword size=15><1td>
<ltr>
<tr>
<td>Retype Password<ltd>
<td><input type=password name=txtRetypePassword size= 15></td>
<ltr>
<tr>
<td> <ltd>
<!tr>
<tr>
<td><input type=button name=btnSubmit value=Submit><ltd>
<!tr>

</table>
<!form>

<Script Language= VbScript>
Sub btnSubmit_OnClick()
<%

do while Not objRS.EOF

'Verify if other users have used this user name
If frrnRegister2 . txtUserN ame. value=" <%=obj RS ("U serN ame ")%>" Then

Alert "This user name has been taken "
frrnRegister2 .txtUserName .focus

end if
<%

Exit Sub

objRS .MoveNext
loop

%>
'Verify all fields that have been entered

62

If Len(frmRegister2 .txtUserName .value) = 0 Then
Alert "You must enter a user name"
frmRegister2 .txtUserName .focus
Exit Sub

Elself Len(frmRegister2 .txtPassword.value) = 0 Then
Alert "You must enter a password"
frmRegister2 . txtPassword. focus
Exit Sub

Elself Len(frmRegister2.txtRetypePassword.value) = 0 Then
Alert "You must retype your password"
frmRegister2 .txtRetypePassword .focus
Exit Sub

Elself frmRegister2 .txtPassword .value <> frmRegister2.txtRetypePassword .value then
Alert "Retyped password doesn't match"
frmRegister2 .txtPassword .value = ""
frmRegister2 .txtRetypePassword .value = ""
frmRegister2. txtPassword . focus

Exit Sub
End If

'If we get to this point all is OK, submit the form
Call frmRegister2 .subrnit()

End Sub
<!script>

<%
end if
%>

<!BODY>
<!HTML>

//RegisterConfirm.asp:

<!-- #include file="adovbs.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->
<!-- #include file="Connect.in c" -->

<%
'Check for database errors

Call CheckForErrors(objConn)

'Set the parameters for the insert stored procedure
strSQL = "qlnsertPerson ("' & CStr(Request.form("txtFirstName")) & _

'","' & CStr(Request.form("txtLastName")) & _
"',"' & CStr(Request.form("txtOrganization")) & _
"',"' & CStr (Request.form("txtCountry")) & _
'"," & CLng(Request.form("optClass")) & _
","' & CStr(Request.Form("txtUserName")) & _
"',"' & CStr(Request.Form("txtPassword ")) & '")"

'Execute the stored procedure to insert the person
objConn .Execute strSQL ,,adCmdStoredProc

'Check for database errors
Call CheckForErrors(objConn)
%>

<!-- #include file="DisConnect.inc" -->

<%
'Save the user information to a cookie

63

l
n

J

n
1

1

l
J

j

J

J

J

J

7
n

n

l

f I

l I

u

Li

Response .Cookies("Simulation")("UserName") = Request.Form("txtUserName")
Response.Cookies("Simulation")("Password") = Request.Form("txtPassword")

'Set the expiration date of the cookie to the last day of the current year
Response .Cookies("Simulation") .Expires = "December 31, " & Year(Now)
'Response .Write Response.Cookies("Simulation")("UserName")

'Authenticate the user for other web pages
Session("Authenticated") = True
%>

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
<!HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

Registration Successful

<!-- #include file="MenuOptions.inc" -->

<!BODY>
</HTML>

//Login Verify.asp:

<!-- #include file="adovbs.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->
<!-- #include file="Connect.inc" -->

<%
'Check for database errors
Call CheckForErrors(objConn)

'Verify user information in the database

'Create the recordset object, set the SQL string and parameters
'and open the recordset
Set objRS = Server .CreateObject("ADODB.Recordset")
strSQL = "qparmVerifyLogin "' & CStr(Request.Form("txtUserName")) & _

"',"' & CStr(Request.Form("txtPassword")) & '""
objRS .Open strSQL , objConn, adOpenForwardOnly, , adCmdStoredProc

'Check for database errors
Call CheckForErrors(obj Conn)

'Check for empty recordset which indicates user information
'was not found
If objRS .EOF or objRS .BOF Then

Session("ErrorMessage") = "No record found - Please ensure all information was entered correctly"
Response.Redirect "default.asp"

Else
Session("ErrorMessage") = Empty

End If

64

I

<!-- #include file="Disconnect.inc" -->

<%
'Save the user information to a cookie
Response.Cookies("Simulation")("UserName") = Request.Form("txtUserName")
Response.Cookies("Simulation ")("Password") = Request.Form("txtPassword")

'Set the expiration date of the cookie to the last day of the
'current year
Response .Cookies("Simulation").Expires = "December 31 , " & Year(Now)

'Authenticate the user for other web pages
Session("Authenticated") = True
%>

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
</HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<!-- #include file="MenuOptions .inc" -->

</BODY>
<!HTML>

(3) User options:

//Options.asp:

<!-- #include file="AuthenticationCheck.inc" -->
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
</HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<!-- #include file="MenuOptions.inc" -->

</BODY>
</HTML>

65

J

n

n

J

l

l
J

l l
]

j

J

n
q

n

j

f I

ll
Li

u
u

//RegisterNewPaper .asp:

<!-- #include file="adovbs.inc" -->
<!-- #include file="AuthenticationCheck.inc" -->
<!-- #include file= "CommonFunctions.inc " -->
<!-- #include file="ProductionErrorHandler.inc" -->

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site<ITITLE>
</HEAD>
<BODY>

< !--Display the page data-->
<div align=center>

<big><b ig>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<%
'**
'* Step 1: Display the New paper form for user input
'**
IfLen(Request.Form ("ForrnA ction ")) = 0 Then
%>

<form action=RegisterNewP aper .asp method=po st name=frmNewPaper>
<input type=hidden name=FormAction value=Step2>
<table>

<tr>
<td height=50 colspan=2>New Paper Registration

<lfont><ltd>
</tr>
<tr>
<td> <ltd>
<!tr>
<tr>
<td>Author Name<ltd>
<td><input type=text name= txtAuthorName size=30><ftd>
<td width=50><ftd>
<td>Class<ltd>
<td><select name=cboClass><lselect><ltd>
<!tr>
<tr>
<td>Published Year<ltd>
<td><input type=text name=txtPublished size=8><ftd>
<td width=50><ftd>
<td> Volume<ltd>
<td><input type=text name=t xtVolume size=15><ftd>
.<!tr>
<tr>
<td>Joumal Name<ltd>
<td>< input type=text name=txtJoumalN ame size=30><ftd>
<td width=50><ftd>
<td>Page NO .<ltd>
<td><input type=text name=txtPageNo size=20><ftd>
</tr>
<tr>
<td> Title<ltd>
<td colspan=4><textare a name=txtTitle cols="60" wrap><ltextarea><ltd>
</tr>

66

I
l

l

<tr>
<td> <ltd>
</tr>
<tr>
<td><input type=button name=btnSubmit value=Submit><ltd>
</tr>

</table>
</form>

<!-- #include file="Connect.inc" -->

<%
'Check for database errors
Call CheckForErrors(objConn)

'Create the recordset object and open the recordset
Set objRS = Server.CreateObject("ADODB .Recordset")
strSQL = "qAllPaperC lasses"
objRS.Open strSQL, objConn, adOpenForwardOnly,, adCmdStoredProc

'Check for database errors
Call CheckForErrors(obj Conn)
%>

<script language=vbscript>
Sub Window_OnLoad()
<%

Do While Not objRS.EOF

Set objOption = document.createElement("OPTION")
objOption.text = "<%=objRS("ClassName")%>"
objOption .value = "<%=objRS("ClassName")%>"
document.all.cboClass.add objOption

Loop
%>

objRS.MoveNext

<!-- #include file="Disconnect.inc" -->

Set objOption = Nothing
End Sub

Sub btnSubmit_OnC!ick()
'Verify required fields are complete
If Len(frmNewPaper.txtAuthorName.value) = 0 Then

Alert "You must enter an author name"
frmNewPaper.txtAuthorName.focus
Exit Sub

Elself frmNewPaper.cboClass.selectedlndex = -1 Then
Alert "You must select your paper class"
frmNewPaper .cboClass.focus
Exit Sub

ElselfLen(frmNewPaper.txtPublished .value) = 0 Then
Alert "You must enter when your paper was published"
frmN ewPaper. txtPublished. focus
Exit Sub

Elself Len(frmNewPaper.txtVolume.value) = 0 Then
Alert "You must enter the journal volume"
frmNewPaper.txtVolume.focus
Exit Sub

Elself Len(frmNewPaper.txtJoumalName .value) = 0 Then
Alert "You must enter the journal name"

67

l
n

n

. J

l

)

l
J

l l
J

j

I J

n
Ll

j

l J

lJ

u

frmNewPaper.txtJournalNarne.focus
Elself Len(frmNewPaper.txtPageNo.value) = 0 Then

Alert "You must enter the page number"
frmNewPaper.txtPageNo.focus

Elself Len(frmNewPaper .txttitle.value) = 0 Then
Alert "You must enter the journal title"
frmNewPaper.txtTitle .focus

End If

'If we get to this point all is OK, submit the form
Call frmNewPaper.submit()

End Sub
</script>

<%
'**
'* Step 2: Process the new boat form the user has submitted
'**
ElselfRequest.Form("FormAction") = "Step2" Then
%>

<%

<!-- #include file="Connect.inc" -->

'Check for database errors
Call CheckForErrors(obj Conn)

'Run the author name through the string conversion routine
'just in case there are any single quotes
strTitle = ConvertString(Request.Form("txtTitle"))

'Set the parameters for the insert stored procedure
strSQL = "qlnsertPaper ('" & CStr(Request.Form("txtAuthorNarne")) & _

'","' & CStr(Request.Form("cboClass")) & _
'"," & CLng(Request.Form("txtPublished")) & _
","' & CStr(Request.Form("txtVolume")) & _
"',"' & CStr(Request.Form("txtJoumalName")) & _
"',"' & CStr(Request.Form("txtPageNo")) & _
"',"' & CStr(strTitle) & "')"

'Insert the new boat
objConn .Execute strSQL,,adCmdStoredProc

'Check for database errors
Call CheckForErrors(objConn)

<!-- #include file="DisConnect.inc" -->

<!--Display registration message-->
 Your paper has been registered<lfont>

<a href="Options.asp"

onmouseover="window.status='Return to Options Page'"
onmouseout="window.status="">Retum to Options Page<la>

<%
End If
%>
<!BODY>
</HTML>

68

//DisplayPapers.asp

<!-- #include file="adovbs.inc" -->
<!-- #include file="Connect.inc" -->
<!-- #include file="ProductionErrorHandler.inc" -->

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE>Genetic Dominance Simulation Web Site</TITLE>
</HEAD>
<BODY>

<!--Display the page data-->
<div align=center>

<big><big>Genetic Simulation of Effects of Dominance<lfont><lbig><lbig>
</div>

<%
'*** ****************
'Step!: Display the form for user to input paper parameters*
'*** ********************************** **********************
If len(Request.Form("ForrnAction")) = 0 then
%>
<form action=DisplayPapers.asp method=post name=FrmDisplay>
<Input type=hidden Name=FormAction value=step2>
<table align=center>

<tr>
<td height=S0 colspan=2>Please Select Related Parameters for Displaying Papers

<ltd>
</tr>
<tr>
<td> ;<ltd>
</tr>
<tr>
<td>Paper Class<ltd>
<td><select name=cboClass><lselect><ltd>
</tr>
<td >Published Year :</td>
</tr>
<tr>
<td>From Year(>=2000):</td>
<td><input type=text name=txtFrom Year size=4 value=xxxx><I
td>
</tr>
<tr>
<td >To Year:<ltd>
<td><input type=text name=txtTo Year size=4 value=xxxx><ltd>
</tr>
<tr>
<td> ; <ltd>
</tr>
<tr>
<td><input type=button name=btnSubmit value=Submit><ltd>
</tr>

</table>
</form>

<%
'Check for database errors
Call CheckForErrors(objConn)

69

n

n

I
l

J

J

d

j

j

I J i

n

n

f l
l
l

j

[I

I

u
Li

u

'Create the recordset object and open the recordset
Set objRS = Server .CreateObject("ADODB .Recordset")
strSQL = "qAIIPaperClasses"
objRS .Open strSQL, objConn , adOpenForwardOnly, , adCmdStoredProc

'Check for database errors
Call CheckForErrors(objConn)
%>

<Script Language=VbScript>
Sub Window_OnLoad()
<%

Do While Not objRS .EOF

Set obj Option= document.createElement("OPTION")
objOption.text = "<%=objRS("ClassName ")%>"
objOption.value = "<%=objRS("ClassName") %>"
document.all.cboClass .add objOption

<%

%>

objRS .MoveNext
Loop

<!-- #include file="Disconnect.inc" -->

Set objOption = Nothing
End Sub

Sub btnSubmit_OnClick()
'Verify required fields are complete

If frmDisplay .cboClass.selectedlndex = -1 Then
Alert "You must select your paper class"
frmDisplay.cboClass .focus
Exit Sub

ElselfLen(frmDisplay .txtFromYear .value) = 0 Then
Alert "You must enter a starting year for displaying papers"
frmDisplay .txtYearFrom .focus
Exit Sub

ElselfLen(frmDisplay .txtToYear .value) = 0 Then
Alert "You must enter an end year for displaying papers"
frmDisplay .txtTo Year.focus
Exit Sub

End If

'If we get to this point all is OK, submit the form
Call frmDisplay.submit()

End Sub

</script>
<%
'*** ************
'Step2: Display the paper information ******** ***************
'************ ************************** ************** *******
ElselfRequest.Form("FormAction") ="step2" then

Dim strPaperClass , intFrom Year, intTo Year
strPaperClass=CStr(Request.Form("cboClass"))
intFrom Year=cLng(Request.Form("txtFrom Year"))
intTo Year=cLng(Request.Form("txtTo Year"))

'Check for database errors
Call CheckForError s(objConn)

70

%>

<%

<%

Set objCmd = server.CreateObject("ADODB .command")
Set objCmd .ActiveConnection=objConn
objCmd .CommandText=" { Call qDisplayPapers ("' &strPaperClass & _
"'," &intFromYear & "," &intToYear &")}"
Set objRS = objCmd.execute

'Check for database errors
Call CheckForErrors(objConn)

if objRS .EOF or objRS .BOF then

else

Response .Write "No paper record is available during this period"

<a href= "Options .asp"
onmouseover="window.status='Retum to Options Page"'
onmouseout="window .status= "">Retum to Options Page</a

<!--Build the table title row-->
<table border=l cellspacing=l>
<tr>
<td colspan=6 align=center>Published papers on <%=strPaperClass %>
from year <%=intFromYear %> to <%=intToYear %> using the simulation program</td>
</tr>
<tr>
<th bgcolor=navy>Author Name<lth>
<th bgcolor=navy> Year<lth>
<th bgcolor=navy>Joumal Name<lth>
<th bgcolor=navy> Volume<lth>
<th bgcolor=navy>Page<lfont><lth>
<th bgcolor=navy> Title<lfont><lth>
</tr>

'Loop through the recordset building the table
Do While Not objRS .EOF

<!--Build a row of data in the table-->
<tr>
<td>< %=objRS(" AuthorName ")%><ltd>
<td>< %=objRS("PublishedYear") %><1td>
<td>< %=objRS("JoumalName") %><1td>
<td>< %=objRS (" Journal Volume") %><ltd>
<td>< %=objRS("PageNo") %><1td>
<td>< %=objRS("PaperTitle") %><1td>
</tr>

objRS .MoveNext
Loop
%>

<!--Build the last row in the table with a hyper link to the options page-->
<tr>
<td colspan=6> <ltd>
<tr>
<tr>
<td colspan=6><a href="Options .asp"

onmouseover= "window .status='Retum to Options Page"'
onmouseout="window .status="">Retum to Options Page<la></td>

</tr>

71

1

l
l
l

J

l

l J

J

I J

f

n
g
n
I
I

rl

q

l
I

ll
J

J

u
Li

I
J

<!table>

<!-- #include file="Disconnect.inc" -->

end if
end if
%>

<!BODY>
<!HTML>

r

r

72

	20221123133755219.pdf
	Wu_Junyuan_2001_03_13.pdf
	20221123133251052.pdf
	Wu_Junyuan_2001_03_13.pdf
	20221123132716725.pdf
	Wu_Junyuan_2001_03_13.pdf
	Wu_Junyuan_2001_03_13_A
	Wu_Junyuan_2001_03_13_B

