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Chapter 1 

Introduction 

The Symbolic Probabilistic Inference (SPI) algorithm was developed by Bruce 

D' Ambrosio for efficient calculation of prior probabilities in belief nets [2]. Although 

the complexity of the SPI algorithm compares favorably with other approaches to 

probabilistic inference [5], its actual running time is still prohibitively long even for 

moderately sized nets. As part of our overall research goal of developing decision­

theoretic problem solving programs for real world real-time problems, we undertook 

this investigation into the feasibility of developing a parallel version of the SPI al­

gorithm. 

The specific goals of this project were the following: 

1. Identify those operations in the SPI algorithm that, if performed in parallel, 

would lead to some improvement in performance. 

2. Estimate the performance of actual parallel implementations of SPI on both 

shared memory and cube architectures. 

3. Perform a preliminary exploration into the practical issues related to devel­

oping a parallel algorithm. 

To accomplish these goals the following tasks were performed : 

1. Examined the algorithm to identify potentially parallelizable constructs and 

data dependencies. 

2. Designed and implemented models to simulate running the SPI algorithm in 

parallel. 
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3. Ran the models on test nets under various parameter settings simulating 

shared memory and cube architectures and various computational grainsizes. 

4. Gathered and analyzed the test results. 

The remainder of the paper is organized as follows. Chapter 2 provides the 

necessary background information for understanding the SPI algorithm, including 

an overview of belief nets and an example of inference in SPI. Chapter 3 explores 

the sources of parallelism in the SPI algorithm. Chapter 4 describes our approach 

to estimating the performance of parallel versions of the SPI algorithm. Chapter 

5 presents the results from simulated runs of a parallel SPI algorithm. Finally 

Chapter 6 includes a brief discussion of the results of this project and introduces 

some issues for future research. 

April 24, 1991 
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Chapter 2 

Background 

In order to understand the issues involved in the construction and analysis of a 

parallel version of the SPI algorithm it is necessary to understand, at least at a 

general level, the sequential SPI algorithm. Probabilistic inference is the process of 

computing the posterior probabilities of values of variables in a probabilistic model. 

In simple terms, one begins with a model of the system of interest in terms of 

variables that describe the system, the possible values of these variables, and a set 

of probability distributions that represent the likelihoods that the model variables 

take on those values. The initial values of the probability distributions represent 

expectations about variables' values prior to any observations of the actual system. 

Once observations are made the probability distributions of variables corresponding 

to the observed features of the system are updated. Given such a model, proba­

bilistic inference is the process of computing the probabilities that certain variables 

have certain values. SPI is one of a class of algorithms that perform probabilistic 

inference over a specific type of probabilistic model referred to as belief networks, 

Bayesian networks, causal nets, or simply belief nets [7]. 

2.1 Belief Nets 

A belief net consists of a set of nodes and a set of arcs. The nodes represent the 

variables of the model, and the arcs represent influence, causation, or relevance 

among the variables [7] [6]. Figure 2.1 is a graphical representation of a simple 

belief net. 
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Figure 2.1: A Simple Belief Net 

The belief net representation of a probabilistic model consists of a set of 

marginal probability distributions and a set of conditional probability distributions. 

A marginal probability distribution is defined for each node with no incoming arcs. 

A conditional probability distribution is defined for each node with incoming arcs, 

where each conditioning variable corresponds to an incoming arc. From a belief 

net representation, any subspace of the full joint probability distribution across the 

variables of the model can be generated using the product rule [7]. Belief net queries 

are requests to generate such subspaces. SPI is an algorithm for answering queries 

over belief nets. 

2.2 The SPI Algorithm 

There are three stages to the SPI algorithm: 

1. Transform the belief net into a representation that makes inference easier. 

2. Update the representation in response to observations. 

3. Compute posterior probabilities in response to queries, referred to as query 

processrng. 

April 24, 1991 
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Each of the three stages of the SPI algorithm is of a different computational 

complexity. The first stage is performed only once and is polynomial in the number 

of nodes and arcs in the net. The second stage is constant time with respect to 

the number of nodes or arcs. The third stage is exponential in the worst case [2]. 

Since stage 3 consumes the largest part of the processing time, we concentrated our 

analysis on that stage. 

Query processing can be thought of as two separate processes: query ex­

pansion and evaluation . Query expansion is the process of determining the distri­

butions necessary for answering a query and an order in which to combine these 

distributions. Query evaluation is the process of combining the distributions of the 

expanded query to get the result distribution. Although the sequential SPI algo­

rithm interweaves query expansion and evaluation, the entire expanded query can 

be constructed first and then evaluated. An expanded query can be represented as 

an evaluation tree. Figure 2.2 illustrates the evaluation tree that is generated in 

response to a query for the marginal probability of variable A from the belief net 

of Figure 2.1. 

P(A) 

P(A I B) 

/~ 
P(B) 

I\ 
P(A I BCD) P(CD) P(B I E) P(E) 

I\ I~ 
P(C I G) P(DG) P(B I EF) P(F) 

I~ 
P(D I G) P(G) 

Figure 2.2: Evaluation Tree for P(A) 

April 24, 1991 
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The expanded query corresponding to the evaluation tree in Figure 2.2 is: 

P(A) = L(L P(AIBCD)(L P(CIG)(P(DIG)P(G))))(L(L P(BIEF)P(F))P(E)) 
B ~ G E F 

The complexity of query expansion is O(n 3 ) in the number of unique variables in 

the query [3]. 

Evaluation trees, and thus expanded queries, are not unique. One topic 

of current research is to find alternative methods for generating expanded queries 

[8]. For this project we chose one method and used it for all simulations. Current 

methods for generating evaluation trees are oriented towards efficient sequential 

evaluation. One important topic for future research is query expansion methods 

which maximize the parallelism of the query evaluation process. 

Evaluation of an expanded query consists of repeatedly combining the distri­

butions together, two at a time, with the conformal product operator, as described 

in the following section. 

2.3 Conformal product 

The fundamental operation in query evaluation is the combining of two probability 

distributions. This is referred to as the conformal product operation in [8]. As an 

example of the conformal product operation consider the subtree of the evaluation 

tree of Figure 2.2 which corresponds to the calculation of the P(B IE). As illustrated 

in Figure 2.3 the P(BIE) is calculated as follows: 

P(BIE) = L P(BIEF)P(F) 
F 

To calculate the value of P(B I F) first assume that all variables have the 

same value space of {O, 1} and that the probability distributions for P(B I E) and 

P(F) are defined as in Figure 2.4. 

Then P(B IE) can be calculated as follows. Notice that there are four entries 

in the conditional probability distribution of P(B I E): 

April 24, 1991 
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P(B I E) 

/~ 
P(B I EF) P(F) 

Figure 2.3: Subtree of evaluation tree 

B 

E F 1 0 

1 1 .1 .9 1 0 

1 0 .2 .8 [.6 .4] 
0 1 .7 .3 

00 .6 .4 P(F) 

P(B I EF) 

Figure 2.4: Distributions 

1. P(B = 1 I E = 1) 

2. P(B = 1 I E = 0) 

3. P(B = 0 I E = 1) 

4. P(B = 0 I E = 0) 

Since the variable F is not one of the variables in the result distribution P(B 

I E), the entries in the full joint probability distribution that distinguish between 

values of F are summed over. The actual values of the entries in P(B I E) are 

computed by: 

1. P(B = 1 I E = 1) = P(B = 1 I E = 1, F = 1) * P(F = 1) + 
P(B = 1 I E = 1, F = 0) * P(F = 0) 

= 0.1 * 0.6 + 0.2 * 0.4 

= 0.14 

April 24, 1991 
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2. P(B = 1 I E = 0) = P(B = 1 I E = o, F = 1) * P(F = 1) + 
P(B = 1 I E = 0, F = 0) * P(F = 0) 

= 0.7 * 0.6 + 0.6·* 0.4 

= 0.66 

3. P(B = 0 I E = 1) = P(B = 0 I E = 1, F = 1) * P(F = 1) + 
P(B = 0 I E = 1, F = 0) * P(F = 0) 

= 0.9 * 0.6 + 0.8 * 0.4 

= 0.86 

4. P(B = 0 I E = 0) = P(B = 0 I E = 0, F = 1) * P(F = 1) + 
P(B = 0 I E = 0, F = 0) * P(F = 0) 

= 0.3 * 0.6 + 0.4 * 0.4 

= 0.34 

The resulting conditional probability distribution of P(B I E) is shown in 

table form in Figure 2.5. 

B 

1 0 

1 .14 .86 

E 

0 .66 .34 

Figure 2.5: P(B I E) 

The number of multiplies in a conformal product is the number of entries 

in the full joint probability distribution over all of the unique variables in the two 

distributions to be combined. This number can be calculated by ITvEV n( v) where 

V is the set of unique variables, and n( v) is the number of possible values for the 

variable v. In the preceeding example V = {B, E, F}, and n(B) = n(E) = n(F) = 2. 

Therefore the number of entries in the full joint probability distribution, and the 

number of multiplies in the corresponding conformal product, is 23 = 8. 

April 24, 1991 
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2.3. CONFORMAL PRODUCT 9 

A conformal product operation involves indexing, multiplying, and adding. 

The number of multiplies is an accurate measure of complexity, since indexing is 

only O(m log n), where mis the overall number of multiplies and n is the number 

of unique variables in the query, and the number of additions is approximately the 

same as the number of multiplies. The complexity of the query evaluation process, 

as measured by the number of multiplies, is O(Vn), where Vis the maximum number 

of values of any variable in the query and n is the number of unique variables in the 

expanded query. 

April 24, 1991 
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Chapter 3 

Sources of Parallelism 

Since query processing dominates the processing time of the SPI algorithm, we 

only considered parallelism in that portion. Furthermore, due to the relatively 

low complexity of query expansion, we focused our analysis on query evaluation 

exclusively. The purpose of this chapter is to introduc _e those aspects of the query 

evaluation process whose parallelism is analyzed more rigorously in Chapters 4 and 

5. 

3.1 Evaluation Tree Parallelism 

One source of parallelism in the query evaluation process of the SPI algorithm is at 

the evaluation tree level. The idea behind this approach is that the running time for 

query evaluation can be reduced by performing some conformal product operations 

in parallel. Since each non-leaf node in the evaluation tree corresponds to a confor­

mal product operation, and since distributions occur at most once in the evaluation 

tree, the conformal product operations corresponding to nodes in disjoint subtrees 

can be performed in parallel. For example, from the evaluation tree of Figure 2.2 

it is easy to see that the subtrees rooted at P(A I B) and at P(B) can be evaluated 

in parallel. More generally, the structure of the evaluation tree expresses the data 

dependencies among the conformal product operations and bounds on parallelism 

can be calculated from an analysis of this structure. For example, in the evaluation 

tree illustrated in Figure 2.2, we can see the following ordering of conformal product 

operations: 

) 

) 

) 
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CP(DG) < CP(CD) < CP(AIB) < CP(A) and CP(BIE) < CP(B) < CP(A) 

where CP(X) represents the conformal product operation that calculates P(X). 

For example, CP(DG) => P(DG) = P(DIG) * P(G). Recall that the measure 

of complexity of a conformal product operation is the number of multiplies in its 

evaluation. Thus a lower bound on the computational time for the evaluation of 

this query is the length of time it would take to evaluate the longest path in the 

evaluation tree, where path length is measured in terms of the number of multiplies 

required for the conformal products in the path. For example, let M(c) be the 

number of multiplies in the evaluation of conformal product c, L(p) be the length of 

path p, Pi = CP(DG) < CP(CD) < CP(AIB) < CP(A), and P2 = CP(BIE) < 

CP(B) < CP(A). Then the lengths of the paths A and P2 can be calculated as 

follows: 

L(Pi) = M(CP(DG)) + M(CP(CD)) + M(CP(AIB)) + M(CP(A)) 

= 4 + 8 + 16 + 4 

= 32 

L(P2) = M(CP(BIE)) + M(CP(B)) + M(CP(A)) 

=8+4+4 
= 16 

So the lower bound on computational time for the evaluation of this query 

is the time it takes to perform 32 floating point multiplies. In this example the 

longest path in terms of multiplies is also the longest path in terms of the number 

of conformal products it contains, but since the complexity of conformal products 

varies there is no guarantee that this will always be the case. Using the same 

approach as was used in calculating the lower bound, we can calculate an upper 

bound by summing the number of multiplies for each conformal product in the 

evaluation tree. The upper bound thus computed is 44 and corresponds roughly to 

the sequential running time for the evaluation of this query. 

The lower bound computed above is, of course, only a theoretical bound, and 

April 24, 1991 
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is based on several unrealistic assumptions, including: 

1. The evaluation of the shorter path, P2 , can be carried out in parallel with the 

evaluation of Pi. 

2. The query evaluation process consists only of conformal products, i.e., there 

are no inherently sequential operations that cannot be distributed equally 

among the processors performing the confomal product operations. 

3. There are no communication costs for partitioning the evaluation tree among 

multiple processors. 

4. There is no limit on the number of processors, in other words, there is at least 

one processor available for each subtree of the evaluation tree. 

In Chapter 4 we present a more detailed model for estimating the perfor­

mance of an SPI algorithm that exploits evaluation tree parallelism, and in Chapter 

5 we present the results from simulations of this algorithm on sample belief nets 

and queries. But even with the rough estimates of running time presented above, it 

is clear that there will not be much performance improvement unless the evaluation 

trees are relatively bushy. 

3.2 Conformal Product Parallelism 

A second source of parallelism in the query evaluation process is at the conformal 

product level. The idea here is to parallelize each conformal product operation. 

Recall the evaluation tree illustrated in Figure 2.3 for the calculation of P(B I E), 

which consists of a single conformal product operation P(BIEF) *P(F). Recall also 

that the result distribution, P(BIE), has four entries. One approach to parallelizing 

the conformal product is to calculate subsets of the entries in the result distribution 

in parallel. For example, Figure 3.1 shows a possible evaluation of this conformal 

product in which two processes are used and each process computes two elements 

of the result distribution. 

April 24, 1991 
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P(B I EF) [ .1 .2 .7 .6 .9 .8 .3 .4 ] 

B=0 B = 1 

[.1 .2 .7 .6 ] [.g .8 .3 .4 ] 

* * 
P(F) [6 .4 ] [6 .4 ] 

) [.06 .08 .42 .24 ] [ .54 .32 .18 16 ] 

\ I \ I 
[.14 .66 ] [86 .34] 

~ / 
P(B I E) [.14 .66 .86 .34] 

Figure 3.1: Conformal Product Parallelism - 2 elements per process 

) 

April 24, 1991 
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To understand this figure, begin at the top with the distribution P(BIEF). 

This distribution is split into two equal subarrays. The left half corresponds to the 

values of P(BIEF) in which B = 0, the right half corresponds to the values in which 

B = 1. The entries in each of these two subarrays are multiplied by the appropriate 

entries in the distribution P(F). Notice that if we assume that the two multiply 

operations, [.1 .2 .7 .6] * [.6 .4] and [.9 .8 .3 .4] * [.6 .4], are performed in parallel 

then each of the corresponding processes requires access to the entire distribution 

P(F). The results of these multiplies are two arrays of four entries each. Together 

these eight numbers represent the joint probability distribution P(BFIEF). Since 

the result distribution does not distinguish between the values for variable F, the 

values of the joint probability distribution which distinguish between the values of 

F are summed over. So each four element array yields two elements of the result 

distribution. Of course it would never make sense to partition the problem into such 

small computations. This example, like the two which follow, is only to illustrate 

the concept behind conformal product parallelism. Part of the analysis in Chapter 

4 is directed towards determining appropriate computational grainsizes. 

As a second example, consider partitioning the same conformal product in 

such a way that each process computes only one result distribution entry instead of 

two. Figure 3.2 illustrates this evaluation process. In this example there are four 

processes, each of which computes one element of the result distribution. Each of 

these four processes requires access to ¼ of the distribution for P(BIEF) and the 

entire distribution P(F). An important point to get from this example is that as 

parallelism increases, the amount of data for each process decreases, but the overall 

amount of data needed by all processes increases. In the first example there were 

2 processes, and each required 6 numbers for a total of 12. In the second example 

there were 4 processes, and each required 4 numbers for a total of 16. The reason 

for this increase in the total amount of data is that we split the first distribution, 

P(BIEF), over variable B, and B is not an element of the second distribution, 

P(F); Splitting over variables that occur in both input distributions results in no 

net increase in the total amount of data required to compute the conformal product. 

April 24, 1991 
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This is demonstrated in the following example. 

P(B I EF) [ .1.2 .7 .6 .9 .8 .3 .4 ] 

[.1 .2 .7 .6 J [.g .8 .3 .4 J 

E=1/ \E=l E=1/ \E=l 
[.1 .2 ] [.1 .6 ] [.g .8 ] [.3 .4 ] 

* * * * 
P(F) [6 .4 ] [ .6 .4] [6 .4 ] [6 .4 ] 

[.06 .08 ] 

\/ 
[.42 .24 J 
\I 

[54 .32 ] 

\/ 
[.18 .16 J 
\/ 

[.14 J [66] [86 J [34] 

~I 
P(B I E) .14 .66 .86 .34 ] 

Figure 3.2: Conformal Product Parallelism - 1 element per process 

In Figure 3.3 a final example is presented. In this example eight processes 

are used and each process computes ½ of one element of the result distribution. 

The two important points to get from this last example are (1) splitting the input 

distributions on variables that occur in both distributions does not increase the 

total amount of data required to compute the conformal product, and (2) splitting 

the input distributions on variables other than those in the result distribution re­

quires either the ability to perform concurrent writes with summing or a separate 

processing step in which the values that make up the result distribution entries are 

summed together. In other words, splitting the input distributions on variables 

April 24, 1991 



16 CHAPTER 3. SOURCES OF PARALLELISM 

that occur in both distributions minimizes the total data required, and as long as 

splitting is performed on variables that occur in the result distribution the processes 

produce independent subsets of the result distribution. If splitting occurs on other 

variables, this independence is lost. Of course, splitting on more variables increases 

the amount of parallelism, but at the cost of complicating the process of assembling 

the result values. For this project, we only investigated the parallelism available 

from splitting on subsets of the variables in the result distribution. 

April 24, 1991 
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P(B I EF) [ .1 .2 .7 .6 .9 .8 .3 .4 ] 

[.1 .2 .7 .6 ] [9 .8 .3 .4 ] 

E=1/ ~=0 E=7 ~=0 

[.1 .2 ] [.1 .6 ] [9 .8 ] [3 .4 ] 

F=i \F=O 7 \ 7 \ F=ll \F=O 
[.1] [.~ (1] [.~ (9] [.~ (3] [.~ 

* * 
F=l F=O 

P(F) [6] [4] 

[.06] [.08] 

\1 
[14] 

* * * * 

[6] [4] [6] [4] 

[.42 J [.24] [54] [.32] 

\1 \1 
[66] [86] 

\ I 
P(B I E) [.14 .66 .86 .34 ] 

* * 

[6] [4] 

[18] [16] 

\1 
[34] 

Figure 3.3: Conformal Product Parallelism - 1/2 element per process 

April 24, 1991 

17 



18 CHAPTER 4. MODELS 

Chapter 4 

Models 

For this analysis we considered conformal product and simple evaluation tree par­

allelism only. Our goal was to estimate the expected performance, in terms of 

speedup and efficiency, of parallel evaluation of expanded queries. Our approach 

was to modify the existing SPI code to create parameterized simulation models, 

run these models on sample nets, and use the statistics gathered from these runs to 

estimate the performance of actual parallel implementations. 

This approach required the development of several models. First we devel­

oped a model of sequential conformal product evalutation. From this model we 

developed a model for sequential query evaluation. Then we developed a general 

model for parallel conformal product evaluation. This general model allowed us to 

model both shared-memory and distributed-memory architectures. From the par­

allel conformal product model we developed a model of parallel query evaluation. 

Each of the models was parameterized to allow experimentation with various aspects 

of the computational environment including task grainsizes, number of processors, 

and communication costs. 

4.1 Sequential Model 

To provide a basis against which to measure the performance of the parallel al­

gorithms, we developed the following model to estimate the running time of the 

sequential algorithm. 

Sequential conformal product model: Ts( c) = aM( c) 
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where M( c) is the number of multiplies in conformal product c and a is a con­

stant scaling factor that accounts for factors other than multiplies in the conformal 

product operation, most notably indexing and additions. M(c) is calculated by 

ITvev n( v) as explained in section 2.2.1. To simplify analysis we restricted the value 

space of the variables in the test belief nets to 2 values each. Thus in the follow­

ing sections M(c) = 2n where n is the number of unique variables in the 2 input 

distributions. 

Given the model for the sequential running time for a single conformal prod­

uct, the estimated sequential running time for the evaluation of an entire query is 

the sum of the times required for each of its conformal products. 

Sequential model for a query: Ta(q) = Eceq Ts(c) 

4.2 Parallel Models 

4.2.1 Conformal Product Model 

The following model was developed to estimate the running time of a parallel al­

glorithm. 

Parallel conformal product model: Tp(c) = P + S + W + C 

Where 

P is the cost for process initialization, 

S is the cost for setting the problem up, 

Wis the cost for the work done at each processor, and 

C is the cost for communication . . 

The value which was used for W was aG, where G is the computational 

grainsize specified as the number of floating point multiplies per process. a is the 

same constant scaling factor that was used in the sequential model. 

For both the shared-memory and cube architecture models the following 

measures were calculated for each conformal product: 

Ts = Time for sequential 

Tp = Time for parallel 

April 24, 1991 



20 CHAPTER 4 . . MODELS 

Nu = Number of processors used 

The values for G and Nu were determined as follows. First a mm1mum 

grainsize, Gmin, and a maximum number of processors, Na, were specified. Na 

represents the number of processors available. Then, given a particular conformal 

product to compute, the actual G and Nu values were calculated so that Nu was 

maximized under the constraints Nu ~ Na and G 2: Gmin and Nu ~ 2v, where v is 

the number of variables in the result distribution. In other words, Nu and G were 

chosen such that as many as possible of the available processors were used as long as 

there was enough work for each processor to perform as specified by the minimum 

grain.size, and there was enough parallelism in the problem to support the desired 

partitioning. 

Distributed-Memory Communication Model 

The distributed-memory model includes a specific model of communication for a 

cube architecture. This model assumes that there is no overlap between the confor­

mal product calculations and the communication between processors. This model 

also assumes that the data to be sent to processors is arranged into buffers, one 

buffer for each process. 

Total communication cost: C = Cd + Cr + B 

where 

Cd is the communication cost for distributing the data, 

Cr is the cost of returning the data, and 

B is the cost for building the buffers of data to be distributed. 

The data transfer cost calculations were based on the log spanning tree, or 

broadcast, communication model for hypercubes [4]. 

Distribution communication cost: Cd= (Dmax * Cst) + (Bd * ((Nu -1) * Cb)) 

where 

Dmax is the maximum dimension of the cube which is used, 

Cst is the communication startup time, 

Bd is the number of bytes sent to each processor, and 
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Cb is the communication cost per byte, per link. 

The following formula was used to calculate Bd, the number of bytes sent to 

each processor: 

Bd = Btotal / Nu 

where Btotal is the total number of bytes needed to compute the conformal prod­

uct. Assuming 4 bytes per word, a lower bound for Btotal can be calculated by the 

following formula: 

Btotal = 4 * (2max(ldist1-varsl,lsplitting-varsl) + 2max(ldist2-varsl,lsplitting-varsl)) 

where ldistl-varsl and ldist2-varsl represent the number of variables in the 2 in­

put distributions and !splitting-vars! represents the number of result distribution 

variables on which splitting occurs . 

The return communication cost is calculated in the same way as distribution 

communication costs except that the amount of data returned is less than that sent 

out. 

Return communication cost: Cr= (Dmax *Cat)+ (Br* ((Nu - 1) * Cb)) 

where 

Br is the number of bytes returned from each processor and is calculated by 

Br = Bresult / Nu 

where Bresult is the total number of bytes in the result distribution. Since there are 

2lresult-diS t -Varsl entries in the result distribution, Bresu/t = 4 * 2lresult-diS t -Varsl. 

4.2.2 Parallel Query Models 

As explained in Chapter 2, query evaluation consists of repeated comformal product 

operations. Since we were interested in the performance of a parallel SPI algorithm 

on the task of query evaluation we constructed a model to predict this performance 

from the models for conformal product operations . The parallel query model is anal­

ogous to the sequential query model. The running time for parallel query evaluation 

is simply the sum of the running times of its conformal products. 

Parallel model for a query: Tp(q) = :Z:::cEqTp(c) 

Nu(q), the number of processors used in evaluating query q, is simply the 
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maximum of the number used by any of the conformal products in q. Given Tv(q), 

T8 (q) and Nu(q) the speedup, cost, and efficiency for a query can be calculated 

according to fomulas given in [1). 

Speedup: S(q) = Ts(q) / Tv(q) 

Cost: C(q) = Tv(q) * Nu(q) 

Efficiency: E(q) = T8 (q) / C(q) = S(q) / Nu(q) 

4.2.3 Evaluation Tree Parallelism Models 

For evaluation tree parallelism, we only computed a lower bound on running time. 

As demonstrated in the example in Section 3.1 a lower bound on the running time 

of an algorithm exploiting evaluation tree parallelism can be calculated by summing 

the times required to perform each of the conformal products in the longest path of 

the evaluation tree. 

Lower bound on Tv( q) = LcELp Ts( c) where Lp is the longest path in the 

evaluation tree as measured by the amount of time it takes to compute the conformal 

products in the path. 

April 24, 1991 



) 

) 

23 

Chapter 5 

Simulations 

In order to estimate the performance of parallel query evaluation we instantiated 

the model parameters, chose sample belief nets and queries, ran simulations and 

gathered and analyzed the results. 

5.1 Model Parameters 

The following are the values for model parameters which were used in the simula­

tions described in the following sections of this paper. 

a, the scaling factor for multiplies, was 45 micro seconds. This value was 

derived from repeated timings of the sequential algorithm running on a Sun SPARC­

station 1 and is approximately constant with respect to the number of variables in 

a query. 

P, the cost for process initialization, was 0. There are two reasons for essen­

tially ignoring the cost of process initialization. First there is no cost for process 

initialization in a cube. Second, even for a shared-memory machine, the cost of 

process initialization is small, about 500 micro seconds on a Sequent Balance, and 

as task grainsize increases, this cost becomes insignificant. 

S, the cost for setting the problem up, was also 0. The main reason we 

assumed a value of 0 for the set-up cost was that we did not have a more reliable 

estimate. By ignoring the set-up cost, our model overestimates the actual speedup 

possible. Determining a realistic estimate for S should be one of the future research 

tasks. 
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For the distributed-memory model, the communication cost parameters, Cst 

and Cb, were based on the Intel iPSC2. 

Cat, the communication start-up time, was 230 micro seconds. 

Cb, the communication cost per byte, was .5 micro seconds per byte per link. 

B, the cost for building the buffers of data to be distributed, was 0. This cost 

is a significant factor in the overall running time of the parallel distributed-memory 

algorithm. By ignoring this cost, our model overestimates the actual speedup possi­

ble. Exploring the costs and effects of building data buffers is also a topic for future 

research. 

Simulations were run on a number of nets using the above parameters and 

various values for G, the computational grainsize, and Na, the number of processors 

available. The actual values for G and Na are given next to the simulation results 

in which they figure. 

5.2 Nets 

To obtain the sample belief nets on which to run the simulations, we generated 

10 random nets using J. Suermondt's random net generator. In addition to these 

10 nets, we ran simulations on a net obtained from Intel Corporation, hereafter 

referred to as the Intel2 net. Table 5.1 provides a description of the random nets. 

Net Nodes Arcs Observations Query 
1 66 3 11 51 
2 74 3 2 28 
3 70 4.2 6 60 
4 71 2.6 16 53 
5 46 3 12 17 
6 29 4.7 12 22 
7 68 3.5 10 43 
8 86 4.3 13 27 
9 50 4.0 16 27 

10 60 3.5 8 36 

Table 5.1: Random Net Descriptions 
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In Table 5.1 values under the nodes column indicate the total number of 

nodes that are in the belief net; values under the arcs column indicate the average 

number of incoming arcs to each node; values under the observations column refer 

to the number of observations posted to the net prior to querying; and the values 

under the query column indicates which node was queried. These parameters were 

randomly chosen by the net generator under the following constraints: 

10 <Nodes< 100 

1 <Arcs< 5 

1 < Observations < 20 

The query node was chosen at random from the nodes in the net that were not 

observed. 

The Intel2 net has 52 nodes and 28 observations and an average of 2.4 arcs 

per node. 

5.3 Results 

Table 5.2 shows the results obtained from running each of the 11 nets under both 

the shared and distributed-memory models with the minimum grainsize set at 256 

and the maximum number of processors limited to 1024. 

As a measure of problem complexity, each value in the dimension column 

represents the log of the number of multiplies of the largest conformal product in 

the associated query's evaluation. As discussed in Chapter 2, the number of mul­

tiplies in a conformal product is equal to the number of entries in the full joint 

probability distribution over all unique variables in the input distributions. The 

full joint distribution can be thought of as an n-dimensional table with 2n entries, 

where n is the number of unique variables in the input distributions. Since even 

in moderately-sized belief nets it is common for the evaluation of some conformal 

products to require millions of multiplies, it is often convenient to describe the 

April 24, 1991 



26 CHAPTER 5. SIMULATIONS 

Net Dimension Nu Shared Memory Distributed Memory 
Speedup Efficiency Speedup Efficiency 

1 15 128 26.62 .10 11.70 .09 
2 10 4 2.45 .60 2.19 .55 
3 29 1024"' 1022.00 .99 20.00 .02 
4 12 16 4.83 .30 3.68 .23 
5 17 512 75.27 .15 14.88 .03 
6 9 2 1.23 .61 1.19 .60 
7 26 1024"' 1011.00 .99 6.34 .02 
8 34 1024"' 1023.00 .99 20.14 .02 
9 20 1024"' 572.58 .56 16.36 .02 
10 18 1024"' 195.45 .19 11.91 .55 

Intel2 14 32 10.19 .32 6.28 .20 
"' Nu was limited to 1024. 

Table 5.2: Net Summary Statistics (G = 256) 

complexity of query evaluation in terms of the dimensionality of the full joint prob­

ability distribution, rather than in the number of multiplies it takes to construct 

this distribution. 

From the table, it is easy to see that communication costs and problem size 

both have a large effect on the performance of parallel query evaluation . Under the 

shared-memory model the three largest queries all show a near-linear speedup and 

high efficiency. Under the distributed-memory model the same queries show a top 

speedup of only 20.14 and an efficiency of only .02. The effects of communication 

costs and problem size are shown clearly in the Figure 5.1. 

In order to understand better the issues affecting the expected performance 

of parallel query evaluation, three nets were chosen to explore in more detail. These 

nets were the Intel2 net, random net 4, and random net 9. 

5.3 .1 Shared memory 

Since communication is free in the shared -memory model , the only factors that affect 

the degree to which a query can be parallelized are the the minimum task grainsize , 

the size of intermediate result distributions, and the number of processors available . 
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Figure 5.1: Speedup - Dimension (G = 256) 

Task grainsize affects possible parallelism in the obvious way; if a conformal product 

is smaller than the minimum grainsize, then it can't be parallelized. The sizes of 

intermediate result distributions limit exploitable parallelism since splitting can 

occur only on those variables that occur in the result distributions as explained 

in Chapter 3. Finally, on the environment side, parallelism can be limited by the 

number of processors available. In each of the following nets we identify those 

factors that directly affect the predicted speedup and efficiency. 

Intel2 Net 

Figure 5.2 shows the expected speedup of a query on the Intel2 graph under the 

shared-memory model for grainsizes 2, 16, 64, and 256. As one would expect, 

without a communication cost the best speedups are achieved with the smallest 

mm1mum grams1ze. Efficiency is also highest with the smallest grainsize as shown 

in Figure 5.3. 
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But even with the smallest minimum grainsize, speedup and efficiency are 

poor. A more reasonable minimum grainsize of 256 causes performance to degrade 

further. Speedup tops out at 10.19 using 32 processors with an efficiency of only .32. 

A partial explanation of this poor performance can be obtained by considering the 

complexity of the individual conformal products contained in the query as shown 

in Figure 5 .4 
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Figure 5.4: Intel2 Conformal Products - Multiplies 

From Figure 5.4 is it easy to see that one conformal product dominates the 

query evaluation while the majority are too small to parallelize. Figure 5.5 shows 

the same information, but, instead of multiplies the Y axis shows dimension, i.e. 

log of the graph 5.4's Y axis. 

A partial explanation for the predicted poor performance is the number of 

small conformal products that cannot be parallelized. But this is only a very small 

part of the explanation, since those conformal products below the minimum grain­

size, i.e. with dimension less than 8, make up only about 1 % of the overall work. 

Consider the graph of Figure 5.6, which shows how the problem would be split given 

a minimum grainsize of 256 and an unlimited number of processors. 
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In Figure 5.6 the source of the poor performance can be seen. When offered 

unlimited processors all of the larger conformal products, except for the largest, 

split into tasks of size 256. Figure 5. 7 shows the number of processors used by 

each conformal product . This represents the expected speedup for each conformal 

product. 
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Figure 5. 7: Intel2 Processors per Task 

From Figure 5. 7 we can see that the largest conformal product, number 13, 

used only 16 processors. Whereas conformal product 12, which was half as large 

as conformal product 13, used twice as many processors. Together Figures 5.6 and 

5. 7 show that conformal product 12, of dimension 14, is a processing bottleneck. 

Although it requires 214 multiplies it only has 4 result variables, or, in other words, 

it can only be split into 16 subtasks. 

Result: Run out of parallelism in problem. Lack of variables in the result 

distribution of the largest conformal product limited splitting. 

April 24, 1991 



32 CHAPTER 5. SIMULATIONS 

Random Net 4 

Figures 5.8 and 5.9 show the expected speedup and efficiency of query evaluation 

on random net 4. In contrast to the Intel2 net, random net 4 shows near-linear 

speedup for up to 32 processors when the minimum grainsize is 16, and for up to 

64 processors when the minimum grainsize is 2. 

70 

60 

s 50 
p 
e 
e 40 
d 
u 30 
p 

20 

10 

0 
0 10 20 30 40 50 

Number of Processors 

G = 256 ~ 
G = 64 -t­
G = )P.;... 
. G·;, 2 -x- · 

60 70 

Figure 5.8: Net 4 Speedup SM 
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Figure 5.10 shows the complexity of the conformal products performed in 

query evaluation, and Figure 5.11 displays the same information but in terms of 

dimension rather than multiplies. Together these graphs, 5.10 and 5.11, suggest an 

explantion for the speedup and efficiency behavior. The largest conformal product 

is only of dimension 12, which explains the poor performance for large grainsize 

settings. It is only twice as large as the conformal products which come before and 

after it, that suggests the absence of any processing bottleneck. 
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Figure 5.11: Net 4 Conformal Products - Log Multiplies 

Figure 5.12 shows the possible parallelism given unlimited processors and a 

minimum grainsize of 256. The absence of a conformal product with more than 

256 multiplies indicates that the all of the result distributions contained enough 

variables to support complete splitting. 
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Figure 5.13 shows the number of processors that could be used by each 

conformal product when the minimum grainsize is 256. This figure, together with 

Figure 5.12 , shows that the factor limiting expected speedup and efficiency is the 

small size of the conformal products, not the lack of splitting variables. As the 

minimum grainsize is lowered speedup and efficiency increase as shown in Figures 

5.9 and 5.9. 

Result: The number of small conformal product limited the splitting and 

there the speedup. The problem was to small to be parallelized effectively. 
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Random Net 9 

As shown in Figures 5.14 and 5.15 random net 9 exhibits near-linear speedup and 

high efficiency for up to ( at least) 256 processors. This performance is maintained 

with little change across grainsize settings of 2, 16, 64, and 256. 
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350 

As shown in Figure 5.16, the query evaluation for random net 9 required 41 
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conformal products, with complexities ranging from 4 multiplies to 220 • An inter­

esting feature of this problem is that there are two dominating conformal products, 

rather than one, as in the Intel2 net and the random net 4. 
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Figure 5.16: Net 9 Conformal Products - Multiplies 

Figure 5.17 shows the complexity of conformal products in terms of dimen­

sion. An important point is the lack of great disparity between the complexity of 

neighboring conformal products. The largest single drop in relative magnitude be­

tween any 2 neighboring conformal products is from 213 , conformal product 39, to 

27 , conformal product 40. With a grainsize of 256, complete splitting of conformal 

product 40 would require only 32 processors and 5 splitting variables in the result 

distribution. From Figure 5.18 we can see that all of the conformal products were 

either smaller than the minimum grainsize, conformal products 1 though 8 and 40 

through 41, or else contained enough splitting variables to allow complete splitting. 

Figures 5.18 and 5.19 show the degree of splitting possible and the number of 

processors used given a minimum grainsize of 256 and unlimited processors. From 

these graphs it is easy to see that the problem is big enough and well-behaved 

enough ( no processing bottlenecks due to lack of splitting variables) that speedup 

and efficiency are limited only by the number of processors available. 
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Figure 5.17: Net 9 Conformal Products - Log Multiplies 
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Result: Troblem is big enough and contains enough parallelism to get near­

linear speedup and high efficiency. We would expect to run out of processors before 

exhausting the possible parallelism. 

5.3.2 Distributed memory 

The purpose of the distributed memory model was to determine the effect of commu­

nication costs on speedup and efficiency of parallel query evaluation. The speedup 

and efficiency figures of Table 5.2 suggest that parallel conformal product evaluation 

is communication-intensive. And the graph in Figure 5.1 shows just how dismal the 

predicted performance is. In the following sections we examine the results of sim­

ulations of the Intel2 net and random nets 4 and 9 under the distributed-memory 

model. 

Intel2 Net 

Figure 5.20 shows the speedup curves for the Intel2 net under minimum grainsize 

settings of 2, 16, 64, and 256. The number of processors ranges from 4 to 64. The 

first thing one notices is that speedup is poor under all conditions . 
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Figure 5.21 shows the efficiency curves for the same set of simulations and, 

as with the speedup curves, not only is the performance poor but grain.size seems to 

have had no effect. We know from the analysis of the shared-memory simulations 

that without communication costs, speedup and efficiency depend in part on the 

minimum grain.size. To understand the relationship between communication costs, 

grain.size settings, and speedup and efficiency consider Figure 5.22. 

Figure 5.22 shows the relationship between time and number of processors 

for a simulation of query evaluation in the Intel2 net with a minimum grain.size of 

2. There are 3 measures of time: total time, compute time, and communication 

time. The general trend displayed in the graph is that with few processors there 

is little splitting so communication time is low and compute time is high. As 

the number of processors increases, more splitting is possible, so the compute time 

decreases and the communication time increases. The explanation for the reduction 

in compute time is that with more processors, the amount of work performed by 

any one processor is reduced. The explanation for the increase in communication 

time is that with more processors the overall amount of data sent out increases, as 

discussed in Chapter 3, and some of this data has to travel farther ( across additional 
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Figure 5.21: Intel2 Efficiency DM 

dimensions of the cube). The general result is that the compute time saved by 

splitting the problem is consumed in the communication time. Figure 5.23 show 

the effects of increasing the minimum grainsize from 2 to 64. 

In Figure 5.23 we see that for up to 32 processors, with a minimum grainsize 

of 64, the compute time is greater than the communication time. At 32 processors 

compute time and communication time are approximately equal. With more than 

32 processors compute time drops slightly below communication time. The trend is 

similar to that shown in Figure 5.22. Compute time starts high and drops quickly, 

while communication time starts low and climbs slowly. Both compute time and 

communication time level off quickly. As a final look at the relationship between 

compute and communicate time with the Intel2 net, consider the graph of Figure 

5.24 in which the minimum grainsize is 256. 

In Figure 5.24 we see the same general trend as in Figures 5.23 and 5.22. The 

difference is that since the grainsize is 256, less splitting occurs and thus the compute 

time stays higher than in the previous simulations and the communication time stays 

low. Whereas in the simulations with smaller grainsizes, the communication costs 

eventually became greater than the compute costs, in this case the two costs never 
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become close. 
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Figure 5.24: Intel2 Compute - Communicate DM G = 256 

Result: With more than 16 processors, the additional cost for communication 

consumes any reduction in compute time. 

Random Net 4 

Figure 5.25 shows the speedup curves for parallel query evaluation on random net 4 

with minimum grainsize settings of 2, 16, 64, and 256, with the number of processors 

ranging from 4 to 32. As with the Intel2 net, speedup levels off quickly. One 

difference between the speedup graphs of random net 4 and the Intel2 net is the 

distinctly poor performance on the random net 4 when the grainsize was set at 256. 

This performance is also reflected in the efficiency graph of Figure 5.26. 

The poor speedup and efficiency performance at grainsize 256 can be ex­

plained by the small sizes of the conformal products in the query, as discussed in 

the section on random net 4 under shared-memory simulations. As with the Intel2 

net, the relationships between compute time and communication time for random 

net 4 are given for minimum grainsize settings of 2, 64, and 256, in Figures 5.27, 

5.28, and 5.29, respectively. 
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For random net 4 the relationships between compute and communication 

times are similar to those of the Intel2 net. With a small number of processors 

compute time is high and communication time is low. As the number of processors 

increases compute time decreases and communication time increases, until at some 

point the maximum possible splitting occurs and the time measures level out. 

Random Net 9 

Figure 5.30 shows the speedup curves for parallel query evaluation on random net 

9 with minimum grainsize settings of 2, 16, 64, and 256. The number of processors 

ranges from 4 to 256. A comparison of this graph with the speedup graph of this 

net under the shared-memory model (Figure 5.14) shows the effect of communica­

tion costs. The shared-memory model predicted near-linear speedup. Under the 

distributed-memory model speedup tops out at about 16. The efficiency graph in 

Figure 5.31 also reflects this poor performance. 

As with the Intel2 net and the random 4 net, the compute and communica­

tion times are given for grainsize settings of 2, 64, and 256. Figures 5.32, 5.33, and 

5.34 present this information. 
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Figures 5.32, 5.33, and 5.34 all look the identical. The conclusion to draw 

from this is that for this net, within the bounds explored, grainsize is not an im­

portant issue. 

Result: In order to understand the results for random net 9 under the 

distributed-memory model, it is important to remember the high complexity of 

the query evaluation. As described in the shared-memory section, many of the 

conformal products in this query are of sufficient size to split across 256 processors 

with a minimum grainsize of 256. This explains why speedup was near -linear for 

this query with 256 processors and a minimum grainsize of 256 under the shared­

memory model. This also explains why the compute-communicate cost graphs are 

so similar for the three grainsizes 2, 64, 256. 

5.3.3 Evaluation Tree Parallelism 

To investigate the potential parallelism available at the evaluation tree level we 

calculated the longest path in the evaluation tree and summarized this information 

in Table 5.3. 

In Table 5.3 the entries in the Number of CPs column is the number of con-
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Net Number of CPs Longest Path % of Time 
1 39 27 .999 
2 21 13 .884 
3 51 44 .999 
4 30 27 .999 
5 32 30 .999 
6 30 19 .973 
7 50 43 .999 
8 88 56 .999 
9 41 41 1.00 
10 36 31 .999 

Intel2 41 41 1.00 

Table 5.3: Evaluation Tree Parallelism 

formal products in the evaluation of the query. Entries in the Longest Path column 

represent the number of conformal products in the longest path. Entries in the % 

of Time column are the percentages of the overall time for query evaluation spent 

in evaluating the conformal products in the longest path . The time to compute the 

longest path consumes almost the entire query evaluation time. This means that 

those conformal products that were not in the longest path were of low complex­

ity. The conclusion to be drawn from this data is that there is no evaluation tree 

parallelism to be exploited in the evaluation of these queries. But, as mentioned 

in Chapter 2, evaluation trees are not unique, and therefore another topic for fu­

ture research is to explore the possiblity of generating more balanced and bushy 

evaluation trees . 
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Chapter 6 

Conclusions 

For this project we investigated two sources of parallelism in the query evaluation 

process of the SPI algorithm: evaluation tree parallelism and conformal product 

parallelism. Rather than implementing parallel algorithms or performing a purely 

analytic analysis we chose instead to modify an existing sequential program to simu­

late parallel query evaluation. This simulation allowed us to control various features 

of the computation, in particular subtask decomposition and communication mod­

els . It thus provided a method for exploring the effects of these features on the time 

complexity of query evaluation. The work described in this paper represents only a 

few sample points from the space of explorations possible using this approach. These 

points were chosen to give us information about two aspects of the problem, the 

amount of parallelism in query evaluation, in particular in the intermediate com­

putations, and the relative costs of communications. The shared-memory model 

addresses the first of these issues, the distributed-memory model the second. 

6.1 Shared Memory 

The results from Chapter 5 suggest that if conformal products are big enough 

and contain enough result variables, then reasonable speedup and efficiency can be 

achieved through conformal product parallelism. The results show that parallelism 

is limited when the expanded queries contain a large proportion of small conformal 

products, as demonstrated by random net 4, or when one or more of the large 

conformal products contains few result variables, as demonstrated by the Intel2 
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net. These results should provide some direction for future work on query expansion 

methods. Of course, since communication and setup costs were ignored these results 

are upper-bounds on speedup and efficiency. The effects of including communication 

costs in performance measures was the subject of the distributed-memory model 

simulations. Setup costs and their effects on parallelism provide a topic for future 

research, as described below. 

6.2 Distributed Memory 

For the distributed-memory model the results from Chapter 5 show that communi­

cation costs dominate and make the spanning tree distribution approach infeasible. 

Our hypothesis was that as conformal product complexity increased, the compute 

time would decrease faster than communication time would increase. This turned 

out to be true, and explains the slight speedup observed. But the effect was smaller 

than expected. To understand why recall from Chapter 4 the formula for calculating 

the amount of data sent out. 

Btotal = 4 * (2max(ldistl-varsl,lsplitting-varsl) + 2max(ldist2-varsi,lsplitting-varsl)) 

Recall also that the overall compute-time complexity of the conformal prod­

uct operation is exponential in the number of unique variables in the two input 

distributions. Let all - vars represent the set of unique variables, i.e., all - vars = 
distl - vars U dist2 - vars. Since distl - vars, dist2 - vars, and splitting - vars 

are all subsets of all-vars we know that Btotal < 4 * 2lall-varsl. With respect 

to communication costs a best case situation would be one in which ldistl-varsl = 
ldist2-varsl = lall-varsl/2, and distl - vars n dist2 - vars = </>, and !splitting-vars! 

::; ldistl-varsl. In other words, if the variables in all - vars are split evenly across 

the two input distributions and splitting occurs at most on half the variables, then 

the amount of data that must be sent out is exponential in !all-vars! / 2. As it 

turned out this best case never occurred. In every case lall-varsl - (max ldistl­

varsl, ldist2-varsl) = 1. In other words, for all of the test nets the size of one of 

the input distributions was one variable smaller than the number of variables in 
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the full joint distribution. Therefore compute time is exponential in the number of 

all - vars and communication time is exponential in the number of all - vars minus 

1. The reason why the distributed-memory simulations showed any speedup at all 

was the lower constant associated with communication, .5 microseconds per byte, 

as compared with the constant associated with multiplication, 45 microseconds per 

multiply. One possible topic for future research is to determine if this asymmetrical 

distribution of variables is an inherent part of the problem or simply an artifact of 

the query expansion process. 

6.3 Evaluation Tree Parallelism 

Given the shape of the evaluation trees generated by the current query expansion 

procedure, there is no evaluation tree parallelism to exploit. A partial solution 

to the lack of evaluation tree parallelism is bushier trees, and one topic of future 

research is alternative methods for query expansion. 

6.4 Further research 

This work represents a first look at parallelism in the SPI algorithm. Among the 

many issues that deserve further attention are the following. 

• Splitting the conformal product calculation on only those variables that occur 

in the result distribution has been shown to produce processing bottlenecks for 

some queries. The alternative is to split on all variables, as long as the mini­

mum grainsize constraint is satisfied, and then sum the results together. This 

approach would increase parallelism but complicate the data dependencies 

among subtasks. It is not clear at this time whether the increased parallelism 

would compensate for the increased complexity of communication that this 

strategy requires. 

• Explore the ignored parameters of the model, in particular S, the setup time. 

Except for communication, the set-up time includes the time required for all 

April 24, 1991 

) 

) 



) 

) 

6.4. FURTHER RESEARCH 55 

operations that take place between the time a query is received and the time 

at which subtasks begin computing their respective portions of the result dis­

tribution. This includes the time to construct the expanded query and the 

time required to put together command packages for the subtasks. Since we 

have not considered ways to parallelize these operations, it is only fair to as­

sume that they are sequential. As pointed out in [9] and [4], the amount of 

sequential code limits the potential speedup according to Amdahl's law. We 

believe that this cost is small relative to the costs of calculating the confor­

mal product, but a more complete analysis would investigate this issue more 

rigorously. 

• The belief nets that were used in this project all had a uniform value space 

of dimension 2. Since it seems likely that many real-world nets will have 

variables with greater dimension and variability it is important to explore the 

effects that these changes have on possible parallelism. 

• Since communication is so expensive in the distributed-memory model any 

followup work to this project should investigate alternative data distribution 

schemes. It appears that any approach to parallel conformal product evalua­

tion in which one processor is responsible for dividing up the problem, sending 

out the data associated with subtasks, and assembling the results together will 

be communication-intensive. A different approach would be to partition the 

belief net across the processors in such a fashion that data is local to the 

processors whose computation requires it. 

• The results presented in Chapter 5 are all sensitive to the structure of the ex­

panded query, or the evaluation tree. As mentioned in Chapter 2, evaluation 

trees are not unique and the generation of efficient evaluation trees is a topic 

of current research. For the tests reported on in this paper, all evaluation 

trees were generated by a procedure oriented towards efficient sequential eval­

uation. The primary heuristic of that procedure is one to keep the dimension 

of the intermediate result distributions as low as possible, thus minimizing the 
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number of necessary multiplies . It seems like this strategy for generating eval­

uation trees would also benefit the parallel evaluation process, but we do not 

know for certain at this time that there is not an approach which maintains 

low dimensionality and yet produces evaluation trees which are parallelizable. 
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