
Properties and Communication Algorithms
for

k-ary n-cube Interconnection Networks

by

Yaagoub A. Ashir

A Research Paper Submitted to Partially Fulfill the Requirement for the Degree of

Master of Science

Committee Members :

Prof. Bella Bose

Prof. Vikram Saletore

Prof. Toshi Minoura

Department of Computer Science

Oregon State University

January 15, 1993

Properties and Communication Algorithms
for

k-ary n-cube Interconnection Networks

by

Yaagoub A. Ashir

A Research Paper Submitted to Partially Fulfill the Requirement for the Degree of

Master of Science

Committee Members :

Prof. Bella Bose

Prof. Vikram Saletore

Prof. Toshi Minoura

Department of Computer Science

Oregon State University

January 15, 1993

f

Acknowledgment

My deepest gratitude and sincere appreciation go to Professor Bella Bose, my major

professor, for his invaluable advice, encouragement, and his unending patience. I would

like to thank Dr. Vikram Saletore and Dr. Toshi Minoura for serving on my committee

and for their instructive directions. Thanks are extended to include many of the

department faculty members for providing me with excellent education.

I am also grateful to the University of Bahrain for supporting my studies . Many

thanks for my friends here in Corvallis who contribute to the nice atmosphere . Finally,

special thanks to my family for their unlimited support and encouragement. In particular,

to my brother Fawzi for his continuous help.

f

Abstract

The k-ary n-cube structure is presented in this paper for interconnecting a network of

microcomputers in parallel and distributed environments. Machines based on the k-ary n-cube

topology have been advocated as ideal parallel architectures for their powerful interconnecting

features .

In this paper, we examine the k-ary n-cube from the graph theory point of view and

consider those features that make its connectivity so attractive . Among other things, we propose

several effective global data communication algorithms on the k-ary n-cube interconnection

network.

1

2

3

4

Table of Contents

Introduction

1.1 Parallel Computers

1.2 Why k-ary n-cubes?

The k-ary n-cube Network

1

1

3

5

2.1 Definitions and Structures ... 5

2.2 Topological Properties 8

2.3 Gray Codes

Communication Algorithms

3.1 Pipelining

13

16

17

3.2 Moving Data Between Two Nodes .. 17

3.3 Single Node Broadcasting .. 19

3.4 Multinode Broadcasting 22

3.5 Single Node Scattering .. 23

3.6 Total Exchange ... 25

Conclusion

4.1 Summary

34

34

4.2 Future Research 34

References

1.1 Parallel Computers

Chapter 1

Introduction

Parallel computers in general are classified into two groups: multiprocessors with shared

memory organization and multicomputers with non-shared or distributed memory organization

[LaD90, BeT89, SaS86]. There are also a variety of hybrid designs lying in between. The first

type uses a global sharing memory that can be accessed by all processors (see Figure 1.1.1). To

allow efficient access of the memory by several processors, the memory is divided into several

memory banks. A processor can communicate with another by writing into the global memory and

having the second processor read the same location in the memory using switching systems. The

advantage of this architecture is that the algorithm design is simple. Moreover, it enables us to

make the data access transparent to the user who may regard data as being held in a large memory

which is readily accessible to any processor. However, as the number of nodes increases, the

switching network becomes complex to build. Also, the decision of shutting down failing nodes

and choosing alternate routes is local. The GF-11 Supercomputer, the Butterfly multiprocessor,

and the Ultracomputer are some examples of this type of architecture.

In the second important type of parallel processors, there is no shared memory and no

global synchronization, but rather each processor has its own local memory. Processors

communicate through interconnection network consisting of direct communication links joining

certain pairs of processors, as shown in Figure 1.1.2. Which processors are connected together is

an important design choice. It would be best if all processors were directly linked to each other

which leads to increased cost, or the processors communicate through a shared bus, which leads to

excessive delays when the number of processors is very large, due to the necessary bus

contention. Moreover, interconnection achieved by message-passing directly or through some

- 1 -

SHARED MEMORY

Figure 1.1.1 The Shared Memory Model

p p

p p

Figure 1.1.2 The Distributed Memory Model

intermediate processors, and computation is data driven. The main advantage of such architectures

is the simplicity of their design. The nodes are identical, or are of a few different kinds and can

therefore be fabricated at relatively low cost. Moreover, these models can easily be made fault

- 2 -
:.:

r

tolerant by shutting down failing nodes. Examples of this type of organization include the Cosmic

Cube [Sei85], Intel's hypercube, NCUBE Machine, and the Connection Machine.

1.2 Why k-ary n-cubes?

Hypercubes are loosely coupled parallel processors based on the binary n-cube network

and introduced under different names (cosmic cube, n-cube, binary n-cube, Boolean n-cube, etc.).

An n-cube parallel processor consists of 2n identical processors, each provided with its own sizable

memory and interconnected with n neighbors (see Figure 1.2.1). The hypercube gains its

popularity due to the fact that it has some attractive features like symmetries, high level of

concurrency and efficiency, regularity and high potential for the parallel execution of various

algorithms. Moreover, most other networks can be directly mapped into a hypercube.

However, one drawback to the hypercube is that the number of connections to each

processor grows logarithmically with the size of the network [Lei92]. While this is not a problem

for small hypercubes, it can present some difficulties for very large machines (e.g., machines with

tens of thousands of processors). VLSI systems are wire-limited. Although hypercubes can

provide small diameter, the property of high dimension is not consistent with the properties of

VLSI technology. Networks with many dimensions require more and longer wires than do low

dimensional networks. Thus high-dimensional networks cost more and run more slowly than low

dimensional networks. It is shown that low-dimensional networks achieve lower latency and

better hot-spot throughput than do high-dimensional networks [Dal90, LiH91].

The binary n-cube is a special case of the family of k-ary n-cubes, cubes with n dimensions

and k nodes in each dimension. In order to overcome the problem of high dimensionality of

hypercubes, we can increase k and decrease n obtaining low-dimensional k-ary n-cube. For

- 3 -

100 101

00L--+----a.

010 011

Figure 1.2.1 3-Dimensional Hypercube

example, the 4096 processors in a binary 12-cube with a total of 24576 links can be interconnected

using 16-ary 3-cube model with a total of only 12288 links.

In this paper we introduce the k-ary n-cube model (k>2). We propose the recursive

structure and some of the topological properties of this model in Chapter 2. To extend the strategy

of the binary reflected Gray codes, we introduce in Chapter 2 a class of generalized Gray codes

called k-ary reflected Gray codes. Some communication algorithms like one-to-one, single node

broadcasting, multinode broadcasting, single node scattering, and total exchange are proposed in

Chapter 3. We conclude this paper by summarizing the results and stating the future research in

Chapter 4.

- 4 -

Chapter 2

The k-ary n-cube Network

In this chapter, we define the k-ary n-cube and show its properties. The binary n-cube has

been extensively studied (see [Lei92, BeT89, SaS88, BhA84] for references), so we restrict

ourselves on the k-ary n-cube where k > 2. We begin this chapter with some definitions and

describing the recursive structure in section 2.1. We propose the k-ary n-cube's topological

properties in section 2.2. In section 2.3, we show that the k-ary n-cube is Hamiltonian by

introducing a general type of the reflected Gray codes called k-ary reflected Gray codes.

2.1 Definitions and Structures

In order to be able to define the k-ary n-cube network, we begin this section by introducing

some definitions from coding theory [PeW72]. Then, we define the k-ary n-cube network and

show that it can be built recursively from lower dimensional cubes.

Definition 2.1.1

Let <k> = {O, 1, 2, ... , k-1}. Let A= (an, an-I, ... , a1) be an n-tuple where ai e <k>.

The Hamming weight of a vector A, denoted WH(A), is defined to be the number of nonzero

components. The Hamming distance between two vectors A and B, denoted DH(A,B) is equal to

W H(A - B). In other words, the Hamming distance between A and B is the number of positions in

which they differ.

Definition 2.1.2

Let <k> = {O, 1, 2, ... , k-1}. Let A= (an, an-I, ... , a1) be an n-tuple where ai e <k>.

The Lee weight of a vector A is defined as
n

WL(A) = LI ai I
i=l

- 5 -

where

The Lee distance between two vectors A and B, denoted D L(A, B), is

WL(A - B), the Lee weight of their difference.

Clearly for k=2 and 3, the Lee and Hamming distances are equal. For k>3 the Lee distance

between two n-tuple vectors is greater than or equal to the Hamming distance between them.

Example 2.1.1

Let k=5 and n=6. Let A = (3 0 1 2 3 4) and B = (3 0 4 0 0 0). Then their difference term

by term modulo 5 is

Definition 2.1.3

A - B = (0 0 2 2 3 4), and

DH(A,B) = WH(A-B) = 4

D L(A,B) = W L(A-B) = 0 + 0 + 2 + 2 + 2 + 1 = 7.

The k-ary n-cube network model is a cube of n dimensions radix k. A node in the k-ary n

cube can be identified by n-digit radix k address, (an, an-1, ... , a1) where ai e <.k>. Two nodes A

and B in the k-ary n-cube are adjacent if and only if DL(A,B) = 1. The ith digit of the address ai

represents the node's position in the ith dimension. The dimension, n, the radix, k, and the

number of nodes, N, have the following relation

N = kn, k = '!:fiii, n = logkN.

Definition 2.1.4

In a k-ary n-cube network, two nodes are said to be opposite in direction i if their addresses

differ in position i and the Lee distance between them is unity.

- 6 -

t

The union of all the opposite nodes in direction i from a ring in direction i.

Proposition 2.1.1

The k-ary n-cube network can be constructed recursively from lower dimensional cubes.

Proof

Let N = kn, k > 2, n ~ 1. Let <k> = (0, 1, 2, ... , k - 1 }. An N-node k-ary n-cube is a

Graph C = (V,E) where

V = { a I a is an n-digit radix k integer,

i.e. a = anan-J ... aJ and ai e <k>},

and

E = ((a,b) I a, be V and DL(a,b) =I}

if A is a set of strings over <k>, then define

xA = (xa I a e A and x e <k> }

where x a is a string obtained by concatenating x and a.

Let

ct) = (Vt) 'Et))

be the graph of the k-ary n-cube, then ct) can be constructed recursively as follows

and

vf) = <k>, and

Ef) = ((x,y) lx,ye <k>,x<y, andDL(x,y)=I};

Vkn) = xV~n-l) for all x e <k>

s, t e <k>, s<t and DL(s,t) = I}. □

Stated in words, we can construct a k-ary n-cube network recursively by making k copies

of the k-ary (n-1)-cube, renumber the labels by concatenating digit O to each label of the first copy,

- 7 -

digit 1 to each label of the second copy, ... , and digit k-1 to each label of the kth copy. Finally,

link the nodes that are opposite in direction n. Figure 2.1.1 illustrates an example of constructing a

4-ary 3-cube recursively starting from 4-ary 1-cube.

2.2 Topological Properties

When designing a large multiprocessor, one of the most important design decisions

involves the topology of the communication structure among the processors. The degree (number

of incident links) of each node, the total number of links, and the diameter of the network should

be known before choosing the network. In this section, we introduce the topological properties of

the k-ary n-cube (k > 2) hoping to be a powerful network.

Proposition 2.2.1

Proof

In a k-ary n-cube network

a) The degree of each node is 2n.

b) The total number of links is nk".

a) Let A= (an, an-1, ... , a1) be a node in a k-ary n-cube. Then both

(an, an-I, ... , (aI+l) mod k) and (an, an-I, ... , (aI-1) mod k) are adjacent to A in

direction one. Similarly we can prove that in each direction, there are two adjacent

nodes to A, resulting in a total of 2n adjacent nodes.

b) Summing the number of links incident to each node, we get 2nk". Since each link

will be counted twice, we get the total number of links is

2nknJ2 = nkn links . □

We notice that the above property does not hold if k=2 (in a binary hypercube) because

(a1+l) mod2 is equal to (a1-l) mod2 resulting inn links incident to each node, and total links of

n2n12 = n2n-l .

- 8 -

0 1 2 3

~ .. '
(e) (b)

(c)

Figure 2.1.1

Recursive structure of 4-ary 3-cube (a) 4-ary I-cube, (b) 4-ary 2-cube, (c) 4-ary 3-cube.

- 9 -

r

Define the diameter of the network to be the maximum Lee distance between any two nodes in the

network. We can state the following proposition.

Proposition 2.2.2

The diameter of the k-ary n-cube network is

Lk/2J * n.

Proof

Let A and B be two nodes in the k-ary n-cube network. Then from the definition of the Lee

distance, we have

However,

This results in

Proposition 2.2.3

n
DL(A,B) = WL(A-B) = I, I a; I

i=l

In a k-ary n-cube network, there are kn-I node disjoint k-rings in each direction .

Proof

□

Let the label of a node be anan-I ... aI n-tuples radix k. Fix aI = (0, 1, 2, ... , k-1) to be a

ring in direction one. Then from the remaining n-1 radix k tuples, we have a total combination of

kn-I concatenated to aI resulting in kn-I node disjoint k-rings in direction one. Similarly, we can

prove for direction two to n. □

Example 2.2.1

In a 4-ary 2-cube there are 4 rings in direction one and 4 rings in the second direction.

- 10-

First direction

R1 = {00, 01, 02, 03}

R2 = { 10, 11, 12, 13}

R3 = {20, 21, 22, 23}

R4 = {30, 31, 32, 33}

Second direction

R1 = {00, 10, 20, 30}

R2 = {01, 11, 21, 31}

R3 = {02, 12, 22, 32}

R4 = {03, 13, 23, 33}

Obviously, the rings in each direction are node disjoint 4-rings.

We would like to know if there exist different paths between any two nodes A and B . The

existence of such paths might be useful for speeding up transfers of large amounts of data between

two nodes (see section 3.2). It also provides a way of selecting alternative routes in case a given

node in a path is failing [BhA84]. In order for this to be possible, the paths must not have

common nodes, except for nodes A and B. We will refer to such paths as node-disjoint parallel

paths, and we will prove in the following proposition that there are 2n node-disjoint parallel paths

between any two nodes in the k-ary n-cube.

Proposition 2.2.4

Let A= (an, an-1, ... , a1), B = (bn, bn-1, ... , b1).

Let/= DL(A, B), h = DH(A, B) and Wi = DL(ai, bi). Then, in a k-ary n-cube, there are a total of

2n node-disjoint parallel paths between A and B of which

(i) h paths are of length /,

(ii) 2(n-h) paths are of length /+2, and

(iii) for each i, Wi > 0, there is a path of length

l + k -2Wi,

(a total of h paths).

Proof

Without loss of generality, we can assume that the first h digits of the labels of A and B are

different, and the remaining n-h digits are the same.

- 11 -

(i) Let 1 ~ i ~ h, the ith path is constructed as follows: start from the label of A; correct

sequentially digit i, using the shortest path of the ring in direction i between ai and bi, through digit

h, then digit 1 through digit i-1. This will result in h paths each of length /.

(ii) We construct next the 2(n-h) paths from A to B having /+2 links each as follows: for each

j, h < j ~ n, add 1 to digit}, correct digits 1 through h, using the shortest path in each ring, then

add-1 to digit}. This will result in a total of n-h paths oflength 1+2. We can construct the

remaining n-h paths of length 1+2 by adding -1 to digit}, correct digits 1 through h, using the

shortest path in each ring, then add 1 to digit j.

(iii) The remaining h paths are constructed as follows: for each i, 1 ~ i ~ h, move digit i one

position toward the longest path in the ring in direction i (by adding or subtracting 1), correct digits

i+l through hand digits 1 through i-1 using the shortest path in each ring, then continue in

correcting digit i using the longest path in the ring in direction i. Correcting digit i using the

longest path in the ring in direction i needs (k - Wi) links, and correcting the remaining digits using

the shortest path in each ring needs (l - Wi) links. Summing these links results in a path of length

l + k - 2wi links.

It can be seen that all these paths do not share any node other than A and B. □
Note that when k = 2, the above proposition will not be valid because adding one to a bit is

equal to subtracting one from the same bit in the binary hypercube.

Example 2.2.2

In a 5-ary 3-cube, let A= 013, B = 034. The set of 6 parallel paths between A and Bis

Path 1: 013 ~ 014 ~ 024 ~ 034

Path 2: 013 ~ 023 ~ 033 ~ 034

Path 3: 013 ~ 113 ~ 114 ~ 124 ~ 134 ~ 034

Path 4: 013 ~ 413 ~ 414 ~ 424 ~ 434 ~ 034

Path 5: 013 ~ 012 ~ 022 ~ 032 ~ 031 ~ 030 ~ 034

Path 6: 013 ~ 003 ~ 004 ~ 044 ~ 034

- 12 -

2.3 Gray Codes

The binary reflected Gray codes have been extensively used in binary hypercubes [BeT89,

SaS88, Lei92]. This strategy can be extended to k-ary n-cubes to construct a sequence of k"

distinct k-ary numbers with n digits each, with the property that the Lee distance of successive

numbers is one. The Lee distance of the first and the last numbers in the sequence is also one. In

order to obtain this property, we need to define a new class of generalized codes called k-ary

Reflected Gray codes which can be used for both the binary and the k-ary n-cubes.

Definition 2.3.1

Let Gk(n) be the k-ary reflected Gray Code of k-ary n-cube, Qk(n) be the sequence of

Gk(n) with zero in the rightmost digit and Sk(n) be the sequence of Gk(n) excluding Qk(n). More

generally, denoting by sf <n) (resp., Qf (n)) the sequence obtained from Sk(n) (resp., Qk(n)) by

reversing its order, and by iSk(n) (resp., iQk(n)) the sequence obtained from Sk(n) (resp., Qk(n))

by prepending digit i to each element of the sequence.

Define

Gk(]) = {O, 1, 2, 3, ... , k-1}.

We can get

Qk(l) = {O}, and

Sk(l) = { 1, 2, 3, ... , k-1} .

Then the k-ary Reflected Gray codes of arbitrary order can be generated by the recursion

Gk(n+l) = {OSk(n), JS: (n), 2Sk(n), 3S:(n), ,

(k-l)S:(n), (k-l)Q: (n), (k-2)Qk(n),

R
(k-3)Qk (n), ... , OQk(n)}

if k is even, and

Gk(n+l) = {OSk(n), JS: (n), 2Sk(n), 3S:(n), ... , (k-l)Sk(n),

(k-l)Qk(n), (k-2)0:(n), (k-3)Qk(n), ... , OQk(n)}

if k is odd . Clearly,

I Gk(n) I = kn.

- 13 -

Table 2.3.1 G4(2)

64(1) () 4(1) s 4(1)

0 0 1
1 2
2 3
3

64(2) () 4(2) S 4(2)

01 30 01
02 20 02
03 10 03
13 00 13
12 12
11 11
2 1 2 1
22 22
23 23
33 33
32 32
31 31
30
20
10
00

The k-ary Reflected Gray code provides a mapping of a linear array or a ring with kn nodes into the

k-ary n-cube. Refer to Tables 2.3.1 and 2.3.2 for examples of G4(2) and G3(3). This strategy

proves that the k-ary n-cube is Hamiltonian.

- 14 -

Table 2.3.2 G 3(3)

63(1) 93(1) S3 (1)

0 0 1
1 2
2

63 (2) 93 (2) s3 (2)

01 20 01
02 10 02
12 00 12
11 11
21 21
22 22
20
10
00

6'3(3) 93(3) s3(3)

001 220 001
002 210 002
012 200 012
011 100 011
021 110 021
022 120 022
122 020 122
121 010 121
111 000 111
112 112
102 102
101 101
201 201
202 202
212 212
211 211
221 221
222 222
220
210
200
100
110
120
020
010
000

- 15 -

Chapter 3
Communication Algorithms

One of the most important components of any large-scale general-purpose parallel computer

is its communication algorithm. This is because most large-scale general-purpose machines spend

a large portion of their resources making sure that the right data gets to the right place within a

reasonable amount of time. Most of the algorithms discussed in the literature under various

assumptions are for the binary n-cube (see [BOS91, JoH89, SaS85, BhA84]). So, we restrict

ourselves on the k-ary n-cube where k > 2. In this chapter, we propose the problems of moving

data from one processor to another processor, a single processor sending the same data to every

other processor, a single processor sending different data to every other processor, simultaneous

broadcast of the same data from every processor to all other processors, and simultaneous

exchange of different data between every pair of processors .

Information is transmitted along the k-ary n-cube links in groups of bits called packets. In

our algorithms we assume that the time required to cross any link is the same for all packets and is

taken to be one unit. All packets have roughly equal length. We assume that packets can be

transmitted along a link in one direction and that their transmission is error free. Only one packet

can travel along a link in one direction at any one time; thus, if more than one packet is available at

a node and is scheduled to be transmitted on the same incident link of the node, then only one of

these packets can be transmitted at the next time period, while the remaining packets must be stored

at the node while waiting in queue. This scheme is known as store-and-forward routing.

Each node is assumed to have infinite storage space. Moreover, we assume that at any

time, a node can transmit a packet along at most one incident link and can simultaneously receive a

packet along at most one incident link; this is called one-port communication. Another possibility

is the 2n-port communication where it is assumed that all incident links of a node can be used

- 16 -

simultaneously for packet transmission and reception. All the accounts assume that the overhead

per packet, propagation and queuing delays on all links are negligible.

3.1 Pipelining

Assume that a message is to be transmitted over a path of k > 1 communication links.

Dividing the message into m packets and transmitting them sequentially over the k-link path will

reduce the delay time from mk, if the message transmitted as a whole packet, to m+k-1 [BeT89].

Proposition 3.1.1

If a message to be transmitted over a path of k > 1 communication links is divided into m

packets that transmitted sequentially over the k-link path, then the delay time will be reduced from

mktom+k-1.

Proof

If the message transmitted as a whole packet then in each link it will take m time units. But

we have k-link path implying a total of mk time units.

Now assume that each packet is transmitted sequentially over the k-link path.

Then Packet! will reach the destination in time k.

Packet2 will reach the destination in time k+ 1.

Packet3 will reach the destination in time k+2.

... '

Packet m will reach the destination in time k+m-1.

See Figure 3.1.1 for more clarification.

3.2 Moving Data Between Two Nodes

□

Let A and B be any two nodes of the k-ary n-cube and consider the problem of sending

data from node A to node B. V sing the result of section 2.1 we can send a data packet from node

A to node B in time equal to the Lee distance between A and B by modifying successively the bits

of A one by one in order to transform the label A into the label B.

- 17 -
:...:

m packets
1111111111

• link 1 • 1;nk 2 • link 3 • • • • • link k •
(e)

packet 1
D

• • • • • • • • •
packet 2 packet 1

D □

• • • • • • • • •
packet 3 packet 2 packet 1

D □ □ • • • • • • • • •
packet m packet 3 packet 2 packet 1 ________ .__ __ !:!] ••• [!]

~ 1;nkk ~

(b)

Figure 3.1.1

Segmentation of a message into m packets to take advantage of pipelining over a k-link communication path. (a) a

message of length m packets is transmitted as a whole packet on each link requiring m time units on each link for a total

of mk time units. (b) the message is divided into m packets each requiring one time unit for transmission over a single

link for a total of m+k-1.

Consider now sending a message of m packets from node A to node B. Then the time

required for this process using one-port communication and pipelining discussed in section 3.1 is

m +DL(A,B)-1

- 18 -

where DL(A,B) is the Lee distance between A and B. The above result can be improved by

splitting the message into 2n parts each of I ml2n l packets. Then each part can be sent along one of

the 2n parallel paths discussed in section 2.2. If P max< A,B) is the length of the maximum parallel

path between A and B, we have proved the following result.

Proposition 3.2.1

The time required to send a message of m packets from node A to node B on a k-ary n-cube

of 2n-port communication is

I m/2n l + Pmax(A,B) -1 .

Observe that this time is optimal if I m/2 n l > P max(A ,B).

3.3 Single Node Broadcasting

The single node broadcast algorithm requires sending data from one processor to all other

processors.

Starting from node (00 ... 0), the single node broadcast algorithm constructs a spanning tree

sequentially starting from the root by using the rule that the addresses of the children of each node

are obtained as follows:

1) adding one to the leftmost non-zero digit of the parent address if the leftmost non-zero digit is

less than Lk/2J.

2) subtracting one from the leftmost non-zero digit of the parent address if the leftmost non-zero

digit is greater than Lk/2 J + 1.

3) adding and subtracting one from the zero digits of the parent address that follow the leftmost

non-zero digit.

The resulting leaf nodes will have L k/2 J or Lk/2 J + 1 as the leftmost digit in their address.

Each node (except the leaves) of the spanning tree utilize more than one of its incident links

at the same time (2n-port communication). The above algorithm can be easily modified to make

- 19 -

r

00

t 1 <------

t 2 <------

t 3 <------

t 4 <------
33 23 32 22

Figure 3.3.1

A spanning tree for a single node broadcast algorithm on a 5-ary 2-cube of 2n-port communication.

each node use only one incident link each time by making the steps of the above algorithm

performing in different times. Figure 3.3.1 illustrates an example of steps performed on a 5-ary 2-

cube of 2n-port communication and Figure 3.3.2 illustrates the steps performed on a 3-ary 3-cube

of one-port communication.

The time complexity may be analyzed for both the 2n-port and one-port communications .

In the 2n-port communication, the data packet sent from the root in both counterclockwise and

clockwise directions simultaneously to all the adjacent nodes in rings in all directions. Then each

node will send the packet to its adjacent nodes in the rings of the same or higher directions (not

lower directions). Since the data packet takes L k/2 J steps to reach the most remote node in the

ring, the total time required is

Lk/2J * n .

- 20-
-=

t <---
1

t <---
2

t <---
3

t <---
4

t <---
5

000

220 202

Figure 3.3.2

A spanning tree for a single node broadcast algorithm on a 3-ary 3-cube of one-port communication.

Since the one-port communication requires to send the data packet in the ring in one

direction at a time, this results that the most remote node in the ring will receive the data packet in

step I k/2l This requires a total time of

f k/21 * n.

The discussion above may be summarized in the following .

Proposition 3.3.1

The single node broadcast algorithm on a k-ary n-cube requires a total time of

Lk!2J * n

using 2n-port communication, and

- 21 -

1 k/21 * n

using one-port communication.

Proposition 3.3.2

The time required to perform the single node broadcast algorithm on a k-ary n-cube of 2n

port communication is optimal.

Proof

The time required to perform the single node broadcast algorithm on a k-ary n-cube of 2n-

port communication is the diameter of the network. □
The above algorithm broadcast the data from node (00 ... 0). If we want to broadcast the

data from any other node say A= (an, an-1, ... , a1), we simply renumber the nodes so that node A

becomes node (00 ... 0) and the new numbering consistent with the k-ary n-cube numbering, i.e.,

each neighbors still have their new labels having a Lee distance of one. This can be achieved by

adding the vector (k-an, k-an-1, ... , k-a1) to all the node labels.

3.4 Multinode Broadcasting

The process of moving data from every node to every other node is called multi.node

broadcast since every processor wants to do single node broadcast simultaneously.

The easiest way to solve this problem is to broadcast the data from each node in tum using

the single node broadcast alg01ithm of section 3.3. Since we perform a single node broadcast from

each of the ~ nodes in tum, this will require a total time of

kn(f k!2l * n)

using one-port communication, and

kn(l_ k/2 J * n)

using the 2n-port communication.

- 22-

Another method is based on mapping a ring of kn nodes into the k-ary n-cube, and

exchange the data along the ring in a daisy-chain manner [SaS85, BeT89] . Using the k-ary

reflected Gray code strategy of section 2.3, we can map a ring of kn nodes to the k-ary n-cube and

perform a multinode broadcast on the ring as follows: at stage 1 each node sends its own packet

to its counterclockwise neighbor . At stage 2, ... , kn-1, each node sends to its counterclockwise

neighbor the packet received from its clockwise neighbor at the previous stage. The total time

required to end this process is

kn-1

using one-port communication. This is optimal since each node receives a single packet in each

unit of time from the kn-1 other nodes over a single communication link . This algorithm can be

improved to utilize all the 2n communication links at each stage. Figure 3.4.1 illustrates this

process for 2-ary 2-cube.

3.5 Single Node Scattering

The single node scatter problem involves sending a unique data packet from a single node,

called the root, to every other node .

The general strategy for single node scatter algorithm for one-port communication is to map

a linear array of~ nodes to the k-ary n-cube with the help of the k-ary reflected Gray codes of

section 2.3, and schedule the data packet for the most remote nodes first. Hence, the total time

required for performing this algorithm is

kn - 1 .

This algorithm is optimal since the root node sends one packet each time over one communication

link for all other kn -l nodes . This algorithm can be improved to utilize all the 2n incident links.

Figure 3.5.1 illustrates an example of 5-ary 1-cube.

- 23 -

01 00
0

3 2

11 10

01 ? 00
0 I 1 0,2

Step 1 11
i2

3, 1 2,3

11 ~ 10

01 ? 00
0, 1 ,2 0,2,3

Step 2 01 i3
3, 1 ,0 2,3, 1

11 ? 10

01 ~ 00
0,1,2,3 0 ,2,3, 1

Step 3 21 j1

3,1,0,2 2,3, 1 ,0
11 c? 10

Figure 3.4.1

A ring of 4 nodes mapped to a 2-ary 2-cube and performs a Daisy-Chaining multinode broadcast with one-port

communication. The process ends after three time units.

- 24 -

0 2 3 4

Step 1 4

0 2 3 4

Step 2 3 4

0 2 3 4

Step 3 2 3 4

0 2 3 4

Step 4 2 3 4

0 2 3 4

Figure 3.5.1

A linear array of five nodes mapped to a 5-ary I-cube and performs a single node scatter algorithm in four time units.

3.6 Total Exchange

The total exchange problem involves sending different packet from every node to every

other node (in contrast with the multinode broadcast problem, where every node sends the same

packet to every other node).

The total exchange algorithm on a k-ary n-cube consists of n stages. In stage i, 1 ~ i ~ n,

each ring im direction i will perform in parallel the total exchange algorithm such that a node A =

(an, an-1, ... , ai, ... , a1) will send all the accumulated data packet (his packet together with the

- 25 -

packets received from the previous step) to node B = (an, an-I, ... , bi, ... , a1) (e.g., both A and B

in the same ring in direction i) if the ith digit of the destination address of the data packet sent from

A to B is equal to bi. In other words, any data packet sent from node A to node B on a k-ary n

cube will follow the shortest path (Lee distance) from A to B.

To analyze the time complexity of this algorithm, we will compute first the lower bound for

the time needed by any total exchange algorithm using one-port communication.

Proposition 3.6.1

Let G=(N ,A) be the k-ary n-cube network of P processors where transmission along at

most one of the incident links of a node is allowed (one-port communication) . Let DL(i, j) be the

Lee distance from node i to nodej . Then the quantity

D(G) = L DL(i, j)

jEN

is a lower bound for the time taken by any total exchange algorithm.

Proof [BeT89]

The number of packet transmissions before j receives the packet is no less than the Lee

distance from i to j. Therefore, the total number of packet transmissions is at least

L LDL(i,j)=PD(G)
iEN jEN

where P is the number of processors. Since at most one packet transmission per processor is

allowed at a time, the number of simultaneous packet transmissions can be at mostP, thereby

establishing the lower bound of D(G) time units.

Proposition 3.6.2

The total exchange algorithm on a ring of k nodes requires at least

- 26-

□

if kis odd

if k is even

time units.

Proof

From the previous result, and since a k-ring is a k-ary I-cube, we can fix a node i and take

the sum of the distances from i to all the other nodes. See Figure 3.6.1, if k is odd, then from

Figure 3.6.la we have

k-1
£ = 2 *I+ 2 * 2 + 2 * 3 + ... + 2 *T

(k-1) =21+2+3+ ... + 2

If k is even, then from Figure 3.6.lb we have

£ = 2 * I + 2 * 2 + 2 * 3 + ... + 2 * (~ - J)+ ~

- 27 -
I-

f ·

Figure 3.6.1

' ' '6-'
distance

1

I

' '6-'
distance

1

I

' '6-'
distance

2

'¥

distance
2

I

' '6-'
distance

3

(a)

'¥

distance
3

(b)

'6'

distance
k-1
2

'¥

distance
k --1
2

.
' I
' '
'., distance
~ .ls.

2

Illustration of the distance of each node from specific node i in a ring of k nodes. (a) if k is odd, (b) if k is even.

((~ - 11 t]
= 2 ~ +J = 7·

Corollary

In a k processor ring where G=(N ,A) ,

k-1

£=D(G)= LDL(i,j) = L WL(j)
}'=0 jEN

- 28 -

□

To attain the optimal time unit, each processor should send data packets in both clockwise

and counterclockwise directions. It is clear from Figure 3.6. la that node i will send half of its

packets in clockwise and the other half in counterclockwise directions. This will result in

k2 - I
8

steps needed in both clockwise and counterclockwise directions, if k is odd.

If k is even, however, processor i from Figure 3.6.lb will send

(k/2 -1) of his data in one direction and(k/2) of his data in the other direction. This will result in

steps needed in one direction, and

k2 k -+-8 4

steps needed in the other direction.

To prove this result, Let x be the number of steps in one direction, then from Figure

3.6.1 b, the other direction will have x + ~ steps.

The total steps is

solving for x, we get

this is the steps needed in one direction, and the other direction will have

- 29-

steps. The proof is complete. Figure 3.6.2 illustrates an example of total exchange algorithm on a

four processor ring.

We can use the results of the total exchange algorithm on a k processor ring to analyze the

time complexity of the total exchange algorithm on a k-ary n-cube.

Proposition 3.6.3

Any total exchange algorithm on a k-ary n-cube of one-port communication will require at

least

time units.

Proof

Let G(N ,A) be the k-ary n-cube. Let va=(00 0). Arrange the kn labels of the k-ary n-cube

into kn Xn matrix M. Let i E <k>. From the symmetry of the network, each element i will appear

kn-1 times in each column of M. This implies that the total Lee weight of M is

k-1

WL(M) = nkn-l L WL(i).
i=O

From the pervious corollary, we get

From proposition 3.6.1, the lower bound is

D(G) = L D L (i,j) = L D L (vo,j)

jEN jEN

= L WLU-vo) = L WL(j)

jEN jEN

= WL(M) = n£kn-1. □

- 30-

0 1, 2, 3 0, 2, 3

3 0, 1, 2 0 I 1, 3 2

0 1, 2, 0
0 2, 3, 1

Step 1 3

3 0 I 1, 3
2

0, 3, 2 2

0 2, 0, 0 1, 3 I 1

Step 2 0 2

3 1, 3, 3 0, 2, 2 2
3

0 0, 0, 3 3
1 I 1 I 0

Step 3 2 0

3 3, 3, 2 2, 2, 1 2

0 0,0,0 0
1 I 1 I 1

Step 4 3

3 3, 3, 3 2, 2, 2 2
2

Figure 3.6.2

An example of total exchange algorithm in a ring of four nodes. It needs three counterclockwise steps and one

clockwise step to end the process.

- 31 -

Now we reach a point that we can prove that our total exchange algorithm is optimal using

one-port communication.

Proposition 3.6.4

At the end of each stage of the total exchange algorithm, each node will receive a total of

(k-l)kn -l

data packets using one-port communication.

Proof (by induction)

For n=l, the result is a ring of k nodes and each node will receive a packet from the other

k-1 nodes .

Now, assume that it is true for stage n, then at the end of stage n every node of the k-ary n

cube will have a total of kn different data packets distined to each node of the ring of direction n+ 1.

This results in every node will receive from each of the k-1 other nodes in the ring of direction n+ I

a total of kn data packets resulting in receiving accumulative of

(k-l)kn

data packets in stage n+ I of the k-ary (n+ J)-cube.

Proposition 3.6.5

Proof

The time units required by the total exchange algorithm on a k-ary n-cube is

n£.kn-1

From the previous proposition, each node will receive a total of

(k-l)kn-l

data packets at the end of each stage. However, our algorithm requires n stages . This will result

in each node will receive a total of

- 32 -

□

n(k-l)kn-l

data packets all over then stages. The time required to receive k-1 data packets is£, implying that

the time units required by the algorithm is

n£kn-1 .

This algorithm is optimal since each processor exchanges its packet through the Lee

distance with all the other processors using one-port communication. The algorithm can be

improved to utilize all the 2n incident links.

- 33 -

□

Chapter 4

Conclusion

4.1 Summary

We have shown some properties of k-ary n-cubes (k>2), hoping to make these networks

more attractive. Using the k-ary n-cube mcxlel, we can construct a low-dimensional network by

increasing k and decreasing n to make it consistent with VLSI technology. The properties of the k

ary n-cube may be summarized as follows:

• The k-ary n-cube network can be constructed recursively from low dimensional

cubes.

• The degree of each node is 2n.

• The total number of links is nkn.

• The diameter of the network is Lk/2J * n .

• There are kn-1 node-disjoint k-rings in each direction.

• There are 2n node-disjoint parallel paths between any two nodes.

• A ring or a linear array with kn nodes can be mapped into the k-ary n-cube network

using the k-ary reflected Gray ccxles strategy.

All the communication algorithms discussed are optimal using one-port communication.

One-to-one and single node broadcasting algorithms are optimal using 2n-port communication.

Multi.node broadcasting, single ncxle scattering and total exchange algorithms can be improved to

utilize all the 2n communication links simultaneously.

4.2 Future Research

We have shown some of the properties of the k-ary n-cube network (k>2) in Chapter 2.

We are trying to find n-edge disjoint Hamiltonian Cycles in the network. Another fundamental

issue of both theoretical and practical importance is related to the portability of the algorithms

- 34 -

across various parallel architectures. Embedding of many topologies like linear arrays, rings, two

dimensional meshes and binary trees into the k-ary n-cube is important to study. Examining the

fault tolerance of the network is another interesting subject to study. Solving the problems of

multinode broadcasting, single node scattering and total exchange algorithms using 2n-port

communication will improve the results of Chapter 3.

- 35 -

[BeT89]

[BhA84]

[BOS91]

[DaE92]

[Dal90]

[Dal91]

[DaS87]

[Gal90]

[HaR90]

[JoH89]

[LaD90]

[Lei92]

References

D. Bertsekas and J. Tsitsiklis . Parallel and Distributed Computation: Nwnerical

Methods. Prentice-Hall, Englewood Cliffs, NJ. (1989).

L. Bhuyan and D. Agrawal. Generalized Hypercube and Hyperbus Structures for a

Computer Network. IEEE Trans. Comput. c-33 (1984) 323-333.

D. Bertsekas, C. Ozveren, G. Stamoulis, P. Tseng, and J. Tsitsiklis. Optimal

Communication Algorithms for Hypercubes. J. Parallel and Distr . Comput. 11

(1991) 263-275.

S. Dandamudi and D. Eager. Hot-Spot Contention in Binary Hypercube

Networks. IEEE Trans. Comput. 41 (1992) 239-244.

W. Dally. Performance Analysis of k-ary n-cube Interconnection Networks. IEEE

Trans. Comput. 39 (1990) 775-785.

W. Dally. Express Cubes: Improving the Performance of k-ary n-cube

Interconnection Networks. IEEE Trans. Comput . 40 (1991) 1016-1023.

W. Dally and C. Seits. Deadlock-Free Message Routing in Multiprocessors

Interconnection Networks. IEEE Trans. Comput. C-36 (1987) 547-553.

J. Gallian . Contemporary Abstract Algebra. D. C. Heath and Company,

Lexington, MA (1990).

N. Hartsfield and G. Ringel. Pearls in Graph Theory: A Comprehensive

Introduction. Academic Press, Inc., Boston, MA (1990).

S. Johnsson and C. Ho. Optimum Broadcasting and Personalized

Communications in Hypercubes. IEEE Trans. Comput. 38 (1989) 1249-1268.

S. Lakshmivarahan and S. Dall. Analysis and Design of Parallel Algorithms:

Arithmetic and Matrix Problems. McGraw-Hill, New York, NY (1990).

F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays.

Trees. Hypercubes . Morgan Kaufmann, San Mateo, CA (1992).

- 36 -

r

[LiH91]

[Ozv87]

[PeW72]

[RaS88]

[SaS85]

[SaS86]

[SaS88]

[Sei85]

D. Linder and J. Harden. An Adaptive and Fault Tolerant Wormhole Routing

Strategy for k-ary n-cubes. IEEE Trans. Comput . 40 (1991) 2-12.

C. Ozveren. Communication Aspects of Parallel Processing . Rep LIDS-P-1721,

Laboratory for Information and Decision Systems, MIT, Cambridge, MA (1987).

W. Peterson and E. Weldon, JR. Error-correcting Codes. MIT, Cambridge, MA

(1972).

P. Ramanathan and K. Shin. Reliable Broadcast in Hypercube Multicomputers.

IEEE Trans. Comput. 37 (1988) 1654-1657.

Y. Saad and M. Schultz. Data Communications in Hypercubes. Res. Rep.

YALEU/DCS/RR-428. Yale University, Oct, 1985.

Y. Saad and M. Schultz. Data Communication in Parallel Architectures. Res. Rep.

YALEU/DCS/RR-461, Yale University, Mar, 1986.

Y. Saad and M. Schultz. Topological Properties of Hypercubes. IEEE Trans.

Comput. 37 (1988) 867-872.

C. L. Seitz. The Cosmic Cube. The Communications of ACM, 28 (1985) 22-33.

- 37 -

	Ashir_Yaagoub_A_1993_01_15_A
	Ashir_Yaagoub_A_1993_01_15_B

