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Abstract 

The k-ary n-cube structure is presented in this paper for interconnecting a network of 

microcomputers in parallel and distributed environments. Machines based on the k-ary n-cube 

topology have been advocated as ideal parallel architectures for their powerful interconnecting 

features . 

In this paper, we examine the k-ary n-cube from the graph theory point of view and 

consider those features that make its connectivity so attractive . Among other things, we propose 

several effective global data communication algorithms on the k-ary n-cube interconnection 

network. 
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1.1 Parallel Computers 

Chapter 1 

Introduction 

Parallel computers in general are classified into two groups: multiprocessors with shared 

memory organization and multicomputers with non-shared or distributed memory organization 

[LaD90, BeT89, SaS86]. There are also a variety of hybrid designs lying in between. The first 

type uses a global sharing memory that can be accessed by all processors (see Figure 1.1.1). To 

allow efficient access of the memory by several processors, the memory is divided into several 

memory banks. A processor can communicate with another by writing into the global memory and 

having the second processor read the same location in the memory using switching systems. The 

advantage of this architecture is that the algorithm design is simple. Moreover, it enables us to 

make the data access transparent to the user who may regard data as being held in a large memory 

which is readily accessible to any processor. However, as the number of nodes increases, the 

switching network becomes complex to build. Also, the decision of shutting down failing nodes 

and choosing alternate routes is local. The GF-11 Supercomputer, the Butterfly multiprocessor, 

and the Ultracomputer are some examples of this type of architecture. 

In the second important type of parallel processors, there is no shared memory and no 

global synchronization, but rather each processor has its own local memory. Processors 

communicate through interconnection network consisting of direct communication links joining 

certain pairs of processors, as shown in Figure 1.1.2. Which processors are connected together is 

an important design choice. It would be best if all processors were directly linked to each other 

which leads to increased cost, or the processors communicate through a shared bus, which leads to 

excessive delays when the number of processors is very large, due to the necessary bus 

contention. Moreover, interconnection achieved by message-passing directly or through some 
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SHARED MEMORY 

Figure 1.1.1 The Shared Memory Model 

p p 

p p 

Figure 1.1.2 The Distributed Memory Model 

intermediate processors, and computation is data driven. The main advantage of such architectures 

is the simplicity of their design. The nodes are identical, or are of a few different kinds and can 

therefore be fabricated at relatively low cost. Moreover, these models can easily be made fault 
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tolerant by shutting down failing nodes. Examples of this type of organization include the Cosmic 

Cube [Sei85], Intel's hypercube, NCUBE Machine, and the Connection Machine. 

1.2 Why k-ary n-cubes? 

Hypercubes are loosely coupled parallel processors based on the binary n-cube network 

and introduced under different names (cosmic cube, n-cube, binary n-cube, Boolean n-cube, etc.). 

An n-cube parallel processor consists of 2n identical processors, each provided with its own sizable 

memory and interconnected with n neighbors (see Figure 1.2.1). The hypercube gains its 

popularity due to the fact that it has some attractive features like symmetries, high level of 

concurrency and efficiency, regularity and high potential for the parallel execution of various 

algorithms. Moreover, most other networks can be directly mapped into a hypercube. 

However, one drawback to the hypercube is that the number of connections to each 

processor grows logarithmically with the size of the network [Lei92]. While this is not a problem 

for small hypercubes, it can present some difficulties for very large machines (e.g., machines with 

tens of thousands of processors). VLSI systems are wire-limited. Although hypercubes can 

provide small diameter, the property of high dimension is not consistent with the properties of 

VLSI technology. Networks with many dimensions require more and longer wires than do low

dimensional networks. Thus high-dimensional networks cost more and run more slowly than low

dimensional networks. It is shown that low-dimensional networks achieve lower latency and 

better hot-spot throughput than do high-dimensional networks [Dal90, LiH91]. 

The binary n-cube is a special case of the family of k-ary n-cubes, cubes with n dimensions 

and k nodes in each dimension. In order to overcome the problem of high dimensionality of 

hypercubes, we can increase k and decrease n obtaining low-dimensional k-ary n-cube. For 

- 3 -



100 101 

00L--+----a. 

010 011 

Figure 1.2.1 3-Dimensional Hypercube 

example, the 4096 processors in a binary 12-cube with a total of 24576 links can be interconnected 

using 16-ary 3-cube model with a total of only 12288 links. 

In this paper we introduce the k-ary n-cube model (k>2). We propose the recursive 

structure and some of the topological properties of this model in Chapter 2. To extend the strategy 

of the binary reflected Gray codes, we introduce in Chapter 2 a class of generalized Gray codes 

called k-ary reflected Gray codes. Some communication algorithms like one-to-one, single node 

broadcasting, multinode broadcasting, single node scattering, and total exchange are proposed in 

Chapter 3. We conclude this paper by summarizing the results and stating the future research in 

Chapter 4. 
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Chapter 2 

The k-ary n-cube Network 

In this chapter, we define the k-ary n-cube and show its properties. The binary n-cube has 

been extensively studied (see [Lei92, BeT89, SaS88, BhA84] for references), so we restrict 

ourselves on the k-ary n-cube where k > 2. We begin this chapter with some definitions and 

describing the recursive structure in section 2.1. We propose the k-ary n-cube's topological 

properties in section 2.2. In section 2.3, we show that the k-ary n-cube is Hamiltonian by 

introducing a general type of the reflected Gray codes called k-ary reflected Gray codes. 

2.1 Definitions and Structures 

In order to be able to define the k-ary n-cube network, we begin this section by introducing 

some definitions from coding theory [PeW72]. Then, we define the k-ary n-cube network and 

show that it can be built recursively from lower dimensional cubes. 

Definition 2.1.1 

Let <k> = {O, 1, 2, ... , k-1}. Let A= (an, an-I, ... , a1) be an n-tuple where ai e <k>. 

The Hamming weight of a vector A, denoted WH(A), is defined to be the number of nonzero 

components. The Hamming distance between two vectors A and B, denoted DH(A,B) is equal to 

W H(A - B). In other words, the Hamming distance between A and B is the number of positions in 

which they differ. 

Definition 2.1.2 

Let <k> = {O, 1, 2, ... , k-1}. Let A= (an, an-I, ... , a1) be an n-tuple where ai e <k>. 

The Lee weight of a vector A is defined as 
n 

WL(A) = LI ai I 
i=l 
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where 

The Lee distance between two vectors A and B, denoted D L(A, B), is 

WL(A - B), the Lee weight of their difference. 

Clearly for k=2 and 3, the Lee and Hamming distances are equal. For k>3 the Lee distance 

between two n-tuple vectors is greater than or equal to the Hamming distance between them. 

Example 2.1.1 

Let k=5 and n=6. Let A = (3 0 1 2 3 4) and B = (3 0 4 0 0 0). Then their difference term 

by term modulo 5 is 

Definition 2.1.3 

A - B = (0 0 2 2 3 4), and 

DH(A,B) = WH(A-B) = 4 

D L(A,B) = W L(A-B) = 0 + 0 + 2 + 2 + 2 + 1 = 7. 

The k-ary n-cube network model is a cube of n dimensions radix k. A node in the k-ary n

cube can be identified by n-digit radix k address, (an, an-1, ... , a1) where ai e <.k>. Two nodes A 

and B in the k-ary n-cube are adjacent if and only if DL(A,B) = 1. The ith digit of the address ai 

represents the node's position in the ith dimension. The dimension, n, the radix, k, and the 

number of nodes, N, have the following relation 

N = kn, k = '!:fiii, n = logkN. 

Definition 2.1.4 

In a k-ary n-cube network, two nodes are said to be opposite in direction i if their addresses 

differ in position i and the Lee distance between them is unity. 
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The union of all the opposite nodes in direction i from a ring in direction i. 

Proposition 2.1.1 

The k-ary n-cube network can be constructed recursively from lower dimensional cubes. 

Proof 

Let N = kn, k > 2, n ~ 1. Let <k> = (0, 1, 2, ... , k - 1 }. An N-node k-ary n-cube is a 

Graph C = (V,E) where 

V = { a I a is an n-digit radix k integer, 

i.e. a = anan-J ... aJ and ai e <k>}, 

and 

E = ( (a,b) I a, be V and DL(a,b) =I} 

if A is a set of strings over <k>, then define 

xA = ( xa I a e A and x e <k> } 

where x a is a string obtained by concatenating x and a. 

Let 

ct) = (Vt) 'Et)) 

be the graph of the k-ary n-cube, then ct) can be constructed recursively as follows 

and 

vf) = <k>, and 

Ef) = ((x,y) lx,ye <k>,x<y, andDL(x,y)=I}; 

Vkn) = xV~n-l) for all x e <k> 

s, t e <k>, s<t and DL(s,t) = I}. □ 

Stated in words, we can construct a k-ary n-cube network recursively by making k copies 

of the k-ary (n-1 )-cube, renumber the labels by concatenating digit O to each label of the first copy, 
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digit 1 to each label of the second copy, ... , and digit k-1 to each label of the kth copy. Finally, 

link the nodes that are opposite in direction n. Figure 2.1.1 illustrates an example of constructing a 

4-ary 3-cube recursively starting from 4-ary 1-cube. 

2.2 Topological Properties 

When designing a large multiprocessor, one of the most important design decisions 

involves the topology of the communication structure among the processors. The degree (number 

of incident links) of each node, the total number of links, and the diameter of the network should 

be known before choosing the network. In this section, we introduce the topological properties of 

the k-ary n-cube (k > 2) hoping to be a powerful network. 

Proposition 2.2.1 

Proof 

In a k-ary n-cube network 

a) The degree of each node is 2n. 

b) The total number of links is nk". 

a) Let A= (an, an-1, ... , a1) be a node in a k-ary n-cube. Then both 

(an, an-I, ... , (aI+l) mod k) and (an, an-I, ... , (aI-1) mod k) are adjacent to A in 

direction one. Similarly we can prove that in each direction, there are two adjacent 

nodes to A, resulting in a total of 2n adjacent nodes. 

b) Summing the number of links incident to each node, we get 2nk". Since each link 

will be counted twice, we get the total number of links is 

2nknJ2 = nkn links . □ 

We notice that the above property does not hold if k=2 (in a binary hypercube) because 

(a1+l) mod2 is equal to (a1-l) mod2 resulting inn links incident to each node, and total links of 

n2n12 = n2n-l . 
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(e) (b) 

(c) 

Figure 2.1.1 

Recursive structure of 4-ary 3-cube (a) 4-ary I-cube, (b) 4-ary 2-cube, (c) 4-ary 3-cube. 
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Define the diameter of the network to be the maximum Lee distance between any two nodes in the 

network. We can state the following proposition. 

Proposition 2.2.2 

The diameter of the k-ary n-cube network is 

Lk/2J * n. 

Proof 

Let A and B be two nodes in the k-ary n-cube network. Then from the definition of the Lee 

distance, we have 

However, 

This results in 

Proposition 2.2.3 

n 
DL(A,B) = WL(A-B) = I, I a; I 

i=l 

In a k-ary n-cube network, there are kn-I node disjoint k-rings in each direction . 

Proof 

□ 

Let the label of a node be anan-I ... aI n-tuples radix k. Fix aI = (0, 1, 2, ... , k-1) to be a 

ring in direction one. Then from the remaining n-1 radix k tuples, we have a total combination of 

kn-I concatenated to aI resulting in kn-I node disjoint k-rings in direction one. Similarly, we can 

prove for direction two to n. □ 

Example 2.2.1 

In a 4-ary 2-cube there are 4 rings in direction one and 4 rings in the second direction. 
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First direction 

R1 = {00, 01, 02, 03} 

R2 = { 10, 11, 12, 13} 

R3 = {20, 21, 22, 23} 

R4 = {30, 31, 32, 33} 

Second direction 

R1 = {00, 10, 20, 30} 

R2 = {01, 11, 21, 31} 

R3 = {02, 12, 22, 32} 

R4 = {03, 13, 23, 33} 

Obviously, the rings in each direction are node disjoint 4-rings. 

We would like to know if there exist different paths between any two nodes A and B . The 

existence of such paths might be useful for speeding up transfers of large amounts of data between 

two nodes (see section 3.2). It also provides a way of selecting alternative routes in case a given 

node in a path is failing [BhA84]. In order for this to be possible, the paths must not have 

common nodes, except for nodes A and B. We will refer to such paths as node-disjoint parallel 

paths, and we will prove in the following proposition that there are 2n node-disjoint parallel paths 

between any two nodes in the k-ary n-cube. 

Proposition 2.2.4 

Let A= (an, an-1, ... , a1), B = (bn, bn-1, ... , b1). 

Let/= DL(A, B), h = DH(A, B) and Wi = DL(ai, bi). Then, in a k-ary n-cube, there are a total of 

2n node-disjoint parallel paths between A and B of which 

(i) h paths are of length /, 

(ii) 2(n-h) paths are of length /+2, and 

(iii) for each i, Wi > 0, there is a path of length 

l + k -2Wi, 

(a total of h paths). 

Proof 

Without loss of generality, we can assume that the first h digits of the labels of A and B are 

different, and the remaining n-h digits are the same. 
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(i) Let 1 ~ i ~ h, the ith path is constructed as follows: start from the label of A; correct 

sequentially digit i, using the shortest path of the ring in direction i between ai and bi, through digit 

h, then digit 1 through digit i-1. This will result in h paths each of length /. 

(ii) We construct next the 2(n-h) paths from A to B having /+2 links each as follows: for each 

j, h < j ~ n, add 1 to digit}, correct digits 1 through h, using the shortest path in each ring, then 

add-1 to digit}. This will result in a total of n-h paths oflength 1+2. We can construct the 

remaining n-h paths of length 1+2 by adding -1 to digit}, correct digits 1 through h, using the 

shortest path in each ring, then add 1 to digit j. 

(iii) The remaining h paths are constructed as follows: for each i, 1 ~ i ~ h, move digit i one 

position toward the longest path in the ring in direction i (by adding or subtracting 1), correct digits 

i+l through hand digits 1 through i-1 using the shortest path in each ring, then continue in 

correcting digit i using the longest path in the ring in direction i. Correcting digit i using the 

longest path in the ring in direction i needs (k - Wi) links, and correcting the remaining digits using 

the shortest path in each ring needs (l - Wi) links. Summing these links results in a path of length 

l + k - 2wi links. 

It can be seen that all these paths do not share any node other than A and B. □ 
Note that when k = 2, the above proposition will not be valid because adding one to a bit is 

equal to subtracting one from the same bit in the binary hypercube. 

Example 2.2.2 

In a 5-ary 3-cube, let A= 013, B = 034. The set of 6 parallel paths between A and Bis 

Path 1: 013 ~ 014 ~ 024 ~ 034 

Path 2: 013 ~ 023 ~ 033 ~ 034 

Path 3: 013 ~ 113 ~ 114 ~ 124 ~ 134 ~ 034 

Path 4: 013 ~ 413 ~ 414 ~ 424 ~ 434 ~ 034 

Path 5: 013 ~ 012 ~ 022 ~ 032 ~ 031 ~ 030 ~ 034 

Path 6: 013 ~ 003 ~ 004 ~ 044 ~ 034 
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2.3 Gray Codes 

The binary reflected Gray codes have been extensively used in binary hypercubes [BeT89, 

SaS88, Lei92]. This strategy can be extended to k-ary n-cubes to construct a sequence of k" 

distinct k-ary numbers with n digits each, with the property that the Lee distance of successive 

numbers is one. The Lee distance of the first and the last numbers in the sequence is also one. In 

order to obtain this property, we need to define a new class of generalized codes called k-ary 

Reflected Gray codes which can be used for both the binary and the k-ary n-cubes. 

Definition 2.3.1 

Let Gk(n) be the k-ary reflected Gray Code of k-ary n-cube, Qk(n) be the sequence of 

Gk(n) with zero in the rightmost digit and Sk(n) be the sequence of Gk(n) excluding Qk(n). More 

generally, denoting by sf <n) (resp., Qf (n)) the sequence obtained from Sk(n) (resp., Qk(n)) by 

reversing its order, and by iSk(n) (resp., iQk(n)) the sequence obtained from Sk(n) (resp., Qk(n)) 

by prepending digit i to each element of the sequence. 

Define 

Gk(]) = {O, 1, 2, 3, ... , k-1}. 

We can get 

Qk(l) = {O}, and 

Sk(l) = { 1, 2, 3, ... , k-1} . 

Then the k-ary Reflected Gray codes of arbitrary order can be generated by the recursion 

Gk(n+l) = {OSk(n), JS: (n), 2Sk(n), 3S:(n), ... . ... , 

(k-l)S:(n), (k-l)Q: (n), (k-2)Qk(n), 

R 
(k-3)Qk (n), ... , OQk(n)} 

if k is even, and 

Gk(n+l) = {OSk(n), JS: (n), 2Sk(n), 3S:(n), ... , (k-l)Sk(n), 

(k-l)Qk(n), (k-2)0:(n), (k-3)Qk(n), ... , OQk(n)} 

if k is odd . Clearly, 

I Gk(n) I = kn. 
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Table 2.3.1 G4(2) 

64(1) () 4(1) s 4(1) 

0 0 1 
1 2 
2 3 
3 

64(2) () 4(2) S 4(2) 

01 30 01 
02 20 02 
03 10 03 
13 00 13 
12 12 
11 11 
2 1 2 1 
22 22 
23 23 
33 33 
32 32 
31 31 
30 
20 
10 
00 

The k-ary Reflected Gray code provides a mapping of a linear array or a ring with kn nodes into the 

k-ary n-cube. Refer to Tables 2.3.1 and 2.3.2 for examples of G4(2) and G3(3). This strategy 

proves that the k-ary n-cube is Hamiltonian. 
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Table 2.3.2 G 3(3) 

63(1) 93(1) S3 (1) 

0 0 1 
1 2 
2 

63 (2) 93 (2) s3 (2) 

01 20 01 
02 10 02 
12 00 12 
11 11 
21 21 
22 22 
20 
10 
00 

6'3(3) 93(3) s3(3) 

001 220 001 
002 210 002 
012 200 012 
011 100 011 
021 110 021 
022 120 022 
122 020 122 
121 010 121 
111 000 111 
112 112 
102 102 
101 101 
201 201 
202 202 
212 212 
211 211 
221 221 
222 222 
220 
210 
200 
100 
110 
120 
020 
010 
000 
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Chapter 3 
Communication Algorithms 

One of the most important components of any large-scale general-purpose parallel computer 

is its communication algorithm. This is because most large-scale general-purpose machines spend 

a large portion of their resources making sure that the right data gets to the right place within a 

reasonable amount of time. Most of the algorithms discussed in the literature under various 

assumptions are for the binary n-cube (see [BOS91, JoH89, SaS85, BhA84]). So, we restrict 

ourselves on the k-ary n-cube where k > 2. In this chapter, we propose the problems of moving 

data from one processor to another processor, a single processor sending the same data to every 

other processor, a single processor sending different data to every other processor, simultaneous 

broadcast of the same data from every processor to all other processors, and simultaneous 

exchange of different data between every pair of processors . 

Information is transmitted along the k-ary n-cube links in groups of bits called packets. In 

our algorithms we assume that the time required to cross any link is the same for all packets and is 

taken to be one unit. All packets have roughly equal length. We assume that packets can be 

transmitted along a link in one direction and that their transmission is error free. Only one packet 

can travel along a link in one direction at any one time; thus, if more than one packet is available at 

a node and is scheduled to be transmitted on the same incident link of the node, then only one of 

these packets can be transmitted at the next time period, while the remaining packets must be stored 

at the node while waiting in queue. This scheme is known as store-and-forward routing. 

Each node is assumed to have infinite storage space. Moreover, we assume that at any 

time, a node can transmit a packet along at most one incident link and can simultaneously receive a 

packet along at most one incident link; this is called one-port communication. Another possibility 

is the 2n-port communication where it is assumed that all incident links of a node can be used 
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simultaneously for packet transmission and reception. All the accounts assume that the overhead 

per packet, propagation and queuing delays on all links are negligible. 

3.1 Pipelining 

Assume that a message is to be transmitted over a path of k > 1 communication links. 

Dividing the message into m packets and transmitting them sequentially over the k-link path will 

reduce the delay time from mk, if the message transmitted as a whole packet, to m+k-1 [BeT89]. 

Proposition 3.1.1 

If a message to be transmitted over a path of k > 1 communication links is divided into m 

packets that transmitted sequentially over the k-link path, then the delay time will be reduced from 

mktom+k-1. 

Proof 

If the message transmitted as a whole packet then in each link it will take m time units. But 

we have k-link path implying a total of mk time units. 

Now assume that each packet is transmitted sequentially over the k-link path. 

Then Packet! will reach the destination in time k. 

Packet2 will reach the destination in time k+ 1. 

Packet3 will reach the destination in time k+2. 

........................................................... ' 

Packet m will reach the destination in time k+m-1. 

See Figure 3.1.1 for more clarification. 

3.2 Moving Data Between Two Nodes 

□ 

Let A and B be any two nodes of the k-ary n-cube and consider the problem of sending 

data from node A to node B. V sing the result of section 2.1 we can send a data packet from node 

A to node B in time equal to the Lee distance between A and B by modifying successively the bits 

of A one by one in order to transform the label A into the label B. 

- 17 -
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m packets 
1111111111 

• link 1 • 1;nk 2 • link 3 • • • • • link k • 
(e) 

packet 1 
D 

• • • • • • • • • 
packet 2 packet 1 

D □ 

• • • • • • • • • 
packet 3 packet 2 packet 1 

D □ □ • • • • • • • • • 
packet m packet 3 packet 2 packet 1 ________ .__ __ !:!] ••• [!] 

~ 1;nkk ~ 

(b) 

Figure 3.1.1 

Segmentation of a message into m packets to take advantage of pipelining over a k-link communication path. (a) a 

message of length m packets is transmitted as a whole packet on each link requiring m time units on each link for a total 

of mk time units. (b) the message is divided into m packets each requiring one time unit for transmission over a single 

link for a total of m+k-1. 

Consider now sending a message of m packets from node A to node B. Then the time 

required for this process using one-port communication and pipelining discussed in section 3.1 is 

m +DL(A,B)-1 
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where DL(A,B) is the Lee distance between A and B. The above result can be improved by 

splitting the message into 2n parts each of I ml2n l packets. Then each part can be sent along one of 

the 2n parallel paths discussed in section 2.2. If P max< A,B) is the length of the maximum parallel 

path between A and B, we have proved the following result. 

Proposition 3.2.1 

The time required to send a message of m packets from node A to node B on a k-ary n-cube 

of 2n-port communication is 

I m/2n l + Pmax(A,B) -1 . 

Observe that this time is optimal if I m/2 n l > P max( A ,B). 

3.3 Single Node Broadcasting 

The single node broadcast algorithm requires sending data from one processor to all other 

processors. 

Starting from node (00 ... 0), the single node broadcast algorithm constructs a spanning tree 

sequentially starting from the root by using the rule that the addresses of the children of each node 

are obtained as follows: 

1) adding one to the leftmost non-zero digit of the parent address if the leftmost non-zero digit is 

less than Lk/2J. 

2) subtracting one from the leftmost non-zero digit of the parent address if the leftmost non-zero 

digit is greater than Lk/2 J + 1. 

3) adding and subtracting one from the zero digits of the parent address that follow the leftmost 

non-zero digit. 

The resulting leaf nodes will have L k/2 J or Lk/2 J + 1 as the leftmost digit in their address. 

Each node ( except the leaves) of the spanning tree utilize more than one of its incident links 

at the same time (2n-port communication). The above algorithm can be easily modified to make 
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00 

t 1 <------

t 2 <------

t 3 <------

t 4 <------
33 23 32 22 

Figure 3.3.1 

A spanning tree for a single node broadcast algorithm on a 5-ary 2-cube of 2n-port communication. 

each node use only one incident link each time by making the steps of the above algorithm 

performing in different times. Figure 3.3.1 illustrates an example of steps performed on a 5-ary 2-

cube of 2n-port communication and Figure 3.3.2 illustrates the steps performed on a 3-ary 3-cube 

of one-port communication. 

The time complexity may be analyzed for both the 2n-port and one-port communications . 

In the 2n-port communication, the data packet sent from the root in both counterclockwise and 

clockwise directions simultaneously to all the adjacent nodes in rings in all directions. Then each 

node will send the packet to its adjacent nodes in the rings of the same or higher directions (not 

lower directions). Since the data packet takes L k/2 J steps to reach the most remote node in the 

ring, the total time required is 

Lk/2J * n . 
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5 

000 

220 202 

Figure 3.3.2 

A spanning tree for a single node broadcast algorithm on a 3-ary 3-cube of one-port communication. 

Since the one-port communication requires to send the data packet in the ring in one 

direction at a time, this results that the most remote node in the ring will receive the data packet in 

step I k/2l This requires a total time of 

f k/21 * n. 

The discussion above may be summarized in the following . 

Proposition 3.3.1 

The single node broadcast algorithm on a k-ary n-cube requires a total time of 

Lk!2J * n 

using 2n-port communication, and 
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1 k/21 * n 

using one-port communication. 

Proposition 3.3.2 

The time required to perform the single node broadcast algorithm on a k-ary n-cube of 2n

port communication is optimal. 

Proof 

The time required to perform the single node broadcast algorithm on a k-ary n-cube of 2n-

port communication is the diameter of the network. □ 
The above algorithm broadcast the data from node (00 ... 0). If we want to broadcast the 

data from any other node say A= (an, an-1, ... , a1), we simply renumber the nodes so that node A 

becomes node (00 ... 0) and the new numbering consistent with the k-ary n-cube numbering, i.e., 

each neighbors still have their new labels having a Lee distance of one. This can be achieved by 

adding the vector (k-an, k-an-1, ... , k-a1) to all the node labels. 

3.4 Multinode Broadcasting 

The process of moving data from every node to every other node is called multi.node 

broadcast since every processor wants to do single node broadcast simultaneously. 

The easiest way to solve this problem is to broadcast the data from each node in tum using 

the single node broadcast alg01ithm of section 3.3. Since we perform a single node broadcast from 

each of the ~ nodes in tum, this will require a total time of 

kn(f k!2l * n) 

using one-port communication, and 

kn(l_ k/2 J * n) 

using the 2n-port communication. 
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Another method is based on mapping a ring of kn nodes into the k-ary n-cube, and 

exchange the data along the ring in a daisy-chain manner [SaS85, BeT89] . Using the k-ary 

reflected Gray code strategy of section 2.3, we can map a ring of kn nodes to the k-ary n-cube and 

perform a multinode broadcast on the ring as follows: at stage 1 each node sends its own packet 

to its counterclockwise neighbor . At stage 2, ... , kn-1, each node sends to its counterclockwise 

neighbor the packet received from its clockwise neighbor at the previous stage. The total time 

required to end this process is 

kn-1 

using one-port communication. This is optimal since each node receives a single packet in each 

unit of time from the kn-1 other nodes over a single communication link . This algorithm can be 

improved to utilize all the 2n communication links at each stage. Figure 3.4.1 illustrates this 

process for 2-ary 2-cube. 

3.5 Single Node Scattering 

The single node scatter problem involves sending a unique data packet from a single node, 

called the root, to every other node . 

The general strategy for single node scatter algorithm for one-port communication is to map 

a linear array of~ nodes to the k-ary n-cube with the help of the k-ary reflected Gray codes of 

section 2.3, and schedule the data packet for the most remote nodes first. Hence, the total time 

required for performing this algorithm is 

kn - 1 . 

This algorithm is optimal since the root node sends one packet each time over one communication 

link for all other kn -l nodes . This algorithm can be improved to utilize all the 2n incident links. 

Figure 3.5.1 illustrates an example of 5-ary 1-cube. 
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0,1,2,3 0 ,2,3, 1 

Step 3 21 j1 

3,1,0,2 2,3, 1 ,0 
11 c? 10 

Figure 3.4.1 

A ring of 4 nodes mapped to a 2-ary 2-cube and performs a Daisy-Chaining multinode broadcast with one-port 

communication. The process ends after three time units. 

- 24 -



0 2 3 4 

Step 1 4 

0 2 3 4 

Step 2 3 4 

0 2 3 4 

Step 3 2 3 4 

0 2 3 4 

Step 4 2 3 4 

0 2 3 4 

Figure 3.5.1 

A linear array of five nodes mapped to a 5-ary I-cube and performs a single node scatter algorithm in four time units. 

3.6 Total Exchange 

The total exchange problem involves sending different packet from every node to every 

other node (in contrast with the multinode broadcast problem, where every node sends the same 

packet to every other node). 

The total exchange algorithm on a k-ary n-cube consists of n stages. In stage i, 1 ~ i ~ n, 

each ring im direction i will perform in parallel the total exchange algorithm such that a node A = 

(an, an-1, ... , ai, ... , a1) will send all the accumulated data packet (his packet together with the 
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packets received from the previous step) to node B = (an, an-I, ... , bi, ... , a1) (e.g., both A and B 

in the same ring in direction i) if the ith digit of the destination address of the data packet sent from 

A to B is equal to bi. In other words, any data packet sent from node A to node B on a k-ary n

cube will follow the shortest path (Lee distance) from A to B. 

To analyze the time complexity of this algorithm, we will compute first the lower bound for 

the time needed by any total exchange algorithm using one-port communication. 

Proposition 3.6.1 

Let G=(N ,A) be the k-ary n-cube network of P processors where transmission along at 

most one of the incident links of a node is allowed (one-port communication) . Let DL(i, j) be the 

Lee distance from node i to nodej . Then the quantity 

D(G) = L DL(i, j) 

jEN 

is a lower bound for the time taken by any total exchange algorithm. 

Proof [BeT89] 

The number of packet transmissions before j receives the packet is no less than the Lee 

distance from i to j. Therefore, the total number of packet transmissions is at least 

L LDL(i,j)=PD(G) 
iEN jEN 

where P is the number of processors. Since at most one packet transmission per processor is 

allowed at a time, the number of simultaneous packet transmissions can be at mostP, thereby 

establishing the lower bound of D(G) time units. 

Proposition 3.6.2 

The total exchange algorithm on a ring of k nodes requires at least 
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if kis odd 

if k is even 

time units. 

Proof 

From the previous result, and since a k-ring is a k-ary I-cube, we can fix a node i and take 

the sum of the distances from i to all the other nodes. See Figure 3.6.1, if k is odd, then from 

Figure 3.6.la we have 

k-1 
£ = 2 *I+ 2 * 2 + 2 * 3 + ... + 2 *T 

( k-1) =21+2+3+ ... + 2 

If k is even, then from Figure 3.6.lb we have 

£ = 2 * I + 2 * 2 + 2 * 3 + ... + 2 * (~ - J )+ ~ 
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Figure 3.6.1 
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Illustration of the distance of each node from specific node i in a ring of k nodes. (a) if k is odd, (b) if k is even. 

((~ - 11 t] 
= 2 ~ +J = 7· 

Corollary 

In a k processor ring where G=(N ,A) , 

k-1 

£=D(G)= LDL(i,j) = L WL(j) 
}'=0 jEN 
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To attain the optimal time unit, each processor should send data packets in both clockwise 

and counterclockwise directions. It is clear from Figure 3.6. la that node i will send half of its 

packets in clockwise and the other half in counterclockwise directions. This will result in 

k2 - I 
8 

steps needed in both clockwise and counterclockwise directions, if k is odd. 

If k is even, however, processor i from Figure 3.6.lb will send 

(k/2 -1) of his data in one direction and(k/2) of his data in the other direction. This will result in 

steps needed in one direction, and 

k2 k -+-8 4 

steps needed in the other direction. 

To prove this result, Let x be the number of steps in one direction, then from Figure 

3.6.1 b, the other direction will have x + ~ steps. 

The total steps is 

solving for x, we get 

this is the steps needed in one direction, and the other direction will have 
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steps. The proof is complete. Figure 3.6.2 illustrates an example of total exchange algorithm on a 

four processor ring. 

We can use the results of the total exchange algorithm on a k processor ring to analyze the 

time complexity of the total exchange algorithm on a k-ary n-cube. 

Proposition 3.6.3 

Any total exchange algorithm on a k-ary n-cube of one-port communication will require at 

least 

time units. 

Proof 

Let G(N ,A) be the k-ary n-cube. Let va=(00 .... 0). Arrange the kn labels of the k-ary n-cube 

into kn Xn matrix M. Let i E <k>. From the symmetry of the network, each element i will appear 

kn-1 times in each column of M. This implies that the total Lee weight of M is 

k-1 

WL(M) = nkn-l L WL(i). 
i=O 

From the pervious corollary, we get 

From proposition 3.6.1, the lower bound is 

D(G) = L D L (i,j) = L D L (vo,j) 

jEN jEN 

= L WLU-vo) = L WL(j) 

jEN jEN 

= WL(M) = n£kn-1. □ 
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Step 3 2 0 
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0 0,0,0 0 
1 I 1 I 1 

Step 4 3 

3 3, 3, 3 2, 2, 2 2 
2 

Figure 3.6.2 

An example of total exchange algorithm in a ring of four nodes. It needs three counterclockwise steps and one 

clockwise step to end the process. 
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Now we reach a point that we can prove that our total exchange algorithm is optimal using 

one-port communication. 

Proposition 3.6.4 

At the end of each stage of the total exchange algorithm, each node will receive a total of 

(k-l)kn -l 

data packets using one-port communication. 

Proof (by induction) 

For n=l, the result is a ring of k nodes and each node will receive a packet from the other 

k-1 nodes . 

Now, assume that it is true for stage n, then at the end of stage n every node of the k-ary n

cube will have a total of kn different data packets distined to each node of the ring of direction n+ 1. 

This results in every node will receive from each of the k-1 other nodes in the ring of direction n+ I 

a total of kn data packets resulting in receiving accumulative of 

(k-l)kn 

data packets in stage n+ I of the k-ary (n+ J)-cube. 

Proposition 3.6.5 

Proof 

The time units required by the total exchange algorithm on a k-ary n-cube is 

n£.kn-1 

From the previous proposition, each node will receive a total of 

(k-l)kn-l 

data packets at the end of each stage. However, our algorithm requires n stages . This will result 

in each node will receive a total of 
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n(k-l)kn-l 

data packets all over then stages. The time required to receive k-1 data packets is£, implying that 

the time units required by the algorithm is 

n£kn-1 . 

This algorithm is optimal since each processor exchanges its packet through the Lee 

distance with all the other processors using one-port communication. The algorithm can be 

improved to utilize all the 2n incident links. 
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Chapter 4 

Conclusion 

4.1 Summary 

We have shown some properties of k-ary n-cubes (k>2), hoping to make these networks 

more attractive. Using the k-ary n-cube mcxlel, we can construct a low-dimensional network by 

increasing k and decreasing n to make it consistent with VLSI technology. The properties of the k

ary n-cube may be summarized as follows: 

• The k-ary n-cube network can be constructed recursively from low dimensional 

cubes. 

• The degree of each node is 2n. 

• The total number of links is nkn. 

• The diameter of the network is Lk/2J * n . 

• There are kn-1 node-disjoint k-rings in each direction. 

• There are 2n node-disjoint parallel paths between any two nodes. 

• A ring or a linear array with kn nodes can be mapped into the k-ary n-cube network 

using the k-ary reflected Gray ccxles strategy. 

All the communication algorithms discussed are optimal using one-port communication. 

One-to-one and single node broadcasting algorithms are optimal using 2n-port communication. 

Multi.node broadcasting, single ncxle scattering and total exchange algorithms can be improved to 

utilize all the 2n communication links simultaneously. 

4.2 Future Research 

We have shown some of the properties of the k-ary n-cube network (k>2) in Chapter 2. 

We are trying to find n-edge disjoint Hamiltonian Cycles in the network. Another fundamental 

issue of both theoretical and practical importance is related to the portability of the algorithms 
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across various parallel architectures. Embedding of many topologies like linear arrays, rings, two 

dimensional meshes and binary trees into the k-ary n-cube is important to study. Examining the 

fault tolerance of the network is another interesting subject to study. Solving the problems of 

multinode broadcasting, single node scattering and total exchange algorithms using 2n-port 

communication will improve the results of Chapter 3. 
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