
)

PC++: An Extension of c++ for Parallel
Programming

Myungmun Bae
Department of Computer Science

Oregon State University
Corvallis, OR 97331

baem©mist.cs.orst.edu

A research paper submitted to
Oregon State University

in partial fulfillment of the requirements for the degree of
Master of Science

Major professor: Dr. Tim Budd
Minor Professor : Dr. Vikram Saletore

Other Committee Member: Dr. Curtis Cook

June 1, 1992

)

Thanks to

my wife, Heeae Lim,

and

little daughters, Minju and Minhee.

)

Contents

1 Introduction

2 Related Work
2.1 PRESTO
2.2 COOL
2.3 Concurrent C/C++ .
2.4 µC++
2.5 RTC++
2.6 Dataparallel C.

3 Execution Model
3.1 Thread of Control
3.2 Relationship

3.2.1 Wait - between threads .
3.2.2 Own - between thread and data object

3.3 Guard Expression .
3.4 State Transition
3.5 Deadlock

3.5.1 Deadlock Detection .
3.5.2 System Completion .

4 Language Extensions
4.1 Classification of Objects
4.2 Atomic Object
4.3 Dynamic Object .. .
4.4 Using Future Types .
4.5 Parallel Object

5 Implementation
5.1 General Translation Technique.
5.2 Task Management.

5.2.1 Thread
5.2.2 Scheduler
5.2.3 Thread Overhead

5.3 Memory Management ..

l

1

5
5
7
9

10
12
14

16
16
16
17
17
17
18
20
20
21

22
22
22
24
26
30

33
33
35
35
37
39
39

5.4 Translation of Atomic Object Class 42
5.5 Translation of Dynamic Object Class 46
5.6 Translation of Future Type 51
5.7 Translation of Parallel Object Class . 54
5.8 How to use PC++ 58

6 Conclusion 60

A Grammar of PC++ 63

B Example Programs 66
B.l Bounded Buffer Problem . 66
B.2 Quick Sort 68
B.3 1r Calculation 0 0 ♦ ♦ c, 70
B.4 Matrix Multiplication . 71

11

List of Figures

1 Wait-Relationship .
2 Own-Relationship .
3 State Transition . .
4 Deadlock Situation
5 Behavior of Future Variable
6 Overview of Translat or . . .
7 Timing - Thread Overhead .
8 Memory Managemen t Scheme
9 Timing - Memory Allocation/ Deallocation
10 Relationship in Parallel Objec t
11 Timing - Matrix Multiplica tion
12 Timing - Quick Sort

_) m

16
16
19
20
29
34
40
41
43
55
60
61

1 Introduction

Understanding of techniques that can be used to develop software for various
parallel machines has not fully matched the dramatic progress in hardware
in recent years. Most parallel programming techniques have been closely
tied to specific hardware. Different machines have different primitives and
architectures. Programming and porting an application with the machine
dependent features across various machines is difficult and error-prone [21,
37]. This problem is especially amplified when the application is large.

Many ways to cope with the complexit y of software development , and
to resolve several difficulties , such as machine-independence and abstraction
of parallelism, have been prop osed and tried .

Ways to express parallelism

In the view of expression of parallelism, two difference approaches have
been developed. The first technique, which is called parallelization tech
nique , takes implicit parallelism. The programmer writes programs with
implicit parallelism in a sequential language , most commonly FORTRAN.
The compiler detects the parallelism and translates the program into a par
allel form automatically or semi-automatically. This parallel form must be
well-matched to the target machine . This technique is very well developed,
but the automatic detection of concurrency is extremely hard, except in rel
atively regular cases [36, 44].

On the contrary , the other technique emphasizes explicit parallelism
with high level parallel constru cts or languages. This technique may allow
the programmer to find better parallelism, which may be difficult to discover
in the parallelization of sequential programs [6]. Sometimes, a good parallel
program is quite different from a sequential one, and cannot be derived by
source transformations on the sequen tial source code.

1

)

Parallel programming models

Several new programming paradigms for parallel computations, including
process-oriented, functional, logic, and object-oriented programming meth
ods, have been proposed (2). Process-oriented programming models are based
on communicating sequential processes [31]. Each process is executed se
quentially, and the interprocess communication topology is static. Thus, it
is difficult to specify a parallel program using large number of processes (2).

Functional programming relies on value-transferring functions to carry
out computations. Because arguments to a function can be evaluated in
parallel, functional programming provides ample opportunity for exploiting
parallelism. But functions have no state, and therefore are hard to encap
sulate history-sensitive behavior. Moreover, blindly evaluating all functions
in parallel extends the total elapsed execution time, if the functions do rela
tively little work. Therefore, the compiler must decide which functions can
be parallelized to get maximum speedup, but current compilers can not yet
take care of it (6).

The object-oriented 1 programming technique has become exceedingly
popular in the past few years (8). In using the object-oriented programming
technique, a program is represented in terms of autonomous objects. The
interaction between objects is described by message passing. The object
oriented programming technique can promote productivity and reliability,
by means of the abstraction mechanism of encapsulation and inheritance (8).
Programs can be built from pre-existing building blocks as much as possible
(8, 39). Due to the advantage of the object-oriented technique, many object
oriented parallel programming languages have been devised and developed.
Examples include POOL (3), Actor [I, 2), and ABCL/1 (34, 48).

1 It is often more precisely classified as object-based, class-based, and object-oriented
[47]. A language will be called object-based if it provides linguistic support for objects
which have a set of operations and states, and interact each other by message passing.
A class-based language also supports classes in addition to objects. Finally, the object
oriented language is class-based and additionally requires class inheritance which is a
mechanism for composing the interface of one or more inherited classes with the interface
of the inheriting class.

2

Types of parallel computation

Parallel computation can be categorized into two patterns [20, 21). First, di
vide and conquer computation or tree computation involves the concurrent
activity which breaks the problem into several simpler independent sub
problems, executes them in paralle l, and waits for the results of the sub
computations.

Second, cooperative problem solving, or crowd computation involves a
set of cooperating processes. Each process is an independent computational
entity which communicates and synchronizes with each other processes. Data
parallelism can be classified as a crowd computation, in that simultaneous
operations are performed across large set of data, but it has different view
in that the data parallelism comes from large set of data, rather than from
multiple threads of control or processes.

My approach

As an object-oriented language, C++ provides data abstraction mechanisms,
but C++ does not provide parallel programming facitilies in the language
constructs. The primary goal of PC++, which is an extension of C++ and
was implemented on Sequent Symmetry, 2 is the linguistic support to express
explicit parallelism in more highly-abstracted manner, without knowing the
underlying architecture and low-level primitives.

In general, languages with high abstraction concepts has the possibility
to check the correct use of the primitives. The compiler can find syntax
errors and a certain number of semantic errors. It can reduce the time and
effort required to develop and maintain the program.

The abstraction mechanism of parallelism in PC++ is class-based, since
the expression of parallelism is described and encapsulated by the class defi
nition. PC++ classifies the data object classes into the atomic, dynamic, and
parallel object classes. Among the object classes, the dynamic and parallel

2Symmetry is a trademark of the Sequent Computer Corp.

3

J

object classes invoke automatic parallel execution, when a member function
of the object is called. In addition to the parallel execution, the parallel
object also supports virtual topology and way to express data parallelism.

In summary, PC++ supports tree computation, crowd computation,
and more general concurrent computation, such as reader-writer style com
putation with specific condition like guard command [17].

The remainder of this paper is organized as follows: Section 2 shows
similar prior work. Section 3 describes how the parallel execution is mod
eled. The syntactic and semantic view of the each class-based abstraction
is explained in Section 4. Section 5 shows the underlining runtime environ
ment and its roles, and how the translator works by showing the examples.
Finally Section 6 discusses the performance of two examples, and concludes
this work.

4

j

2 Related Work

Several researchers have tried to abstract concurrency and synchronization
in C and C++. Most related work tha t will be explained is involved with
object-oriented approaches to specify concurrent activity in C++. But these
do not attempt to add data parallelism. Dataparallel C is an imperative
approach that extends C to provide data parallelism. The most following
example programs are cited from the related papers.

2.1 PRESTO

PRESTO [7, 19] is a programming syste m with a set of pre-defined object
classes. The programmer uses the Thread class to specify parallel execu
tion. PRESTO also provides several classes; Spinlock, Atomiclnt, Monitor,
and Condition. Every synchronization and concurrency operation must be
specified explicitly, since PRESTO is not a new language, but is instead a
run-time library.

The following example, matrix multiplication, illustrates the use of the
PRESTO features.

class Vector {
int num, *array;

public:
Vector(int n); // constructor
int operator[](int col);
void innerProduct(Vector &v, int *res);

};

class Matrix {
Vector *mat;
int size;

public:
Matrix(int n);
Matrix *multiply(Matrix &m);

5

_)

void transpose();
Vector& operator[](int row);

} ;

Matrix *Matrix::multiply(Ma t rix &m)
{

}

int i, j, k;
int n_thread =size* size ; //# of threads
Matrix *mtmp = new Matrix (size) ;
Thread **waiter= (Thread**) new int[n_thread];
m.transpose(); II transpose m
for(k=0, i=0; i<size; i++)

for(j=0; j<size; j++) {

}

Thread *t = new Thread("mult");
t->willjoin() ;
t->start(this , I I object

mat[i] .innerProduct, II method
m[j], I I parameter
&mtmp[i] [j]); II result

waiter[k++] = t;

II wait all threads
for(i=0; i<n_thread;
m.transpose();
return mtmp;

i++) waiter[i]->join();
II set to original

#define N 100
main()
{

}

Matrix M1(N), M2(N), *M3;
I I input M1, M2
M3 = M1.multiply(M2);
II output M3

The function main () inputs two matrices and computes a third matrix
which is the product of the two input matrices. A thread, which is the basic

6

J

)

unit of execution, consists conceptually of a program counter and a stack,
just like a process. As we see in this example , start() is an operation defined
for parallel execution of a functio n with param eters.

In matrix multiplication, every element of the resultant matrix can be
computed in parallel. Thus threads are created and started in the inner loop.
In addition, we need some mechanism to control threads, since all threads
must be finished before the resultant matrix can be returned. PRESTO
provides willjoin() and join() to handle this situation. The function
willj oinO must be specified before the thread is started, and then the
function join() will wait for the completion of the thread. The thread with
willjoin() will not be destroyed until the function join() is called, even
if the thread is completed. In contrast , the thread without willjoin() will
be destroyed automatically when it is completed.

The function start() is essentially untyped, since it can be used to
start a thread within any object's member function having any number of
any type of parameters. In other words, overloaded functions to be started
by the function start() will not work, since the compiler cannot discern the
types of the arguments to the function at compile time.

2.2 COOL

COOL [13] introduces concurrency and synchronization in C++. The paral
lelism is encapsulated as part of the implementation of a class, transparent
to users. Every possible asynchronous invocation on an object is specified by
the parallel function. The synchronization can be expressed in two ways; by
specifying mutex function and f uture types.

class array {

};

int count, *aptr;
public:

array(int n, int *p) { count=n; aptr=p;}
parallel int$ sort();

7

)

)

parallel int$ array::sort()
{

if(count < MinSize) {
// serial algorithm

} else {

}
}

int half= count/2;
array *left= new array(half, aptr);
array *right= new array(count-half,aptr+half);
int$ done= left->sort(); // in parallel
parallel- right->sort().
waitset(done); // wait
// merge two lists

The above example, a merge-sort based on the divided-and-conquer algo
rithm, shows use of the parallel function and the future variable. The list to
be sorted is split into two parts, each of which can be sorted independently
and concurrently, and then the sorted halves are merged.

The variable aptr in the class array points to the list of integers to be
sorted, and the variable count holds the number of the integers. If count is
fewer than MinSize, then some serial algorithm is used. Otherwise sort()
creates two array objects and initializes them. The left list is sorted in par
allel by invoking sort() which creates a new thread, and is synchronized via
a future variable done, since sort() is defined as a parallel future function.
The future type is defined by appending$ to the type int. The right half is
sorted in sequential, because the attribute parallel - enforces the sequential
execution without creating a new thread. Therefore the right half is sorted
on the current thread, and the left half is sorted on a new thread. Conse
quently sorting both halves is in parallel. The function wait set() is applied
to a future variable to wait for the termination of the related future call.

COOL also provides low level locking mechanisms; Spinlock and Block
lock. COOL is similar to PC++ in terms of parallel invocation and future
type synchronization. But it does not have any constructs for data paral
lelism or crowd computation.

8

2.3 Concurrent C/C++

A Concurrent C [22, 24, 25] program may consist of a set of processes that
execute in parallel. A process definition has two parts: a type (specifica
tion) and a body(implementa tion) . Concurrent C processes interact with
each other by means of trans acti ons or extended rendezvous 3 which allows
bidirectional information trans fer at a rend ezvous event . The specification
and behavior are similar to thos e of ADA.4

The following simple program introduces the basic concepts of Concur
rent C. The program reads data , processes the data , and then prints the
results. A Concurrent C program can be constructed as follows: one process
(producer) reads the data from the terminal, and sends them to another pro
cess (consumer). The consumer process converts all lower-case characters to
upper-case, and prints the data on the standard output. This problem falls
into the generic producer-consumer problem class.

#include <stdio.h>
process spec consumer()
{

trans void put(int);
};
process spec producer(process consumer);
process body consumer()
{

int c,a;
for(;;) {

}

accept put(a) { c = a; }
if(c == EDF) break;
putchar(islower(c)? toupper(c) : c);

3 Rendezvous is the interaction between two independent tasks via synchronous message
passing when one task has called an entry to the other . The interaction is performed first by
synchronizing , then by transferring information, and finally by continuing their individual
activities. [11, 22, 24, 42]

4Ada is a trademark of the US Department of Defense (Ada Joint Program Office).

9

)

}

process body producer(cons)
{

int c;
do {

cons.put(c=getchar());
} while(c !=EDF);

}

main()
{

create producer(create consumer());
}

The example shows two process types: producer and consumer. The specifi
cation part of the consumer process has the transaction put(), which can be
called by other processes to send a character to a process of type consumer.
The body of consumer contains an accept statement which is how a process
accepts a transaction call. Whenever a consumer process meets an accept
statement during execution, the process waits until a related transaction is
called by another processes. The producer process reads characters from the
standard input and calls the transaction put () of the consumer to send a
character. The function main () creates instances of producer and consumer
processes. After the creation of a process, the body of the process starts to
run automatically and independently with other processes.

Classes and processes in Concurrent C++ [23] are both abstraction fa
cilities, and can be used to implement any abstract data types.

2.4 µC++

µC++ (micro-C++) [9] introduces concurrency into C++ by adding new
types and statements. The inclusions correspond to the ideas of a coroutine,
monitor, coroutine-monitor and task on shared-memory uniprocessor and
multiprocessor computers. It provides static type checking as in C++, and

10

J

implicit mutual exclusion in the langua ge construct . The way to achieve
concurrency is similar to ADA and Concurrent C.

A task is an object with its own th read-of-control, whose public member
routines provide mutual exclusion .

uTask T {
protected:

void main();
public:

void request_a ();
void request_b (i nt);

};
void T: :main()
{

}

main()
{

}

for(;;) {
uAccept(request_a) {

// service for request_a
} uOr uAccept(request_b) {

// service for request_b
}

}

uDie; // explicit terminate

T *tp = new T; // create a task

tp->request_a();

tp->request_b(100);

// wait for the termination
delete t p ;

11

)

The task type has one distinguished member, namely main () , in which the
new thread starts execution. A user interacts with a task's main() mem
ber indirectly through its member routines; in this case, request_a() and
request_b (). The acceptance of the user call to a task object is done by
uAccept () statement.

When a task tp is created, a new thread is created and executes the
member routine main () concurrently. The task tp terminates when its
main() routine terminates, when its destructor is accepted, or when the
statement uDie is executed.

The uAccept () statement has a member function as the argument.
Therefore the member function to be used in the uAccept () cannot be over
loaded.

2.5 RTC++

RTC++ [35] is an extension of C++ for programming real-time applications.
RTC++ introduces an active object. An active object has by default a single
thread of control. A user can specify multiple threads as member threads
which are defined in an activity part of a class definition. The member
threads are either slave or master. A slave thread is an execution unit related
to a member function or a group of member functions. A master thread
is intended to use a background thread within an active object. A guard
expression may be defined in a member function definition to postpone a
request until the condition becomes true.

active class Example {
private:

Region
int
int

public:

*critical;
count;
background();

int read(char *data, int size) when(count > size);
int write(char *data, int size);

12

)

};

int open() . close ();
activity:

slave[5] read(cha r *, int);
slave[5] write(char *• in t);
slave open(), close ();
master background() cycle(;;Ot30m;) ;

int Example::read(char *data, int sz)
{

}

// [1] non-critical region
region(critical) {

// [2] critical region
}

// [3] non-critical region

main()
{

}

// task vis created with priority 4
Example *v = new Example priority 4;

In this example, when an instance of class Example is created with priority 4,
a new master thread for background() is created and executed in every 30
minutes. The class Region, tha t is used in the class Example, is a predefined
active class to provide critical region.

The creation of threads is dynamically performed when the call to the
active object is made. But its execution is bounded to the activity declara
tion. One thread only is responsible for the open() and close() requests.
The member function read() can be preempted by up to 5 clients whose
priorities are higher than the current execution of the read() function.

The function read() consists of the sequence of the non-critical region,
critical region, and non-critical region. Suppose that one thread enters the

13

)

critical region and at that time a new read() request is coming where the
sender's priority is higher than the pr evious sender's one. The new thread
begins to execute the function read () with higher priority, and the former
thread is suspended. But since the former thread is in the critical region, the
higher priority's thread can not enter the critical region , and then is blocked.
So the former thread executes again unt il exiting the critical region. After
that, the higher priority's thread is resumed.

2.6 Dataparallel C

Dataparallel C (28] is a varian t of th e original data-parallel programming
language C*5 designed for Connection Machine. 6 The goal of Dataparallel C
is different from the goals of the previously explained systems. Dataparallel
C focused on data parallel programming language based on C. Dataparallel
C has the domain construct to specify the data distribution over virtual
processors. The domain construct is simliar to struct construct in C. The
parallel code is surrounded by a domain select block. A domain select has the
effect of "waking up" all virtual processors to perform the block in parallel.

Following example computes an approximation to 7r by calculating the
area under the curve 4/(1 +x2) between O and 1 using numerical integration.

10000 #define INTERVAL
#define ID
domain span {

(this - chunk)

char dummy;
} chunk[INTERVAL];
main()
{

double pi;
I* domain select *I
[domain span] . {

5C* is a registered trademark of Thinking Machine Corporation.
6Connection Machine is a registered t rad emark of Thinking Machine Corporation.

14

)

)

}

double width= 1.0 / INTERVAL;
double x =(ID+ 0 .5)*wid th;
double height= 4.0 / (1 . 0 + x*x) ;

I* reduction *I
pi=(+= (width* height));

}

printf("pi = ¼lf\n 11 ,pi);

To compute 71", we divide the curve 4/(1 + x 2) into small rectangles and sum
the area of them. Each rectangles represents a virtual processor. The width
of every rectangle is the same. The height of each rectangle is chosen so that
the curve intersects the top of the rectangle at its midpoint. The operator
+= is a reduction operator to accumulate the areas which are computed by
multiplying width and height.

One of drawbacks of Dataparallel C is that it does not support dynamic
creation of virtual processors. Its size and shape must be determined at
compile time. The domain construct and virtual processor in Dataparallel
C is similar to the parallel class in PC++, but PC++ supports dynamic
creation of parallel objects.

15

3 Execution Model

In this section, I will explain the characteristic and behavior of the thread ,
which is an execution unit, the relat ionships between the data and the
threads , or between threads , and finally the deadlock problem which may
arise in this execution model.

3.1 Thread of Control

To invoke parallel execution, a new task must be created, resources allocated ,
and must be scheduled to run. Creating a new normal process requires a large
overhead since it requires copying the whole address space.

A way to reduce the overhead is to perform explicit task management.
When a new task is required, the task is created and put into the global task
queue, then the task will be light-weight since it does not have to copy the
whole address space but only needs allocate its own stack area, although the
creation of a normal process needs the duplication of whole address spaces,
including code, data and stack, and the maintenance of the internal system
tables, such as process table . The light-weight task is called a thread-of
control in PC++ . It is an unit of execution with its own stack, can be
migrated over processors and preemp ted by other threads .

3.2 Relationship

I InCore

Figure 1: Wait-Relationship Figure 2: Own-Relationship

16

)

3.2.1 Wait - between threads

If a thread waits for the completion of another thread, the execution of
the former thread must be blocked until the latter thread is done. The
relationship can be expressed by a graph as Figure 1. In the graph, threads
T2 and T3 can not be executed until the thread T1 is finished.

3.2.2 Own - between thread and data object

Every thread runs on a data objec t which is used during the execution of the
thread. If several threads update the state of a same data object at the same
time, we can not predict the state of the data object after the threads are
done. This results in a side-effect. To prevent this situation, PC++ normally
allows only one thread on a data object. A thread, which is allowed only one
on a data object, is called impure thread. But if there is no side-effect between
execution of the threads on the same data object, we can specify the threads
as pure threads.

In other words, we can say a data object owns a set of threads which
are pure or impure, if the threads run on a data object as in Figure 2. In the
graph, threads T1 and T2 are already started, and thread T3 is created but
not started. Threads T1 , T2, and T3 use the same data object, 01. We say
the data object, 0 1 , owns the threads T1, T2 , and T3 •

This characteristic of thread allows multiple-readers and single-writer
style programs like airline reservation systems. If the threads on a data
object are pure, the threads can be executed at the same time. But only one
impure thread on a data object can run at a time.

3.3 Guard Expression

A guarded command [17, 31] is used as a building block for alternative and
repetitive constructs that allow nondeterministic program components.

17

)

The alternative construct is writ ten by enclosing it by the special bracket
pair if · · · fi. The general syntax is as follows:

S1 , S2 and Sn are the guarded commands, each of which consists of a guard
(boolean expression) and a set of state ment s. If none of the guards is true
in the initial state , the program will abort; otherwise an arbitrary guarded
list with a true guard will be selected for execution.

The repetitive construct is written down by enclosing a guarded com
mand set by the special bracket pair do · • • od. The general syntax is as
follows:

It will only terminate in a state in which none of the guards is true . If one
or more guards are true, a new selection for execution of a guarded list with
a true guard will take place.

The guard expression in PC++ is a variant of the Dijkstra's guarded
command. A guard expression may be defined in a member function defi
nition in order to control concurrency. Although a member function with a
guard expression is called , the execution is postponed until the expression
becom~s true . The characteristic is similar to the Dijsktra 's repetitiv e con
struct since the guard expression will be evaluated over and over again until
the expression becomes true .

3.4 State Transition

The lifetime of a thread can be divided into a set of states with a certain
characteristic. When a thread is created with a function to be executed,
argument list, and a guard expression which is a condition to start to execute,
the thread is placed in the created state.

When the guard expression becomes true, the thread moves into the
ready state. Every processor picks a thread from the ready state, and executes
its function body. During the execution of function body, if it needs to wait

18

Guard

InCore

Zombie

Figure 3: State Transition

19

)

for other threads, the thread is put on the blocked state and the process will
be idle. The idle process picks a thre ad from the ready state and do it again.

If a thread is done and there is a blocked thread waiting for it, the
blocked thread is changed to the ready state , and the completed thread moves
into the zombie state. A thread in the zombie state will be destroyed auto
matically after cleaning up memories relate d to the thread. Figure 3 shows
the overview of state transition and the lifetime of threads.

3.5 Deadlock

To explain deadlock, let T;:' be a impure thread, and T:;, be a pure thread .
In Figure 4, Ti waits for the completion of T2, T2 waits for the completion
of T{. But an object 0 1 owns Ti, and T{. So, Ti and T; can not execute
simultaneously since Ti is impure and T{ is pure. Thus T{ must wait for the
completion of Ti. It implies circular wait condition which is one of deadlock
condition [40].

Ti waits t;
T# waits T;

Figure 4: Deadlock Situation

3.5.1 Deadlock Detection

If there is no threads in ready state and running state, but some threads in
blocked state, or some threads , in created stat e, which can not accepted any

20

)

way, then the system must be deadlocked .

Proof: Any threads in ready or runn ing state can be executed in any
order and at any time . But any threads in blocked state are waiting for
the completion of some other threads . So if there are no thread s in ready
or running, no thread s can be completed . Th erefore any threads in blocked
state can not be resumed.

3.5.2 System Completion

If there are no threads in any states, then all processing is done.

Proof: It is obvious. A program can be represented by a set of threads
since each thread is an execution unit. In other words, a program can be
executed only by means of threads, and a thread corresponds to a piece of
the program. Therefore if a thread is done , a piece of the program is finished.
Moreover if all threads needed to complete a program are done, the program
is finished. It means that the program is done if there are no threads in the
system.

21

)

4 Language Extensions

4.1 Classification of Objects

An object is a self-contained entity which has data and a set of associated
operations, that manipulate the data, and that interact with the outside
world exclusively through some forms of message passing [6, 5]. In addition
to data and operations, an object possibly has a thread-of-control so that it
can become an autonomous execution unit. A class is a template of objects,
a kind of an abstract data type. Every object is an instance of some class.

In PC++, an object encapsulates data and operations, and a thread-of
control in case of dynamic object. An object without a thread-of-control is
either a passive or atomic object. A passive object is just an ordinary object
as in C++. The only difference between passive objects and atomic objects
is that the atomic object guarantees mutual-exclusion between operations on
an object.

An object with a thread-of-control is either a dynamic or parallel object.
A dynamic object has one thread-of-control basically, but possibly can have
multiple thread-of-control if those threads are specified as pure, side-effect
free threads. The dynamic object can be migrated over processors and pre
empted. A parallel object is really a set of dynamic objects with a particular
topology like mesh structure. An invocation of a parallel object results in
the multiple invocations of dynamic objects.

4.2 Atomic Object

Only one thread can access the atomic object at any one time. This charac
teristic is similar to the idea of a monitor [30]. When a thread attempts to
access the object that is already accessed by other threads, the thread is left
spinning until the accessing thread is exited from the atomic object.

The mutual-exclusion mechanism can be implemented by busy waiting

22

_)

on a shared memory machine. But th e calls on lock() and unlock() are hidden
from the language constructs in P C++, so the programmer does not have
to specify lock() and unlock() · explicitly to achieve mutual-exclusion on a
object. The spinlock is less expensive to acquire and release the lock, and
more efficient than relinquishing lock if the t ime of mutual-exclusion body, or
critical section, is less than the time to relinquish and reacquire a processor.

Unlike the dynamic object, the atomic object does not support guard
expressions since these may cause degradat ion of the system due to spinning.
Moreover, an atomic object does not have a unique thread. Th e thread of its
execution is the same as the caller' s th read. Thus there is not any additional
overhead required to access the atomic obj ect in comparison to the dynamic
object since it does not have to create a new thread.

The definition of an atomic object is as following.

atomic class X {

public:
[impure] int f();
pure int g() ;

} ;

int X: :f() { }

int X::g() { }

X: : f () is defined by impure member function, and X: : g () is defined
by pure function. Only one impure function can be executed on an atomic
object, or several pure functions can be executed. But both of impure and
pure functions can not be executed at a same time.

The qualifier impure/pure can be placed in front of the member function
declaration. If there is no explicit impure/ pure qualifier, the function is
assumed as an impure functio n .

23

4.3 Dynamic Object

A dynamic object encapsulate s the intern al data , membe r functions as legal
operations on the data, and even more the th rea d-of-contro l. It implies that
creating a dynamic object causes creating a new thread. The thread s can be
multiple in case of pure functions.

A dynamic object supports two type message passing mechanisms; syn
chronous and asynchronous. An asynchronous message to a dynamic object
results in asynchronous execution. The sender can do its own work without
waiting the completion of the invocation . Unlike asynchronous invocation,
a synchronous message causes the sender to wait for the completion of the
invocation.

Furthermore, the dynamic objec t supports future type synchronization.
In Multilisp [26), a future call results in asynchronous function call, and the
calling ·process does not wait for the completion. The result of the future
is transparent to the programmer. But the result of the future invocation
in PC++ is bounded to the future variable. The future variable may be
treated as a normal type variable. When the value of the variable is needed,
the execution waits for the future invoca tion.

The future type invocation can encapsulate the details of synchroniza
tion specification since we do not need any explicit construct to wait the call.
The waiting for the future invocation is automatically performed when it is
needed.

A task may want to wait for any of messages from other tasks, rather
than one specific message. If it is unknown in advance which message will
be available first, such behavior is called nondeterminism [5]. To avoid this
problem , most languages have intr oduced some expression as a controlling
mechanism based on the guarded command [17). Examples include the select
statement in CSP [31), or the guarded horn clause in Concurrent Prolog. The
dynamic object also supports guard expression using a when statement fol
lowing by function declaration. A guard expression may consist of primitive
data types such as integer, primitive operations such as addition, internal
variables, and message variables as in the argument declaration. But a side-

24

)

effective guard expression such as updating th e local states must be avoided
since it causes nondeterministic result of the invocation because the number
of evaluation of the expressio n can not be expected.

Like the atomic object, the impure/pure qualifier can be put in front
of a function declaration. Its behavior is the same as multiple readers and
single writer, as in case of the atomic object.

dynamic class X {

public:
// asynchronous invocat i on
[impure] [async] voi d f(arg-decl) [when(expression)];
// synchronous invo cation
[impure] [sync] int g(arg-decl) [when(expression)];
// future invocation
[impure] future int h(arg-decl) [when(expression)];
// pure invocation
pure [synclasynclfuture] int p(arg-decl)

[when(expression)];
};

void X: :f(arg-decl)
int X: : g (arg-decl)
int X: : h (arg-decl)
int X: :p(arg-decl)

main()
{

{
{

{

{

X *x = new X;
future int fv;

x->g();
async x->g();

}

}
}
}

fv = future x->g();
}

// create

// sync call
// async call
// future call

25

)

If there is no impure/pure qualifier in the member function declaration,
the function is assumed to be an impure function. If the return type of the
function is void, the function is assumed as async by default. If the return
type of the function is not void and there is no async or future qualifiers, the
function is assumed as a sync function by default.

Moreover, we can specify the type of call such as sync, async or future
even if the type is different from the type of declaration. In the above ex
ample, X: : g () is specified by sync type of th e call, but we can change the
default type call by any specific type of the call as shown above.

4.4 Using Future Types

The future type will receive a result of an asynchronous invocation. Its state
is either valid or invalid. When an instance of a future type is created, the
state of the variable is set to valid initially because there is no threads to be
waited. If a function call is invoked with a future variable, the future variable
is set to invalid until the invocation is done. A future type can be built from
a primitive type such as integer or float, and a user defined type.

The legal operations on the future type is the same as the operations of
its base type, and an additional operation which is wait(} to suspend until
the variable is determined. The operations on the future variables can be
categorized into strict and non-strict operations.

The non-strict operations use the variables but do not need the value
of the variables. Simple assignment and copy between future variables are
the example of the non-strict operations. These operations do not wait for
the completion of the call related to the variables. However, the other strict
operations, like addition and multiplication, which need the actual value of
the variable must block until the value is determined.

Many future variables can be possibly bound to an undetermined value
which is the result of a future call. The compiler does not know how many
future variables are related to a future call, but can know what are the
future variables and when the strict/non-strict access is used. Therefore

26

.)

)

the compiler can generate code ensuring that all accesses to future variables
check the state of the variables with a state information which is a structure
to maintain the lifetime of the futu re variables.

One possible way to imple ment the fut ure variable is by introducing
reference count and maintaining two types of future objects: global and local
future objects. The global future object is shared by all related local future
variables. It has the actual area of the value of the future variable, and
reference count which can tell how many future variables need the value. The
reference count can prevent the garbage collection since the global object can
be deleted automatically when the count reaches to zero. The local future
object has a value if the variable is valid , and a pointer to the global object.

When a future call is invoked, a global future object is created, and the
reference count is set to zero. If a local future variable is assigned to the
call or to the other local future variable, the reference count in the global
object is incremented, and the pointer in the local object is set to the global
object. When a local future object is resolved, the reference count in the
global object is decremented. Eventually the reference count reaches to zero,
then the global object will be destroyed since no local variables are related
to the global object. A new future is defined by putting future qualifier in
front of a base type.

dynamic class X {

public:
future int f(); II future type invocation

};

main()
{

X *x = new X;
future int qx, qy, qz;
int i, j;

qx = x->f O;
qy = qx;

II (1)
II (2)

27

')

};

qz = qy;
i=qy+1;
j = qx;
qz = i;

qx = x->f O;
qx.wait();

II (3)
II (4)
// (5)
II (6)

II call again
II explicit wait

In the above program, qx, qy, and qz are the future variables, and
X: : f () is also defined as a future function. The Figure 5 shows the behavior
of the variable. The valid variable is represented by the black dot, and invalid
variable by the white dot.

At (1), f () is invoked as an asynchronous manner with future type with
future type result, and qx is set to invalid since qx is waiting for the call f ().
So qx will be valid if the call f () is done.

At (2), qy is assigned to qx as a non-strict operation, and then qy is
also waiting for the call f ().

At (3), qz is also waiting for the call f () just like qy.

At (4), the statement i = qy + 1 means i is assigned to the value of
qy plus I. At this point, i needs the value of qy, but qy will be determined
after the call f (). Therefore the execution will suspend until the call f () is
done since plus operation is a strict operation.

At (5), j is assigned to qx, but j is not a future type. In other words,
this statement is that j is assigned to the value of qx as a strict operation.

At (6), qz does not need the value of the call f (), but only needs the
value of normal variable i. Thus qz is now valid instead waiting the call f ().

28

I T:x->f(} I I T:x->f(} I

VCD
Stage[l]

I T:x->f(} I r------,
1 T:x->f(} 1

L - - - - - - .J

F: Re/=3O

80
~/Re/=~\I

e®0
Stage[3] Stage[4]

r------,
1 T:x->f(} 1

L - - - - - - .J

r------,
' T:x->f()'
L - - - - - - .J

r--------,
F: Re/=1 e 1 F: Ref=0 • 1

L - - - - - - - - .J

e~
Stage[5]

@@
Stage[6]

Figure 5: Behavior of Future Variable

) 29

)

4.5 Parallel Object

A parallel object is the constru ct used to achieve data parallelism. The data
parallelism can be explained as simulta neous operations on large sets of data.
It can also be implemented in terms of control parallelism involving mult iple
str eams of contro l [29].

Data parallelism is well suited for numerical computations such as ma
trix computations. Moreover, the speedu p of the data parallelism does not
rely on the concurrency of th e code but on the size of data to be applied.
The feature makes more speedup than that in the control parallelism.

Research related to data parallelism is very rapidly growing. The data
parallelism has historically close relation to the SIMD (Single Instruction
Multiple Data) machines like Conne ction Machine. The languages for the
data parallelism are also developed on MIMD (Multiple Instruction Multiple
Data) machines as SPMD 7 (Single Program Multiple Data) style program
ming languages. The SPMD style programming is to write a single program
which is applied to multiple data.

A parallel object in PC++ is expressed as a SPMD style program. A
parallel object is a representative of the many worker objects, computation
agents. Every computation agent has a local data and its own thread of
control. The access of the local data from the other computation agents can
only be done by message passing mechanism. No guard expression can be
applied to the parallel object . The user view of message passing mechanism
is only synchronous, but the implementation is by asynchronous invocation.
The shape structure of the computation agents is assumed as a mesh in the
first version of PC++. A message passe d to a parallel object causes multiple
invocations to the computation agents .

The general form to define parallel class is as following.

// 2-dimensional mesh

7 SPMD programming is distinguished from SIMD programming, since a SIMD program
is usually executed in a lock-step manner, but a SPMD program is not so rigidly executed
as a SIMD program.

30

)

parallel class X on [][] {

};

public:
intf();

Creation of a parallel objec t is syntactically achieved by so-called shape
operator in the new statement.

X *x = new [5] [5] X;

The [5] [5] in the middle of new statem ent is called shape operator. The role
of shape operator tells the actua l size of th e paralle l object to the compiler.
In this case, a variable xis now a paralle l object with 5 by 5 grid structure.

The use of the parallel object is done by select operator and reduction
operator. The general syntax is

result='©' [reducer] [selector] <function-call>;

The reduction operator can be primitive binary operator such as + and *·
The reduction can be formalized as result = v1 EB v2 EB··· EB Vn, where the
computation agents are numbered 1 · • • n , EB is an associative binary operator.
The select operator is defined as following.

selector:== domain_selector
selector:== selector domain_selector
domain_selector :== '[' expression' .. ' expression']'
domain_selector :== '[' expression']'
domain_selector :== '[' ' .. 'expression']'

The example for the parallel object is described below.

31

j

main()
{

X *jobs= new [5][5] X;
int v, w;
©j obs->f ();
v = ©j obs->f ();
w = ©+jobs->f();
©[O .. 2] [1 .. 2]jobs->f ();

}

// 5 by 5 mesh

// invoke all agents
// nondeterminism
// reduce all results
II selective invocation

The user view of the message passing to a parallel object is just a normal
message passing. Thus the assignment to a invocation of the message passing
expression is allowed as in the following;

X *x = new [NJ X;
int v;
V = ©x->f (); // nondeterminism

But the result can not be expected, since it is not known which result of the
multiple invocation will be assigned to the result v. This is called nondeter
minism. The programmer should be aware of this nondeterminism. In many
cases, the assignment to a scalar variable is useful by reducing the multiple
data as the results of the invocations. It is called reduction.

PC++ also provides some basic useful operations related to the grid
structure.

dimof(). This function tells the dimensionality of the parallel object

numof(dim). It tells the number of computation agents on the dimension
dim

idxof(dim). It says the identity index of the dimension of the computation
agent

An abbreviation these refers to the parallel object itself rather than referring
to the computation agents themselves.

32

5 Implementation

PC++ has two components; runtime system and translator. The runtime
system of PC++ handles basically dynamic task creation, task scheduling,
and memory management. The t ask creation is light-weight since the cost of
creation of new task is cheaper than the cost of the creation of new process.

The translator converts PC++ source into C++ code, and compiles and
binds it with the runtime library routines. The important role of translator is
the detection of extended classes (atomic, dynamic, and parallel classes) and
qualifiers (pure, impure, sync, async, and future), and the generation of ap
propriate C++ code according to the characteristics of classes and qualifiers.
The overview of PC++ translator is shown on Figure 6.

5.1 General Translation Technique

PC++ translator works in two phases. The first phase reads the PC++
source program and constructs an abstract syntax trees which is simplified
as a S-expression. 8 Each link node, which is also a S-expression, represents
a declaration, statement, or expression. A leaf node has the symbol ID and
name.

The second phase performs pattern matching between the S-expressions
and their related code generation routines, and produces associated C++
codes.

dynamic class X {
future int f(int a, int b);

};

The abstract syntax tree of the above example is:

8 S-expression is originally introduced in LISP. A S-expression is either a symbol, a
constant, or a list (S1, S2, ··•,Sn) of zero or more S-expressions (38]

33

)

)

PC++ Source

: i>c++· 1-\:alillslatm.·

Lexjcal an,d Syntax
Analysis

AST

Source Transform

C++ Source

• detect PC++ constructs

• build abstract syntax trees

• produce C++ codes

c++ Com~iler

C Front

C Source

C Compiler
.

Object Code

Linker

Executable Image

• Basic future types

• Internal Classes
{Thread,SpinLock, ...)

Runtime
Library

" Memory management
• Scheduler
• Synchronization Primitives

Figure 6: Overview of Translator

34

)

J

(CLASSkw (DYNAMICkw 11X11)

(FUNCTION "f "
(FUTUREkw INTkw)
(((INTkw) "a' 0)

((INTkw) "b"))

(I* null body *I)))

The abstract syntax trees for the class and function declaration can be de
scribed in more general as follows:

(CLASSkw (<specifier> <name>)
<member/data-declarat i ons>

)

(FUNCTION <name>
(<return-type>)
(<argument-list>)
(<function-body>))

The other constructs can be represented as S-expressions like the class and
function declaration.

In second phase, the translator generates c++ code. The examples for
the code generation will be explained in Section 5.4 through Section 5. 7.

5.2 Task Management

5.2.1 Thread

A task is represented by a thread object which contains information about
the state and execution contex t . The information includes the thread ID, a
pointer to the thread's stack, the stack size, a flag which tells pure/impure
and static/non-static, a pointer to the guard expression function, a pointer

35

)

)

to the execution function, runtime context, and etc. The thread object is
created by the translator when a parallel call is made.

The definition of the internal class Thread is as follows:

typedef void (*PFany)(...);
typedef int (*PFiany)(...);

void waitChildren(); // wait all child threads

class Thread {
ThreadState state; II BLOCKED,READY, ...
int pure_flag ; II PURE, IMPURE
int static_flag ; II STATIC, NON-STATIC
PFany core_f; II Executing Function
PFiany when_f; II Guard Function
int *stack; II Stack pointer
Dynamic□bject *domain ; II Bounded data object
Future□bject *waiting ; II Waiting Future
Context context; II save registers
int *arguments; II argument list

public:

};

II Constructor
Thread(int ispure=IMPURE, int isstatic=NONSTATIC,

II set
void

int
int
void
void
void
void
int
void

int stacksize=O);
arguments and functions
setargs(Dynamic□bject *dom, PFany cf,

PFiany wf, void *res, ...);
insert(Future□bject *waited); II onto Created
guard_test () ; // check the guard
run(); // start the invocation
wait () ; I I wait this thread
wakeup() ; I I set to ready
resume(); II set to running
save_context(); II for context switch
rest_context () ;

36

The function wai tChildren() is used to wait until all child computa
tions have terminated. The operations of the thread object are explained as
follows:

Thread(} is a constructor for a new task.

setargs() places related information onto the task, the information includes
a function to be executed , parameters, a guard expression function. and
a bounded dynamic object if the thread runs on the dynamic object.

insert() puts the task into created queue. After it is inserted, the task can
be picked and executed by the scheduler.

guard_test() is used by the scheduler. Before the execution, the scheduler
tests the guard. If it is true, the task can be run; Otherwise it is
remained in the created state.

run() is used by the scheduler, the scheduler picks the task from the created
queue, and invoke it by run()

wait(), wakeup(), resume() control the state of the thread. The state of
the thread is changed from the running state to the blocked state by
wait(), from the blocked state to the ready state by wakeup() , and
from the ready state to the running state by resume().

save_context(), rest_context() are used to switch running context which
is the current content of the registers

5.2.2 Scheduler

The number of schedulers is the same as the number of physical processors
in first version of PC++. The scheduler handles managing the task (threaa),
and checking the system status which is either processing done or deadlock.

The activation of the scheduler is shared by the activation of the task.
When a processor is idle, the scheduler will be activated. The scheduler
picks a task, and its control is switched to the task. The context switching

37

)

mechanism is implemented by coroutines which are provided as setjmp()
and longjmp() in UNIX. 9

class Scheduler {
private:

Context context;
int proc_id;

II Context of the scheduler
II processor id

void
void

do_task(Thread *t);
do_resume (Thread *) ;

II run the thread
II resume the thread

public:

friend
};

int save_context () ;
void rest_context () ;

void run();
void resume();
int check_system();

II initiate scheduler
II resume the scheduler

do_task() invokes the execution of the thread when the guard is true. The
state of the thread is changed from the created state to the running
state .

do_resume() resumes the thread from the ready state to the running state.

run() initiates the scheduler.

resume() resumes the scheduler when the processor is idle.

check_system() check the system whether the program is completed or the
system is deadlocked.

9UNIX is a registered trademark of AT&T Bell Laboratories

38

j

5.2.3 Thread Overhead

In order to execute a task, a new created thread must be added to the shared
the created queue which is protected by a spinlock. The scheduler dispatches
a thread from the created queue, tests the guard and purity to ensure reader
writer style lock, and eventually activates th e task.

The use of a shared queue by a spinlock will be a significant bottleneck
[19]. Figure 7 shows the overhead to create, start and delete the threads
which have not any execution body, namely null threads, on various number
of processors. The curve shows degradation in performance according to
increasing the number of processors. The overhead comes mainly from the
thread start-up cost and context switch between threads, and the contention
to the shared resources, such as task queues (created and ready queues) .
As the number of processors increases, the contention to the shared queues
increases, and therefore the execution time also increases.

5.3 Memory Management

Every task (thread) can be migrated over any processors, and a data object
can be accessed by any tasks. It requires the single or shared memory address
space mechanism. Thus the stack and the data must be placed on the shared
memory space.

The dynamic memory allocation in PC++ performs on the shared mem
ory, but the static memory placement does not. To use static memory be
tween processors, the programmer must specify the memory as shared_t.

shared_t int xsum;
int

main()
{

ysum;
// shared memory
// non-shared memory
// bounded to processors

int *x = new int; // on shared memory
}

39

)

40

30

20

Time
in
Secs

1 2

■ 50,000

C 10,000

3 4 5 6

Number of Processors

7 8

Figure 7: Timing - Thread Overhead

40

9

)

PO

FreeList
Table

FreeList
Table

Shared Memory

Figure 8: Memory Management Scheme

41

_)

The memory spaces for xsum and x are located on the shared memory, but
the space for ysum is located on the privat e memory of every processor.

Allocation on the shared memory space causes an additional overhead,
because several processors can attempt to use the shared memory simulta
neously, but only one allocati on can be performed at a time. Thus PC++
provides more efficient memory allocat ion routine on shared memory space.
The new and delete operator are redirected to the new efficient allocation
routine.

The general scheme of the memory allocation is shown on the Figure 8.
Every processor maintains Free List Table and Local Memory Chunk. The
Free List Table is an array of the pointers to the list of free memory cells.
The Local Memory Chunk is the unused memory but it is allocated from the
shared memory. When a task reques t s an allocation of memory , the task
lookup first the Free List Table on the processor whether the processor has
available free memory. If it does, the system gives it to the task. But if it does
not have available free memory, the system checks the Local Memory Chunk
and partitions the chunk into the appropriate size. If the effort of trying
to allocate memory on the local chunk fails , then the system requests a new
memory chunk to the shared memo ry. When a t ask requests deallocation of a
memory, the system simply app ends the memory to Free L ist Table according
to the size of the memory.

The performance of the memory management in Figure 9 is quite good
comparing with the shmalloc () and shf ree () in the Sequent Runtime Li
brary. The benchmark test is performed under one million iterations for the
allocation and deallocation of the memory randomly with the size 32 bytes
and 64 bytes.

5.4 Translation of Atomic Object Class

The invocation of the member function on the atomic object does not require
creation of a new thread. The thread of its execution is the same as the
caller's thread.

42

)

80

70

60

50

40

30

20
Time
in
Secs

10

-I
I

1 2

... -o--...
9"

--

CJ- -
c.. -

., original scheme
■ new scheme

64 bytes
32 bytes

._ ______ ~-- ______ .,,,.

3 4 5 6 7 8
Number of Proc essors

....

9

Figure 9: Timing - Memory Allocation/Deallocation

43

10

The operations on an atomi c obj ect are reader-write r style mutual exclu
sive. A writer task must have exclu sive access. A reader task may share the
atomic object with an unlimi ted numb er of other reader tasks. The reader
writer lock for the atomic obje ct is implemented by busy waiting spinlock.
If locking the atomic object is not successfu l because the other task already
accesses the object, the current task is left spinning until the atomic object
is released by the other task. The genera l reader-writer locking mechanism
is explained in [16].

Every user atomic class object is a subclass object of the internal class
AtomicObject.

class AtomicObject publi c Obj ec t {
private:

SpinLock a_lock; // lock variable
int n_reader , n_writer;

public:
AtomicObject();
void pure_lock(); II readers
void pure_unlock();
void impure_lock(); II writer
void impure_unlock();

};

The pure member functions of an atomic object act as readers, and are pro
tected by pure_lock() and pure_unlock(). The impure member functions
act as writers, and are enclosed by impure _lock() and impure_unlock().

The qualifier pure/impure can be placed in front of the function decla
ration. If the qualifier is not described, the function is assumed as impure
function. <T1> and <T2> can be any type. The following code shows a user
program which uses an atomic object class.

atomic class X {
public:

44

pure <T1>
[impure] <T2>

};

<T1> X: :f(args) {

<T2> X: :g(args) {

main()
{

X *X = new X;
x->g();

}

f(args) ; II reader lock
g(args) ; II writer lock

}

}

The role of the translator for the atomic object is to produce C++ code
surrounded by pure_lock()/unlock() or impure_lock()/unlock(). For
the above example, the translator generates following code.

class X : public AtomicObject {

};

public:
<T1> org_f(args); // just rename
inline <Ti> f(args)
{

}

pure_lock();
<T1> zztmp = org_f(args);
pure_unlock();
return zztmp;

<T2> org_g(args);
inline <T2> g(args)
{

}

impure_lock();
<T2> zztmp = org_g(args);
impure_unlock();
return zztmp ;

45

)

<Ti> X: :org_f(args) { }
<T2> X: :org_g(args) { }

extern "C" pc_usr_main() I I mai n () ==> pc_usr_main()
{

}

X *X = new X;
x->g();

The args in the function declaration represents the argument declara
tion list, and args in the function call represents parameter list. The original
function f () will be renamed by org_f (). The execution of the original func
tion will be protected by pure/impure lock() and unlock() according to
its characteristic.

5.5 Translation of Dynamic Object Class

Unlike the atomic object , the invocation of a member function on the dy
namic object creates a new thread. If a call on the dynamic object is re
quired, then a new thread is created and the dynamic object is bounded to
the thread.

The purity, which is either pure or impure, is specified by the qualifier
in front of the member function declaration just like the atomic object. The
semantic of the reader-writer style lock on the dynamic object is the same
as that on the atomic object. But the implementation of pure/impure lock
is different from that for the atomic object. When a task tries to lock a
dynamic object, and the obje ct is alrea dy locked by other tasks, the task will
be suspended and its control will be transferred voluntarily to the scheduler.

The user dynamic class will be a sub-class of DynamicObject by the
translator.

class Dynamic□bject public Object {
private:

46

)

SpinLock
short
short

d_lock;
n_reader;
n_writer;

public:
Dynamic□bject();

int check_purity (int ispure);
void undo_purity(int ispure);

};

The pure/impure locks are implemented by using check_puri ty () and
undo_purity() in the class DynamicObject. The function check_purity() is
considered as a reader lock if the argument is pure; otherwise, it is considered
as a writer lock.

The following code is an example for the use of dynamic object. <T>
can be any type. But in the first implementation, if the function is specified
with the future qualifier, <T> is allowed only one of int, short, long, float,
and double.

dynamic class X {
public:

pure async <T> f(args) [when(expression)];
II For example,
II pure int lookup(int key) when(key!=O);

};

<T> X: :f(args) { ... } // body of f ()

main()
{

X *x = new X;

x->f (); II default call

sync x->f(); II explicit sync call

47

)

}

The member function f () is by default considered as asynchronous in
vocation. But the invocation type can be changed by specifying the qualifier
in front of the function call statement. For the above example, the following
code is generated.

class X: public DynamicObj ect {
public :

<T>
void
int

org_f(args);
core_f(<T> *res ,
when_f(args) ;

// just
ar gs);

Thread *thread_f(voi d *• ar gs)
{

rename

Thread *zzt = new Thread(NON_STATIC,PURE);
zzt->setargs(this,(PFany)X::core_f,

(PFiany)X::when_f, zzret, args);
return zzt;

}

<T> async_f(args)
{

// async call

}

<T> zzdurnmy;
if(_P_this_dynamic == this)

zzdurnmy = org_f(args) ;
else thread_f(&zzdurnmy, args)->insert();
return zzdurnmy;

<T> sync_f(args)
{

// sync call

<T> zzret ;
if(_P_this_dynamic == th is)

zzret = org_f(args);
else {

48

)

};

}

}

Thread *zzt = thread_f (&zzret , args);
zzt->wait(zzt->inser t ()) ;

return zzret;

Future_<T> future_f(ar gs) // f ut ure cal l
{

}

Future_<T> zzlocal;
if(_P_this_dynamic == this) {

zzlocal = or g_f(args);
} else {

}

Future□bject *zzremote;
zzremote = newFuture(sizeof(<T>);
Future_<T> zztmp(zzremote);
Thread *zzt = thread_f(

zzremote->result_ptr(),args);
zzt->insert(zzremote) ;
zzlocal = zz t mp;

return zzlocal;

// default f()
<T> f(args)

-- async_f ()
{ return async_f(args);}

I I rename f ()
<T> X: :org_f(args) { . .. }

void X::core_f(<T> *x, args) //non-inline
{ x? x=f(args) f(args);}

int X::when_f(args) //guard
{ return expression;}

extern "C" pc_usr_main()

49

)

{

X *x = new X;

x->f O;

x->sync_f ();
}

To support various invocation types (sync, async, and future), the
translator produces async_f () , sync_f (), and future_f () for a function
f().

The translator does not crea te a new thread if the invocation is made
on the same dynamic object . To do this, the variable _p _ this_dynamic
keeps the current dynamic object on each processor. For example, consider
a dynamic object class X has two member functions f () and g (), and the
function g () to the same object is called inside f ().

dynamic class X {
int f ();
int g();

};

int X: :f()
{

this->g();

}

II (1) same obj ect

At point (1), _p _this_dynamic is the same as this. Thus the invocation of
g () does not create a new thread.

50

)

5.6 Translation of Future Type

A future object is implemented by two type objects; global and local future
objects. The global object is shared by all related local future objects. It
has the state, reference count which tells how many local future objects are
involved in the global future object, and the owner thread which produces
the result of the future object.

The global future object Future Obj ect is defined as follows:

II Internal Global Future Object
class FutureObject public Object {
private:

SpinLock f_lock;
FutureState state;
short refcount;
Thread *owner;
int owner_id;
II here is result area

public:
FutureObject(size_t sz) ;
-FutureObject();
void lock(), unlock();
void wait();
char *result_ptr();
int add_ref();
int sub_ref();
void set_owner(Thread *t) ;
void set_owner_id(int id);

II 'valid' or not
II# referenced
II executing thread

II wait a thread
II
II
II

data location
increment refcount
decrement refcount

void set_state(FutureState s);
FutureState get_state();
II wake up all waiting thread via future
void wakeup();
friend FutureObject *newFuture(size_t sz);

} ;

51

)

)

The function add_ref () and sub_ref () are used to handle reference count .
If a new local object is created and accesses the global object, add_ref () is
called to increment reference count. If a local object is resolved or does
not need the global object, the refer ence count will be decremented via
sub_ref () . Eventually, if the refe rence count becomes zero, the global object
will be destro yed automaticall y.

The local future object holds its st at e (valid or invalid), the local value ,
and the pointer to the global futu re objec t . The behaviors of the local object
are maintaining the reference count of the global object , assigning value or
other local object, and referen cing the value.

The local object can be implemented by two objec t classes; Future_ <T>
and Future_generic. Every user local object Future_ <T> is a subclass of
the generic future class Future_generic.

// User Generic Local Future Object
class Future_generic {
private:

Future□bject

short
*remote;

data_size;
// i nternal object

FutureState state; // local state
public:

} ;

Future_generic(Future□bject *rem,int sz);
Future_generic(int sz) ;
Future_generic(Future_generic *x,int sz);
void *data_area(); // local data location
void assign(Future_generic *x); // other future var
void assign(void *x); // normal value
void wait();

The following code may be written as a user program. A dynamic class
X has f () as a future function.

dynamic class X {

52

)

public:
future <T> f () ;

};

main()
{

}

X *x = new X;
future <T> f i;
<T> v;
fi = x->f O;

V = 100 + fi;

The example use the type <T> for future call. Thus the translator gen
erates a future type; Future_ <T>. The following code is produced for the
above example.

class Future_<T> public Future_generic {
private:

<T> val; // local value
public:

Future_<T>(Future□bject *rem)
: Future_generic(rem, sizeof(<T>)) {}

Future_<T>(<T> &x) : Future_generic(sizeof(<T>))
{val= x; }

Future_<T>(Future_<T> &x)
: Future_generic(&x,sizeof(<T>)) {}

Future_<T> & operator= (<T> &x)
{ Future_generic::assign((void *)&x); return *this; }
Future_<T> & operator= (Future_<T> &x)
{ Future_generic::assign(&x); return *this;}

<T>
void

value() { Future_generic::wait(); return val; }
wait() { Future_generic : :wait();}

53

)

operator <T>() { return value();}
};

class X : public DynarnicObject {

public:
Future_<T> future_f(); / / f()

};
extern 11C11 pc_usr_main()
{

}

X *x = new X;
Future_ <T> fi;
<T> v;
fi = x->f();

V = 100 + fi;

II future variable

5. 7 Translation of Parallel Object Class

The implementation of the parallel object can be done with two objects;
ManagerObject and WorkerObject as shown on Figure 10.

The ManagerObject holds the information about the topology and di
mension of the objects, and the other related informations as shown on the
definition of the class ManagerObject. The WorkerObject holds the pointer
to the ManagerObject, and its identification indices related to the dimension.
The parallel object provides several built-in operations; idxof (), numof (),
and dimof (). These built-in operations can be used in the user program.

The selective message passing mechanism to the parallel object is im
plemented by ViewObject. The ViewObject handles subset operations of the
WorkerObjects, invocation of the subset of the WorkerObject, and reduction
of the results.

54

.J

View 1

View 2

• •
View n

Parallel Object

Manager

Workers

Figure 10: Relationship in Parallel Object

A ManagerObject is a representative of the set of WorkerObjects.

class ManagerObject :
private:

public:

WorkerObject
int
int
int

public Object {

*workers;
w_size;
n_dim;
n_num[MAX_DIM];

// Workers
// sizeof(worker)

ManagerObject(WorkerObject *objs, int wsiz, ...);
int dimof () ;
int numof(int dim);

};

A WorkerObject is also a DynamicObject.

class WorkerObject
private:

public Dynamic□bject {

int
public:

Manager□bject

int

ids[MAX_DIM];

*manager;
numof(int dim);

55

// indices

)

int
int

dimof () ;
idxo f (i nt di m);

Whenever a call to the paralle l object is made, a ViewObject is created
and used to specify the selection of the WorkerObjects.

class ViewObject
private:

public Obj ect {

lower[MAX_DIM];
upper[MAX_DIM];
n_workers ;

int
int
int

public:
ManagerObject *manager ;
int parCall(PFany func, void *results,

int r_size, ...);
int int_reduce(int red_op , int res[]);
float float_reduce(int red_op, float res[]);
friend ViewObject *newViewObject(ManagerObject *, ...);

The following user program is an example which uses a parallel object.

parallel class X on[][] {
public :

int lv ;
int f(args);

int X: :f(args) { ... }

#define N 10
main()
{

= new [NJ [NJ X;

56

J

}

int v;
<Dx->f(args);
v = <Dx->f(args);
v = <D+x->f(args);
v = <D+[1 .. 3][0 .. 2]x->f(args);
v = <D[2] [3]x->lv;

// (1)
// (2)
// (3)
// (4)
// (5)

The variable xis a parallel object with N by N grid structure . The object xis
a set of WorkerObjects and has a Manage rObject. Whenever an invocation
to the paralle l object, a ViewObject is used.

class X : public Worker□bject {
public:

int
int
void
int
{

lv;
f(args);
core_f(int *, args);
parallel_f(int red_op, View□bject *zzview)

int *zzres = new int[zzview->num_worker()];
zzview->parCall((PFany)X::core_f,

}

zzres , sizeof(int),args);
zzfinal = zzview->in t _reduce (red_op,zzres);
delete zzres;
return zzfinal;

X *get_peer(int d1, ...);
};

// not changed
int X: :f(args) { ... }
void X::core_f(int *zzret, args)
{

zzret? *zzret = f(args) : f(args);
}

#define N 10
extern "C" pc_usr_main ()

57

)

)

{

X *x = new X [N * N] ;
new ManagerObject(x, si zeof(X), N, N) ;
int v;
x->parallel_f(NONE_REDUCE,

newViewObject(x->manager). args); II (1)
v = x->parallel_f(NONE _REDUCE,

newViewObject(x- >manager). args); II (2)
V = x->parallel_f(PLUS_REDUCE,

newViewObject(x->manager), args); II (3)
V = x->parallel_f(PLUS_REDUCE,

newViewObject(x->manager , 1,3 , 0,2) , args); II (4)
V = (x->get_peer(2,3))->l v; II (5)

}

The parallel_f () invokes multiple threads of the WorkerObjects, waits
for the threads, and finally reduces the results. The function get_peer()
returns a pointer to the WorkerObj ect related to the arguments which are
the indices .

5.8 How to use PC++

PC++ is the superset of C++. The syntax of PC++ is described in the
appendix A.

To compile a PC++ program, type as following

Y. pc++ command-line

For example, we have a source program matrix. C and want to produce the
runnable object file matrix.

Y. pc++ -o matrix matrix.C

58

)

Then the translator of PC++ produces file matrix .. C and compile it by
C++ compiler to the file matrix .. o. Finally we can get the object file
matrix.

The runtime parameters such as the number of processors and stack size
of the each thread can be specified by setenv command before the execution.
For example, if we want to run matrix on 4 processors with 4096 byte stack
of each thread.

¼ setenv PROCS 4
¼ setenv STACKSIZE 4096
¼ matrix

If the environment PROCS and STACKSIZE are not specified, PC++ assumes
them as 1 processor and stack size 2048 bytes respectively.

59

'

')

6 Conclusion

!ime 50
m
Secs

1 2 3 4

■ 100 X 100
e 150 X 150

X Seq(lO0x!00 }

+ Seq(l50xl50}

5 6 7

Numb er of Processors

8

Figure 11: Tim ing - Matrix Multiplication

9

Figure 11 shows the benchmark test to compute integer matrix multipli
cation with various processors on Sequent Symmetry . Figure 12 is the curve
to sort integer lists with random distribution by means of quick sort algorithm
[32]. The curves are affected by the overhead of creation/ deletion of threads,
busy waiting spinlock to check purity, and memory allocation/deallocation.
The slope is smoothly flattened when many processors are used because ev
ery processor attempts to get a new task from the shared queue. But the
initial slope of the curve is fairly good. The improvement can be achieved in
several ways:

60

)

60

50

40

30

20

Time
in 10

Secs

1

l'J 250,000

• 500,000

X Seq(250,000)

+ Seq(S00,000)

2 3 4 5 6 7 8 9

Number of Processors

Figure 12: Timing - Quick Sort

61

• Separate task queue. The shared task queue will be a significant
bottleneck [19]. The separate task queue on each processor will help to
reduce overhead .

• Queue-based locking . The first implemen tation uses spinlock for
critical section. But it can be re-implemented by queue-based spinlock
which is introduced in (19].

Extending C++ to support various concurrent and parallel computation
based on both process-orientation and data-orientation has demonstrated
that it is feasible to implemen t .

The data parallelism is emphasized more today because of its semantic
simplicity , its ability to easily express large amounts of parallelism, and its
scalability. PC++ can satisfy the expressiveness of the data parallelism as
well. Moreover, PC++ provides high-level class-based abstraction for various
parallel programming, as C++ provide s object-oriented environment.

But this work does not mention the inheritance. The inheritance will be
a one of remaining future works. The extension to the distributed memory
machines will be researched furthermore, since the current trends of massively
parallel computing is on the line of distributed memory machines, and the
maximal speedup and scalability can be achieved more effectively on the
distributed memory machines .

62

)

_)

A Grammar of PC++

The grammar of PC++ is an extension of C++. The following PC++ gram
mar will be added to the C++ grammar which is given in [18].

unary_expression:

domain_spec postfix_expression
run_qualifier postfix_expression

allocation_expression:

"new" parallel_declarator

primary_expression:

"these"

domain_spec:
"(!)"

"(!)" binary_operator
domain_spec II [II ii ii expression
domain_spec II [" expression "] II

domain_spec II [" expression II II

parallel_declarator:
"[" expression 11] 11 class_name

"] II

expression

I 11 [11 expression "] 11 parallel_declarator

run_qualifier:

63

II] II

)

"sync"
I "async"
I "future"

type_specifier:

"sync"
"async"
"future"
"impure"
"pure"

class_specifier:

class_head shape_operator 11 { 11 member_list 11 } 11

class_head shape_operator 11{ 11 11 } 11

class_head:

pc_class_key class_name
pc_class_key identifier

pc_class_key:
"atomic" class_key

"dynamic" class_key
"parallel" class_key

shape_operator:
"on" 11 [11 11] 11

shape_operator 11 [11 11] 11

64

)

member_declaration:

decl_specifiers member_dec l arator_list
guard_express i on 11 ; 11

guard_expression:
"when" 11 (11 conditional_expression 11) 11

65

)

)

B Example Prog:ram s

B.1 Bounded Buffer Problem

#include <stream.h>
#include <stdlib .h>

#define N 10

dynamic class Buffer {
private:

int buf[N+1];
int ip , op , n ;

public:
Buffer() { ip=op=n=O;}
void put(int c) when(n<N);
int get() when(n>O);

};

void Buffer: :put(int c)
{

}

buf[ip] = c;
ip = (ip+1) ¼ N;
n++;

int Buffer: :get()
{

}

int c = buf[op];
op= (op+1) ¼ N;
n--;
return c;

66

// Producer
dynamic class Producer {

Buffer *buf;
int id;

public:
Producer(Buffer *b, in t p) { buf=b; id= p; }
void run(int n);

};

void Producer::run(int n)
{

}

for(int i=O; i<n; i++) {
id++;
buf->put(id);

}

dynamic class Consumer {
Buffer *buf;
int id;

public:
Consumer(Buffer *b) { buf=b;}
void run(int n);

};

void Consumer :: run(int n)
{

int c;
for(int i=O; i<n; i++) {

c = buf->get ();
cout <<"Consume"<< c << 11\n";

}

}

main(int argc. char *argv[])
{

cout <<"Usage:"<< argv[O] <<" #data\n";

67

}

int n = atoi(argv[1]);
Buffer *buf = new Buffer;
Producer *prod= new Producer(buf,O);
Consumer *cons= new Consumer(buf);
Consumer *cons2 = new Consumer(buf);

cons->run(n/2);
cons2->run(n-n/2);
prod->run(n);

B.2 Quick Sort

#include <stream.h>
#include <stdlib.h>

dynamic class Array {
private:

};

int from, to, *aptr;
int insertion_sort();

public:
Array(int f, int t, int *ap)

{ from=f; to=t; aptr=ap;}
future int quick_sort();

int Array::insertion_sort ()
{

int i, j, v;
for(i=from+1; i<to+1; i++) {

v = aptr[j=i];
while(j>from && aptr[j-1]>v) {

68

)

}

}

aptr[j] = aptr[j-1] ;
j--;

aptr[j] = v;
}

return to - from+ 1;

#define MIN_SIZE 50
int Array::quick_sort()
{

if(to - from< MIN_SIZE) {
return insertion_sort ();

}

// partition
inti= from - 1;
int j = to;
int v = aptr[j];
int t;
do {

while(aptr[++i] < v);
while(aptr[--j] > v);
t = aptr[i];
aptr[i] = aptr[j];
aptr[j] = t;

} while(j > i);
aptr[j] = aptr[i];
aptr [i] = aptr [to] ;
aptr[to] = t;

Array *left= new Array(from, i-1, aptr);
Array *right= new Array(i+1, to, aptr);
future int lval = left->quick_sort();
future int rval = right->quick_sort();

return (int)lval + (int)rval;

69

}

main(int argc, char *argv[])
{

int n;
int *xlist;
n = atoi(argv[1]);
if(n <= 0) {

cout << form("Usage: Y.s #elmts\n", argv[O]);
return 1;

}

// make sample data
xlist = new int[n];
for(int i=O; i<n; i++) {

xlist[i] = rand();
}

Array *list= new Array(O,n-1,xlist);
future int count= list->quick_sort();

// wait here by two ways
// one is 11waitChildren() 11

// two is by strict access
cout <<"Countis 11 << (int)count << 11\n";

}

B .3 7r Calculation

// PI - calculation
#include <stream.h>
#include <stdlib.h>

parallel class PiArea on [] {

70

public:
double area(double width) ;

};

double PiArea::area(double width)
{

int idx = idxof(0);
double x;
x = (idx ❖ 0.5) * width;
return 4.0 / (1.0 + x * x) * width;

}

main(int argc, char *argv[])
{

}

int n = atoi(argv[1]);
if(n <= 0) {

}

cout <<"Usage:¼"<< argv[0] <<" #size \n";
return 1;

PiArea *curve= new [n] PiArea;
double pi_val = ©+curve->area(1.0/(double)n);

cout << form("PI value is ¼15.10lf\n", pi_val);

B .4 Matrix Multiplication

#include <stream.h>
const int N = 50 ;

parallel class Matrix on[][] {
public:

double v;

71

)

)

void multiply(Matrix *a, Matrix *b);
};

void Matrix::multiply(Matrix *a; Matrix *b)
{

}

inti= idxof(O);
int j = idxof(1);
V = O;
for(int k=O; k<N; k++) {

v += ©[i] [k]a->v * ©[k] [j]b->v ;
}

main(int argc, char *argv [])
{

}

Matrix *a= new [N] [N] Matrix;
Matrix *b = new [N] [N] Matrix;
Matrix *c = new [N] [N] Matrix;
for(int i=O; i<N; i++) {

for(int j=O; j<N; j++) {
©[i] [j]a->v = 1;
©[i] [j]b->v = 1;

}
}

©c->multiply(a,b); // in parallel
cout << "Matrix Multiplication is done\n 11 ;

72

)

)

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed
Systems. The MIT Press, Cambridge, Mass., 1986.

[2] Gul Agha and Carl Hewitt. Actors: A Conceptual Foundation for Con
current Object-Oriented Programming. In Research Direction in Object
Oriented Programming, The MIT Press, Cambridge, MA, 1987.

[3] Pierre America. POOL-T: A Parallel Object-Oriented Language. In
Object-Oriented Concurrent Programming, The MIT Press, Cambridge,
MA, 1987.

[4] Gregory R. Andrews, Fred B. Schneider. Concepts and Notations for
Concurrent Programming. ACM Computing Surveys, Vol. 15, No. 1,
March 1983.

[5] Gregory R. Andrews. Paradigms for Process Interaction in Distributed
Programs. ACM Computing Surveys, Vol. 23. No. 1, March 1991.

[6] Henri E. Bal, Jennifer G. Steiner, Andrew S. Tanenbaum. Programming
Languages for Distributed Computing Systems. ACM Computing Sur
veys, Vol. 21, No. 3, September 1989.

[7] Brian N. Bershad, Edward D. Lazowska and Henry M. Levy. PRESTO:
A System for Object-oriented Parallel Programming. Software-Practice
and Experience, Vol. 18, No. 8, August 1988.

[8] Timothy Budd. An Introduction to Object-Oriented Programming.
Addison-Wesley, 1991.

[9] P. A. Buhr, Glen Ditchfield, R. A. Stroobosscher and B. M. Younger.
µC++: Concurrency in the Object-oriented Language C++. Software
Practice and Experience, Vol. 22(2), February 1992.

[10] David Callahan and Burton Smith. A Future-based Parallel Language for
a General-purpose Highly-parallel Computer. In Language and Compilers
for Parallel Computing, David Gelernter, Alexandru Nicolau and David
Padua (Eds.), The MIT Press, 1990.

73

)

[11] William E. Carlson. Ada: A Promising Beginning. In The ADA Pro
gramming Language: A Tutorial, Sabina H. Sib and Robert E. Fritz
(Eds.), Computer Society Press, 19840

[12] Nicholas Carriero and David Gerlenter. How to Write Parallel Programs:
A Guide to the Perplexed. ACM Computing Surveys, Vol. 21, No. 3,
September 1989.

[13] Hohit Chandra, Anoop Gupt a, and John L. Hennessy. COOL: a Lan
guage for Parallel Programming. Technical Report CSL-TR-89-396,
Stanford University, 19890

[14] Siddhartha Chatterjee. Compiling Data-Parallel Programs for Effi
cient Execution on Shared-Memory Multiprocessors. Ph.D. dissertation,
CMU-CS-91-189, Carnegie Mellon University, October 1991.

[15] Roger S. Chin and Samuel T. Chanson. Distributed Object-Based Pro
gramming Systems. ACM Computing Surveys, vol. 23, No. 1, March
1991.

[16] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent Control with
"Readers" and "Writers". CACM, Vol. 14, No. 10, October 1971.

[17] E. W. Dijkstra. Guarded commands , nondeterminacy, and formal
derivation of programs. CACM Vol. 18, No. 8, August 1975.

[18] Margaret A. Ellis, and Bjarne Stroustrup. The Annotated C++ Refer
ence Manual. Addison-Wesley, 1991.

[19] John E. Faust and Henry M. Levy. The Performance of an Object
Oriented Threads Package. ECOOP /OOPSLA '90 Proceedings, October
1990.

[20]

[21]

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker.
Solving Problems on Concurrent Processors. Vol I, General Techniques
and Regular Problems. Pren tice-Hall, Englewood Cliffs, N.J., 1988.

Eran Gabber. VMMP: A Practical Tool for the Development of Portable
and Efficient Programs for Multiprocessors. IEEE Transactions on Par
allel and Distributed Systems, Vol. 1, No. 3, July 1990.

74

J

[22] N. H. Gehani, W. D. Roome. Concurrent C. Software-Practice and Ex
perience. Vol. 16(9), September 1986.

[23] N. H. Gehani and W. D. Roome. Concurrent C++: Concurrent Pro
gramming with Class{es). Software-Practice and Experience, Vol. 18,
No. 12, December 1988.

[24] N. H. Gehani. Message Pass ing in Concurrent C: Synchronous versus
Asynchronous. Software-Practice and Experience, Vol. 20, No. 16, June
1990.

[25] N. H. Genhani, W. D. Roome. Implementing Concurrent C. Software
Practice and Experience. Vol. 22, No. 3, March 1992.

[26] Robert H. Halstead, Jr. Multilisp: A Language for Concurrent Sym
bolic Computation. ACM Transactions on Programming Languages and
Systems, Vol. 7, No. 4, October 1985.

[27] P. Brinch Hansen. Distributed Processes: A Concurrent Programming
Concept. CACM Vol. 21, No. 11, November 1978.

[28] Philip J. Hatcher and Michael J. Quinn. Data-Parallel Programming on
MIMD Computers. The MIT Press, 1991.

[29] W. Daniel Hillis and Guy L. Steele, Jr. Data Parallel Algorithms.
CACM, Vol. 29, No. 12, December 1986.

[30] C. A. R. Hoarse. Monitors: An Operating System Structuring Concept.
CACM, Vol. 17, No. 10, October 1974.

[31] C. A. R. Hoarse. Communicating Sequential Processes. CACM, Vol. 21,
No. 8, August 1978.

[32] E. Horowitz and S. Sahni. Fundamentals of Computer Algorithms. Com
puter Science Press, 1978.

[33] Koru Hosokawa, Hiroaki Nakamura and Tsutomu Kamimura. Concur
rent Programming in COB. In Lecture Notes in Computer Science, No.
491, Concurrency; Theory, Language and Architecture, 1989.

75

)

[34] Yuuji Ichisugi, Akinori Yonezawa. Exception Handling and Real Time
Features in an Object-Orien ted Concurrent Language. In Lecture Notes
in Computer Science, No. 491, Concur rency; Theory, Language and Ar
chitecture, 1989.

[35] Yutaka Ishikawa, Hideyuki Tokuda, and Clifford W. Mercer. Object
Oriented Real-Time Language Des ign: Constructs for Timing Con
straints. ECOOP /OOPSLA '90 Proceedings, 1990.

[36] Harry F. Jordan, Muhammad S. Benten , Gita Alaghband , and Ruediger
Jakob. The Force: A Highly Portable Parallel Programming Language.
1989 International Conference on Parallel Processing, 1989.

[37] L. V. Kale . The Chare Ke rnel Para llel Programming Language and Sys
tem. 1990 Internationa l Conference on Paralle l Processing , 1990.

[38] Samuel N. Kamin. Programming Languages. An Interpreter-Based Ap
proach. Addison-Wesley, 1990.

[39] Michael F. Kilian. Object-Oriented Programming for Massively Parallel
Machines. International Conference on Parallel Processing, 1991.

[40] J. Peterson and A. Silberschartz. Operating System Concepts. Addison
Wesley, MA, 1983.

[41] Michael J. Quinn. Designing Efficient Algorithms for Parallel Comput
ers. McGraw-Hill, Inc., 1987.

[42] Stephen A. Schuman. Tutorial on ADA Tasking, Vol. I, Interprocess
Communication. In The ADA Programming Language: A Tutorial .
Sabina H. Saib and Rober t E. Fritz (Eds.), Computer Society Press,
1984.

[43] Robert Sedgewick. Implementing Quicksort Programs. CACM, Vol. 21,
No. 10, October 1978.

[44] D. B. Skillicorn. Practical Concurrent Programming for Parallel Ma
chines. The Computer Journal, Vol. 34, No. 4, 1991.

[45] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Publishing Company, 1987.

76

)

[46] Mark T. Vandevoorde and Eric S. Robets. WorkCrews: An Abstraction
for Controlling Parallelism. Internation Journal of Parallel Program
ming, Vol. 17, No. 4, 1988.

[47]

[48]

Peter Wegner. The Object-Oriented Classification Paradigms. In Re
search Directions in Object-Oriented Programming, B. Shriver and P.
Wegner (Eds.), The MIT Press, Cambridge, MA, 1987.

A. Yonezawa, E. Shibayama, T. Takada and Y. Honda. Modeling and
Programming in an object-oriented concurrent language ABCL/1. In
Object-Oriented Concurrent Programming, A. Yonezawa and M. Tokoro
(Eds.), The MIT Press, Cambrdige, MA, 1987.

77

