
)

I _)

Parallelism in the SPI Algorithm:

An Investigation

By Tony Fountain

A Research Paper submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Master of Science

Completed April 24, 1991

Commencement June 1991.

)

)

)

ACKNOWLEDGMENTS

Thanks to my major professor, Bruce D' Ambrosio, for his support and guidance

throughout this project. Thanks also to my other committee members, Professors

Tom Dietterich and Vikram Saletore, for their assistance. I would also like to thank

several friends and fellow graduate students for their assistance. Thanks to Brad

Seevers and Ray Anderson for their help with concepts of parallelism, Lothar Kaul

for his help with system support, and especially Nick Fiann for discussion and

critical feedback on all aspects of this project. Thanks.

)

)

)

1

2

3

4

Table of Contents

Introduction

Background

2.1 Belief Nets .

2.2 The SPI Algorithm

2.3 Conformal product

Sources of Parallelism

3.1 Evaluation Tree Parallelism

3.2 Conformal Product Parallelism

Models

4.1 Sequential Model

4.2 Parallel Models

4.2.1 Conformal Product Model

4.2.2 Parallel Query Models ..

4.2.3 Evaluation Tree Parallelism Models

5 Simulations

5.1 Model Parameters.

5.2 Nets ..

5.3 Results .

1

3

3

4

6

10

10

12

18

18

19

19

21

22

23

23

24

25

)

)

6

6.1

6.2

6.3

6.4

5.3.1 Shared memory ...

5.3.2 Distributed memory

5.3.3 Evaluation Tree Parallelism

Conclusions

Shared Memory

Distributed Memory

Evaluation Tree Parallelism

Further research

Bibliography

26

40

50

52

52

53

54

54

57

,

)

List of Figures

2.1 A Simple Belief Net 4

2.2 Evaluation Tree for P(A) . 5

2.3 Subtree of evaluation tree 7

2.4 Distributions 7

2.5 P(B IE) ... 8

3.1 Conformal Product Parallelism - 2 elements per process . 13

3.2 Conformal Product Parallelism - 1 element per process 15

3.3 Conformal Product Parallelism - 1/2 element per process 17

5.1 Speedup - Dimension (G = 256) 27

5.2 Intel2 Speedup SM 28

5.3 Intel2 Efficiency SM 28

5.4 Intel2 Conformal Products - Multiplies 29

5.5 Intel2 Conformal Products - Log Multiplies . 30

5.6 Intel2 Multiplies per Task 30

5.7 Intel2 Processors per Task 31

5.8 Net 4 Speedup SM 32

5.9 Net 4 Efficiency SM . 33

5.10 Net 4 Conformal Products - Multiplies 33

5.11 Net 4 Conformal Products - Log Multiplies . 34

5.12 Net 4 Multiplies per Task 35

5.13 Net 4 Processors per Task 35

5.14 Net 9 Speedup SM 37

5.15 Net 9 Efficiency SM . 37

)

) 5.16 Net 9 Conformal Products - Multiplies .. . 38

5.17 Net 9 Conformal Products - Log Multiplies . 39

5.18 Net 9 Multiplies per Task 39

5.19 Net 9 Processors per Task 40

5.20 lntel2 Speedup DM . 41

5.21 Intel2 Efficiency DM 42

5.22 Intel2 Compute - Communicate DM G = 2 . 43

5.23 Intel2 Compute - Communicate DM G = 64 43

5.24 Intel2 Compute - Communicate DM G = 256 44

5.25 Net 4 Speedup DM . 45

5.26 Net 4 Efficiency DM 45

5.27 Net 4 Compute - Communicate DM G = 2 . 46

5.28 Net 4 Compute - Communicate DM G = 64 46

5.29 Net 4 Compute - Communicate DM G = 256 47

5.30 Net 9 Speedup DM . 48

5.31 Net 9 Efficiency DM 48

5.32 Net 9 Compute - Communicate DM G = 2 . 49

5.33 Net 9 Compute - Communicate DM G = 64 49

5.34 Net 9 Compute - Communicate DM G = 256 50

)

)

)

)

List of Tables

5.1 Random Net Descriptions

5.2 Net Summary Statistics (G = 256)

5.3 Evaluation Tree Parallelism

24

26

51

)

)

)

)

)

)

1

Chapter 1

Introduction

The Symbolic Probabilistic Inference (SPI) algorithm was developed by Bruce

D' Ambrosio for efficient calculation of prior probabilities in belief nets [2]. Although

the complexity of the SPI algorithm compares favorably with other approaches to

probabilistic inference [5], its actual running time is still prohibitively long even for

moderately sized nets. As part of our overall research goal of developing decision­

theoretic problem solving programs for real world real-time problems, we undertook

this investigation into the feasibility of developing a parallel version of the SPI al­

gorithm.

The specific goals of this project were the following:

1. Identify those operations in the SPI algorithm that, if performed in parallel,

would lead to some improvement in performance.

2. Estimate the performance of actual parallel implementations of SPI on both

shared memory and cube architectures.

3. Perform a preliminary exploration into the practical issues related to devel­

oping a parallel algorithm.

To accomplish these goals the following tasks were performed :

1. Examined the algorithm to identify potentially parallelizable constructs and

data dependencies.

2. Designed and implemented models to simulate running the SPI algorithm in

parallel.

2 CHAPTER 1. INTRODUCTION

3. Ran the models on test nets under various parameter settings simulating

shared memory and cube architectures and various computational grainsizes.

4. Gathered and analyzed the test results.

The remainder of the paper is organized as follows. Chapter 2 provides the

necessary background information for understanding the SPI algorithm, including

an overview of belief nets and an example of inference in SPI. Chapter 3 explores

the sources of parallelism in the SPI algorithm. Chapter 4 describes our approach

to estimating the performance of parallel versions of the SPI algorithm. Chapter

5 presents the results from simulated runs of a parallel SPI algorithm. Finally

Chapter 6 includes a brief discussion of the results of this project and introduces

some issues for future research.

April 24, 1991

)

)

)

)

· 3

Chapter 2

Background

In order to understand the issues involved in the construction and analysis of a

parallel version of the SPI algorithm it is necessary to understand, at least at a

general level, the sequential SPI algorithm. Probabilistic inference is the process of

computing the posterior probabilities of values of variables in a probabilistic model.

In simple terms, one begins with a model of the system of interest in terms of

variables that describe the system, the possible values of these variables, and a set

of probability distributions that represent the likelihoods that the model variables

take on those values. The initial values of the probability distributions represent

expectations about variables' values prior to any observations of the actual system.

Once observations are made the probability distributions of variables corresponding

to the observed features of the system are updated. Given such a model, proba­

bilistic inference is the process of computing the probabilities that certain variables

have certain values. SPI is one of a class of algorithms that perform probabilistic

inference over a specific type of probabilistic model referred to as belief networks,

Bayesian networks, causal nets, or simply belief nets [7].

2.1 Belief Nets

A belief net consists of a set of nodes and a set of arcs. The nodes represent the

variables of the model, and the arcs represent influence, causation, or relevance

among the variables [7] [6]. Figure 2.1 is a graphical representation of a simple

belief net.

4 CHAPTER 2. BACKGROUND

Figure 2.1: A Simple Belief Net

The belief net representation of a probabilistic model consists of a set of

marginal probability distributions and a set of conditional probability distributions.

A marginal probability distribution is defined for each node with no incoming arcs.

A conditional probability distribution is defined for each node with incoming arcs,

where each conditioning variable corresponds to an incoming arc. From a belief

net representation, any subspace of the full joint probability distribution across the

variables of the model can be generated using the product rule [7]. Belief net queries

are requests to generate such subspaces. SPI is an algorithm for answering queries

over belief nets.

2.2 The SPI Algorithm

There are three stages to the SPI algorithm:

1. Transform the belief net into a representation that makes inference easier.

2. Update the representation in response to observations.

3. Compute posterior probabilities in response to queries, referred to as query

processrng.

April 24, 1991

)

)

)

_)

2.2. THE SPI ALGORITHM 5

Each of the three stages of the SPI algorithm is of a different computational

complexity. The first stage is performed only once and is polynomial in the number

of nodes and arcs in the net. The second stage is constant time with respect to

the number of nodes or arcs. The third stage is exponential in the worst case [2].

Since stage 3 consumes the largest part of the processing time, we concentrated our

analysis on that stage.

Query processing can be thought of as two separate processes: query ex­

pansion and evaluation . Query expansion is the process of determining the distri­

butions necessary for answering a query and an order in which to combine these

distributions. Query evaluation is the process of combining the distributions of the

expanded query to get the result distribution. Although the sequential SPI algo­

rithm interweaves query expansion and evaluation, the entire expanded query can

be constructed first and then evaluated. An expanded query can be represented as

an evaluation tree. Figure 2.2 illustrates the evaluation tree that is generated in

response to a query for the marginal probability of variable A from the belief net

of Figure 2.1.

P(A)

P(A I B)

/~
P(B)

I\
P(A I BCD) P(CD) P(B I E) P(E)

I\ I~
P(C I G) P(DG) P(B I EF) P(F)

I~
P(D I G) P(G)

Figure 2.2: Evaluation Tree for P(A)

April 24, 1991

6 CHAPTER 2. BACKGROUND

The expanded query corresponding to the evaluation tree in Figure 2.2 is:

P(A) = L(L P(AIBCD)(L P(CIG)(P(DIG)P(G))))(L(L P(BIEF)P(F))P(E))
B ~ G E F

The complexity of query expansion is O(n 3) in the number of unique variables in

the query [3].

Evaluation trees, and thus expanded queries, are not unique. One topic

of current research is to find alternative methods for generating expanded queries

[8]. For this project we chose one method and used it for all simulations. Current

methods for generating evaluation trees are oriented towards efficient sequential

evaluation. One important topic for future research is query expansion methods

which maximize the parallelism of the query evaluation process.

Evaluation of an expanded query consists of repeatedly combining the distri­

butions together, two at a time, with the conformal product operator, as described

in the following section.

2.3 Conformal product

The fundamental operation in query evaluation is the combining of two probability

distributions. This is referred to as the conformal product operation in [8]. As an

example of the conformal product operation consider the subtree of the evaluation

tree of Figure 2.2 which corresponds to the calculation of the P(B IE). As illustrated

in Figure 2.3 the P(BIE) is calculated as follows:

P(BIE) = L P(BIEF)P(F)
F

To calculate the value of P(B I F) first assume that all variables have the

same value space of {O, 1} and that the probability distributions for P(B I E) and

P(F) are defined as in Figure 2.4.

Then P(B IE) can be calculated as follows. Notice that there are four entries

in the conditional probability distribution of P(B I E):

April 24, 1991

)

)

)

2.3. CONFORMAL PRODUCT 7

P(B I E)

/~
P(B I EF) P(F)

Figure 2.3: Subtree of evaluation tree

B

E F 1 0

1 1 .1 .9 1 0

1 0 .2 .8 [.6 .4]
0 1 .7 .3

00 .6 .4 P(F)

P(B I EF)

Figure 2.4: Distributions

1. P(B = 1 I E = 1)

2. P(B = 1 I E = 0)

3. P(B = 0 I E = 1)

4. P(B = 0 I E = 0)

Since the variable F is not one of the variables in the result distribution P(B

I E), the entries in the full joint probability distribution that distinguish between

values of F are summed over. The actual values of the entries in P(B I E) are

computed by:

1. P(B = 1 I E = 1) = P(B = 1 I E = 1, F = 1) * P(F = 1) +
P(B = 1 I E = 1, F = 0) * P(F = 0)

= 0.1 * 0.6 + 0.2 * 0.4

= 0.14

April 24, 1991

8 CHAPTER 2. BACKGROUND

2. P(B = 1 I E = 0) = P(B = 1 I E = o, F = 1) * P(F = 1) +
P(B = 1 I E = 0, F = 0) * P(F = 0)

= 0.7 * 0.6 + 0.6·* 0.4

= 0.66

3. P(B = 0 I E = 1) = P(B = 0 I E = 1, F = 1) * P(F = 1) +
P(B = 0 I E = 1, F = 0) * P(F = 0)

= 0.9 * 0.6 + 0.8 * 0.4

= 0.86

4. P(B = 0 I E = 0) = P(B = 0 I E = 0, F = 1) * P(F = 1) +
P(B = 0 I E = 0, F = 0) * P(F = 0)

= 0.3 * 0.6 + 0.4 * 0.4

= 0.34

The resulting conditional probability distribution of P(B I E) is shown in

table form in Figure 2.5.

B

1 0

1 .14 .86

E

0 .66 .34

Figure 2.5: P(B I E)

The number of multiplies in a conformal product is the number of entries

in the full joint probability distribution over all of the unique variables in the two

distributions to be combined. This number can be calculated by ITvEV n(v) where

V is the set of unique variables, and n(v) is the number of possible values for the

variable v. In the preceeding example V = {B, E, F}, and n(B) = n(E) = n(F) = 2.

Therefore the number of entries in the full joint probability distribution, and the

number of multiplies in the corresponding conformal product, is 23 = 8.

April 24, 1991

)

2.3. CONFORMAL PRODUCT 9

A conformal product operation involves indexing, multiplying, and adding.

The number of multiplies is an accurate measure of complexity, since indexing is

only O(m log n), where mis the overall number of multiplies and n is the number

of unique variables in the query, and the number of additions is approximately the

same as the number of multiplies. The complexity of the query evaluation process,

as measured by the number of multiplies, is O(Vn), where Vis the maximum number

of values of any variable in the query and n is the number of unique variables in the

expanded query.

April 24, 1991

10 CHAPTER 3. SOURCES OF PARALLELISM

Chapter 3

Sources of Parallelism

Since query processing dominates the processing time of the SPI algorithm, we

only considered parallelism in that portion. Furthermore, due to the relatively

low complexity of query expansion, we focused our analysis on query evaluation

exclusively. The purpose of this chapter is to introduc _e those aspects of the query

evaluation process whose parallelism is analyzed more rigorously in Chapters 4 and

5.

3.1 Evaluation Tree Parallelism

One source of parallelism in the query evaluation process of the SPI algorithm is at

the evaluation tree level. The idea behind this approach is that the running time for

query evaluation can be reduced by performing some conformal product operations

in parallel. Since each non-leaf node in the evaluation tree corresponds to a confor­

mal product operation, and since distributions occur at most once in the evaluation

tree, the conformal product operations corresponding to nodes in disjoint subtrees

can be performed in parallel. For example, from the evaluation tree of Figure 2.2

it is easy to see that the subtrees rooted at P(A I B) and at P(B) can be evaluated

in parallel. More generally, the structure of the evaluation tree expresses the data

dependencies among the conformal product operations and bounds on parallelism

can be calculated from an analysis of this structure. For example, in the evaluation

tree illustrated in Figure 2.2, we can see the following ordering of conformal product

operations:

)

)

)

)

)

3.1. EVALUATION TREE PARALLELISM 11

CP(DG) < CP(CD) < CP(AIB) < CP(A) and CP(BIE) < CP(B) < CP(A)

where CP(X) represents the conformal product operation that calculates P(X).

For example, CP(DG) => P(DG) = P(DIG) * P(G). Recall that the measure

of complexity of a conformal product operation is the number of multiplies in its

evaluation. Thus a lower bound on the computational time for the evaluation of

this query is the length of time it would take to evaluate the longest path in the

evaluation tree, where path length is measured in terms of the number of multiplies

required for the conformal products in the path. For example, let M(c) be the

number of multiplies in the evaluation of conformal product c, L(p) be the length of

path p, Pi = CP(DG) < CP(CD) < CP(AIB) < CP(A), and P2 = CP(BIE) <

CP(B) < CP(A). Then the lengths of the paths A and P2 can be calculated as

follows:

L(Pi) = M(CP(DG)) + M(CP(CD)) + M(CP(AIB)) + M(CP(A))

= 4 + 8 + 16 + 4

= 32

L(P2) = M(CP(BIE)) + M(CP(B)) + M(CP(A))

=8+4+4
= 16

So the lower bound on computational time for the evaluation of this query

is the time it takes to perform 32 floating point multiplies. In this example the

longest path in terms of multiplies is also the longest path in terms of the number

of conformal products it contains, but since the complexity of conformal products

varies there is no guarantee that this will always be the case. Using the same

approach as was used in calculating the lower bound, we can calculate an upper

bound by summing the number of multiplies for each conformal product in the

evaluation tree. The upper bound thus computed is 44 and corresponds roughly to

the sequential running time for the evaluation of this query.

The lower bound computed above is, of course, only a theoretical bound, and

April 24, 1991

12 CHAPTER 3. SOURCES OF PARALLELISM

is based on several unrealistic assumptions, including:

1. The evaluation of the shorter path, P2 , can be carried out in parallel with the

evaluation of Pi.

2. The query evaluation process consists only of conformal products, i.e., there

are no inherently sequential operations that cannot be distributed equally

among the processors performing the confomal product operations.

3. There are no communication costs for partitioning the evaluation tree among

multiple processors.

4. There is no limit on the number of processors, in other words, there is at least

one processor available for each subtree of the evaluation tree.

In Chapter 4 we present a more detailed model for estimating the perfor­

mance of an SPI algorithm that exploits evaluation tree parallelism, and in Chapter

5 we present the results from simulations of this algorithm on sample belief nets

and queries. But even with the rough estimates of running time presented above, it

is clear that there will not be much performance improvement unless the evaluation

trees are relatively bushy.

3.2 Conformal Product Parallelism

A second source of parallelism in the query evaluation process is at the conformal

product level. The idea here is to parallelize each conformal product operation.

Recall the evaluation tree illustrated in Figure 2.3 for the calculation of P(B I E),

which consists of a single conformal product operation P(BIEF) *P(F). Recall also

that the result distribution, P(BIE), has four entries. One approach to parallelizing

the conformal product is to calculate subsets of the entries in the result distribution

in parallel. For example, Figure 3.1 shows a possible evaluation of this conformal

product in which two processes are used and each process computes two elements

of the result distribution.

April 24, 1991

3.2. CONFORMAL PRODUCT PARALLELISM 13

P(B I EF) [.1 .2 .7 .6 .9 .8 .3 .4]

B=0 B = 1

[.1 .2 .7 .6] [.g .8 .3 .4]

* *
P(F) [6 .4] [6 .4]

) [.06 .08 .42 .24] [.54 .32 .18 16]

\ I \ I
[.14 .66] [86 .34]

~ /
P(B I E) [.14 .66 .86 .34]

Figure 3.1: Conformal Product Parallelism - 2 elements per process

)

April 24, 1991

14 CHAPTER 3. SOURCES OF PARALLELISM

To understand this figure, begin at the top with the distribution P(BIEF).

This distribution is split into two equal subarrays. The left half corresponds to the

values of P(BIEF) in which B = 0, the right half corresponds to the values in which

B = 1. The entries in each of these two subarrays are multiplied by the appropriate

entries in the distribution P(F). Notice that if we assume that the two multiply

operations, [.1 .2 .7 .6] * [.6 .4] and [.9 .8 .3 .4] * [.6 .4], are performed in parallel

then each of the corresponding processes requires access to the entire distribution

P(F). The results of these multiplies are two arrays of four entries each. Together

these eight numbers represent the joint probability distribution P(BFIEF). Since

the result distribution does not distinguish between the values for variable F, the

values of the joint probability distribution which distinguish between the values of

F are summed over. So each four element array yields two elements of the result

distribution. Of course it would never make sense to partition the problem into such

small computations. This example, like the two which follow, is only to illustrate

the concept behind conformal product parallelism. Part of the analysis in Chapter

4 is directed towards determining appropriate computational grainsizes.

As a second example, consider partitioning the same conformal product in

such a way that each process computes only one result distribution entry instead of

two. Figure 3.2 illustrates this evaluation process. In this example there are four

processes, each of which computes one element of the result distribution. Each of

these four processes requires access to ¼ of the distribution for P(BIEF) and the

entire distribution P(F). An important point to get from this example is that as

parallelism increases, the amount of data for each process decreases, but the overall

amount of data needed by all processes increases. In the first example there were

2 processes, and each required 6 numbers for a total of 12. In the second example

there were 4 processes, and each required 4 numbers for a total of 16. The reason

for this increase in the total amount of data is that we split the first distribution,

P(BIEF), over variable B, and B is not an element of the second distribution,

P(F); Splitting over variables that occur in both input distributions results in no

net increase in the total amount of data required to compute the conformal product.

April 24, 1991

)

)

)

3.2. CONFORMAL PRODUCT PARALLELISM 15

This is demonstrated in the following example.

P(B I EF) [.1.2 .7 .6 .9 .8 .3 .4]

[.1 .2 .7 .6 J [.g .8 .3 .4 J

E=1/ \E=l E=1/ \E=l
[.1 .2] [.1 .6] [.g .8] [.3 .4]

* * * *
P(F) [6 .4] [.6 .4] [6 .4] [6 .4]

[.06 .08]

\/
[.42 .24 J
\I

[54 .32]

\/
[.18 .16 J
\/

[.14 J [66] [86 J [34]

~I
P(B I E) .14 .66 .86 .34]

Figure 3.2: Conformal Product Parallelism - 1 element per process

In Figure 3.3 a final example is presented. In this example eight processes

are used and each process computes ½ of one element of the result distribution.

The two important points to get from this last example are (1) splitting the input

distributions on variables that occur in both distributions does not increase the

total amount of data required to compute the conformal product, and (2) splitting

the input distributions on variables other than those in the result distribution re­

quires either the ability to perform concurrent writes with summing or a separate

processing step in which the values that make up the result distribution entries are

summed together. In other words, splitting the input distributions on variables

April 24, 1991

16 CHAPTER 3. SOURCES OF PARALLELISM

that occur in both distributions minimizes the total data required, and as long as

splitting is performed on variables that occur in the result distribution the processes

produce independent subsets of the result distribution. If splitting occurs on other

variables, this independence is lost. Of course, splitting on more variables increases

the amount of parallelism, but at the cost of complicating the process of assembling

the result values. For this project, we only investigated the parallelism available

from splitting on subsets of the variables in the result distribution.

April 24, 1991

_)

_)

3.2. CONFORMAL PRODUCT PARALLELISM

P(B I EF) [.1 .2 .7 .6 .9 .8 .3 .4]

[.1 .2 .7 .6] [9 .8 .3 .4]

E=1/ ~=0 E=7 ~=0

[.1 .2] [.1 .6] [9 .8] [3 .4]

F=i \F=O 7 \ 7 \ F=ll \F=O
[.1] [.~ (1] [.~ (9] [.~ (3] [.~

* *
F=l F=O

P(F) [6] [4]

[.06] [.08]

\1
[14]

* * * *

[6] [4] [6] [4]

[.42 J [.24] [54] [.32]

\1 \1
[66] [86]

\ I
P(B I E) [.14 .66 .86 .34]

* *

[6] [4]

[18] [16]

\1
[34]

Figure 3.3: Conformal Product Parallelism - 1/2 element per process

April 24, 1991

17

18 CHAPTER 4. MODELS

Chapter 4

Models

For this analysis we considered conformal product and simple evaluation tree par­

allelism only. Our goal was to estimate the expected performance, in terms of

speedup and efficiency, of parallel evaluation of expanded queries. Our approach

was to modify the existing SPI code to create parameterized simulation models,

run these models on sample nets, and use the statistics gathered from these runs to

estimate the performance of actual parallel implementations.

This approach required the development of several models. First we devel­

oped a model of sequential conformal product evalutation. From this model we

developed a model for sequential query evaluation. Then we developed a general

model for parallel conformal product evaluation. This general model allowed us to

model both shared-memory and distributed-memory architectures. From the par­

allel conformal product model we developed a model of parallel query evaluation.

Each of the models was parameterized to allow experimentation with various aspects

of the computational environment including task grainsizes, number of processors,

and communication costs.

4.1 Sequential Model

To provide a basis against which to measure the performance of the parallel al­

gorithms, we developed the following model to estimate the running time of the

sequential algorithm.

Sequential conformal product model: Ts(c) = aM(c)

4.2. PARALLEL MODELS 19

where M(c) is the number of multiplies in conformal product c and a is a con­

stant scaling factor that accounts for factors other than multiplies in the conformal

product operation, most notably indexing and additions. M(c) is calculated by

ITvev n(v) as explained in section 2.2.1. To simplify analysis we restricted the value

space of the variables in the test belief nets to 2 values each. Thus in the follow­

ing sections M(c) = 2n where n is the number of unique variables in the 2 input

distributions.

Given the model for the sequential running time for a single conformal prod­

uct, the estimated sequential running time for the evaluation of an entire query is

the sum of the times required for each of its conformal products.

Sequential model for a query: Ta(q) = Eceq Ts(c)

4.2 Parallel Models

4.2.1 Conformal Product Model

The following model was developed to estimate the running time of a parallel al­

glorithm.

Parallel conformal product model: Tp(c) = P + S + W + C

Where

P is the cost for process initialization,

S is the cost for setting the problem up,

Wis the cost for the work done at each processor, and

C is the cost for communication . .

The value which was used for W was aG, where G is the computational

grainsize specified as the number of floating point multiplies per process. a is the

same constant scaling factor that was used in the sequential model.

For both the shared-memory and cube architecture models the following

measures were calculated for each conformal product:

Ts = Time for sequential

Tp = Time for parallel

April 24, 1991

20 CHAPTER 4 . . MODELS

Nu = Number of processors used

The values for G and Nu were determined as follows. First a mm1mum

grainsize, Gmin, and a maximum number of processors, Na, were specified. Na

represents the number of processors available. Then, given a particular conformal

product to compute, the actual G and Nu values were calculated so that Nu was

maximized under the constraints Nu ~ Na and G 2: Gmin and Nu ~ 2v, where v is

the number of variables in the result distribution. In other words, Nu and G were

chosen such that as many as possible of the available processors were used as long as

there was enough work for each processor to perform as specified by the minimum

grain.size, and there was enough parallelism in the problem to support the desired

partitioning.

Distributed-Memory Communication Model

The distributed-memory model includes a specific model of communication for a

cube architecture. This model assumes that there is no overlap between the confor­

mal product calculations and the communication between processors. This model

also assumes that the data to be sent to processors is arranged into buffers, one

buffer for each process.

Total communication cost: C = Cd + Cr + B

where

Cd is the communication cost for distributing the data,

Cr is the cost of returning the data, and

B is the cost for building the buffers of data to be distributed.

The data transfer cost calculations were based on the log spanning tree, or

broadcast, communication model for hypercubes [4].

Distribution communication cost: Cd= (Dmax * Cst) + (Bd * ((Nu -1) * Cb))

where

Dmax is the maximum dimension of the cube which is used,

Cst is the communication startup time,

Bd is the number of bytes sent to each processor, and

April 24, 1991

)

)

_)

4.2. PARALLEL MODELS 21

Cb is the communication cost per byte, per link.

The following formula was used to calculate Bd, the number of bytes sent to

each processor:

Bd = Btotal / Nu

where Btotal is the total number of bytes needed to compute the conformal prod­

uct. Assuming 4 bytes per word, a lower bound for Btotal can be calculated by the

following formula:

Btotal = 4 * (2max(ldist1-varsl,lsplitting-varsl) + 2max(ldist2-varsl,lsplitting-varsl))

where ldistl-varsl and ldist2-varsl represent the number of variables in the 2 in­

put distributions and !splitting-vars! represents the number of result distribution

variables on which splitting occurs .

The return communication cost is calculated in the same way as distribution

communication costs except that the amount of data returned is less than that sent

out.

Return communication cost: Cr= (Dmax *Cat)+ (Br* ((Nu - 1) * Cb))

where

Br is the number of bytes returned from each processor and is calculated by

Br = Bresult / Nu

where Bresult is the total number of bytes in the result distribution. Since there are

2lresult-diS t -Varsl entries in the result distribution, Bresu/t = 4 * 2lresult-diS t -Varsl.

4.2.2 Parallel Query Models

As explained in Chapter 2, query evaluation consists of repeated comformal product

operations. Since we were interested in the performance of a parallel SPI algorithm

on the task of query evaluation we constructed a model to predict this performance

from the models for conformal product operations . The parallel query model is anal­

ogous to the sequential query model. The running time for parallel query evaluation

is simply the sum of the running times of its conformal products.

Parallel model for a query: Tp(q) = :Z:::cEqTp(c)

Nu(q), the number of processors used in evaluating query q, is simply the

April 24, 1991

22 CHAPTER 4. MODELS

maximum of the number used by any of the conformal products in q. Given Tv(q),

T8 (q) and Nu(q) the speedup, cost, and efficiency for a query can be calculated

according to fomulas given in [1).

Speedup: S(q) = Ts(q) / Tv(q)

Cost: C(q) = Tv(q) * Nu(q)

Efficiency: E(q) = T8 (q) / C(q) = S(q) / Nu(q)

4.2.3 Evaluation Tree Parallelism Models

For evaluation tree parallelism, we only computed a lower bound on running time.

As demonstrated in the example in Section 3.1 a lower bound on the running time

of an algorithm exploiting evaluation tree parallelism can be calculated by summing

the times required to perform each of the conformal products in the longest path of

the evaluation tree.

Lower bound on Tv(q) = LcELp Ts(c) where Lp is the longest path in the

evaluation tree as measured by the amount of time it takes to compute the conformal

products in the path.

April 24, 1991

)

)

23

Chapter 5

Simulations

In order to estimate the performance of parallel query evaluation we instantiated

the model parameters, chose sample belief nets and queries, ran simulations and

gathered and analyzed the results.

5.1 Model Parameters

The following are the values for model parameters which were used in the simula­

tions described in the following sections of this paper.

a, the scaling factor for multiplies, was 45 micro seconds. This value was

derived from repeated timings of the sequential algorithm running on a Sun SPARC­

station 1 and is approximately constant with respect to the number of variables in

a query.

P, the cost for process initialization, was 0. There are two reasons for essen­

tially ignoring the cost of process initialization. First there is no cost for process

initialization in a cube. Second, even for a shared-memory machine, the cost of

process initialization is small, about 500 micro seconds on a Sequent Balance, and

as task grainsize increases, this cost becomes insignificant.

S, the cost for setting the problem up, was also 0. The main reason we

assumed a value of 0 for the set-up cost was that we did not have a more reliable

estimate. By ignoring the set-up cost, our model overestimates the actual speedup

possible. Determining a realistic estimate for S should be one of the future research

tasks.

24 CHAPTER 5. SIMULATIONS

For the distributed-memory model, the communication cost parameters, Cst

and Cb, were based on the Intel iPSC2.

Cat, the communication start-up time, was 230 micro seconds.

Cb, the communication cost per byte, was .5 micro seconds per byte per link.

B, the cost for building the buffers of data to be distributed, was 0. This cost

is a significant factor in the overall running time of the parallel distributed-memory

algorithm. By ignoring this cost, our model overestimates the actual speedup possi­

ble. Exploring the costs and effects of building data buffers is also a topic for future

research.

Simulations were run on a number of nets using the above parameters and

various values for G, the computational grainsize, and Na, the number of processors

available. The actual values for G and Na are given next to the simulation results

in which they figure.

5.2 Nets

To obtain the sample belief nets on which to run the simulations, we generated

10 random nets using J. Suermondt's random net generator. In addition to these

10 nets, we ran simulations on a net obtained from Intel Corporation, hereafter

referred to as the Intel2 net. Table 5.1 provides a description of the random nets.

Net Nodes Arcs Observations Query
1 66 3 11 51
2 74 3 2 28
3 70 4.2 6 60
4 71 2.6 16 53
5 46 3 12 17
6 29 4.7 12 22
7 68 3.5 10 43
8 86 4.3 13 27
9 50 4.0 16 27

10 60 3.5 8 36

Table 5.1: Random Net Descriptions

April 24, 1991

)

)

)

5.3. RESULTS 25

In Table 5.1 values under the nodes column indicate the total number of

nodes that are in the belief net; values under the arcs column indicate the average

number of incoming arcs to each node; values under the observations column refer

to the number of observations posted to the net prior to querying; and the values

under the query column indicates which node was queried. These parameters were

randomly chosen by the net generator under the following constraints:

10 <Nodes< 100

1 <Arcs< 5

1 < Observations < 20

The query node was chosen at random from the nodes in the net that were not

observed.

The Intel2 net has 52 nodes and 28 observations and an average of 2.4 arcs

per node.

5.3 Results

Table 5.2 shows the results obtained from running each of the 11 nets under both

the shared and distributed-memory models with the minimum grainsize set at 256

and the maximum number of processors limited to 1024.

As a measure of problem complexity, each value in the dimension column

represents the log of the number of multiplies of the largest conformal product in

the associated query's evaluation. As discussed in Chapter 2, the number of mul­

tiplies in a conformal product is equal to the number of entries in the full joint

probability distribution over all unique variables in the input distributions. The

full joint distribution can be thought of as an n-dimensional table with 2n entries,

where n is the number of unique variables in the input distributions. Since even

in moderately-sized belief nets it is common for the evaluation of some conformal

products to require millions of multiplies, it is often convenient to describe the

April 24, 1991

26 CHAPTER 5. SIMULATIONS

Net Dimension Nu Shared Memory Distributed Memory
Speedup Efficiency Speedup Efficiency

1 15 128 26.62 .10 11.70 .09
2 10 4 2.45 .60 2.19 .55
3 29 1024"' 1022.00 .99 20.00 .02
4 12 16 4.83 .30 3.68 .23
5 17 512 75.27 .15 14.88 .03
6 9 2 1.23 .61 1.19 .60
7 26 1024"' 1011.00 .99 6.34 .02
8 34 1024"' 1023.00 .99 20.14 .02
9 20 1024"' 572.58 .56 16.36 .02
10 18 1024"' 195.45 .19 11.91 .55

Intel2 14 32 10.19 .32 6.28 .20
"' Nu was limited to 1024.

Table 5.2: Net Summary Statistics (G = 256)

complexity of query evaluation in terms of the dimensionality of the full joint prob­

ability distribution, rather than in the number of multiplies it takes to construct

this distribution.

From the table, it is easy to see that communication costs and problem size

both have a large effect on the performance of parallel query evaluation . Under the

shared-memory model the three largest queries all show a near-linear speedup and

high efficiency. Under the distributed-memory model the same queries show a top

speedup of only 20.14 and an efficiency of only .02. The effects of communication

costs and problem size are shown clearly in the Figure 5.1.

In order to understand better the issues affecting the expected performance

of parallel query evaluation, three nets were chosen to explore in more detail. These

nets were the Intel2 net, random net 4, and random net 9.

5.3 .1 Shared memory

Since communication is free in the shared -memory model , the only factors that affect

the degree to which a query can be parallelized are the the minimum task grainsize ,

the size of intermediate result distributions, and the number of processors available .

April 24, 1991

)

)

5.3. RESULTS 27

1000

800

s
p
e 600
e
d
u
p 400

200

0
10 15 20 25 30 35 40

Dimension (G = 256)

Figure 5.1: Speedup - Dimension (G = 256)

Task grainsize affects possible parallelism in the obvious way; if a conformal product

is smaller than the minimum grainsize, then it can't be parallelized. The sizes of

intermediate result distributions limit exploitable parallelism since splitting can

occur only on those variables that occur in the result distributions as explained

in Chapter 3. Finally, on the environment side, parallelism can be limited by the

number of processors available. In each of the following nets we identify those

factors that directly affect the predicted speedup and efficiency.

Intel2 Net

Figure 5.2 shows the expected speedup of a query on the Intel2 graph under the

shared-memory model for grainsizes 2, 16, 64, and 256. As one would expect,

without a communication cost the best speedups are achieved with the smallest

mm1mum grams1ze. Efficiency is also highest with the smallest grainsize as shown

in Figure 5.3.

April 24, 1991

28

s
p
e
e
d
u
p

E
f
f
i
C

i
e
n
C
y

70

60

50

40

30

20

10
~ · ·

CHAPTER 5. SIMULATIONS

G = 256 ~
G = 64 -t­
G = 16 ~
G= 2 ·X· ·

0 .__ _ __,_ __ __.__ __ __._ ____ __ .__ _ __,_ __ __.___.

0 10

1

0.8

0.6

0.4

0.2

0
0 10

20 30 40 50 60 70
Number of Processors

Figure 5.2: Intel2 Speedup SM

X .

20 30 40 50
Number of Processors

G = 256 ~
G = 16 -t­
G = 64 ~

G = 2 ·X ··

60 70

Figure 5.3: Intel2 Efficiency SM

April 24, 1991

)

)

5.3. RESULTS 29

But even with the smallest minimum grainsize, speedup and efficiency are

poor. A more reasonable minimum grainsize of 256 causes performance to degrade

further. Speedup tops out at 10.19 using 32 processors with an efficiency of only .32.

A partial explanation of this poor performance can be obtained by considering the

complexity of the individual conformal products contained in the query as shown

in Figure 5 .4

20000 .---~-~----,----,-----,--..-----,-------.-----.----,

CP~

M 15000
u
I
t
i 10000 p
I
i
e
s 5000

5 10 15 20 25 30 35 40 45 50
Conformal Products

Figure 5.4: Intel2 Conformal Products - Multiplies

From Figure 5.4 is it easy to see that one conformal product dominates the

query evaluation while the majority are too small to parallelize. Figure 5.5 shows

the same information, but, instead of multiplies the Y axis shows dimension, i.e.

log of the graph 5.4's Y axis.

A partial explanation for the predicted poor performance is the number of

small conformal products that cannot be parallelized. But this is only a very small

part of the explanation, since those conformal products below the minimum grain­

size, i.e. with dimension less than 8, make up only about 1 % of the overall work.

Consider the graph of Figure 5.6, which shows how the problem would be split given

a minimum grainsize of 256 and an unlimited number of processors.

April 24, 1991

30 CHAPTER 5. SIMULATIONS

16

14
CP ~

12
D
i 10

m
e
n 8
s
i 6 0
n

4

2

0
0 5 10 15 20 25 30 35 40 45 50

Conformal Products

Figure 5.5: Intel2 Conformal Products - Log Multiplies

M 1000 CP~
u
1
t

800 i
p
1
i 600
e
s
p 400 e
r
T
a 200
s
k

5 10 15 20 25 30 35 40 45 50
Conformal Products (G = 256)

Figure 5.6: Intel2 Multiplies per Task

)

April 24, 1991

)

5.3. RESULTS 31

In Figure 5.6 the source of the poor performance can be seen. When offered

unlimited processors all of the larger conformal products, except for the largest,

split into tasks of size 256. Figure 5. 7 shows the number of processors used by

each conformal product . This represents the expected speedup for each conformal

product.

40

p 35
CP~

r
0

30 C
e
s

25 s
0
r

20 s
p
e 15
r
T
a 10
s
k 5

5 10 15 20 25 30 35 40 45 50
Conformal Products (G = 256)

Figure 5. 7: Intel2 Processors per Task

From Figure 5. 7 we can see that the largest conformal product, number 13,

used only 16 processors. Whereas conformal product 12, which was half as large

as conformal product 13, used twice as many processors. Together Figures 5.6 and

5. 7 show that conformal product 12, of dimension 14, is a processing bottleneck.

Although it requires 214 multiplies it only has 4 result variables, or, in other words,

it can only be split into 16 subtasks.

Result: Run out of parallelism in problem. Lack of variables in the result

distribution of the largest conformal product limited splitting.

April 24, 1991

32 CHAPTER 5. SIMULATIONS

Random Net 4

Figures 5.8 and 5.9 show the expected speedup and efficiency of query evaluation

on random net 4. In contrast to the Intel2 net, random net 4 shows near-linear

speedup for up to 32 processors when the minimum grainsize is 16, and for up to

64 processors when the minimum grainsize is 2.

70

60

s 50
p
e
e 40
d
u 30
p

20

10

0
0 10 20 30 40 50

Number of Processors

G = 256 ~
G = 64 -t­
G =)P.;...
. G·;, 2 -x- ·

60 70

Figure 5.8: Net 4 Speedup SM

April 24, 1991

)

)

5 ~3. RESULTS

1

E 0.8
f
f
i 0.6
C

i
e
n 0.4
C
y

0.2

0

5000

4500

4000
M 3500 u
I 3000 t
i 2500 p
I 2000
i
e 1500
s

1000

500

0

· · · · · X · G = 256 -'G>-
X · G.:;::. x6 -t-

10 20 30 40 50
Number of Processors

G = 64 ,1;1-
G = 2 ·X · ·

60 70

Figure 5.9: Net 4 Efficiency SM

20
Conformal Products

25

CP -'G>-

30 35

Figure 5.10: Net 4 Conformal Products - Multiplies

April 24, 1991

33

34 CHAPTER 5. SIMULATIONS

Figure 5.10 shows the complexity of the conformal products performed in

query evaluation, and Figure 5.11 displays the same information but in terms of

dimension rather than multiplies. Together these graphs, 5.10 and 5.11, suggest an

explantion for the speedup and efficiency behavior. The largest conformal product

is only of dimension 12, which explains the poor performance for large grainsize

settings. It is only twice as large as the conformal products which come before and

after it, that suggests the absence of any processing bottleneck.

14 CP-<>-

12

D 10
i

m
e 8
n
s
i 6
0
n

4

2

0
0 5 10 15 20 25 30 35

Conformal Products

Figure 5.11: Net 4 Conformal Products - Log Multiplies

Figure 5.12 shows the possible parallelism given unlimited processors and a

minimum grainsize of 256. The absence of a conformal product with more than

256 multiplies indicates that the all of the result distributions contained enough

variables to support complete splitting.

April 24, 1991

)

5.3. RESULTS 35

400

M
350

CP-<>-
u
l
t
i

300

p
250 l

i
200 e

s
p 150
e
r
T 100
a
s 50
k

5 10 15 20 25 30 35
Conformal Products (G = 256)

Figure 5.12: Net 4 Multiplies per Task

) 25

p CP -<>-
r 20 0
C
e
s
s 15
0
r
s
p

10 e
r
T
a 5 s
k

5 10 15 20 25 30 35
Conformal Products (G = 256)

Figure 5.13: Net 4 Processors per Task

_)

April 24, 1991

36 CHAPTER 5. SIMULATIONS

Figure 5.13 shows the number of processors that could be used by each

conformal product when the minimum grainsize is 256. This figure, together with

Figure 5.12 , shows that the factor limiting expected speedup and efficiency is the

small size of the conformal products, not the lack of splitting variables. As the

minimum grainsize is lowered speedup and efficiency increase as shown in Figures

5.9 and 5.9.

Result: The number of small conformal product limited the splitting and

there the speedup. The problem was to small to be parallelized effectively.

April 24, 1991

)

)

J

37

Random Net 9

As shown in Figures 5.14 and 5.15 random net 9 exhibits near-linear speedup and

high efficiency for up to (at least) 256 processors. This performance is maintained

with little change across grainsize settings of 2, 16, 64, and 256.

s
p
e
e
d
u
p

E
f
f
i
C

i
e
n
C
y

300

250

200

150

100

50

0
0 50

1

0.8

0.6

0.4

0.2

0
0 50

100 150 200
Number of Processors

G = 256-<>-­
G = 64 +­
G = 16 ..,_

G = 2 ·X · ·

250 300

Figure 5.14: Net 9 Speedup SM

100 150 200 250 300
Number of Processors

Figure 5.15: Net 9 Efficiency SM

350

As shown in Figure 5.16, the query evaluation for random net 9 required 41

April 24, 1991

38

conformal products, with complexities ranging from 4 multiplies to 220 • An inter­

esting feature of this problem is that there are two dominating conformal products,

rather than one, as in the Intel2 net and the random net 4.

1.2e+06

CP~
le+06

M
u 800000
1
t
i 600000 p
1
i 400000 e
s

200000

35 40 45
Conformal Products

Figure 5.16: Net 9 Conformal Products - Multiplies

Figure 5.17 shows the complexity of conformal products in terms of dimen­

sion. An important point is the lack of great disparity between the complexity of

neighboring conformal products. The largest single drop in relative magnitude be­

tween any 2 neighboring conformal products is from 213 , conformal product 39, to

27 , conformal product 40. With a grainsize of 256, complete splitting of conformal

product 40 would require only 32 processors and 5 splitting variables in the result

distribution. From Figure 5.18 we can see that all of the conformal products were

either smaller than the minimum grainsize, conformal products 1 though 8 and 40

through 41, or else contained enough splitting variables to allow complete splitting.

Figures 5.18 and 5.19 show the degree of splitting possible and the number of

processors used given a minimum grainsize of 256 and unlimited processors. From

these graphs it is easy to see that the problem is big enough and well-behaved

enough (no processing bottlenecks due to lack of splitting variables) that speedup

and efficiency are limited only by the number of processors available.

April 24, 1991

)

)

)

20

D 15
1

m
e
n
s 10
1
0
n

5

300

M
u

250 1
. t

i
200 p

1
i

150 e
s
p
e 100
r

T
a 50 s
k

39

CP~

5 10 15 20 25 30 35 40 45 50
Conformal Products

Figure 5.17: Net 9 Conformal Products - Log Multiplies

5 10 15 20 25 30 35 40 45
Conformal Products (G = 256)

Figure 5.18: Net 9 Multiplies per Task

April 24, 1991

/

40

5000

p 4500 CP~
r 4000 0
C
e 3500
s
s 3000
0
r 2500 s
p 2000 e
r

1500 t
a 1000 s
k 500

0
0 5 10 15 20 25 30 35 40 45

Conformal Products (G = 256)

Figure 5.19: Net 9 Processors per Task

Result: Troblem is big enough and contains enough parallelism to get near­

linear speedup and high efficiency. We would expect to run out of processors before

exhausting the possible parallelism.

5.3.2 Distributed memory

The purpose of the distributed memory model was to determine the effect of commu­

nication costs on speedup and efficiency of parallel query evaluation. The speedup

and efficiency figures of Table 5.2 suggest that parallel conformal product evaluation

is communication-intensive. And the graph in Figure 5.1 shows just how dismal the

predicted performance is. In the following sections we examine the results of sim­

ulations of the Intel2 net and random nets 4 and 9 under the distributed-memory

model.

Intel2 Net

Figure 5.20 shows the speedup curves for the Intel2 net under minimum grainsize

settings of 2, 16, 64, and 256. The number of processors ranges from 4 to 64. The

first thing one notices is that speedup is poor under all conditions .

April 24, 1991

)

)

70

60

s 50
p
e 40 e
d
u 30
p

20

10 'j ..
0

0 10

ij!

20 30 40 50
Number of Processors

G = 256 -'G>-­
G = 64 -t­
G = 16 ~
G= 2 ·X··

60 70

Figure 5.20: Intel2 Speedup DM

41

Figure 5.21 shows the efficiency curves for the same set of simulations and,

as with the speedup curves, not only is the performance poor but grain.size seems to

have had no effect. We know from the analysis of the shared-memory simulations

that without communication costs, speedup and efficiency depend in part on the

minimum grain.size. To understand the relationship between communication costs,

grain.size settings, and speedup and efficiency consider Figure 5.22.

Figure 5.22 shows the relationship between time and number of processors

for a simulation of query evaluation in the Intel2 net with a minimum grain.size of

2. There are 3 measures of time: total time, compute time, and communication

time. The general trend displayed in the graph is that with few processors there

is little splitting so communication time is low and compute time is high. As

the number of processors increases, more splitting is possible, so the compute time

decreases and the communication time increases. The explanation for the reduction

in compute time is that with more processors, the amount of work performed by

any one processor is reduced. The explanation for the increase in communication

time is that with more processors the overall amount of data sent out increases, as

discussed in Chapter 3, and some of this data has to travel farther (across additional

April 24, 1991

42

1

E 0.8
f
f
i 0.6
C

i
e
n 0.4
C
y

0.2

0
0 10 20 30 40 50

Number of Processors

G = 256 .¢­
G = 16 -t­
G = 64 ~
G= 2 ·X · ·

60 70

Figure 5.21: Intel2 Efficiency DM

dimensions of the cube). The general result is that the compute time saved by

splitting the problem is consumed in the communication time. Figure 5.23 show

the effects of increasing the minimum grainsize from 2 to 64.

In Figure 5.23 we see that for up to 32 processors, with a minimum grainsize

of 64, the compute time is greater than the communication time. At 32 processors

compute time and communication time are approximately equal. With more than

32 processors compute time drops slightly below communication time. The trend is

similar to that shown in Figure 5.22. Compute time starts high and drops quickly,

while communication time starts low and climbs slowly. Both compute time and

communication time level off quickly. As a final look at the relationship between

compute and communicate time with the Intel2 net, consider the graph of Figure

5.24 in which the minimum grainsize is 256.

In Figure 5.24 we see the same general trend as in Figures 5.23 and 5.22. The

difference is that since the grainsize is 256, less splitting occurs and thus the compute

time stays higher than in the previous simulations and the communication time stays

low. Whereas in the simulations with smaller grainsizes, the communication costs

eventually became greater than the compute costs, in this case the two costs never

April 24, 1991

)

)

T
i

m
e

)

T
i

m
e

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

500000

450000

400000

350000

300000

250000

200000

150000

100000

50000

0

0 20

Compute ~
Communicate +­

Total ~

40 60 80 100 120 140
Number of Processors (G = 2)

Figure 5.22: Intel2 Compute - Communicate DM G = 2

Compute ~
Communicate +­

Total ~

0 20 40 60 80 100 120 140
Number of Processors (G = 64)

Figure 5.23: Intel2 Compute - Communicate DM G = 64

April 24, 1991

43

44

become close.

500000

450000

400000

350000

T 300000

i 250000 m
e 200000

150000

100000 -r--1
50000

0
0 20

Compute ~
Communicate -+­

Total Q...

40 60 80 100 120 140
Number of Processors (G = 256)

Figure 5.24: Intel2 Compute - Communicate DM G = 256

Result: With more than 16 processors, the additional cost for communication

consumes any reduction in compute time.

Random Net 4

Figure 5.25 shows the speedup curves for parallel query evaluation on random net 4

with minimum grainsize settings of 2, 16, 64, and 256, with the number of processors

ranging from 4 to 32. As with the Intel2 net, speedup levels off quickly. One

difference between the speedup graphs of random net 4 and the Intel2 net is the

distinctly poor performance on the random net 4 when the grainsize was set at 256.

This performance is also reflected in the efficiency graph of Figure 5.26.

The poor speedup and efficiency performance at grainsize 256 can be ex­

plained by the small sizes of the conformal products in the query, as discussed in

the section on random net 4 under shared-memory simulations. As with the Intel2

net, the relationships between compute time and communication time for random

net 4 are given for minimum grainsize settings of 2, 64, and 256, in Figures 5.27,

5.28, and 5.29, respectively.

April 24, 1991

)

35

30

25
s
p 20 e
e
d 15 u
p

10

5

0
0

)

1

E 0.8
f
f
i 0.6
C

i
e
n 0.4
C
y

0.2

0
0

G = 256 ~
G = 64 -t-
G = 16
G=2 ·X · .

~ ! -~

5

5

10 15 20 25 30
Number of Processors

Figure 5.25: Net 4 Speedup DM

10 15 20
Number of Processors

25

G = 256 ~
G = 16 -t­
G = 64.;...
G= 2 ·X · ·

30

Figure 5.26: Net 4 Efficiency DM

April 24, 1991

45

35

35

46

400000

350000

300000

250000
T
i 200000 m
e

150000

100000

50000

0

4opooo

350000

300000

250000
T

. 1 200000 m
e

150000

100000

50000

0

0

0

10

Compute ~
Communicate -+­

Total .._

20 30 40 50 60 70
Number of Processors (G = 2)

Figure 5.27: Net 4 Compute - Communicate DM G = 2

10

Compute ~
Communicate -+­

Total .._

20 30 40 50 60 70
Number of Processors (G = 64)

Figure 5.28: Net 4 Compute - Communicate DM G = 64

April 24, 1991

)

)

)

)

47

400000

350000

1:
Compute ~

Communicate -t-
300000

Total ~

i;;;i I;]

250000
T
i 200000 ◊ ◊

m
e

150000

100000

50000

0
0 10 20 30 40 50 60 70

Number of Processors (G = 256)

Figure 5.29: Net 4 Compute - Communicate DM G = 256

For random net 4 the relationships between compute and communication

times are similar to those of the Intel2 net. With a small number of processors

compute time is high and communication time is low. As the number of processors

increases compute time decreases and communication time increases, until at some

point the maximum possible splitting occurs and the time measures level out.

Random Net 9

Figure 5.30 shows the speedup curves for parallel query evaluation on random net

9 with minimum grainsize settings of 2, 16, 64, and 256. The number of processors

ranges from 4 to 256. A comparison of this graph with the speedup graph of this

net under the shared-memory model (Figure 5.14) shows the effect of communica­

tion costs. The shared-memory model predicted near-linear speedup. Under the

distributed-memory model speedup tops out at about 16. The efficiency graph in

Figure 5.31 also reflects this poor performance.

As with the Intel2 net and the random 4 net, the compute and communica­

tion times are given for grainsize settings of 2, 64, and 256. Figures 5.32, 5.33, and

5.34 present this information.

April 24, 1991

48

250

200
s
p
e 150
e
d
u
p 100

50

1

E 0.8
f
f
i 0.6
C

i
e
Il 0.4
C
y

0.2

0
0 50

G = 256 -<>-
G = 64 -f-
G = 16 .;;i..

G=2 ·X ·.

100 150 200 250
Number of Processors

Figure 5.30: Net 9 Speedup DM

100 150 200
Number of Processors

G = 256 .<>­
G = 16 -f­
G = 64 .;;i..

G = 2 ·X · ·

250

Figure 5.31: Net 9 Efficiency DM

April 24, 1991

)

49

le+08

Compute ~

8e+07
Communicate -+-

Total ~

T 6e+07

i
m
e 4e+07

2e+07

50 100 150 200 250
Number of Processors (G = 2)

Figure 5.32: Net 9 Compute - Communicate DM G = 2

)

le+08

Compute ~

8e+07
Communicate -+-

Total ~

T 6e+07

i
m
e 4e+07

2e+07

50 100 150 200 250
Number of Processors (G = 64)

) Figure 5.33: Net 9 Compute - Communicate DM G = 64

April 24, 1991

50

le+08
Compute .¢.--

8e+07
Communicate -+-

Total
T 6e+07

i
m
e 4e+07

2e+07

50 100 150 200 250
Number of Processors (G = 256)

Figure 5.34: Net 9 Compute - Communicate DM G = 256

Figures 5.32, 5.33, and 5.34 all look the identical. The conclusion to draw

from this is that for this net, within the bounds explored, grainsize is not an im­

portant issue.

Result: In order to understand the results for random net 9 under the

distributed-memory model, it is important to remember the high complexity of

the query evaluation. As described in the shared-memory section, many of the

conformal products in this query are of sufficient size to split across 256 processors

with a minimum grainsize of 256. This explains why speedup was near -linear for

this query with 256 processors and a minimum grainsize of 256 under the shared­

memory model. This also explains why the compute-communicate cost graphs are

so similar for the three grainsizes 2, 64, 256.

5.3.3 Evaluation Tree Parallelism

To investigate the potential parallelism available at the evaluation tree level we

calculated the longest path in the evaluation tree and summarized this information

in Table 5.3.

In Table 5.3 the entries in the Number of CPs column is the number of con-

April 24, 1991

_J

51

Net Number of CPs Longest Path % of Time
1 39 27 .999
2 21 13 .884
3 51 44 .999
4 30 27 .999
5 32 30 .999
6 30 19 .973
7 50 43 .999
8 88 56 .999
9 41 41 1.00
10 36 31 .999

Intel2 41 41 1.00

Table 5.3: Evaluation Tree Parallelism

formal products in the evaluation of the query. Entries in the Longest Path column

represent the number of conformal products in the longest path. Entries in the %

of Time column are the percentages of the overall time for query evaluation spent

in evaluating the conformal products in the longest path . The time to compute the

longest path consumes almost the entire query evaluation time. This means that

those conformal products that were not in the longest path were of low complex­

ity. The conclusion to be drawn from this data is that there is no evaluation tree

parallelism to be exploited in the evaluation of these queries. But, as mentioned

in Chapter 2, evaluation trees are not unique, and therefore another topic for fu­

ture research is to explore the possiblity of generating more balanced and bushy

evaluation trees .

April 24, 1991

(

52 CHAPTER 6. CONCLUSIONS

Chapter 6

Conclusions

For this project we investigated two sources of parallelism in the query evaluation

process of the SPI algorithm: evaluation tree parallelism and conformal product

parallelism. Rather than implementing parallel algorithms or performing a purely

analytic analysis we chose instead to modify an existing sequential program to simu­

late parallel query evaluation. This simulation allowed us to control various features

of the computation, in particular subtask decomposition and communication mod­

els . It thus provided a method for exploring the effects of these features on the time

complexity of query evaluation. The work described in this paper represents only a

few sample points from the space of explorations possible using this approach. These

points were chosen to give us information about two aspects of the problem, the

amount of parallelism in query evaluation, in particular in the intermediate com­

putations, and the relative costs of communications. The shared-memory model

addresses the first of these issues, the distributed-memory model the second.

6.1 Shared Memory

The results from Chapter 5 suggest that if conformal products are big enough

and contain enough result variables, then reasonable speedup and efficiency can be

achieved through conformal product parallelism. The results show that parallelism

is limited when the expanded queries contain a large proportion of small conformal

products, as demonstrated by random net 4, or when one or more of the large

conformal products contains few result variables, as demonstrated by the Intel2

)

)

J

6.2. DISTRIBUTED MEMORY 53

net. These results should provide some direction for future work on query expansion

methods. Of course, since communication and setup costs were ignored these results

are upper-bounds on speedup and efficiency. The effects of including communication

costs in performance measures was the subject of the distributed-memory model

simulations. Setup costs and their effects on parallelism provide a topic for future

research, as described below.

6.2 Distributed Memory

For the distributed-memory model the results from Chapter 5 show that communi­

cation costs dominate and make the spanning tree distribution approach infeasible.

Our hypothesis was that as conformal product complexity increased, the compute

time would decrease faster than communication time would increase. This turned

out to be true, and explains the slight speedup observed. But the effect was smaller

than expected. To understand why recall from Chapter 4 the formula for calculating

the amount of data sent out.

Btotal = 4 * (2max(ldistl-varsl,lsplitting-varsl) + 2max(ldist2-varsi,lsplitting-varsl))

Recall also that the overall compute-time complexity of the conformal prod­

uct operation is exponential in the number of unique variables in the two input

distributions. Let all - vars represent the set of unique variables, i.e., all - vars =
distl - vars U dist2 - vars. Since distl - vars, dist2 - vars, and splitting - vars

are all subsets of all-vars we know that Btotal < 4 * 2lall-varsl. With respect

to communication costs a best case situation would be one in which ldistl-varsl =
ldist2-varsl = lall-varsl/2, and distl - vars n dist2 - vars = </>, and !splitting-vars!

::; ldistl-varsl. In other words, if the variables in all - vars are split evenly across

the two input distributions and splitting occurs at most on half the variables, then

the amount of data that must be sent out is exponential in !all-vars! / 2. As it

turned out this best case never occurred. In every case lall-varsl - (max ldistl­

varsl, ldist2-varsl) = 1. In other words, for all of the test nets the size of one of

the input distributions was one variable smaller than the number of variables in

April 24, 1991

54 CHAPTER 6. CONCLUSIONS

the full joint distribution. Therefore compute time is exponential in the number of

all - vars and communication time is exponential in the number of all - vars minus

1. The reason why the distributed-memory simulations showed any speedup at all

was the lower constant associated with communication, .5 microseconds per byte,

as compared with the constant associated with multiplication, 45 microseconds per

multiply. One possible topic for future research is to determine if this asymmetrical

distribution of variables is an inherent part of the problem or simply an artifact of

the query expansion process.

6.3 Evaluation Tree Parallelism

Given the shape of the evaluation trees generated by the current query expansion

procedure, there is no evaluation tree parallelism to exploit. A partial solution

to the lack of evaluation tree parallelism is bushier trees, and one topic of future

research is alternative methods for query expansion.

6.4 Further research

This work represents a first look at parallelism in the SPI algorithm. Among the

many issues that deserve further attention are the following.

• Splitting the conformal product calculation on only those variables that occur

in the result distribution has been shown to produce processing bottlenecks for

some queries. The alternative is to split on all variables, as long as the mini­

mum grainsize constraint is satisfied, and then sum the results together. This

approach would increase parallelism but complicate the data dependencies

among subtasks. It is not clear at this time whether the increased parallelism

would compensate for the increased complexity of communication that this

strategy requires.

• Explore the ignored parameters of the model, in particular S, the setup time.

Except for communication, the set-up time includes the time required for all

April 24, 1991

)

)

)

)

6.4. FURTHER RESEARCH 55

operations that take place between the time a query is received and the time

at which subtasks begin computing their respective portions of the result dis­

tribution. This includes the time to construct the expanded query and the

time required to put together command packages for the subtasks. Since we

have not considered ways to parallelize these operations, it is only fair to as­

sume that they are sequential. As pointed out in [9] and [4], the amount of

sequential code limits the potential speedup according to Amdahl's law. We

believe that this cost is small relative to the costs of calculating the confor­

mal product, but a more complete analysis would investigate this issue more

rigorously.

• The belief nets that were used in this project all had a uniform value space

of dimension 2. Since it seems likely that many real-world nets will have

variables with greater dimension and variability it is important to explore the

effects that these changes have on possible parallelism.

• Since communication is so expensive in the distributed-memory model any

followup work to this project should investigate alternative data distribution

schemes. It appears that any approach to parallel conformal product evalua­

tion in which one processor is responsible for dividing up the problem, sending

out the data associated with subtasks, and assembling the results together will

be communication-intensive. A different approach would be to partition the

belief net across the processors in such a fashion that data is local to the

processors whose computation requires it.

• The results presented in Chapter 5 are all sensitive to the structure of the ex­

panded query, or the evaluation tree. As mentioned in Chapter 2, evaluation

trees are not unique and the generation of efficient evaluation trees is a topic

of current research. For the tests reported on in this paper, all evaluation

trees were generated by a procedure oriented towards efficient sequential eval­

uation. The primary heuristic of that procedure is one to keep the dimension

of the intermediate result distributions as low as possible, thus minimizing the

April 24, 1991

56 CHAPTER 6 . CONCLUSIONS

number of necessary multiplies . It seems like this strategy for generating eval­

uation trees would also benefit the parallel evaluation process, but we do not

know for certain at this time that there is not an approach which maintains

low dimensionality and yet produces evaluation trees which are parallelizable.

April 24, 1991

)

)

)

Bibliography

[1] Selim G. Akl, "The Design and Analysis of Parallel Algorithms", Prentice Hall,
Englewood Cliffs, New Jersey, 1989.

[2] Bruce D' Ambrosio, Symbolic Probabilistic Inference in Belief Nets, OSU Dept.
of Computer Science Tech Report 90-30-1.

[3] Bruce D'Ambrosio, Personal communication.

[4] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, "Solving
Problems On Concurrent Processors", Prentice Hall, Englewood Cliffs, New
Jersey, 1988.

[5] Zhaoyu Li, Complexity of Probabilistic Inference in Belief Nets - An Experi­
mental Study, OSU Masters Thesis, 1990.

[6] Robert Oliver and James Smith, "Influence Diagrams, Belief Nets and Decision
Analysis", John Wiley and Sons, New York, 1990.

[7] Judea Pearl, "Probabilistic Reasoning in Intelligent Systems", Morgan Kauf­
mann, San Mateo, CA, 1988.

[8] Ross D. Shachter, Bruce D'Ambrosio, and Brendan Del Favero, Symbolic Prob­
abilistic Inference: A Probabilistic Perspective.

[9] Michael Quinn, "Designing Efficient Algorithms For Parallel Computers", McGraw­
Hill, New York, 1987.

