
)

)

)

)

)

)

)
)

)
)

)

)

u
)

Metacontent Based Techniques for the Regression Testing of

Component Based Software: A Case Study _

by

Soumya Chattopadhyay

A project report submitted to

Computer Science Department

Oregon State University

in partial fulfillment of the requirements for the

degree of Master of Science

Presented January 2003
Commencement January, 2003

-r

)

)

)

)

)

)

)
)

)

)

)
)

)

)

j
)

J
)

u

AN ABSTRACT OF THE PROJECT OF

Soumya Chattopadhyay for the degree of

Master of Science in Computer Science presented on January 2003.

Title: Metacontent Based Techniques for the Regression
Testing of Component Based Software: A Case Study

Abstract approved :

Gregg Rothermel

Component based software technologies are viewed as essential for creating the software

systems of the future. However, the use of externally provided components has serious

drawbacks for a wide range of software engineering activities, often because of a lack of

information about the components. One such drawback involves validation of

components. To address this problem previous researchers have proposed the notion of

metacontent. Metacontent describes static and dynamic aspects of a component , and

consists of information (metadata) about components, and utilities (metamethods) for

computing and retrieving such information. In this project we implement three new

metacontent based techniques that address the problem of validating component based

applications after they have been modified (also known as "regression testing"): a code

based approach, a specification based approach, and a hybrid approach that uses

information both at the code and at the specification level. We present a case study that

applies all three techniques to a real component based system.

)

)

)

)
)
)

)

)
)
)

)

)

)

) ,
)

)
)

)

J
)

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my major professor, Dr. Rothermel, for

his valuable ideas and constructive criticism . I am grateful for his endless patience and

continued faith shown in me throughout the life cycle of this system. The example he set is of a

person of great integrity, as a nice person, as an outstanding scientist, and as a patient educator.

His cheerfulness and never ending enthusiasm rubbed off on me too.

I would like to express my sincere gratitude to Dr. P. Tadepalli, and Dr. J. Herlocker, for

serving on my committee.

I am especially thankful to Hyunsook Do for her valuable suggestions, guidance, and

helpful contributions throughout the project.

J
A
~
0

)

)

)

)

)
)

)

)

)
)

)

)

)

)
)

)

J
)

)

)

)

Chapter 1: Introduction

Chapter 2: Background

2.1 Regression Testing

TABLE OF CONTENTS

2.2 Regression Test Selection

2.2.1 Minimization Techniques

2.2.2 Dataflow Techniques

2.2.3 Safe Techniques

2.2.4 Ad Hoc I Random Techniques

2.2.3 Component Metadata Based Regression Test Selection Techniques

Chapter 3: Metadata Based Regression Test Selection Techniques

3 .1 Code Based

3 .1.1. The Deja vu Technique

3.1.1.1 Control Flow Graphs

3.1.1.2 Code Instrumentation

3.1.1.3 Dejavu Regression Test Selection Algorithm

3.l.2jDejavu

3.2 Specification Based

3.2.1 Metadata Based Test Selection Using UML Statecharts

3 .2.2 Adapting Orso et al. 's Technique

3.3 Hybrid

3.3.1 The Category Partition Method

1

4

4

4

5

6

6

6

7

8

8

9

9

11

11

14

15

18

20

26

26

)

) 3.3.2 Metadata Based Selection using TSL 29
)

e 3.3.3 Adapting Orso's Technique 30

()
Chapter 4: Subject Infrastructure 32

) 4.1 NanoXML 32

)
4.2 Test Suites 35

4.2.1 Component Test Suite 35

4.2.2 Application Test Suite 36

) 4.3 Automation 37

)
4.4 UML Diagrams 38

' Chapter 5: Case Study 40

)
5.1 Code Based Technique 40

)
) 5.1.1 jDejavu 40

)
5 .1. 2 Procedure 41

)

) 5.1.3 Results 42

)

)
5.1.3.1 Application Test Selection 42

) 5.1.3.2 Component Test Selection 45

5.2 Specification Based Technique 48

) 5.2.1 Procedure 48
)

) 5.2.2 Results 50

5.2.3 Discussion 51
) , 5.3 Hybrid Technique 53

5.3.1 Procedure 53

) 5.3.2 Results 55

u

0

)
)

)

)

)

)

)

)

)
)
)

)

)

)

)

)

)

)

)

)

5.4 Comparisons across Techniques 57

Chapter 6: Conclusions and Future Work 61

APPENDIX A 63

APPENDIXB 64

BIBLIOGRAPHY 66

)

)
)

)

)

)

)

)
)

)
)

)

)

)

)

)

LIST OF FIGURES

Figure

1. Procedure avg and its CFG

2. Test Selection Algorithm.

3. Statechart specification of class Dispenser

4. Implementation of Dispenser in C

5. Modified Statechart specification of class Dispenser

6. Application and Component Interaction

7. N anoXML Components

12

17

17

22

27

33

LIST OF TABLES

Table
n

Page

1. Paths for Dispenser in C 25

)
2. Number of Component Classes and Methods 34

3. Number of Application Classes and Methods 34

4. Application Test Selection 42

) 5. Application Test Selection (Class-wise) 44

)
6. Class XMLParserFactory' s Methods 44

J 7. Class s tdXMLReader ' s Methods 45

)
) 8. Component Test Selection 46

) 9. Component Test Selection (Class-wise) 47
)
) 10. Class XMLParserFactory' s Methods 48

) 11. Class StdXM LReader' s Methods 48
)

) 12. Selection Rate for Each Version 51

) 13. Selection Rate for Each Version (Class-wise) 52

j 14. Component Frames Changed 55

)
15. Application Tests Selected 56

)

16. Comparison across Techniques 57

)
17. Comparing the Code Based and Hybrid Techniques 58

J 18. Application Test Selection for Code Based and Hybrid Techniques 59

0

)
)

)

}

)

J
)

)

)
)

)

)

)
)

)

)

>

Preface

In early 2001, the faculty of Computer Science voted to allow, on a trial basis, group

Master's projects, in which two or more Master's students work together under a

supervisor or supervisors to complete projects of larger scope than those which could be

completed by single individuals. It was decided that such a project could involve a single

project report, but that each student contributing to the project would need to have

primary responsibility for a sufficient portion of the project, and this responsibility should

carry over to preparation of the report, in which each student would have primary

responsibility for a substantial and clearly demarcated portion. It was further decided that

each student would have an independent defense, in which they presented the work,

focusing on their contribution , but also making the relationship of that contribution to the

larger project clear.

To my knowledge, this 1s the second group project completed under these

guidelines.

The purpose of this preface is to clarify the individual contributions of the three

students involved in the project. The project is primarily one involving construction of

infrastructure for experimentation with testing techniques, and performance of

experimentation. Each of the three students involved : Soumya Chattopadhyay, Vasanth

Williams, and Weiyun Wu, had primary responsibility for one portion of the

infrastructure construction and experimentation with one specific testing technique , with

shared responsibility for overall production of the infrastructure and consideration of

results. Each student also contributed to some degree , however, to the work done by the

others, through group meetings and individual consultation.

}

)

)

)

)

)
)

)
)

)

)
)

)

)

The following summarizes the allocation of primary responsibilities for completion of the

project.

Soumya Chattopadhyay

Infrastructure: UML diagrams for the application, tools for linear independent path

generation, TSL specification for the application, development of test suite for the

application, collection of traces from the execution of the test suites (component

and application), jDejavu.

Methodologies: Code Based testing procedure.

Report sections: Introduction, Background, Code Based subsection of Metadata

Based Regression Test Selection Techniques, NanoXML subsection of Subject

Infrastructure, Code Based Technique subsection of Case Study, Comparison

across Techniques, Conclusions and Future Work, NanoXML package

information in Appendix, and Method-wise Selection Information in Appendix.

Vasanth Williams:

Infrastructure: UML diagram for the component, TSL specification for the

component, development of test suite for the component, collection of traces from

the execution of the test suite (component), Tools for mapping of spectra

(MapTest) and for test selection (TestSelection).

Methodologies: Hybrid Technique procedure.

Report sections: Hybrid subsection of Metadata Based Regression Test Selection

)

)

)

)

_)

)

)

)

)
)
)

)

)

)

)

J
)
)

_)

)

Techniques, Test Suites and Automation subsections of the Subject Infrastructure,

Hybrid Technique subsection of Case Study and Comparison across Techniques.

Weiyun Wu:

Infrastructure : UML diagrams for the component classes , TSL specification for the

component, development of test suite for the component, the IgnoreNew and

lncludeNew comparing tools to select dangerous edges, the mapping tool to map

edges and paths, the selection mapping tool to map dangerous edges and paths.

Methodologies: Specification based testing procedure .

Report sections: Specification based subsection of Metadata Based Regression Test

Selection Techniques, UML Diagrams subsection of the Subject Infrastructure,

Specification Based Technique subsection of Case Study and Comparison

across Techniques.

Overall management of the project was conducted by myself (Dr. Rothermel), with Ph.D.

student Hyunsook Do providing substantial assistance.

Gregg Rothermel

)

)

)

)

)

)

)

)

)

)

)

)
)

)

)

)

)

)

J
)

)

)
)

)

)

)

Chapter 1

INTRODUCTION

Of late there has been tremendous interest in component-based software as an aid in

engineering large software systems [9, 15]. Increasingly , software engineers are building

systems by integrating externally developed software components with application­

specific code . Although this use of components provides many advantages , serious

drawbacks in that use are becoming apparent. These drawbacks affect a wide range of

software engineering activities. For example, component usage threatens our ability to

validate software and assess reliability, complicates maintenance, causes problems in

program understanding, and introduces threats to security.

Validation of component based software (and of applications that use

components) is a cause for concern. Several researchers have considered validation

problems and provided techniques for testing component based software . The problem

with these techniques is that they do not address issues of system evolution, yet with most

successful systems we spend more time testing them as they evolve, than testing them

initially.

Regression testing is the process of retesting components and applications as they

evolve . Harrold, et al. [4] suggest several techniques for validating evolving components

based on additional information (metacontent) provided along with the components .

Metacontents describe static and dynamic aspects of a component, can be accessed by the

component user , and can be used for various tasks. Metacontents consists of information

(metadata) about components and utilities (metamethods) for computing and retrieving

1

)

0
n
()

)

)

\

)

)

_)

)

)

)
)

)
)

)

)

)

)

J
)

)

)

)

such information. (For simplicity in this report, we use only the term metadata to refer

collectively to both metadata and metamethods.)

Although theoretically promising, this metadata based approach has not yet been

implemented or empirically studied. This project attempts to remedy this, exploring the

application of this metadata based approach to the problem of regression test selection for

component based software. We present techniques that use metadata for regression

testing of component based software using three different types of strategies: code based

regression testing using edge-level regression test selection algorithms; specification

based regression testing based on the category-partition method; and a hybrid of the two.

We evaluate these techniques through a case study applying them to several versions of

an XML parser (NanoXML) and an application program that uses that parser. Our

empirical results demonstrate that there can be significant savings in the number of test

cases that must be rerun for regression testing when component metadata are available,

and thus indicate the potential usefulness of metadata for regression testing.

The main contributions of the project are the following:

1. construction of infrastructure that allows empirical study of the use of metadata

for regression test selection using the three techniques

2. a case study that demonstrates the usefulness of metadata in code based regression

test selection for a real program.

In the next chapter we give some background on regression testing and test selection

m general, and component metadata based regression test selection techniques in

particular. Then, in Chapter 3, we describe how the three different techniques used in this

study work, and the algorithms they use . Chapter 4 describes the infrastructure that we

2

)

0
()

)

)

)

)

)

)

_)

)

)
)

)

)

)

)

)

)

)

) ,

)

built to carry out the study, including the test subjects , test suites for the subjects, UML

diagrams, and automation. Implementation details of the three techniques are reported in

Chapter 5; this chapter presents the actual procedure used to study the techniques,

modifications to existing tools required to implement the techniques, and issues that had

to be resolved to perform the study, as well as results of the studies. We summarize the

results and future work in the last chapter.

3

0
()
'l

,
)
)

)

_J
)

)

}

)
)

)

_)

)

)

2.1 Regression Testing

Chapter 2

BACKGROUND

Regre ssion testing is the verification (of a software system) that newly added features and

bug fixes have not created problems in the way of new faults in previously working

functions. Hence also called verification testing, regression testing is initiated after a

programmer has attempted to fix a recognized problem or has added source code to a

program that may have inadvertently introduced faults. As such regression testing is a

quality control measure to ensure that the newly modified code still complies with its

specified requirements and that unmodified code has not been affected by the

maintenance activity.

2.2 Regression Test Selection

Let P be a procedure or program, let P / be a modified version of P, and let T be a test

suite for P. A typical regression test proceeds as follows:

1. Select T/ ~ T, a set of test cases to execute on P /.

2. Test P/ with T~ establishing P/'s correctness with respect to T~

3. If necessary, create T//, a set of new functional or structural test cases for P~

4. Test P/ with T/~ establishing P/'s correctness with respect to T/~

5. Create T//~ a new test suite and test execution profile for P ~ from T, T~ and T/~

Each of these steps involve important problems. Step 1 involves the regression test

selection problem : the problem of selecting a subset T/ of T with which to test P ~ Step 3

4

)

)

)

_)

)

)

)

)
)

)

)

J
)
)

)

involves the coverage identification problem: the problem of identifying portions of P~

or its specification that require additional testing . Steps 2 and 4 involve the test suite

execution problem: the problem of efficiently executing test suites and checking test

results for correctness. Step 5 involves the test suite maintenance problem: the problem

of updating and storing test information . In this project we look at the regression test

selection problem only.

The simplest regression test "selection" strategy, retest all, reruns every test case

m the initial test suite. This approach, however, can be prohibitively expensive -

rerunning all test cases in the test suite may require an unacceptable amount of time. An

alternative approach, regression test selection , reruns only a subset of the initial test suite.

Of course, this approach is imperfect as well - regression test selection techniques can

have substantial costs, and can discard test cases that could reveal faults , possibly

reducing fault detection effectiveness . This tradeoff between the time required to select

and run test cases and the fault detection ability of the test cases that are run is central to

regression test selection. Because there are many ways in which to approach this tradeoff,

a variety of test selection techniques have been proposed [3], including the following .

2.2.1 Minimization Techniques

Minimization-based regression test selection techniques [2] attempt to select minimal sets

of test cases from T, that yield coverage of modified or affected portions of P. For

instance, they may identify a subset T'' of T that ensures that every segment that is

statically reachable from a modified segment is exercised by at least one test case in T/

that also exercises the modified segment.

5

)

)

)

)

)

J
)

)

)

)
)
)

)

)

_)

)

)
)

)

)

J

2.2.2 Dataflow Techniques

Dataflow-coverage-based regression test selection techniques select test cases that

exercise data interactions that have been affected by modifications [6]. For example , a

technique might require that every definition-use pair that is deleted from P, new in P~ or

modified for P /be tested. The technique selects every test case in T that, when executed

on P, exercised deleted or modified definition-use pairs, or executed a statement

containing a modified predicate.

2.2.3 Safe Techniques

Most regression test selection techniques - minimization and dataflow techniques among

them - are not designed to be safe. Techniques that are not safe can fail to select a test

case that would have revealed a fault in the modified program. In contrast , when an

explicit set of safety conditions can be satisfied, safe regression test selection techniques

guarantee that the selected subset, T~ contains all test cases in the original test suite T that

can reveal faults in P~ For example, the technique of Rothermel and Harrold [13] uses

control-flow-graph representations of P and P~ and test execution profiles gathered on P,

to select every test case in T that, when executed on P, exercised at least one statement

that has been deleted from P, or at least one statement that is new in or modified for P ~

This forms the basis of the Dejavu algorithm used as a regression test selection tool [13].

2.2.4 Ad Hoc / Random Techniques

When time constraints prohibit the use of a retest-all approach, but no test selection tool

is available, developers often select test cases based on "hunches", or loose associations

6

0
J

)

)

)

\

J
)

)

)

)

)
)

)

_)

)

)

J
)

of test cases with functionality. One simple approach 1s to randomly select a

predetermined number of test cases from T.

2.2.5 Component Metadata based Regression Test Selection Techniques

The techniques presented in the previous section are all (except for the retest all

technique) code based, and all defined initially for testing entire imperative programs or

procedures. More recently some researchers have turned to regression test selection

techniques that use metadata for test selection [4].

To perform regression test selection, we need information about the coverage

achieved by the test suite on the original version of the software. We also need

information about the changes made to the set of components. These can be combined

into metadata, which is then provided by the component developer. The presence of

metadata lets component developers provide information useful for regression test

selection without disclosing the source code of the components they distribute. In

particular, only version information, coverage measurement facilities, and information

about changes between versions of components need to be provided for the techniques to

be applicable.

In this report we look at three component metadata based regression test selection

techniques - code based, specification based and hybrid.

7

)

)

)

)

)

)

)

)

)

)

)

J

Chapter 3
METADATA BASED REGRESSION
TEST SELECTION TECHNIQUES

In this chapter we describe the three different metadata based regression test selection

methodologies that we investigated - code based, specification based, and hybrid, in turn.

3.1 Code Based

The first metadata based technique we consider for regression test selection is a code

based technique. Code based testing techniques select test cases based on a coverage goal

expressed in terms of some aspect of the code. There are many entities that can be

selected for coverage, such as statements, edges, paths, methods, or classes. Such

coverage is usually used as an adequacy criterion for a test suite: the higher the coverage,

the more adequate the test suite.

In particular, for edge-coverage techniques, the program is instrumented so that

when it executes, it records the relevant edges (in a graph model associated with the

program) traversed by each test case in the test suite T. With this information, we can

associate the relevant edges in P, the program under test , with each test case in T.

Code based regression test selection techniques construct some representation,

such as a control-flow graph, call graph, or class-hierarchy graph, for a program P, and

record the coverage achieved by the original test suite T with respect to some entities in

that representation. When a modified version P,, of P becomes available, these techniques

construct the same type of representation for P,, that they constructed for P. The

algorithms then use the representations for P and P,, and compare them to select the test

8

)

)

)

)
)

J
)

)

)

)

)

)

_)

J
)

)

)

)

u
g

cases from T for use in testing P ~ based on (1) differences between the representation for

P and P / with respect to the entities considered, and (2) information about which test

cases cover the modified entities .

We use Rothermel and Harrold's approach, which is based on a graph-traversal of

the representations of the original and modified versions of the software, as a

representative of a code based regression test selection technique [13]. In particular, we

consider a specific implementation of Rothermel and Harrold's approach : the Dejavu

tool.

3.1.1 The Dejavu Technique

Before proceeding further we describe the Dejavu technique. To do this we first describe

control flow graphs and instrumentation, on which the technique depends .

3.1.1.1 Control Flow Graphs

A control flow graph (CFG) for procedure P contains a node for each simple or

conditional statement in P; edges between nodes represent the flow of control between

statements. Figure 1 shows procedure avg and its CFG.

9

)

)

)

)

)

)

)

)

)
)
)

)

)

)

)

)
)

)

)

u

D

~ Exit

Procedure avg

Sl. count= 0

S2. fread (fileptr, n)

P3. while (not EOF) do

P4. if (n < 0)

SS. return (error)

else

S6. numarray[count]

S7. count++

S8 .

endif

fread (fileptr, n)

end while

0

S9. avg= calcavg (numarray, count)

Sl0 . return (avg)

Figure 1: Procedure avg and its CFG

In Figure 1, statement nodes (shown as ellipses) represent simple statements. Predicate

nodes, shown as rectangles, stand for conditional statements. Labeled edges (branches)

leaving predicate nodes represent control paths taken when the predicate evaluates to the

value of the edge label. Statement and predicate nodes are labeled to indicate the

statements in P to which they correspond. The figure uses statement numbers as node

labels; however, the actual code of the associated statements could also serve as labels. A

unique entry node and a unique exit node represent entry to and exit from P, respectively.

10

r

)

)

)

)

J

}

)

)

)

)

_J

)
)

)

3.1.1.2 Code Instrumentation

Let P be a procedure with CFG G. P can be instrumented such that when the

instrumented version of P is executed with test t, it records a branch trace that consists of

the branches taken during this execution . This branch trace information can be used to

determine which edges in G were traversed when twas executed: an edge (n1, n2) in G is

traversed by test t if and only if, when Pis executed with t, the statements associated with

n 1 and n2 are executed sequentially at least once during the execution. The information

thus gathered is called an edge trace fort on P.

Given test suite T for P, a test history for P with respect to Tis constructed by

gathering edge trace information for each test in T, and representing it such that for each

edge (n1, n2) in G, the test history records the tests that traverse (n1, n2). Note that the

foregoing can be done for each procedure in the program P / to obtain a test history for P ~

For convenience, assume the existence of function Tes tsOnEdge (n 1, n2), that

returns a bit vector v of size 111 bits such that the kth bit in v is set if and only if test k in T

traversed edge (n1, n2) in G.

3.1.1.3 Dejavu Regression Test Selection Algorithm

Dej avu' s goal is to identify all non-obsolete tests in T (tests that remain valid despite

changes) that execute changed code with respect to P and P ~ In other words, the

algorithm aims to identify tests in T that (1) execute code that is new or modified for P,

or (2) executed code in P that is no longer present in P ~ These tests are known as

modification traversing tests. To identify the modification-traversing tests in T, Dejavu

identifies the non-obsolete tests in T that have nonequivalent execution traces (sequences

of statements executed) in P and P ~

11

)

)

)

)

)

}

)

)

)

)

.J
)
)

)

)

SelectTests(P, P~ T):T' algorithm
input P, P~· base and modified versions of a procedure

T: a test set used to test P

output r · the subset ofT selected for use in regression testing P'

1. begin
2. T'= 0
3. construct G and G~ CFGs for P and P~ with entry nodes E and E'
4. Compare(£, E')
5. return T '
6. end

procedure
input

7. begin

Compare(N, N')
N and N': nodes in G and G'

8. mark N as "N"..visited"
9. for each successor C ofN in G do
10. L = the label on edge (N, C) ore if (N, C) is unlabled
11. C' = the node in G 'such that (N~ C') has label L
12. if C is not marked "C".-visited"
13. if-,LEquivalent(C, C')
14. T ' = T 'l) TestsOnEdge(N , C)
15.
16.
17.
18.
19.
20. end

endif
endfor

else
Compare(C,C')

endif

Figure 2: Test Selection Algorithm

Figure 2 presents SelectTests, the algorithm that does this. SelectTests takes a

procedure P, its modified version P ~ and the test suite T for P, and returns T~ a set that

contains tests that are modification-traversing for P and P~ SelectTests first

initializes T/to ¢ and then constructs CFGs G (with entry node E) and G/ (with entry

node E") for P and P~ respectively. Next, the algorithm calls Compare with E and E~

Compare ultimately places tests that are modification-traversing for P and P/ into T~

SelectTests returns these tests.

12

()
()

)
)

)

_)

)

)

)

)

)

)

)

u

Compare is called with pairs of nodes N and N/from G and G~ respectively, that

are reached simultaneously during the algorithm's traversal. Given two such nodes N and

N~ Compare determines whether N and N/ have successors whose labels differ along

pairs of identically labeled edges. If N and N/have successors whose labels differ along

some pair of identically labeled edges, tests that traverse the edges are modification­

traversing due to changes in the code associated with those successors. In this case

Compare selects those tests. If N and N/ have successors whose labels are the same

along a pair of identically labeled edges, Compare continues along the edges in G and

G /by invoking itself on those successors.

Lines 7-20 of Figure 2 describe Compare's actions more precisely. When

Compare is called with CFG nodes N and N~ Compare first marks node N "N"..visited"

(line 8). After Compare has been called once with N and N/it does not need to consider

them again - this marking step lets Compare avoid revisiting pairs of nodes. Next, in the

for loop of lines 9-19, Compare considers each control flow successor of N~ For each

successor C, Compare locates the label Lon the edge from N to C, then seeks the node

C / in G / such that (N ~ CJ has label L; if (N, C) is unlabeled, £ is used for the edge label.

Next, Compare considers C and C~ If C is marked "C"..visited", Compare has already

been called with C and C/ so Compare does not take any action with C and C~ If C is

not marked "C"..visited", Compare calls LEqui valent with C and C~ The

LEquivalent function takes a pair of nodes N and N/ and determines whether the

statements S and S/ associated with N and N/ are lexicographically equivalent. If

LEquivalent(C, CJ is false, then tests that traverse edge (N, C) are modification-

13

I

)

)
)

)

}
)
)

)

)

)
)

traversing for P and P; Compare uses TestsOnEdge to identify these tests, and adds

them to T~ If LEqui valent(C, C') is true , Compare invokes itself on C and C/ to

continue the graph traversals beyond these nodes.

Given a pair of procedures for which CFGs G and G / contain n and n / nodes,

respectively, and given a test suite of 171 tests, if Compare is called for each pair of

nodes (N, N') (N c G and N/ £ G '), the running time of Select Tests is 0(111nn ').

3.1.2 jDejavu

We have adapted Dejavu to handle Java subjects UDejavu) . jDejavu uses a control-flow

graph as the representation , and the entities are the edges in the graph. To select test cases

to be rerun jDejavu performs a synchronous traversal of the control-flow graph (CFG) for

P and the control-flow graph (CFG') for P~ identifies edges modified from CFG to CFG'

or leading to modified nodes , and selects the test cases that cover such edges as the test

cases to be rerun.

To achieve better regression test selection when the source code of the component

is unavailable, we can use component metadata. To support test selection for code based

regression testing, we need three types of metadata for each component. First, we need to

know the edge coverage achieved by the test suite with respect to the component so that

we can associate test cases with edges . Second, we need to know the component version.

Third, we need a way to query the component for the edges affected by changes in the

component between two given versions . The component developer can provide this

information in the form of metadata and metamethods, and package them with the

component.

14

)

)

)
)

)

)
)
)
)

)

)

)

)

)

)

)

)

u
6

We then construct a metadata aware version jDejavuMA of jDejavu. This tool

builds the matrix "test cases"-"edges covered" by gathering the component coverage data

for each test case. Thus, when a new version of a component is acquired, jDejavuMA

queries the new version about which edges are affected by the changes and selects test

cases to rerun, based on the affected edges and the matrix.

3.2 Specification Based

Specification based testing techniques develop test cases based on functional descriptions

of a system, and are considered complementary to code based techniques. Various types

of specifications, such as natural language specifications, FSM diagrams, and UML

(Unified Modeling Language) are available. Among these, UML is increasingly popular

for modeling object-oriented and component-based systems.

Statechart diagrams are one type of diagrams UML provides for modeling the dynamic

aspects of systems. These diagrams are useful for modeling the lifetime of an object. They

describe the possible states that a particular object can get into and how the object's state

changes as a result of events that affect the object. When designing object-oriented systems, a

statechart diagram can be drawn for each class to show the lifetime of a single object of that

class.

We use an example to illustrate statechart diagrams. We slightly modified the

UML statechart specification of class Dispenser of the vending machine presented in

Harrold et al. [4]. Figure 3 shows the statechart specification of class Dispenser.

Figure 4 shows the implementation of class Dispenser. The dispenser machine has

five states: Empty, Insufficient, Enabled, Initial, and Empty. Among them,

15

)

)

)

")

)

-'
)
)
)

)

)
)

)

)

)

)

_)

)

)
)

)

)

three states (Empty, Insufficient, and Enabled) accept two events (setCredi t

and dispense) , and produce two actions (nack and ack) . If event setCredi t is

received in state Empty, then three transitions are possible: the machine stays in state

Empty, reaches state Insufficient, or reaches state Enabled based on a credit

value which is expressed in a guard condition. If the credit is set to zero , the machine

remains in state Empty . If the credit is greater than zero and less than 50, the machine

transitions to the Insufficient state because the cost per item is 50. If the credit is

equal to or greater than 50, the machine transitions to the Enabled state in which a user

may get the item he wants. In states Insufficient and Enabled, event

setCredi tis consumed without producing any external effect. The credits in these two

states originally are not zero; when the setCredi t event happens, the credit values in

these states do not change, therefore the machine stays in the same state . Event

dispense triggers a nack or ack action depending on the availability of the requested

item. The machine can take a transition from the Empty state to the Final state

automatically, in which case the lifetime of an object in class Dispenser is over.

16

)

()

n
)

)

)

)

)

)

J
)

)

)

)
)
)
)

)

)

_)
)

)
)

)

)

)

se!Cred it(c)

Figure 3: Statechart specification of class Dispenser

Class Dispenser {
final private int COINVALUE = 25;
final private int COST= 50;
final private int MAXSEL = 4;
private int credit;
private int itemslnStock[] = {2, 0, 0, 5, 4};

public Dispenser() {
if(credit != 0) system.out.println("Credit already set");
else Credit = nOfCoins * COINV ALUE;

public int dispense(int selection) {
int val= 0 ;
if (selection> MAXSEL) val = -1; // invalid selection

setcredit(c)

else if (itemslnStock[selection] < 1) val= -2 ; // selection unavail able
else if (credit< COST) val= -3; // Insufficient credit
else {

val =COST ;
i temslnS tock[selection]--;

credit= O;
return val;

II class Dispenser

Figure 4: Implementation of Dispenser in C

17

)

)

)

)

)

)

)

J
)

)
)

)

)

)

)

_)

_J

)

)

3.2.1 Metadata Based Test Selection Using UML Statecharts

Harrold et al. suggest an approach to regression test selection using metadata based on

UML statechart diagrams. Their technique, based on one defined by Hartmann et al. [7],

constructs a global behavioral model by composing the statechart diagrams for

components incrementally using a heuristic reduction algorithm and specific composition

rules . This reduction algorithm can reduce the size of a composed statechart by

eliminating some unreachable states.

Harrold et al. use this technique to perform specification based test selection for

component based software which integrates application-specific code with externally­

developed software components. To illustrate the technique, they consider the situation of

a component developer who distributes a set of components C and a component user who

acquires such components to integrate them into application A.

Because Harrold et al. technique ' s requires a specification for the component to

be available , it cannot be applied if the component developer provides the component

user with the set of components in C and no additional information . Therefore , the

component developer must provide metamethods that let the component user retrieve, for

each component in C, a specification expressed as a statechart diagram.

With this information available, the component user can then produce statechart

diagrams for application A and combine these statechart diagrams with the statechart

diagrams for the components in C and build a global behavioral model. Given the global

behavioral model, the component user can then generate test cases for the application

using any testing technique based on state-machine coverage.

Suppose now that the specification for one or more components is changed, and a

new version of C, C~ is released, and the component user must retest A with C~ In the

18

)

)

)

)

)

}

)

)

)

)

)

)
)
)
)

)
)

_)

)

J

j

absence of information about changes between C and C~ the component user may need to

execute all of the test cases for A that exercise components in C. If information about

changes between the specification of C and C/is available, however, the component user

can exploit such information to perform regression test selection. To allow this, the set of

states and transitions in the statechart diagrams for C that are affected by the changes to

C "s specification must be attached to C. Again, the component developer can make this

information available through metadata: each component must be provided with

metamethods that let the component user retrieve information about changes in the

specification between two different versions of the component.

We initially attempted to use Harrold et al.' s metadata technique for specification

based test selection as defined in [4]. We first produced a statechart diagram for each

class in each version of our tested system (Section 4.4 provides details on our process for

doing this). We then combined the statechart diagrams of two component classes and a

test driver to obtain the global behavioral model of the classes and the test driver. This

global diagram had approximately one thousand states. We defined a path in a statechart

diagram to be a sequence of states and transitions beginning at the start state and ending

at the end state. We also placed restrictions on cycles (such as self-transitions) in a path:

no cycle was allowed to occur more than once. Because each path represents a "testing

requirement", that is, a sequence of events that needs to be exercised by a test case,

testers take each path and develop tests for them. Therefore we generated all the paths of

this global statechart diagram. The number of paths generated, however, numbered in the

thousands.

19

)

t)
)

)

)

)

)

)
)
)

)

)

)

)

)

)

)

)

3.2.2 Adapting Harrold et al.'s Technique

There are at least nine classes in each component version in our tested system. If we

combine all the statechart diagrams in one component version with the statechart diagram

of the application in order to obtain a global behavior model of the system, there will be a

huge number of states and paths generated for the system. We would be required to

design a huge number of test cases for the system in one version, which is impractical.

An alternative to considering all paths with less than one cycle is to use the

concept of linearly independent paths [12] as testing requirements . A linearly

independent path is a path that must move along at least one edge that has not been

traversed before this path is defined. The computation of cyclomatic complexity provides

the upper bound for the number of linearly independent path. The cyclomatic complexity

V(G) = E - N + 2, where Eis the number of edges, and N is the number of nodes in a

diagram. Using linearly independent paths , we can produce fewer paths but could not

solve the problem of having too many states in the global diagram. Therefore, we

developed an alternative technique for specification based selection.

Our alternative technique, like Harrold et al.'s, requires a specification for each

component to be available, represented as a statechart diagram for each component. We

do not, however, combine all the statechart diagrams together to form a global diagram;

instead we identify testing requirements for each component individually. So we focus on

each individual statechart diagram.

To illustrate the approach, let C be a set of components, suppose we have the

statechart diagram for one component in C and a set of test cases for that component , and

suppose the specification for the component is changed in a new version of C, C ~

Without information about changes between the component in C and C~ we may have to

20

)

)

)

)

)
,)

)

)
)
)

)

)

)

_)

)

j

)

)

)

rerun all the test cases that exercise the component. If we have information about the

specification changes made between the two versions of the component, we can use this

to perform regression test selection, and choose just the important tests.

We again use the Dispenser component example to illustrate the approach.

Suppose that after we change the specification of component Dispenser, a new

version of Dispenser is released. Suppose the first change to the specification is: when

we set the credit, the new credit value is always the old credit value plus the added credit

value, instead of being the old credit value when the old credit is not zero. Suppose that

the second change to the specification is : after we dispense an item, instead of always

setting credit value to zero, we let the credit value equal the old credit value minus the

cost per item if the vending machine vends an item , or let the credit value remain the

same as the old credit value if the vending machine does not vend an item. We modified

the statechart specification of class Dispenser shown in Figure 3 to reflect these

changes, resulting in the statechart specification shown in Figure 5.

21

}

)

)
)
)

)

)

)

)

)

)

J

setCredn(c)I e==O]

setCreditl c)[O<C<.50]

setCredit(c I

Figure 5: Modified Statechart specification of class Dispenser

The following explains the changes in the statechart specification in Figure 5.

When the event setCredit occurs in state Insufficient , the machine remains in

the same state if the added credit value is zero, or the machine transitions to the

Enabled state if the added credit is greater than zero because the new credit value will

be equal to or greater than 50. In the Insufficient state , when event dispense

occurs, the required item cannot be given and the credit value remains the same , so the

state remains the same and the nack action happens . When event dispense occurs in state

Enabled, there is no state change and the nack action occurs if the required item is not

available . If the required item is available, the ack action will occur and the state will

remain the same, or transition into the Empty state or the Insufficient state

22

I

l
)

)

)
)

)

J
)

)

)

)
)

)

)

)

)

J

)

)

depending on the value of credit. Finally all three states (Empty, Insufficient,

Enabled) can automatically transition into the final state.

Our alternative selection technique assumes that the component developer has

created and provided the revised statechart diagram for the component in version C ~ just

as in the example of the component Dispenser discussed above. We then compare the

two statechart diagrams and identify the set of states and transitions in the statechart

diagram of the component in C that are affected by the changes to the component's

specification in C~ Each testing requirement that includes at least one affected state or

transition must be retested. These requirements would have to be associated by the

application developer with their test cases. Those associated test cases are selected to be

rerun.

An important discovery in this work is that we can use the Dejavu selection

algorithm presented in Section 3.1.1 to compare two statechart diagrams, except in our

situation we need to find ways to handle new edges (transitions) added to the revised

graph, and edges deleted in the revised graph . New edges mean that these edges appear in

the revised diagram, but do not appear in the previous diagram. We identified two

approaches for handling new edges: the first approach is the Include-New-Edge

(IncludeNew) approach; the second approach is the Ignore-New-Edge (lgnoreNew)

approach. To illustrate, suppose we are comparing node A in a statechart diagram with

node A/ in the revised statechart diagram. Suppose there are one or more new outgoing

edges from node A /(which means these new edges exist in the outgoing edges of node A~

but do not exist in the outgoing edges of node A) . Using the lgnoreNew approach, we

ignore the newly added edges of node A'; using the IncludeNew approach we select all

23

()
()

)

)

)

)

)

)

)

)

)
)

)

)

)

)

)

)

J

)

)

the incoming edges at node A if node A is not the successor of the start node. In the case

in which node A is the successor of the start node, we just ignore the new outgoing edges

from node A~

The assumption behind the IncludeNew approach is that the test requirements that

reached the source nodes of edges added in the previous diagram may have some effect

on the new edges in the revised diagram. Since we don't know which incoming edges in

the previous diagram relate to the new outgoing edges in the revised diagram, we select

all the incoming edges by the IncludeNew approach. The assumption behind the

IgnoreNew approach is that all the test requirements that reach the source nodes of added

edges in the previous diagram may have no effect on the new edges in the revised

diagram, so we ignore edges reaching source nodes of added edges. In this case, if the

new outgoing edges are relevant to the incoming edges, then the IncludeNew approach

will be safe but cost more; while the IgnoreNew approach will be unsafe but cost less. If

the new outgoing edges are not relevant to the incoming edges, the IgnoreNew approach

may be more effective and inexpensive; while the IncludeNew approach may be more

ineffective and costly.

Handling deleted edges is simple. Deleted edges are edges which appear in the

previous diagram, but do not appear in the revised diagram. If there is a deleted outgoing

edge for node A/ (which means this deleted edge appears in the outgoing edges of node A,

but does not appear in the outgoing edges of node A'), then we select this deleted edge in

the original diagram in both approaches.

We provide an example of our specification based selection approach by using the

Dispenser component. The specification for this component in C is the statechart

24

n
()

)

)

)

)

)

J
)
)

)

)

J

)

diagram in Figure 3, the specification for this component in C / is the statechart diagram

in Figure 5. Based on the diagram in Figure 3, we can generate four linearly independent

paths, as shown in Table I. Following the modified Dejavu selection algorithm, we

compare Figure 3 and Figure 5 and identify the set of states and transitions in Figure 3

which are affected by the changes in Figure 4. In this case, the difference between

component Dispenser in C and in C/ affects the following transitions in C:

(1) setCredit (c) [O<c<50] from the Empty state to the Insufficient state,

(2) setCredit (c) from the Insufficient state to the Insufficient state,

(3) setCredit(c) [c>=50] from the Empty state to the Enabled state, and

(4) setCredi t (c) from the Enabled state to the Enabled state. We then consider

these four affected transitions relative to the paths in Table 1. Paths 2, 3 and 4 go through

at least one of the four affected transitions, so these three paths are selected, thus the

testing requirements which correspond to those selected paths must be retested, and the

test cases connected to those testing requirements should be rerun.

Table 1: Paths for Dispenser in C

Path# Path

1 Initial:Empty, Empty:F

Initial :Empty, Empty :Insufficient: [O<c<50]setCredi t(c), Insufficient:Insufficient: setCredit(c),
2 Insufficient:Empty :dispense(i)/nack Empty:Empty:dispense(i)/nack,

Empty:Empty: [c==O]setCredit(c), Empty:F

Initial :Empty , Empty:Enabled: [c>=50]setCredit(c), Enabled:Enabled :setCredit(c),
3 Enabled :Empty : [unavail]dispense(i)/nack Empty :Empty:dispense(i)/nack,

Empty:Empty: [c==O]setCredit(c) Empty:F

Initial :Empty, Empty:Enabled: [c>=50]setCredit(c), Enabled:Enabled :setCredi t(c),
4 Enabled:Empty:[avail]dispense(i)/ack, Empty :Empty:dispense(i)/nack,

Empty :Empty : [c==O]setCredit(c), Empty:F

25

)

)
--,

)
)

)

)
)

j

)

J

J
0
u

3.3 Hybrid

The hybrid method of test selection is so called because it uses information both at the

code level as well as at the specification level. One hybrid technique is described in [10).

In this technique, the component developer applies a specification-based testing

technique to the component, but test coverage is calculated on the code.

Specification based testing techniques develop test cases based on functional

descriptions of a system. One technique that can be used is the category-partition method,

described in [11].

3.3.1 The Category Partition Method

The category partition method requires us first to decompose the specification for a

program under test into functional units to be tested independently . Then, for each

functional unit, we identify the parameters and the environmental conditions that can

affect its behavior. Next, these parameters and the environmental conditions have to be

divided further into choices that characterize them. The parameters, conditions and

choices are then expressed in a language. The language for expressing the specification in

this way is known as TSL (test specification language). Given a test specification in TSL,

a tester can produce a set of test frames for each unit by computing the cross-product of

the different choices. Each test frame corresponds to a test case that must be developed.

Constraints can be added to choices to reduce and control the combinations. Constraints

help reduce the number of test frames developed to some affordable number.

The category partition method can be used on applications just as described

above. But to adapt the method for use with a component library we had to decide on

additional conditions. Consider a system like the one shown in Figure 6.

26

)

)

)

)

)

)

)

)

)

)

)

J

Application

0 0
Figure 6: Application and Component Interaction

In this system, we have five methods in a component, namely A, B, C, D and E,

but only methods A and B are available as interfaces to an application. Methods C, D and

E are called by other component methods . When we test a component such as this, we

divide the component into only two functional units based on the interfaces made

available to the application by the component. The interfaces made available to the

application are taken as functional units in the category partition method. The parameters

and the environmental conditions are identified specific to these functional units. Then, as

described above , these are expressed using TSL' s test specification language .

The example of a simple find method which can be found in a component

library , based on an example given in [11], will illustrate the category partition method.

The find routine takes in a pattern and a file name as parameters, and returns true or

false if the pattern is present in the file or not.

27

)

n

)

)

)

)

)
)

)
)

)

)
)

J
)
)

)

J

Syntax:
bool find (String, File) throws FileNotFoundException

Function:
The find routine will take in a string and a file name as parameter and output

true or false if the string is present in the file or not. The method will throw a
FileNotFoundException if the file in the parameter is not found.

A TSL test specification for the find method in the component could look like

the following with constraints.

Parameters :
Pattern size :

Empty
Single character
Many character
Longer than any line in the file

Embedded blanks :
No embedded blank
One embedded blank
Several embedded quotes

File Name :

Environments:

Good file name
No file with this name
Omitted

Number of occurrences of pattern in file:
None
Exactly one
More than one

Pattern occurrences:
One
More than one

3.3.2 Metadata based Selection using TSL

[property Empty]
[property N onEmpty]
[property NonEmpty]
[error]

[ifNonEmpty]
[if NonEmpty and Quoted]
[if NonEmpty and Quoted]

[error]
[error]

[ifNonEmpty]
[if NonEmpty] [property Match]
[ifNonEmpty] [property Match]

[if Match]
[if Match]

Suppose that we test our component using TSL. When we modify our component we

change our TSL. We want to tell the application users which of their tests involve

changes in our TSL specifications. This is different than state based testing which works

from a functional specification of the system, because here we work from a test

specification. But this is a strength of this approach, because it might be complementary

to other approaches and might work well in practical cases when other specifications are

28 =-

)

)

}

.J'

)
'j

)

)

)
)

)

)

. J
)
)

)

)

u

not available. The key to making this approach work is to be able to let the application

user obtain a mapping between their test cases and the component developer's TSL

specification .

Orso et al. [10] present a technique in which the tester of a component uses the

category-partition method for testing the component just as described above. According

to Orso et al., if the TSL specifications and test frames are at an appropriate level of

abstraction, it should be possible to map code coverage to test frame coverage . Under this

approach, a test case in test suite Tis said to cover a test frame tf if (1) the parameters of

calls to a single functionality match the corresponding choices in tJ, and (2) the state of

the component matches the environmental characteristics in tf.

To compute the coverage of the component achieved by a given test case in terms

of test frames, the code has to instrument according to test frames. Now, when

performing regression testing of the component, if the user of the component knows

which frames are affected, they only need to rerun test cases associated with those

frames . This way, when the component version changes, the component developer can

inform the user (through metadata) of the test frames that are affected and the user needs

to run only the test cases in the test suite that correspond to those test frames .

3.3.3 Adapting Orso's Technique

In this research, we began by attempting to apply Orso et al.'s technique as initially

presented . The approach suggested by Orso et al. proved impractical for our subject,

however, because we could not instrument the code to directly report execution of test

frames. The main reason for this is that, for our program, the parameters were instances

of classes and this made instrumentation of the code very difficult and complex. For

29

n
C)
')

)

)

>
)

)
)

)

)

)

)

}

)

)

)

)

J
g
u

example, if a method A of the component takes an object which is an instance of a class B

as a parameter, it becomes difficult to track the environmental state of this object. We

have to know this environmental state in order to instrument the code with relevant test

frame information. Therefore we had to develop a different way to do the mapping.

We considered a different approach to this problem. Our idea was to map the

spectra of the tests, run on the application, to the spectra of the tests associated with the

test frames of the components. A program spectrum as described in [5] characterizes, or

provides a signature of, a program's behavior. The path spectrum which we use to map

the tests records the complete path that is traversed by the program. The ways to get these

spectra are either by collecting the trace of methods hit or the trace of the basic blocks hit

for each test that is executed.

In this modified strategy, a component provider obtains the traces for the test

cases developed for the test frames by executing them on the component individually.

These are provided as metadata to the application developer. The application developer

collects the traces for their testing of the application that uses the component. These

traces report the functions and basic blocks hit, in the component, during the execution of

the test cases . The traces of the test cases of the component and the application can be

compared in terms of trace equivalence . This provides a mapping between the test frames

of the component and the test cases of the application. Through this approach, when a

new version of the component is released, the application developer can hope to

approximate the frames that are affected. Since these frames correspond to the test cases

that were mapped by the application developer to the application test cases, the

application developer can obtain the test cases of the application that need to be rerun to

30

l
}

I '

)

)

)

)

)

)

)
)
)

)

)

J

)

)

_)

}

J

test the component. We used this modified hybrid technique on our subject to compare

the results with other techniques .

31

I
I

)

)

)

)
}

)

)

)

J

)

J

J

Chapter 4

SUBJECT INFRASTRUCTURE

To examme the techniques just described , we need to study them empirically. This

required that we obtain infrastructure to support such study, including a component

library, application that uses it, state diagrams and tests.

4.1 NanoXML

As a component library we selected NanoXML. NanoXML is a small XML parser for

Java, written by Marc De Scheemaecker. 1 The extensible markup language, XML, is a

way to mark up text in a structured document. It is designed to improve the functionality

of the web by providing more flexible and adaptable information identification . XML is

considered extensible because it is not a fixed format like HTML (a single, predefined

markup language). Instead, XML is actually a 'metalanguage', a language for describing

other languages, which lets people design their own customized markup languages for

limitless different types of documents.

We looked for a relatively small program that had a sizeable number of classes

(15+) and was written in Java. NanoXML turned out be the ideal candidate. It is a very

easy to use, non-GUI based, freely available , and also buildable from its source without

any other external libraries.

Figure 7 gives a high-level representation of the major NanoXML components.

1 Available at http ://nanoxml.sourceforge .net/orig/

32

I

)

J
n
()
:,)

l

')
)
)

)

)

)

)

)

J
)

)

)

)

)

)
)

)

)
)

Valid ator

Entity Resolver

{pararn. er;t.)

<FOCb -

</FOG.:-

Reader

Parsm

Entity Resolver

Builder

Figure 7: N anoXML Components

The components shown in the figure can be described as follows:

• The reader retrieves data from a Java input stream and provides character data to

the other components.

• The parser converts the character data it retrieves from the reader to XML events

which it sends to the builder.

• The validator parse s a DTD (document type definition) and validates the XML

data . The current validator does only the minimum necessary for a non-validating

parser.

• The entity resolver converts entity references (& ... ;) and parameter entity

references (% ... ;) to character data. The resolver uses the reader to access external

entitie s.

33

)

)

)

)

)

)

)

)
)

)

J

)

)

• The builder interprets XML events coming from the parser and builds a tree of

XML elements. The standard builder creates a tree of IXMLElement. The user

can provide their own builder to create a custom tree or if they are interested in

the XML events themselves, e.g. to use XML streaming. [16]

Table 2 provides data on components of N anoXML.

Table 2: Number of Component Classes and Methods

Versions

0 1 2 3 4

Total number of classes 9 12 14 15 15

Total number of methods 103 120 177 216 217

5

17

198

We also needed an application program that would use the components of

NanoXML, be compatible with all the versions of NanoXML, and be easy to use and

understandable. JXML2SQL (available with NanoXML) is such an application, it takes

as input an XML file and either transforms it into an HTML file (showing the contents in

tabular form) or an SQL file . There are two versions of the application because we

modified the application JXML2SQLApp to work for version vO of the component and

this version of the application was called version vO, and the version that runs with the

rest of the versions of the component was called version vl. Table 3 provides data about

the applications:

Table 3: Number of Application Classes and Methods

Appl App2

Total number of
9 9

classes

Total number of
36 36

methods

34

)

)

)

)

)
)

)

)
)
)

)

)

)

)

)

)

)

)

)

)

4.2 Test Suites

Once we had the six versions of NanoXML, our component subject under consideration,

and the two versions of JXML2SQLApp, the application that uses the NanoXML

component, we next needed to build test suites for each component version and for the

two application versions. There are two versions of the application because we modified

the application JXML2SQLApp to work for version v0 of the component and this version

of the application was called version v0, and the version that runs with the rest of the

versions of the component was called version vl.We decided to build the test suites based

on the category-partition method [11] described in section 3.3. By developing this

uniform and concise test specification, we could easily add, delete and modify

specifications across the versions.

4.2.1 Component Test Suite

We first developed the TSL specification for version v0 of NanoXML. We divided the

component into functional units. As functional units, we followed the process described

in Section 3.3 and considered each entry point in the program which was available to the

user of the component.

We wrote a TSL specification for each functional unit. These test specifications

generated a total of 214 test frames after adding constraints. For each of the test frames,

we created input files specific to each test frame. The input files were either an .xml file

or a .dtd file or both. After developing input files for the 214 test frames, we wrote test

drivers to run these tests. The test drivers were written in Java for each of the test frames.

With this the infrastructure for the test suite for version v0 was complete.

35

)

)

)

)

)

)

)
)

)
)

)
)

)

)

)

)

)

)

)

J

We wished to simulate a process in which a test suite is progressively refined

across system versions. Thus, the test specification for each of the subsequent version

was written based on the specification of its preceding version. We modified some parts

of the specification to fit the newer versions as the old specifications had become

obsolete. For some functional units which had become obsolete, we modified the

specifications or added new ones. However, no new functional units were added beyond

those existing in version vO, that is, we did not consider new functionality of the upper

versions. The test drivers also needed some changes as they were no longer compatible

with the newer versions . After the necessary changes, the infrastructure for the test suites

was ready for versions from vO to v5. This gave us 214 test cases for versions vO and vl.

Two more tests were added to v2 because of the increase in parameters in one of the

functional units, which increased the number of choices and test frames. Thus, version

v2 - v5 had 216 test frames.

4.2.2 Application Test Suite

We developed an application test suite based on the category-partition method by

following the same process which we just described in Section 4.2.1. The test

specification we developed was the same for both versions of the application as there was

no functional change in the application. Unlike the test suite for the component, the

application test suite did not require any test drivers since the application itself acted as

the driver for its tests. However, we developed input files for each of the test frames. As

in the case of the components, the input files were either . xml files or . dtd files or

both for each test frame. This process resulted in creation of a suite of 28 tests for each

version of the application .

36

)

()

)

)

)

)

)

)
)

)

)

)

)

)

)

)

4.3 Automation

The foregoing process reqmre s us to generate test cases from the TSL specs. This

generation was automated with the use of a tool called tsl. The tsl tool takes in as

input a TSL specification and generates the corresponding test frames for the

specifications. For example, given a specification file called spec . tsl, when we type

the command

tsl -c spec.tsl -o spec.frame

a spec.frame file gets created containing the test frames generated for the

specification file spec. tsl. Using tsl we were able to generate all the test frames for

the component and application specification files .

Having created the test suites for both the component and the application, we next

needed to automate the execution of the tests. To do this, we first converted the test

frames into test cases and described them using a test description language. This test

description language was developed previously at OSU for use with C programs, and we

modified it slightly to work with Java programs. A tool from the Aristotle toolset

(Javamts) was used to generate executable test scripts from each test description file .

These scripts could be used to automatically run all tests.

In addition to being able to run all tests, we also needed to be able to collect traces

for these tests. To do this, we used the Galileo instrumentor, (which instruments Java

class files in order to get traces when the Java program is run) , developed at OSU, to

instrument the NanoXML class files. Once the class files had been instrumented, the

scripts were run over the NanoXML components. We then collected traces for the run of

each test. We separately collected traces indicating the functions hit , the blocks hits and

37

()

()

)

)

)

)
)

)

)
)
)

)

)

)

)

)

the sequence of functions hits. The function and sequential function traces each list the

functions that were called in the execution of the test, with the difference that the

sequential trace lists the order in which the functions were called. There could be

duplicates in a sequential trace as well, since a single function could be called many

times. The blocks hit trace gives a list of basic blocks that were called during the

execution. All the traces and the outputs were stored for further use, such as test

selection.

4.4 UML Diagrams

The specification based testing technique presented in Section 3.2 requires us to have a

statechart diagram for each component class in each version. We do not have text

specifications for any component class in NanoXML, so we performed reverse

engineering (the creation of a model from code) to create statechart diagrams [1]. To do

this, we first examined the code of a component class thoroughly , chose the start and

final states for an object of the class, and decided on the states of the object by

considering the conditions in which the object may exist for some identifiable period of

time. For example, in the Dispenser example there are three stable states for the

Dispenser component. (The choice of what constitutes a meaningful state is left to the

diagrams' designer).

Next, we decided on a meaningful partial ordering of stable states over the

lifetime of the object. For example, in the Dispenser example, starting from state

Empty, a transition can go to state Insufficient or state Enabled, and state

Empty can transition to state Final.

38

)

)

)
)
)

)

)
)
)

)

)

)

J

)

)

)

Next, we decided on the events that may trigger a transition from state to state. An

event is usually a method call, or sometimes an event can combine with boolean

expressions expressed as guard conditions, as with the setCredi t and dispense

events in the Dispenser example. We may also attach actions to some transitions .

Actions occur quickly and are not interruptible, like the ack and nack actions in the

Dispenser example. An action can also be a method call.

Next, we checked that all states were reachable under some combination of

events, and checked that no state except the final state was a dead end from which no

combination of events would transition the object out of that state .

Finally, we traced through the state machine manually, checking it against

expected sequences of events and their responses to make sure that the state machine was

correct.

By following this procedure, we created nine statechart diagrams for NanoXML

components in version 0, and twelve, fourteen , fifteen, fifteen and seventeen diagrams for

versions 1 through 5, respectively .

Though constructing statechart diagrams through reverse engmeermg was not

simple, but Java being object-oriented and NanoXML 's classes and methods being well

defined based on the object-oriented design concepts, it was relatively easy to identify

states and transitions in the state diagrams.

39

)

)

)

)
)

)
)

)

)

)

)

)

Chapter 5
CASE STUDY

We applied the three testing techniques described in Chapter 3 to our test subject

(NanoXML) using the infrastructure we built. This section describes the procedure and

results for each technique and then compare s them over all the component version pairs.

5 .1 Code Based Technique

5.1.1 jDejavu

We implemented the code based component metadata based regres sion test selection

technique using a modified version of Dejavu , and some instrumentation tools from the

Galileo system. gCFG, ginstrumentor and gFilter are the tools to make control-flow

files, instrumented class files, and trace files respectively. A host of other helper

programs were used in the implementation . For example, many viewers (some from the

BCEL library, some from Galileo) were used to view the byte source

(ByteSourceViewer . class), the map files (MapViewer . class) , the cf files

(CFViewer. class), and the trace files (TraceViewer . class) . These viewers present

the files in human readable format. In addition there were handlers

(TraceHandler. class etc.), instrumentors (Probe. class etc.), and control flow

graph generators (Graph. class, Node. class etc.). These were all used in the first

phase of the procedure to obtain instrumented class files , and source files.

The second phase of the work involved obtaining the trace files and selecting the

tests - this was done by jDejavu. jDejavu is a modified version of Dejavu; most of the

structure is the same (the test selection algorithm in particular), but the rest was adapted

to work with Java subjects. jDejavu uses the intra-procedural test selection algorithm,

40

()

n

)

)

)

)

)

)

)

)
)
)

J
)
)

)

)

)

J

J

u

described in Section 3, on Java files . In Dejavu , the source file is the actual . c file, but

since in Java we worked with multiple source files, the 'source code' for Java files was

not the . j ava files themselves but a concatenation of the . class files as obtained using

the Byte-Source Viewer. This was then used to compare code segments from different

versions. jDejavu consists of the core files : dvu. h, dvul. c, dvu_compare. c,

dvu_corresp. c , dvu_output. c, and dvu_util. c. dvu_corresp. c compares the

Java byte code files lexicographically. Test tis modification traversing for P and P /if and

only if the compared segments are nonequivalent.

In jDejavu , nodes have attached tests as opposed to edges having tests linked to

them (in Dejavu). dvu_util. c selects tests based on the nodes.

5.1.2 Procedure

The code based technique is executed as follows (for version P):

1. Make .class executables from the . j ava source code .

2. Make viewable byte code files (also . class), from the .class executables

(using the Byte-Source Viewer from the BCEL library).

3. Concatenate the byte code files into a single source file for one version (P).

4. Make the * . cf and * . map files using the gCFG builders . These files contain

the control flow and block information for P.

5. Instrument the source files with ginstrumentor.

6. Build traces using the gFil ter and drivers.

7. Build the test history file using th_builder .

41

)

)

)

)

)

.)
)
)
)

)
)
)

)

)

)

J

)

8. Use jDejavu to select tests from the test history of version P, which should be

used to test version P ~

The above is the procedure for both application test selection and component test

selection. The only difference being , in case of the application test selection, in Step 7 the

application itself was the driver, and for component test selection separate drivers were

written .

5.1.3 Results

5.1.3.1 Application Test Selection

Table 4 shows the number of tests selected from the application test suite using the code

based technique. Except in one case (vl-v2), very few of the application tests needed to

be rerun when the version of the component changed .

Table 4: Application Test Selection

Versions Code based

vO-vl 6/28 (21.43%)

vl-v2 28/28 (100.00%)

v2-v3 6/28 (21.43%)

v3-v4 0/28 (0.00 %)

v4-v5 6/28 (21.43%)

One observation from Table 4 is that there are no tests selected from v3 to v4.

This occurred because there is very little code changed between component versions v3

and v4. In fact the only difference is that v4 has one extra method (the insertChild

method in class XMLElement).

42

r

J

)

)

)

)

)

J
)

)
)

)
)
)

)

)

)

)

)

)

)

J

Another interesting result from Table 4 is that from v 1 to v2 all the tests were

selected. Table 5 shows us that XMLParserFactory is the class causing selection of all

the tests. To investigate this further we look at each method of this class. This helps us

identify methods being hit the most; code changes in these methods would cause high

selection rate of tests. In particular, we want to look at each method (M) of each class to

see how many tests (T) are selected when we go from an old version of the program (P)

to a new version (P J. The following could be possible:

l. M is not in P /

• T hits M - select T

• no T hits M - nothing to select

2. MisinP/

• M has code changes

o Thits M

■ T passes through the code changes - select them

■ T does not pass through code changes - nothing to select

o no T hits M - nothing to select

• M does not have code changes

o T hits M - nothing to select

o no T hits M - nothing to select

43

)

)

)

)

J
)

)

)

)
)

)

)

)

)

)

J

J
0

Table 5: Application Test Selection (Class-wise)

Component Classes vO-vl vi -v2 v2-v3 v3-v4 v4-v5

NonValidator 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

StdXMLBuilder 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

StdXMLParser 6 (21.43%) 6 (21.43%) 6 (21.43%) 0 (0%) 6 (21.43%)

StdXMLReader 6(21.43 %) 4 (14.29%) 4 (14.29%) 0 (0%) 6 (21.43%)

XMLElement 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLParseException 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLParserFactory 0 (0%) 28 (100.00%) 0 (0%) 0 (0%) 0 (0%)

XMLValidationException 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLWriter 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

ContentReader - 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLEntityResolver - 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLUtil - 5 (17.86%) 0 (0%) 0 (0%) 5 (17.86%)

ValidatorPlugin - - 0 (0%) 0 (0%) 0 (0%)

XMLException - - 5 (17.86%) 0 (0%) 0 (0%)

XMLAttribute - - - 0 (0%) 0 (0%)

The following tables show the selection data for each method for two typical

classes. An N entry means that the method is new in P ~ The fraction shows the number

of tests selected and the number of tests that hit the method. In these cases all the tests

that reached a changed method were selected.

Table 6: class XMLParserFactory' s methods

Methods v0-vl vl-v2 v2-v3 v3-v4 v4-v5

1 createDefaultXMLParser (0/28) (0/28) (0/28) (0/28) (0/28)

2 createDe faultXMLParser (0/0) N (0/0) (0/0) (0/0) (0/0)

3 createXM LParser (0/28) N (28/28) (0/28) (0/28) (0/28)

4 <init > (0/0) (0/0) (0/0) (0/0) (0/0)

44

f)

)

)

)

)

)

)

)

)

)

)

)
)

)

)

_)

u

u

Table 7: Class s tdXMLReader' s Methods

Methods v0-vl vl-v2 v2-v3 v3-v4 v4-v5

1 atEOF (6/6) (0/6) (0/6) (0/6) (6/6)

2 atEOFOfCurrentStream (0/0) (0/0) (0/0) (0/0) (0/0)

3 read (5/5) (0/5) (0/5) (0/5) (5/5)

4 getLineNr (0/0) (0/0) (0/0) (0/0) (0/0)

5 openStream (0/0) (4/4) (4/4) (4/4) (4/4)

6 stringReader (0/0) (0/0) (0/0) (0/0) (0/0)

7 <init > (0/0) (0/0) (0/0) (0/0) (0/0)

8 startNewStream (0/0) (0/0) (0/0) (0/0) (0/0)

9 unread (0/0) (0/0) (0/0) (0/0) (0/0)

10 getEncoding - (0/0) (0/0) (0/0) (0/0)

11 stream2reader - (0/0) (0/0) (0/0) (0/0)

12 ·getPublicID - (0/0) (0/0) (0/0) (0/0)

13 getSystem ID - (0/0) (0/0) (0/0) (0/0)

14 fileReader - (0/0) (0/0) (0/0) (0/0)

15 <init> - (0/0) (0/6) (0/6) (0/6)

16 <init > - (0/0) (0/0) (0/0) (0/0)

17 setPublicID - (0/0) (0/0) (0/0) (0/0)

18 setSystemID - N (0/0) (0/0) (0/0) (0/0)

19 finalize - - (0/0) (0/0) (0/0)

20 class$ - - - (0/0) (0/0)

We see that the createXMLParser method from class XMLParserFactory

selects all 28 tests. The reason is that this is a 'core' method that is called to create the

XML parser (NanoXML is an XML parser) hence all tests hit this method, and from

version vl to v2 this method is changed, so all tests are selected.

5.1.3.2 Component Test Selection

We also look at the component tests selected by the code based technique because it

helps us consider test selection effectiveness later Section 5.4.

Table 8 shows the number of tests selected across the different versions (total

number of tests being 214 (vO to v3) and 216 (v4 and v5)). The total number of test

45

r

)

l

)

)

)

)
)

)

J
J
)

)

J

u

selected is very high for most of the pairs (more tests pass through changed code), except

from v3-v4. This is because between v3 and v4 only one new method has been

introduced .

Table 8: Component Test Selection

Versions
Number of selected

tests

vO- vl 203 (94.86 %)

vl- v2 214 (100.00 %)

v2-v3 214 (100 .00%)

v3- v4 0 (0.00%)

v4-v5 210 (97.22%)

Version pairs vl-v2 and v2-v3 show a 100% selection rate. This is not due to any

single class or method change (as opposed to the application test selection case (vl-v2)),

as we can see from Table 9 which gives us a more detailed class-wise test selection rate.

As expected the core classes NonValidator, StdXMLBuilder, StdXMLParser,

StdXMLReader, and XMLParserFactory have a lot of code changes and so

correspondingly a lot of test selection.

46

r

)

)

)

)
)

)

)

)

)

)

)

Table 9: Component Test Selection (Class-wise)

Component Classes v0- vl vl -v2 v2-v3 v3-v4 v4-v5

NonValida to r 195 (91.12 %) 201 (93.93%) 150 (70 .09%) 0 (0%) 67 (31.02 %)

StdXMLBuild e r 129 (60.28%) 150 (70.09 %) 150 (70 .09%) 0 (0%) 0 (0%)

StdXMLParser 203 (94.86%) 206 (96.26%) 205 (95.79 %) 0 (0%) 207 (95.83%)

StdXMLRe ad e r 197 (92.06%) 206 (96.26 %) 51 (23.83%) 0 (0%) 207 (95.83 %)

XMLElement 0 (0%) 12 (5.61 %) 140 (65.42 %) 0 (0%) 0 (0%)

XMLParseEx ce pti on 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLParserFact ory 0 (0%) 206 (96.26 %) 0 (0%) 0 (0%) 0 (0%)

XMLValidati onEx ce pti on 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

XMLWrit e r 0 (0%) 68 (31.78 %) 68 (31.77 %) 0 (0%) 75 (34.72 %)

ContentRea de r - 117 (54.67 %) 0 (0%) 0 (0%) 0 (0%)

XMLEntityRes o l v er - 95 (44 .39%) 0 (0%) 0 (0%) 15 (6.94%)

XMLUt il - 205 (95.79 %) 0 (0%) 0 (0%) 207 (95.83 %)

ValidatorPlugin - - 0 (0%) 0 (0%) 0 (0%)

XMLExcepti on - - 73 (34.11 %) 0 (0%) 0 (0%)

XMLAttribute - - - 0 (0%) 0 (0%)

Studies [8] have shown that when there are lots of code changes between versions

the opportunities for test selection decrease. That is, the amount of change made between

regression testing sessions strongly affects the costs and benefits of regression test

selection techniques. These results further validate those findings.

We look at the same classes from Tables 6 and 7 in Tables 10 and 11. The test

selection is similar to those seen for the application tests, with all tests being selected for

the method createXMLParser in class XMLParserFactory. Appendix B presents

results for other classes.

47

)

)

)

l)

I

)

)

)
)

)

)
)
)

)

J
)
)

Table 10: Class XMLParserFactory' s Methods

Methods v0-vl vl-v2 v2-v3

I createDefau ltXMLParser (0/197) (0/201) (0/204)

2 createDefaultXMLParser (0/6) N (5/5) (0/2)

3 createXMLParser (0/203) N (206/206) (0/206)

4 <init > (0/0) (0/0) (0/0)

Table 11: Class s tdXMLReader' s Methods

Methods v0-vl

I atEOF (197/197)

2 at EOFOfCurrentStream (0/66)

3 Read (I 971197)

4 getLineNr (0/0)

5 openStream (0/0)

6 stringReader (0/0)

7 < init> (0/0)

8 s tartNe wStream (0/0)

9 Unr ead (0/0)

10 getEncoding -

11 stream2reader -

12 getPublicID -

13 getSystemID -

14 fileReader -

15 <init > -

16 <init > -

17 setPublicID -

18 setSystemID -

19 Finalize -

20 c la ss$ -

5 .2 Specification Based Technique

5.2.1 Procedure

vl-v2 v2-v3

(48/205) (0/205)

(0/0) (0/0)

(156/205) (0/205)

(0/0) (0/0)

(51/51) (51/51)

(0/0) (0/0)

(0/0) (0/0)

(0/0) (0/0)

(0/0) (0/0)

(0/204) (0/204)

(0/206) (0/206)

(0/0) (0/0)

(0/0) (0/0)

(0/206) (0/206)

(206/206) (0/206)

(0/0) (0/0)

(0/0) (0/0)

N (0/0) (0/0)

- (0/0)

- -

v3-v4

(0/206)

(0/2)

(0/208)

(0/0)

v3-v4

(0/207)

(0/0)

(0/207)

(0/0)

(0/5 I)

(0/0)

(0/0)

(0/0)

(0/0)

(0/206)

(0/208)

(0/0)

(0/0)

(0/208)

(0/208)

(0/0)

(0/0)

(0/0)

(0/0)

(0/0)

v4-v5

(0/206)

(0/2)

(0/208)

(0/0)

v4-v5

(207/207)

(0/0)

(207/207)

(0/0)

(51/51)

(0/0)

(0/0)

(0/0)

(0/0)

(0/206)

(0/208)

(0/0)

(0/0)

(0/208)

(0/208)

(0/0)

(0/0)

(0/0)

(0/0)

(0/0)

Our specification based selection technique requires that we have a statechart diagram for

each component in each version of our tested system - NanoXML. We used the Rational

48

I

)

)
)

)
)
)
)

)

)

J
)

J

J

u

Rose tool to draw these statechart diagrams. (For details on how we created the diagrams

see Section 4.4.)

As described in Section 3.2.2, our technique also requires us to have linearly

independent paths for each component in each version, because generating all possible

paths is not practical, so we built a path generation tool, which generated linearly

independent paths for each statechart diagram in each version. Using the Dispenser

component as an example , the path generation result for Dispenser is shown in

Table 1.

Following the modified Dejavu selection algorithm presented in Section 3.1.2, we

built a tool which compared two statechart diagrams (original and revised) and generated

the affected edges (the set of states and transitions affected by the changes to the

specification). We used this tool to compare the statechart for each component in each

version with the corresponding statechart in a successive version, and determined the

affected edges for each component in this version. Section 3.2.2 shows an example result

of this step applied to the Dispenser component.

We also built a mapping tool which maps all the edges to the paths in a diagram.

The output is an edge-path matrix with O or 1, where O indicates that the edge is not on

the path, and 1 indicates that the edge is on the path. We used this mapping tool to map

all the edges to the paths for each component in each version (with the exception of

components in the last version, v5) and obtained an edge-path matrix for each component

in each version except v5.

Finally we extracted the affected edges from the edge-path matrix, and obtained the

49

)

)

)
)

)

)

J
)
)

)

)
)

)

)

J
)
)

)

)

)
)

J
)

w

affected edge-path matrix. An affected edge-path matrix shows whether an affected edge

is on any path or not, and also gives the final result, which is whether each path includes

at least one affected edge. If so, this path would be selected, and corresponding test cases

would be rerun. We performed the extraction on each component in each version except

v5, and obtained the path selection result for each component in each version. Section 3.2

uses the Dispenser example to show the path selection result for the Dispenser

component.

5.2.2 Results

The first thing we consider is whether the approaches reduce the number of selected

paths. Table 12 shows average test selection results for both the IncludeNew and

IgnoreNew approaches for each version. For each approach the table lists the total

number of paths, number of selected paths and path selection rate for each version. The

data in Table 12 shows that (1) we can decrease the number of selected paths by using

both approaches; (2) overall the selection rates using the IgnoreNew approach are lower

than the selection rates using the IncludeNew approach; (3) in most versions there is a

slight decrease in selection rate by using IgnoreNew, except in version 3.

Having looked at the overall data, we want to see what happens on a per

component basis . Table 13 shows the path selection rate for each component in each

version using the two approaches. A path selection rate for each component is calculated

as the number of selected paths in each component divided by the total number of paths

in the corresponding component. "N" in Table 13 means there is no such component in

this version. The data in Table 13 shows that (1) the path selection rate in each

50

r
I

....:

,
)

)

)
)

component is often either 100% or 0%, and (2) in most components the selection rates do

not change between the two approaches, or slightly decrease for the lgnoreNew approach.

Table 12: Selection Rate for Each Version

IncludeNew approach IgnoreNew approach

Versions Total Path Selected Path
Path

Total Path Selected Path
Path

Num Num
Selection

Num Num
Selection

Rate Rate

v0-vl 89 51 57 % 89 48 54%

vl-v2 129 116 90 % 129 103 80%

v2-v3 156 100 64% 156 73 46%

v3-v4 187 51 25 % 187 10 5%

v4-v5 188 77 41% 188 71 38%

5.2.3 Discussion

In this study, we explored the specification-based test selection technique by using UML

statechart diagrams. Looking at overall selection data shown in Table 12, the path

selection rate is reduced by both the IncludeNew and the IgnoreNew approaches. It seems

that cost can be reduced by using the two approaches. But the data in Table 13 shows that

our overall savings are due to components that are not changed at all. For example, all the

components in Version 1 are changed, so the selection rate for this version is very high

(80% to 90%); while in Version 3, most components are not changed, so the selection

rate is low (5% to 25%). Also shown in Table 13, the selection rates in the changed

components are often 100%, which suggests that selection at the fine grain of individual

paths in those components does not help. It might often be equally cost effective just to

consider which components have changed and run all their tests.

The data in Table 13, however, also shows that there are a few components with

low but non-zero selection rates, such as the XMLUtil and XMLException

51

)

)

)

)

)

)

)

)

)
)

)

)

)

)

)

)

)

)

)

J
)

u
)

components. When test costs are very high, it might be worth seeking extra savings on

such components by selecting at the path level.

In this study we used two different approaches to select paths. The IgnoreNew

approach might let us save tests but sacrifices safety. But our results show that there was

often not a lot of difference in selection rates between the two approaches per component.

But occasionally there was a difference, so again if costs are very high, it could be worth

while to use the IgnoreNew approach, at a sacrifice of safety . If costs are not very high , it

may not be worth while to use the IgnoreNew approach.

Table 13: Selection Rate for Each Version (Class-wise)

VersionO Version I Version2 Version3 Version4

Components Include Ignore Include Ignore Include Ignore Include Ignore Include Ignore
New New New New New New New New New New

XMLParserFactory 0% 0% 83% 66% 0% 0% 0% 0% 0% 0%

StdXMLReader 100% 100% 100% 25% 0% 0% 0% 0% 100% 100%

StdXMLParser 95% 91% 100% 95% 90% 85% 45 % 45% 100% 100%

NonVa lidat or 100% 100% 100% 100% 100% 100% 0% 0% 100% 100%

XMLElernent 0% 0% 91% 90% 100% 86% 100% 3% 0% 0%

XMLWriter 0% 0% 100% 25% 100% 100% 0% 0% 0% 0%

StdXMLBuilder 100% 100% 100% 100% 90% 90% 0% 0% 0% 0%

XMLParseException 100% 0% 100% 100% 100% 100% 0% 0% 0% 0%

XMLValidationException 0% 0% 100% 100% 100% 100% 0% 0% 0% 0%

Cont e ntRea de r N N 100% 100% 0% 0% 0% 0% 100% 100%

XMLEntityResolver N N 100% 50% 0% 0% 0% 0% 100% 0%

XMLUtil N N 52% 47 % 0% 0% 0% 0% 55% 52%

ValidatorPlugin N N N N 100% 30% 0% 0% 0% 0%

XMLException N N N N 20% 20% 0% 0% 0% 0%

XMLAttribute N N N N N N 0% 0% 0% 0%

N represents no such component in this version .

52

)

J
}

)

)

)

')
)

)

)

)

)
)

)

)

)

)

)

5.3 Hybrid Technique

5.3.1 Procedure

As described in Section 3.3, the hybrid technique we wished to investigate requires us to

map test traces of the component to the test traces of the application . This required us to

attempt to map the 28 traces of the application to the 200-plus traces of the component.

There were two types of traces files for the same test cases and frames of the application

and the component. One set of traces contained the function hit information along with

the basic block hit information, irrespective of order, and another set contained the

sequential list of the functions hit. We first set out to map functions hit and blocks hit

traces. In both cases we were able to obtain a correspondence between application and

component tests. But the mapping of the sequential trace was problematic. The reason for

this was that the numbers of times a function was hit or the order in which the functions

were hit depended entirely on the type of input file being given. Since the input file being

used by the application tester and the component tester will likely be different, it does not

make sense to map the sequential traces of the application and the component. We thus

used only function and block hit traces for further processing.

Each trace is represented in a file. So moving to implementation level, to map the

function hits and the basic block hits of the application trace files to the component trace

files, we wrote a program in Java named MapTes t. MapTes t takes in a set of files

containing the application traces and a set of files containing the component traces and

tries to map the traces files. To do this, MapTest iterates through component trace files,

and for each, extracts the function hits and the basic block hits from that file. MapTest

stores this information and then performs the same extraction for all the application trace

53

)

)

)
)

)

)

)

)

)

files. It then compares the component trace file information with the information from the

application traces files. If there is a match between any of the application trace files and

the component trace files, the application trace file's name is stored under the trace file

name of the component trace file. A match in our case is measured in terms of a specific

percentage of the functions and the basic blocks hit being identical. For example, a 90%

function match means 90% of the functions in a component test trace are present in a

particular application test trace . If all the blocks that were hit in a component test were

present in the trace of an application test, then there is said to be 100% match. We can

use any percentage we want as an acceptable match. This implementation allows us to

compare either the function hits or the basic block hits separately.

Unfortunately, the mapping using the basic blocks hit could not be used for our

subject as there was no significant correspondence between the trace files even if we

reduced the percentage of match required to infer a correspondence. When using basic

blocks as the mapping criteria, a mapping was not obtained as there were no tests in the

application that hit 95% or more of the blocks hit by any component test. This remained

true for even a low match percentage of 65% . Therefore the basic blocks mapping was

not useful for the study.

The mapping using the functions, however, did produce a correspondence for our

subject. For an acceptable match percentage set at 95%, we had a well distributed

mapping between the application tests and the test frames.

Once we had the mapping information, we collected the test frames that we

changed from one version to another in the component. Since no new functional unit was

added, the test frames changed were limited. A test frame is said to be changed if the test

54

)

0
()
n

)

)

)

)

)

)

)

)

)

)

)

)

)

)

u
0

driver for that particular test frame was changed or if there had been new frames added or

old ones modified. Frames were added or modified to make the test case for that

particular test frame work for the newer version of the component.

We then wrote a program in Java called TestSelection which takes in the

mapping information output by MapTes t and a file containing the test frames that are

changed, and outputs a file listing the application test cases which need to be run for each

version.

5.3.2 Results

Table 14 shows the test frames selected as changed. The reason the number of test frames

that are changed from vO to vl is 214 is because all the test drivers from vO to vl needed

to be changed. There were no changes in the test frames from version v3 onwards.

Table 14: Component Frames Changed

Versions Frames Changed

v0- vl 214/214 (100.00 %)

vl - v2 47/214 (21.96 %)

v2-v3 17/214 (7.94%)

v3-v4 0/216 (0.00%)

v4-v5 0/216 (0.00%)

Table 15 gives the number of application tests that need to be rerun when the version of

the component changes. The reason 23 of the 28 tests were selected for v 1 is because of

the fact that almost all the test frames changed from vO to v 1. These frames changed

primarily because the test drivers changed when we moved from version vO to vl.

55

)

G
0
n

)
)

)

)

)

)

)
)

)
)

)

)

)

)

)

)

)

)

)

)

Table 15: Application Tests Selected

Versions
Application Tests

Selected

v0-vl 23/28 (82.14%)

vl-v2 5/28 (17.86%)

v2-v3 5/28 (17 .86%)

v3-v4 0/28 (0.00%)

v4-v5 0/28 (0.00%)

Our results on versions 1 through 5 were heavily influenced by the way we

developed our TSL specifications. We did not add to our specifications to account for

new functionality that was added to the component in newer versions. But the test frames

were only modified to make the existing ones work for the newer version. For example, a

function which takes in a three parameters instead of an earlier two, the test frames needs

to be changed slightly to account for this . Had we built the TSL specification to take the

added functionality into account, the number of tests selected could have been greater.

But then again, we developed our test plans and tests before the experiment was designed

and it seemed intuitive to do it this way without any prior knowledge of the experiment.

The results of the experiment thus avoid a potential source of bias.

The type of the system we studied may also have played a role in these results.

The system was a parser , and thus the mapping was very difficult to obtain between

application tests and the component test as the input file played a large role in

determining the path taken by the program. Also, the sequential function trace and the

basic block trace could have been used to obtain a mapping between the two.

56

)

)

(}
()
F)

)

n

)

)
)

)

)

)

)

)
)
)

)

)

)

)

)

J
)

)

)

)

5.4 Comparisons across Techniques

The three techniques yielded very interesting results . Unfortunately, it was difficult to

compare the state based techniques with the other two techniques, namely, the code based

and the hybrid technique. The reason for this was that the state based techniques selected

test paths rather than test cases for regression test selection across the versions. In the

future, when test cases are developed for the different test paths, the comparison between

the three techniques would become more accurate.

We thus compare (Table 16) the work required to be redone (percentage of

retesting required) for the three techniques. Although we are comparing slightly different

things, the percentages represent the retesting effort required as given by the techniques .

For the code based and the hybrid techniques it is the percentage of application tests

selected to be rerun . And though the specification based technique does not select tests

from the application test suite we can still compare with it because the number of test

paths gives an idea of the number of test cases.

Table 16: Comparison across Techniques

Versions Code Based
State State

Hybrid
Based (a) Based (b)

vO to vl 21.43 % 57 % 54 % 82.14%

vl to v2 100.00% 90 % 80 % 17.86%

v2 to v3 21.43 % 62 % 44 % 17.86%

v3 to v4 0.00 % 25 % 5 % 0.00 %

v4 to v5 21.43 % 41 % 38 % 0.00%

57

t
I

)

)

)

)
)

)
)

)

J
)

)

)

From v3 to v4 there were no code changes , except the addition of a new method,

and so there are no tests selected by the code-ba sed technique, but since the state based

technique depends on UML diagrams and paths therein, some tests are selected.

Table 17 is a further comparison between the code based and the hybrid method.

Apart from versions vO-vl and v3-v4, there is a marked difference between the tests

selected by the methods . The code based selects more component tests overall than the

hybrid technique.

When a new system version comes out, the system tends to become stable in its

functionality and at some point the system's functionality does not change any more and

possibly some variable/syntax changes or minor error corrections may occur. This

explains why the hybrid technique selects fewer tests than the code based technique as

the system reaches higher versions. The hybrid technique generates test cases based on

the TSL specification, which considers the system at a functional level, and it selects no

tests on v3-v4 and v4-v5, showing there were no functional changes in those versions.

The presented code based technique, however, reflects every single code (basic block)

change in the system, and thus it still selects a large portion of tests from v4 to v5.

Table 17: Comparing the Code Based and Hybrid Techniques

Versions
Application Tests Selected Component Test Selected

Code Based Hybrid Code Based Hybrid

v0-vl 6/28 23/28 203/214 214/214

vl-v2 28/28 5/28 214/214 47/214

v2-v3 6/28 5/28 214/214 17/214

v3-v4 0/28 0/28 0/216 0/216

v4-v5 6/28 0/28 210/216 0/216

58

J

()

)

)
)

)

)

)
)

)
)
)
)

)

)

)

)

Table 18 shows the application tests selected by the code based and the hybrid

techniques. The numbers shown in the table represent test case numbers O through 27.

The methods select different tests due to different approaches and different algorithms

used . The individual reasons for this kind of selection for the code based and the hybrid

techniques are discussed in Sections 5.1.3.1 and 5.3.2 respectively. Together the two

techniques seem to compliment each other, with little overlap in the test cases selected.

Table 18: Application Test Selection for Code Based and Hybrid Techniques

Versions Code Based Technique Hybrid Technique

0 1 2 3 7 8 9 10 11 12 13 14
v0-vl 012346 16 17 19 20 21 22 23 24 25

26 27
0123456789101112

vl -v2 13 14 15 16 17 18 19 20 21 22 24 25 26 27
22 23 24 25 26 27

v2-v3 012346 22 24 25 26 27

v3-v4 - -

v4-v5 012346 -

The code based technique is based on compari sons of CFGs between pairs of

methods to see if there is any code change inside the method. If so, any test cases that go

through the changed code (actually changed basic blocks) will be selected. The code

based technique can be implemented at different levels, depending on what level we

instrument the code at. In our case the code based technique is at very low level, since we

instrument at the basic block level.

The specification based technique is based on comparison of statechart diagrams

between two classes. If there is any change between two statechart diagrams (such as

59

0
()

:-l

.)

)

)

)

)
)
)

)

)

)

)

)

)

)

method parameter changes), the state is considered 'dangerous' and paths (or test

requirements) that go through this state are selected. The specification based technique is

thus at higher level than the code based technique . The overall selection rate of the code

based technique is thus expected to be higher than that of the specification based

technique .

The hybrid technique is at a functional level. When we made the TSL

specifications, we divided the whole system into several functional units (a functional

unit is not necessarily a class - it may involve several classes), then we considered the

parameters and environmental conditions for each functional unit. The tester can control

the size of the tests and in our implementation we tested at a 'high level'. The overall

selection rate of the TSL based technique turned out lower than those of the other

techniques. Also when we compare two component versions by using TSL, we just

adapted test frames of previous versions to the later versions . This caused there to be few

frame changes between versions, lowering the selection rate further.

60

0
F)

)

)

)
)

)

)

)

)

)
)

)
)

)

)

Chapter 6
CONCLUSIONS AND FUTURE WORK

We have looked at three techniques for regress10n testing of component based

applications . The first technique is code based, the second technique is specification

based , and the third is a hybrid of the two . We constructed infrastructure that allows use

of metadata for regression test selection using the three techniques; and studied a real

world component-application that demonstrates the potential usefulness of metadata in

regression test selection.

Overall the code based technique performed the worst with an average selection

rate of almost 100% for component test selection . But it selected an average of 22% of

the application tests. This shows that the test selection rate differs for different drivers.

When we performed test selection with test drivers which cover most methods in the

components, we ended up selecting more tests because more changed code is likely to be

hit.

The specification based and hybrid techniques fared better, but the results

basically depend on the component developer. Changing code with no specification

changes or changing specifications and not the code will result in different percentages of

test selection. Also developers sometimes release versions after a long time (with lots of

code and specification changes), this may lead to a higher test selection rate. And

sometime s releases with little or no change (in our case between v3 and v4) will select no

tests . Releasing component versions regularly and with the corresponding specification

changes would make the techniques most effective.

61

)

)

)

)
)

)

)
{)

)

)

)

)

)

)

)
)
)

)

_)

)

J

The specification based testing technique required us to have a statechart diagram

for component classes. Since we did not have text specifications for any component class

in NanoXML , we reverse engineered the diagrams by looking at the code. This resulted

in very low level diagrams (for example, every method call is a transition). This can

result in very complex diagrams when two or more diagrams are combined . We thus need

higher level diagrams to work with. As a next step, we would look for component­

applications that have diagrams included with them, that is, which include diagrams that

were made as design requirements . We can then expect to do integration tests of

components and applications by combining statechart diagrams.

The code based results show that the component had relatively large changes in

code. We would like to look at different programs that have different amounts of code

changes between releases. This would help in determining different levels of

instrumentation (statement-level, method-level , and component-level).

Also the study needs to be conducted on a wider range of programs with more

diverse code bases, specifications and UML diagrams . This study has been performed on

only one subject (NanoXML), but the study achieved significant by-products:

1. identifying metadata in each of the three techniques.

2. construction of infrastructure for testing general component-based software.

3. better understanding of the effects of software domain on test technique

adaptation.

62

)

)

')
,)

)
)

()
)

~
)
)

)

)

)
)

)

)

)

)

)

)

)

)

)

)

APPENDIX A

Package net.n3.nanoxml [16]

Interface Summary
IXMLBuilder

IXMLElement
IXMLEntityResolver
IXMLParser
IXMLReader
/XML Validator

Class Summary
Non Validator

StdXMLBuilder

StdXMLParser
StdXMLReader
ValidatorPlugin

XMLElement
XMLEntityResolver
XMLParserF actory
XML Writer

Exception Summary

NanoXML uses IXMLBuilder to construct the XML data structure
it retrieved from its data source.
IXMLElement is an XML element.
An IXMLEntityResolver resolves entities.
IXMLParser is the core parser of N anoXML.
IXMLReader reads the data to be parsed.
IXML Validator processes the DTD and handles entity references.

Non Validator is a concrete implementation of IXML Validator
which processes the DTD and handles entity definitions.
StdXMLBuilder is a concrete implementation of IXMLBuilder
which creates a tree of IXMLElement from an XML data source .
StdXMLParser is the core parser of NanoXML.

StdXMLReader reads the data to be parsed.
ValidatorPlugin allows the application to insert additional
validators into NanoXML.
XMLElement is an XML element.
An XMLEntityResolver resolves entities.
Creates an XML parser.
An XMLWriter writes XML data to a stream.

XMLException An XMLException is thrown when an exception occurred while
processing the XML data.

XMLParseException An XMLParseException is thrown when the XML passed to the
XML parser is not well-formed.

XMLValidationException An XMLValidationException is thrown when the XML
passed to the XML parser is well-formed but not valid.

63

(j
{)
)

)

)

)

)

)

)

)
)

)

)

)

)
)
)
)

)

)

)

)

)

)

)

.J

)

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

7

8

9

10

11

APPENDIXB
METHOD-WISE TEST SELECTION INFORMATION

Class ContentReader's Methods

v0-vl vl-v2 v2-v3 v3-v4 v4-v5

read - (117/117) (0/117) (0/119) (0/119)

close - (117 /117) (0/117) (0/119) (0/119)

< init > - N (0/0) (0/0) (0/0) N (0/0)

finalize - - (0/0) (0/0) (0/0)

Class XMLParseException's Methods

v0-vl vl-v2 v2-v3 v3-v4 v4-v5

getLineNr (0/0) N (0/0) - - -

<init > (0/0) (0/0) (0/0) (0/0) (0/0)

<init > (0/0) N (0/0) (0/33) (0/23) (0/23)

getException - N (0/0) - - -

<init > - N (0/0) - - -

Class StdXMLBuilder's Methods

Methods v0-vl vl-v2 v2-v3 v3-v4 v4-v5

getResult (0/0) (0/0) (0/0) (0/0) (0/0)

<init > (0/0) (0/0) (0/0) (0/0) (0/0)

addAttribute N (121/121) N (143/143) (143/143) (0/144) (0/144)

addPCData (0/0) N (1171117) N (117/117) (0/119) (0/119)

endElement N (128/128) (0/148) (148/148) (0/150) (0/150)

newProcessinginstruction (0/0) N (0/0) (0/0) (0/0) (0/0)

startBuilding (0/0) N (0/0) (0/0) (0/0) (0/0)

startElement N (129/129) N (150/150) (150/150) (0/151) (0/151)

elementAttributesProcessed - (0/0) (0/0) (0/0) (0/0)

Finalize - - (0/0) (0/0) (0/0)

<init > - - - (0/207) (0/207)

64

)

)

')

)

.)

0
t)

)

\-)
)

)

)

)

)

)
)

)

)

)
)

)

)

)

)

)

J
)

)

_J
)

J
)

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Class XML ValidationException' s Methods

v0-vl vl-v2 v2-v3 v3-v4 v4-v5

1 getAttributeName (0/0) (0/0) (0/0) (0/0) (0/0)

2 getAttributeValue (0/0) (0/0) (0/0) (0/0) (0/0)

3 getElementName (0/0) (0/0) (0/0) (0/0) (0/0)

4 getLineNr (0/0) N (0/0) (0/0) (0/0) (0/0)

5 <init> (0/0) N (0/0) (0/0) (0/0) (0/0)

Class NonValidator's Methods

v0-vl vl-v2 v2-v3 v3-v4 v4-v5

scanidentifier N (66/66) - - - -

scanString N (66/66) - - - -

readChar N (66/66) - - -

processAttList N (4/4) N(l6/16) (0/16) (0/16) (16/16)

processElement N (66/66) N (67/67) (0/67) (0/67) (67 /67)

processEntity N (66/66) N (67/67) (0/67) (0/67) (67/67)

skipComment N (0/0) - - - -

skipTag N (4/4) - - - -

skipWhitespace N (66/66) - - - -

ReadergetEntity N (4/4) - - - -

<init> (0/0) (0/214) (0/206) (0/208) (0/208)

PCDataAdded (0/0) N (0/0) (0/0) (0/0) (0/0)

attributeAdded N (121/121) N (143/143) N (143/143) (0/145) (0/145)

elementEnded N (128/128) N (0/0) N (0/0) (0/0) (0/0)

elementStarted N (129/129) N (150/150) N (150/150) (0/152) (0/152)

parseDTD N (66/66) N (67/67) (0/67) (0/67) (67 /67)

processConditionalSection - N (0/0) (0/0) (0/0) (0/0)

processignoreSection - N (0/0) (0/0) (0/0) (0/0)

elementAttributesProcessed - N (149/149) N (149/149) (0/151) (0/151)

finalize - - (0/0) (0/0) (0/0)

getParameterEntityResolver - - (0/0) (0/0) (0/0)

setParameterEnt it yResolver - - (0/0) (0/0) (0/0)

<c linit> - - (0/0) (0/0) (0/0)

65

)

)

f)
n

)

)

)

)

)

)
)

)
)

)

)

)

)

BIBLIOGRAPHY

[1] G. Booch, J. Kumbaugh , I. Jacobson. The Unified Modeling Language User

Guide. Addison Wesley, pages 336-339, 2001.

[2] K. Fischer, F. Raji, and A. Chruscicki. A methodology for retesting modified

software, Proc. of the Nat 'l. Tele. Conj B-6-3, pages 16, Nov . 1981.

[3] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. , "An

Empirical Study of Regression Test Selection Techniques", Proceedings of the

20th International Conference on Software Engineering, April 1998.

[4] M. J. Harrold , A. Orso , D. Rosenblum, G. Rothermel, M. L. Soffa, and H. Do .

Using Component Metadata to Support the Regression Testing of Component­

Based Software, IEEE International Conference on Software Maintenance,

November, 2001, Florence , Italy.

[5] M. J. Harrold, G. Rothermel, R. Wu, and L. Yi . An Empirical Investigation and

Comparison of Program Spectra, Technical Report OSU-CISRC-ll/97-TR55 The

Ohio State University, November, 1997.

[6] M. Harrold and M. Soffa . An incremental approach to unit testing during

maintenance, Proc. of the Conj on Softw. Maint., pages 362-367, Oct. 1988.

[7] J. Hartmann, C. Imoberdorf, and M. Meisinger. UML -based Integration Testing.

International Symposium on Software Testing and Analysis, pages 60-70, August

2000.

[8] J.-M. Kim , A. Porter , and G. Rothermel. An Empirical Study of Regression Test

Application Frequency, Proceedings of the 22nd International Conference on

Software Engineering , June, 2000 , pages 126-135.

66

)

)

)

)

)

)

)

)

)
)

)

)

)

) ,
)
)

)

)

)

J
u

)

[9] P . M . Maurer. Components : What if they gave a revolution and nobody came.

IEEE Computer , 33(6) ; pages 60-66 , June 1998.

[10] A. Orso, H. Do, G. Rothermel, M. J. Harrold , M . L. Soffa, and D.S. Rosenblum .

Using Component Metacontent to Support the Regres sion Testing of Component-

Based Software, 2000. [Unpublished]

[11] T. Ostrand and M. Balcer ,"The Category-Partition Method for Specifying and

Generating Functional Tests" , Communications of the ACM , Volume 31,

Number 6, June 1988, pp 676-686.

[12] R. S . Pressman . Software Engineering A Practitioner 's Approach. McGraw­

Hill, Fifth edition , 2001, pages 445-451.

[13] G. Rothermel and M. J. Harrold. A Safe, Efficient Regression Test Set Selection

Technique , ACM Transactions on Software Engineering and Methodology , V.6 ,

no. 2, April 1997, pages 173-210 .

[14] Marc De Scheemaecker , "NanoXML/Java2.1"

[15] C.Szyperski. Component Oriented Programming. Addision Wesley, first edition,

1997.

[16] http ://wcb . wanadoo.b c/cyb erelf/nanoxml/do cumcntation/N anoXML -2-JavaDoc/inde x.html

67

)

)

' C) :,
,:)

e
0
()

n
()
()

)

·1
;)

1)
()
I)

I)

()
()
1)

C)
{)
()
·.)
l)

')

l _)

•)

0
0
0
u
l)

u
'.J
u
u
u
u
§

0

j-

t
1
1

[

