
n
n
fl
n
0
n
fl

fl
II
J
ll
l I

11

u

J

I
1

Implementing Parameterized Types in Java

Master's Project Report

Hugh Vidas

Major Professor: Timothy A. Budd

Committee Members: Margaret M. Burnett, Curtis R. Cook

August 28, 1997

~

n
n
n
n
n
n
n
11

I
IJ

11

u
LI

LI

l

n

7

11

IJ
J

. I
l

1.

Implementing Parameterized Types in Java

Master's Project Report

Hugh Vidas

August 28, 1997

Introduction

The goal of this project was to investigate the addition of
parameterized types to the Java programming language. Two different
parametric polymorphism mechanisms were developed and compared.
The first was a preprocessor and the second was a compiler.

Parameterized types allow a programmer to create generic
programs. Much as a function parameter allows the value of a variable
to be changed each time the function is called, a type parameter allows
the type of a variable to be changed. This allows the creation of classes
that can have the type on which they operate specified at compile time.

The principal reason for parameterized types is code reuse.
Generic and efficient type-safe libraries are easily created which
programmers can instantiate with a type parameter when the library is
needed. This research creates a mechanism that allows two similar
classes that differ only in the type of value they operate on to share the
same function bodies. Two of the main benefits are reducing
programming time and reducing errors in the program[Stroustrup91].

Parameterized types allow for the easy creation of reusable
libraries. For example, the Standard Template Library (STL) in C++ relies
heavily on parameterized types.

2. Description of Research

2.1 Background

There are three ways to compose object behavior in an object­
oriented system [Gamma95). The first is class inheritance. The second
is object composition. The third is parametric polymorphism. The first
two techniques are already well defined in Java, but the third technique
is not and is the focus of this research. Parametric polymorphism differs
from object composition in that it is only applicable at compile time. It
differs from class inheritance in that the generic class does not have to
be overridden.

f

Both C++ [Stroustrup9 l] and Leda [Budd95] support
parameterized types. In C++ they are called templates and have the
following form (Only the declaration is shown, as the class definition is
unimportant in this example. In C++, comments are preceded by two
forward slashes.):

template <class T>
class List
{

//body of the List class
}

This would be instantiated as:

List<int> intList;

A List would be created which is called intList and contains values
of type int. C++ handles templates using a mechanism similar to macro
expansion. When the compiler sees this type of declaration, it will use
the template code for List to generate a new class substituting int for T.
If another type of List is declared, the compiler will also generate the code
for that type of List as well. If there are many different declarations, the
code size will increase proportionally.

Leda[Budd95] has a similar syntax, but the mechanism is much
different. The major difference between the way C++ and Leda handle
this mechanism is that Leda only needs one copy of the List class for
every instantiation. In Leda, a parameterized type would have the
following form (Again, only the declaration is shown, as the program is
unimportant in this example. In Leda, comments are enclosed in curly
brackets.):

class List [T : object]
begin

{ body of the List class }
end;

This would be instantiated as:

intList : List[int]

This would also create a List called intList that contains values of
type int. In both examples the type parameter is T, in C++ Tis of type
class and in Leda Tis of type object. Since both Leda and Java have a
common inheritance tree rooted with the class object, Leda's
implementation seems to be more natural.

2

n
1

n
l

I
I
j

1

j

j

l
n
n
I
n

ii
f I
j

j

J

2 . 1.1 Problems and solutions

Java is very similar to Leda in the way it treats inheritance. All
classes inherit from a common class object . Polymorphism [Budd95]
means that a variable that is declared as holding one type can hold that
type or any subtype . Since all classes are subtypes of Obj ect ,

polymorphism can be used to simulate a parameterized type mechanism.
A variable can be declared to be of type Object statically. At run time it
can actually hold any type and then be converted back into the
appropriate type using a run time-type-cast. However, this is a much
slower mechanism than the proposed method. The compiler should
instead perform all type checks since the class type will be known at
compile time.

This mechanism will only work on objects. Java allows the use of
a few primitive types instead of objects. In most cases , those types can
be used as either a primitive or as an object. For instance , to represent
an integer, the type in t or the wrapper class Integer can be used. It is
possible to perform almost all the same operations on an Integer as on
an int , the only exception being arithmetic and multiplicative operations.
The reverse, however , is not true. Polymorphism is an object-oriented
concept and does not apply to types that are not objects. It might be
possible to detect non-objects and then create new wrapper objects, but
this problem can also be solved by the use of discipline on the
programmer 's part. As creating object wrappers would not be adding any
new level of "generic-ness" to Java, it is beyond the scope of this project .

2.2 Goals

In a recent paper [Budd96], four goals of a parameterized type
system in Java are proposed:
1. The addition of a parameterized type mechanism should seem like a

natural extension to the existing Java language
2. The mechanism should permit the creation of type safe data

abstractions. That is, the mechanism by itself should not permit the
introduction of type errors into programs.

3. The mechanism should, to the greatest degree possible, be applicable
at compile time, making minimal demands for run time checking.

4. Finally, while the addition of the mechanism will naturally necessitate
changes to the Java compiler , it should be possible to add the
mechanism to the existing Java system without requiring the
introduction of any new bytecode instructions.

My primary goal will be to implement the parameterized type
mechanism while also supporting the above four goals and not
compromising Java security. A secondary goal is to avoid code bloat.

3

2.3 How objects are type cast in Java

Java stores all objects on the heap and references to those objects
on the stack. Any variable in Java can be polymorphic. This makes
polymorphism much easier in Java than in C++ (variables have to be
declared differently to be polymorphic in C++). When a type conversion
is necessary, the source object is expected to be on the top of the stack.
The type conversion operator then examines the object referred to by the
reference at the top of the stack. If it is the proper type or it can be
resolved to the proper type, then the stack is left unchanged and that
reference can now be treated as if it referred to the expected destination
type. In the generic classes created by this mechanism, the types are
always known. Even though the generic class has to widen the type
information, the type of any value in that class is known at compile time
for the compiler and at pre-compile time for the preprocessor. Any
member function that returns the type specified in the type parameter to
the generic class can potentially cause an unnecessary type conversion.
The same is true for accesses to class data fields of the parameterized
type in the generic class. With the compiler, it is possible to remove the
conversion operations that would otherwise be necessary. With the
preprocessor, that is not permissible. The compiler, not the preprocessor
generates the conversion operations, and so the preprocessor cannot
remove them. The actual impact of removing the typecast instructions is
explored in section 2. 11.

The Java Virtual Machine has two different methods to handle type
conversion, object to object and primitive to primitive. There are fifteen
total instructions that can perform type conversions. There are no
explicit conversion operators from object to primitive or vice-versa.

There is only one instruction for converting an object to another
object: checkcast. The operator checks the object reference on the top of
the stack. If it is null or can be cast to the expected type, then the
operand stack is unchanged; if not , a ClassCastException is thrown. The
following rules determine whether it is legal to cast an object from type S
to type T. [Lindholm97]

• If Sis an ordinary (non-array) class , then:

• If Tis a class type, then S must be the same class as T or a
subclass of T.

• If T is an interface type, then S must implement interface T.

• If Sis a class representing the array type SC[], that is, an array
of components of type SC, then:

• IfT is a class type, then T must be Obj ect .

4

, I

n

l

I
l

I
I
I
J

J

j

J

J

n
n
fl

0
n
I

I l

ti
I I
I t

11

I I

J

u
J

• If T is an array type TC[], that is, an array of components of
type TC, then one of the following must be true:

• TC and SC are the same primitive type.

• TC and SC are reference types and type SC can be cast to
type TC by these runtime rules.

The two following code listings demonstrate this conversion. The
Java source code is in figure 1. The assembly code for the source code in
figure 1 is in figure 2. All the lines from the Java source also appear in
the assembly in bold. Any assembly instructions generated by a line of
Java source code appears afterwards (there is not necessarily a one-to­
one mapping). The conversion operator has been highlighted in the
assembly listing.

class objectCastTest {
public static void main (String args[]) {

Object a= new String("Hi");

}
}

String b;
b = (String)a;
System.out.println(b);

Figure 1

1: class abjectcastTest {
2:
3:
00000000
00000003
00000004
00000006
00000009
4:

public static void main (String args[]) {
Object a = new string ("Hi") ;

5:
0000000a
0000000b
0000000e
6:
0000000£
00000012
00000013
7: }
00000016
8: }

new
dup
ldc
invokenonvirtual
astore_l

String b;
b = (String)a;

aload_l
· checkcast

astore_2
System.out.println(b);

gets ta tic
aload_2
invokevirtual

retUil1

java/lang /S tring

11Hi 11

java/lang/String.<init>(java/lang/String)
a

a
java/lang /St ring
b

java/lang/System.out
b
java/io / PrintStream .println(java / lang /String)

Figure 2

Two of the remaining fourteen conversion operators are for
converting from ints to chars and bytes. These operators are both
narrowing conversions into unsigned types, so sign and magnitude
information may be lost.

5

The other twelve are for converting from one of the four primitives,
double, float, long or int to another one of those four primitives. As a
conversion from a primitive to the same primitive is trivial, there is no
conversion operator. The primitive conversion operators are listed in
Table 1. As the type of the source primitive will be known at compile
type, the compiler should always choose the correct operator. The
operator expects to find the appropriate type on the top of the stack
when it is executed. If the wrong type is at the top of the stack, it will be
treated as the expected type; there is no error checking for types
specified in the virtual machine specification. The operator pops the
value at the top of the stack, converts that value into the destination type
and pushes the new value onto the stack. Precision and magnitude may
be lost when converting between two primitives. Specifically, conversion
from a floating point number (double or float) to an integer (long or int)
will result in a loss of any fractional information. The primitives can be
ordered in terms of decreasing magnitude as double, float, long and int .
Any conversion from a type to any type on its right may result in
narrowing or loss of magnitude. Any conversion from a type to any type
on its left will result in a widening conversion and will be exact . The two
following code listings demonstrate this conversion. The Java source
code is in figure 3 and the assembly code for code in figure 3 is in figure
4.

Source Data Type
double float long int char

ro double f2d 12d i2d ro
Cl float d2f i' 12f i2f

.,.
·•· , .. ;;, ,,

C Q)
long d21 f21 i21 ,Q a. , ..

- >,
~ I- int d2i f2i 12i

:;:::;
char i2c en ,.,,

Q)

Cl byte . , \ i2b ., .

Table 1

public class castTest {

}

public static void main (String args[]) {
double x = 4.3;
int y;
y = (int)x;
System.out.println(y);
}

Figure 3

6

byte

,O·,<

Ii>'

..

~ .,.,

0
n
l
7

l
t

j

J
J

I
I
J

i I
I J

l l
u

J

1

1

1: public class castTest {
2: public static void main
3: double x = 4.3;
00000000 ldc2_w
00000003 dstore_l
4: int y;
5: y = (int)x;
00000004 - dload_l
00000005 d2i
00000006 istore_3
6: System.out.println(y);
00000007 getstatic
0000000a iload_3
0000000b invokevirtual

,7: }
00000O0e retw:n
8: }

(String args []) {

4.300000
X

X

y

java/lang/System.out
y
java/io/PrintStrearn.println(int)

Figure 4

Only the checkcast instruction operates on objects. The other
conversion operations operate only on primitive types and primitives
cannot be used as the type of a polymorphic variable. Therefore, the only
bytecode instruction that must be detected for optimal performance is
checkcast.

2.4 Syntax for the parameterized type mechanism

Currently C++ and Leda have a well-defined syntax for
parameterized types. Adding a new keyword to the Java language would
require that programmers not use that keyword in any of their programs
unless they are adding a parameterized type. This could force
programmers to rewrite their programs if they are to use the modified
Java compiler regardless of whether or not they are actually using
parameterized types. For that reason, I did not want to add a new
keyword, such as template, to the Java language, so the implementation
will actually be closer to Leda than C++.

The initial implementation of the parameterized type mechanism
used the Leda syntax. However, the Leda syntax introduced a minor
problem. The square brackets used for parameterized types are also
used in array declarations. The JavaCC tool [Sun96] will create a parser
for any LL(l) language. It is possible to specify how far ahead to look to
resolve this type of ambiguity with JavaCC. If the parser looked for [] or
[integer value] then it could be determined that the declaration was an
array. The use of a lookahead whenever square brackets are
encountered would solve this problem, but this seemed to be a needless
addition to the parser since angle brackets, as used in the C++ syntax,
did not introduce any ambiguity. For instance an array of objects of type
GenericType, called array_x, can be declared as:

7

GenericType[] array_x;

If GenericType were changed to accept a parameterized type,
array_x would now be declared as:

GenericType[object] [] array_x;

Using angle brackets, this changes in to:

GenericType<object>[] array_x;

Leda syntax dictates that the name of the parameterized type is
listed first followed by a colon and then the parent type of that object.
C++ syntax dictates that the keyword class is listed first followed by the
name of the parameterized type. Neither method introduces any
ambiguity, however as they each specify an ordering which is the reverse
of the other, the choice of ordering could potentially cause confusion.
There are two arguments to support the C++ ordering. First, C++ and
Java both the variable type and the variable name in a declaration.
Second, as a significant number of Java programmers have had exposure
to the C++ language and C++'s angle brackets are used in specifying
parameterized types instead of Leda's square brackets, the C++ ordering
was chosen. The colon separator and the keyword class are not used.
Instead, the parent type of the object must be specified . As an additional
argument supporting this decision, the Java language designers took
great pains to make Java similar to C++, I wanted to make the language
addition as unobtrusive as possible. The C++ and Leda examples above
could be written in Java using the proposed mechanism as:

class List <object valueType>
{

//body of the List class
}

This would be used as:

public List <Integer> intList;

This fulfills the first goal -- it seems like a natural extension to the
Java language.

2.5 Implementation

To reiterate, the goals are: (1) The syntax of the parameterized type
should seem to be a natural fit, (2) The mechanism should permit type-

8

7
n
l
I

n
I

I

]

lJ

I
~

. l

n

: l

, j

l
l I
IJ
j

u
1

.J

safe data abstractions, (3) The mechanism should be applicable at
compile time and (4) No changes should be made to the Java bytecodes .
The syntax that is finally chosen will work regardless of the
implementation. Therefore, if a syntax for the parameterized type
mechanism is found which is a natural fit for Java, goal 1 will always be
met. In addition, the decision to not modify the existing bytecode can be
achieved by any of the four proposed methods, so goal 4 will also always
be met. There are four possible ways of implementing this language
addition. Two involve differences in the software mechanism, compiler
versus pre-compiler. The other two possibilities deal with how class
instantiation is supported , one instantiation of each object versus one
instantiation of each object for each different type.
1. Create a pre-compiler that uses one instantiation of each object. This

method will take source code and generate new source code for the
compiler. This method is constrained to converting the "enhanced
Java" source code into JDK 1.1.3 [Sun97b] source code . If a variable
is declared to be of type object , it can later hold any type of value , but
a run time-type-cast will be necessary to use the value. So , goals 1, 2
and 4 are satisfied , but goal 3 is only weakly met.

2. Create a pre-compiler that creates a new instantiation for each
different type of object. This method will take source code and
generate new source code for the compiler . This method is
constrained to converting the "enhanced Java" source code into JDK
1.1.3 source code. It is currently possible to take a class and cut and
paste different types into it to get multiple classes operating on
different types. If the code is generated automatically, no new errors
should be introduced. Also since there is a different class for each
type, no run time-type-casts would be necessary. The drawback of
this method over method 1 is that larger executables would be
generated. Therefore , goals 1, 2, 3 and 4 are satisfied. C++ uses this
method to create generic classes . (C++ initially used a preprocessor to
convert the C++ specific code into C code. Now generic classes in C++
are most likely handled by the compiler instead of the preprocessor,
but this is up to the compiler implementation)

3. Create a compiler that uses one instantiation of each object. The
compiler would be modified to generate bytecode based on the
enhanced Java source code. No new bytecodes would be added. The
current implementation of the compiler also needs to use type
conversion operations. Therefore, goals 1, 2 and 4 are satisfied, but
goal 3 is only weakly met. Leda uses ·this method to create generic
classes.

4. Create a compiler that creates a new instantiation for each different
type of object . The compiler would be modified to generate bytecode

9

based on the enhanced Java source code. No new bytecodes would be
added. The drawback of this method over method 3 is that larger
executables would be generated. Therefore, goals 1, 2, 3 and 4 are
satisfied. C++, Pizza and Jump use this method to create generic
classes.

Many times decisions are made based on comfort and not on
appropriateness. I wanted to avoid that pitfall and not choose an
implementation simply because it was commonly used . I think the C++
implementation is a good, but it is not the best for this particular
application. An added benefit of not using the C++ implementation is the
avoidance of code bloat. After considering the above methods , methods 1
or 3 seem to be the best fit to meet the proposed goals.

2.5.1 The Parser

There are two possible ways of creating generic classes in Java
using a preprocessor. The first is to create only one instantiation of any
generic object and type cast that object into the appropriate type. Leda
uses this mechanism, but not the preprocessor, to create generic classes.
In the following code, a single List class would be created. It would have
two instances, one for int_list and one for obj_list. To access any value in
the int_list object, it would have to be cast into an Integer. The obj_list
object would similarly have to be cast into Objects. The preprocessor
takes "enhanced Java" source code and converts it into JDK 1.1.3 source
code. In this case, the generated Java source code would contain a
single List class and every time objects of that type are created or used,
they may need to be cast into the expected type.

List <Integer> int_list;
List <Object> obj_list;

The second way is to create a new object for every type of generic
class. C++ uses this mechanism, but not necessarily the preprocessor,
to create generic classes. In the above example, two List classes would
be created each with a single instantiation. The original List class would
not appear in the generated source code. Instead, there would be two
classes with internal names such as List_Integer and List_Object. The
first would be a List class that operated solely on Integers and the second
would be a List class that operated solely on Objects. Therefore, no type
casts would be necessary to access the values in int_list or obj_list, but
there would be more code generated (and loaded by the run time
environment).

Goal 3 , stated earlier, said that the mechanism should, to the
greatest degree possible, be applicable at compile time, making minimal

l
7

l
n
·1

7
I
. l

l
I
I
\

J
J

J

n
fl

n
D

:1
I J

! I

11

l I
[j

I J

IJ

i j
Li.

u

demands for run time checking. The first preprocessor method does
require some run time type casts, but it could be considered to be
minimal. The second method requires no run time typecasts and would
therefore seem to be a better implementation. However, the programs
generated by this method would require more classes and the program
would be larger. Any benefit gained by not requiring type casts would
seemingly be lost in the additional resources to run the resulting
programs . If run time execution speed is the most important
consideration, then this is an invalid assumption; however, if this is the
case, then most developers will choose to not use an interpreted
language such as Java. For this reason, the first method was chosen
when implementing the preprocessor.

At the time I started this project, there were two parser generators
that generated Java source code from a grammar. There is JavaCC (the
Java Compiler Compiler), written at Sun and CUP (Constructor of Useful
Parsers) [CUP96] written at Georgia Tech. JavaCC is top down variable
lookahead parser LL(k) and CUP is a bottom up parser LALR. CUP was
in its Alpha release and had not been updated for over a year. JavaCC
was the subject of frequent updates. Both have functions similar to
yacc. They will take an appropriate (LL or LALR) grammar apd generate
source code to create a Java preprocessor which accepts the language
specified by the grammar. As they both had similar functions but
JavaCC was more supported, I choose to use JavaCC.

There was a downside to the benefit of bug fixes being contained in
the constant updates to JavaCC. Namely, it was a constantly evolving
product. It was originally called Jack , presumably to rhyme with yacc .
There were two problems with using this tool. The first is that Sun
released a new version of the Java language, as specified in the JDK 1.1
[Sun97b], which necessitated a new grammar . The second problem is
that JavaCC is still beta quality software. New features are constantly
being added and bugs are being fixed. Six different versions of JavaCC
were released during the period when I created the preprocessor. (Jack
0.5, Jack 0 .6-10 , Jack 0 .6-9, JavaCC 0.6-8 JavaCC 0.6 (Public Beta),
JavaCC 0.6 and finally JavaCC 0.6.1) . JavaCC 0.6 (Public Beta) was a
major upgrade and included the necessary code for working with the 1. 1
version of Java as opposed to the 1.0 .2 version. The grammar also
changed between the releases of JavaCC 0.6 (Public Beta), JavaCC 0 .6
and JavaCC 0.6.1, but those were minor changes . The newer versions of
the JavaCC program were more desirable due to their stability and
increased parsing speed. JavaCC 0.6 would also process grammars from
earlier versions of JavaCC. Unfortunately, there was no easy migration
path for the JDK 1.0.2 grammar to the JDK 1.1 grammar except to
reenter all changes originally made to the JDK 1.0.2 grammar.

11

I

t

l

2.5.1.1 The tJava preprocessor

The preprocessor is called tJava.Main and is a Java application.
All source code files are expected to have the extension ". tjavd'. The
preprocessor is being distributed as a zip file called tJava.zip. If that file
is added to your classpath , then it can be run with the following
command (assuming you want to process the file test.tjava):

java tJava.Main test.tjava

2.5.2 The Compiler

There are two ways for creating generic classes using a compiler
that correspond to the two ways when using the preprocessor. Again,
the first is to only create one instantiation of any generic object . (The
method Leda uses) The second is to create a new object for every type of
generic class. (The method C++ uses) The main difference between the
methods described in section 2.5.1 and this section is that class files are
generated instead of compilable source code . The compiler takes
"enhanced Java" source code and generates Java class files directly.

Goal 3 stated that the mechanism should be applicable at compile
time. Since this is the compile time, that goal is met. Neither
mechanism needs to insert typecasts , for the runtime to evaluate, so the
only difference between the two is that one generates fewer class files
than the other does . So , once again, the mechanism that creates only
one instantiation of any generic object was chosen.

There were two possible compilers that could be modified to create
the tJava compiler , Sun's javac [Sun97b] and the JOLT project 's guavac
[JOLT96]. To get the source code to javac, I had to sign a non-disclosure
agreement with Sun and also persuade them that I needed to have
access to the source code. The source code for guavac is freely available
for download on the Internet. This seemed to make guavac a more
desirable compiler to modify. However, the guavac compiler was built
using C++ and was not portable across platforms as was javac, which
was built using Java. So , javac was chosen as the base compiler.

At first, the javac compiler seemed to be easy to compile. However ,
there were a few necessary changes, which made compilation much more
difficult. If the compiler was not changed from the default namespace
then depending on the classpath, the proper version might not execute.
The binary version of Sun's javac, along with all of the other Sun Java
language API's, are included with every version of the JDK in a file called
classes.zip. Either the classpath needed to have the modified compiler
earlier than classes.zip or the modified compiler needed to have a
different namespace. It seemed to be a bad design decision to make the

12

l
n
l
l
n
l
l
7

I
l
J

l
I
I
l
J

j

l

n

D
n
)

l I

! I
u

u
u
u

ordering in the classpath determine whether the compiler would work, so
the name space was changed. There are four packages that make up the
javac compiler: sun.tools.asm, sun.tools.java, sun.tools.javac and
sun.tools.tree. In all four cases, sun.tools was changed to tJava.
However, once the namespace was changed, the compiler could no longer
be compiled. There were numerous circular dependencies in most of the
files, which comprised the javac compiler. When the compiler was in the
sun.tools namespace, the binary in the classes.zip file could be used to
compile any file when there was a circular dependency. Once the
namespace was changed, either all the circular dependencies had to be
removed or way to bootstrap the compilation needed to be found. Since I
did not know if it was even possible to remove those dependencies, I
chose to bootstrap the compilation. A new class file needed to be
created, for each of the 174 classes in the compiler, which implemented
the appropriate methods and was in the proper names pace. For each of
the classes, I used a Java disassembler [Djava97) to create a Java
assembly file. The namespace defined in that file was changed to the
new namespace and then the file was reassembled using a Java
assembler [Jasmin97) to create new class files in the proper namespace.
Once this was done, the compiler could be recompiled into the new
namespace and changes could be made to it. It turned out to be most
practical to modify my classpath and leave the compiler in the default
namespace for development and then move it to the new namespace
when it was finished. This should not prove to be a problem for other
users though, since only a binary release can be put into public
distribution due to the terms of the non-disclosure agreement with Sun.

The final problem with the compiler was the removal of extra
checkcast instructions. The only time that extraneous type conversions
could be detected was when the source code file was being parsed. When
code generation was being done, legitimate conversions cannot be
distinguished from the conversions necessary for the parametric
polymorphism mechanism. Unfortunately, the only way that the
modified javac compiler would allow the parsing of parametric
polymorphic variables was through the addition of a type conversion
instead of changing the type of the internal representation. Since the
impact of type conversion (as seen in section 2.11) was minimal, this was
not pursued.

2.5.2.1 The tJava compiler

The compiler is called tJava.javac.Main and it is also a Java
application. Source code files can have either the normal ".javd' or
".tjavd' file extensions. The compiler is also in the tJava.zip file. If that

13

file is in your path, then the compiler can be invoked (on the file
test. tjava) with the following command:

java tJava.javac.Main test.tjava

2.6 Comparison of Preprocessor and Compiler

In terms of performance and ease of use, the compiler is much
more convenient than the preprocessor is. It takes only one step to
generate class files and if the javac compiler is used to compile code
generated by the precompiler, then compilation times will be the same.
However, if a different compiler is used, than the restriction of using a
modified javac compiler may seem limiting. Both the compiler and the
preprocessor generate the checkcast instruction but, as will be
demonstrated later, this has minimal impact on the execution speed.

2. 7 Scope of Parameterized Types

There are two other concerns with this introduction to the Java
language. What can be defined in a generic class? Is the type parameter
too limiting?

The template class cannot internally create any new objects of the
parameterized type. When an object is instantiated, some portion of
memory is set aside for the internal data and methods of that object.
Every object needs to have its own memory for local variables; however
there needs to be only one location with all the methods defined for all
the instantiations of that object. The Virtual Method Table is the data
structure that fills this need. If a class A is defined and 50 copies are
instantiated, there will be 50 copies of the activation record of A, but only
one virtual method table for A. Each instance of A will maintain a
pointer to the virtual method table so that methods can be invoked.
Consider the implications of creating a class B that is defined as a
subclass of class A. When B is instantiated, it will need to have its own
activation record and also its own virtual method table. Any inherited
data fields will be at the beginning of the activation record and new data
fields defined in class B will be at the end of the activation record. The
virtual method table for class B will have a similar layout. If a variable is
declared to hold objects of class A, then objects of class B can also be
assigned to that variable.

14

7
l
)

n
n

\

)

I
J

j

J

J

l

11

fl

0

! I
I l

u
ll
J

u
j

class A {
int e;
int f;

}

void x (void) {
II code for method x

}

class B extends A {
int g;

}

void y (void) {
II code for method y

}
void z (void) {

JI code for method z
}

class C extends A {
int h;

}

int i;
int j;
void x (void) {

II overridden code for method x
}
void p (void) {

I I code for method p
}
void q (void) {

II code for method q
}

Figur e 5

In the example in figure 5 classes Band Care subclasses of class
A. An activation record for each class is shown in figure 6. The first
entry in each activation record is a class pointer, this points to the
location in memory for the virtual method table for that class. The
virtual method tables for these three classes are then shown in the
middle of figure 6. Every entry in the virtual method table points to the
location in memory where the executable code for the corresponding
method can be found.

15

Activation
Records

Class A
class pointer

data e
data f

method x

Class B
class pointer

data e
data f

method x
data

Class C
class pointer

data e
data f

method x
data h
data I
data ·

method p
method q

Virtual
Method
Tables

Class A
method x

Code for class methods

Class B code for method x
method x ove·rridden code for method x
method 1-----• code for method y

1---------1

method z 1-----• code for method z ------------
Class C

method x
method
method

Figure 6

code for method p
code for method q

Java uses dynamic memory allocation for all objects, so the
activation record is created on the heap. From the implementation
standpoint, this means that when a variable is declared, space for that
variable is set aside on the heap and a pointer to that space is kept in a
variable on the stack. In Java, any variable can potentially be a
polymorphic variable. A variable can hold any object of the declared type
or any object of any subclass of the declared type. This is not always
practical since a subclass will always have the same data fields and
methods of its parent class, but the subclass may not behave in the
same manner as the parent class. An object that has the same behavior
as another object is a subtype of that object. In Java, objects that are
subtypes must also be subclasses of another object; however, objects
that are subclasses of another object need not be subtypes. In figures 5
and 6, classes Band Care subclasses of class A. Class Bis a subtype of
class A. Class C might be a subtype, but it cannot be determined
without knowing what in method x was changed.

When an object is a subtype of another object, that object can be
substituted for the parent object with no unexpected side effects. It can

16

l
n
l
l
D

l
1

l
1

J

l
J

I
n
n
il
D

l
l

11

11

u
j

j

u
u

mimic the behavior of the parent object and remain indistinguishable
from any other instance of the parent object. This is known as
substitutability. When creating a generic object, the instantiations will
be subtypes of the original generic object.

class printTest <printingObject valueType> {
private valueType val;

}

public printTest () {val= new valueType{);}
public void message() {

System.out.println ("Test "+val.message());
}

Figure 7

class printTest <printingObject valueType> {
private valueType val;

}

public printTest (printingObject newVal) {
val= newVal;}

public void message() {
System.out.println("Test "+val.message());

}

abstract class printingObject {
public printingObject () {}
abstract public String message();

}

class hiObject extends printingObject {
public hiObject () {}
public String message() {return "Hi";}

}

class testObject extends printingObject {
public testObject () {}
public String message() {return "Test";}

}

public class test {
public test () {}

}

public static void main (String args[])
{

}

printTest<hiObject> hiPrint =
new printTest(new hiObject());

printTest<testObject> testPrint =
new printTest(new testObject());

hiPrint.message();
testPrint.message();

Figure 8

17

t
'

When a variable is declared inside a template class, the parent
class of the parameterized type defines the type of the instantiated
object. Therefore , the activation record and virtual method table for that
parent class are used instead of the activation record and virtual method
table of the parameterized type. No methods or data from the child class
can be used and any gain from using a generic class is lost. For this
reason, the generic class can not internally create any new objects of the
parameterized type. The contrived example in figure 7 demonstrates the
problem.

In the pri n t Test class, when the object va l is created, where is the
code for the method message ? Is it in the class printingObj ect? Hi Obj ect?

testobj ect? Or some yet to be declared class that is a child of
printingOb j ect ? The answer is that the code for the method message is
expected to be defined in class printi n gObject . If an object of the
parameterized type needs to be created and stored in the generic class,
then it must be created externally and passed as an argument to the
generic class. An implementation of the print Test class and supporting
classes is given in figure 8:

In strongly typed object-oriented languages , there is the potential
for type parameters to be overly constraining [Kim97] . It is possible to
create a generic class X which takes a class of type Y, or subclass of Y, as
its parameterized type. If the class Y has any attribute which is
unnecessary to class X, then the use of class X has been constrained by
class Y. In the above example, a generic class printTest is declared to
take a type parameter of type printingObject . In this example, it is
necessary to constrain the type parameter to the type printingObj ect

because a method that is declared in printingObj ect is used (message). If
the method equals were needed instead of message, then pr i ntingObj ect

would be overly constraining since equals is defined in Obj ect . In the
case where a method may be needed in some uses of a generic class, but
not all , then the class that defines that method may be too restrictive as
a type parameter. The use of functional parameters would solve this
problem. (For a more complete description to the problem, see An
Approach to Type Constraints of Generic Definitions [Kim97]).

The C++ approach to function parameters is to allow a pointer to
point to a function. Pointers are valid arguments and can thus be
passed as arguments. The Java language does not allow functional
parameters or function pointers. The addition of pointers of any type
would greatly undermine the security model of Java, so that omission is
understandable. The addition of functional parameters to Java would be
useful and at first glance seem to not undermine the security model.
However useful , this is beyond the scope of this research. Another
possibility is the use of functors. In fact , the Standard Template Library

18

1

n
l

n
I
1
l

l
I
J

J

J
J
J

l

l
0
n

' j

I J

I

l

u
u
u

uses functors instead of function pointers. A functor is an object
wrapper around a function. Technically, functors also override the ()
operator, but this is just to create a transparent mechanism. The idea of
an object wrapper around a function is still possible in Java (since
operator overloading is not possible in Java). This solution still would
not be an elegant solution to this problem though. Java is a much more
strongly typed language than C++. Any method that is implemented in
the function object would have to be written to satisfy an interface or
parent class. That parent class or interface would then be the constraint
to the function, to which the functor is passed as an argument. An
alternative would be to override a method that is defined in the Object
class and is not needed in the implementation of the generic class. This
is a very undesirable programming technique though. The resulting
object would no longer be a subtype of Object and it is considered bad
form to break the type - subtype relationship .

An important point to make about both implementations is that no
type errors are introduced into the Java language. The preprocessor
translates enhanced Java source code into JDK 1.1.3 [Sun97b] source
code. The template aware compiler is simply inserting an instruction to
do a run time typecast when a generic object is encountered in the
source code. Even if the typecast instruction were not inserted, the
object will still not be converted into another type. Only source code that
is valid in the JDK 1.1.3 language specification will be compilable. Even
if it were possible for a type error to be introduced into the enhanced
source code, the compiler will catch that error and generate an error. If
an error were to slip by the compiler, it would be caught by the run time
security mechanism. Section 2.3 describes the way the Java runtime
system handles object coercion. In essence, if an object is used in an
improper manner, a run time type exception will be thrown.

Both of the implemented mechanism will always use a generic
object as its declared type. Any new instances of that generic variable
will be of the declared type. The types for generic objects are always
created and used in a consistent manner based on the generic object
declaration. Because of this, no type errors can be introduced into the
language.

2.8 Java Security Model

Java has a well-defined 4-tier security model [Lemay96]. First, the
compiler is expected to generate "safe" programs. As pointers were one of
the largest causes of security problems in C / C++ (and similar languages),
pointers were removed from the Java language. References to objects are
still allowed, in fact, this is the only way to access objects, but these are

19

more secure than pointers. They cannot be forged and before an object
can be cast, it must be proved to be a valid cast. Additionally, arrays
have strictly enforced boundaries.

The second tier in the security model is the bytecode verifier. This
subjects class files to rigorous security tests. No object can be accessed
as anything other than its dynamic type; an object's fields cannot be
accessed illegally. There must be no attempts to forge pointers. The run
time stack must not overflow or underflow. There must be no access
restriction violations. All methods must be called with the appropriate
number and type of arguments. If any of these tests fail, then the byte
code will not execute. So, for each basic block where the starting stack
state is known, the stack can be verified. Java imposes the two following
restrictions on the language: given only the stack and local variables
(the type state) before the execution of any instruction, the type state
afterward must be fully determined, and if there are multiple paths to
arrive at the same point in the program, all paths must have the same
type state upon arrival at that point. To aid in verification, Java
bytecodes contain extra type information. This means that whenever
possible, type casts are done statically by the bytecode verifier and not
dynamically by the interpreter.

The third tier in the security model is the class loader. When a
Java class is loaded into memory, it is placed in a namespace. Each
namespace has an associated class loader. There is a namespace, and
class loader, for local trusted classes and another namespace, and class
loader, for untrusted classes loaded from remote network locations.
There can potentially be a namespace for classes loaded from within a
corporate firewall. Depending on the virtual machine, there can even be
more namespaces than just these three, although their protection level
will most likely be the same as the untrusted namespace as each
namespace will probably be for a different network location. The
following instructions are deemed as "dangerous" and methods in the
untrusted namespace are not allowed to execute them [Flanagan96]:

• Read, write, rename or delete files on the local system either
through the use of Java methods or system calls.

• List directory contents.
• Check for the existence of a file. ·
• Obtain the type, size or modification time of a file.
• Create a network connection to any other computer than the

one from which the applet was itself loaded.
• Listen for, or accept, network connections on any port of the

local system.

20

l
n

I

□

1

l
j

J

}

j

j

J

l
n
n

l

J

l

l J

I I
11

u
J

u
J

• Create a top-level window without a visible warning indicator
that the window is "untrusted".

• Obtain the user 's username or home directory name or read any
of the following system properties: user. name, user. home,
user.dir, java.home or java.class . path.

• Define any system properties.
• Make the Java interpreter quit.
• Load dynamic libraries or invoke any program on the local

system.
• Create or manipulate any thread that is not part of the same

ThreadGroup as the applet or manipulate any ThreadGroup
other than its own.

• Create a ClassLoader or a Securi tyManager object.
• Specify a ContentHandlerFactory, SocketimplFactory or

URLStreamhandlerFactory for the system.
• Access or load class in any package other than the standard

Java APL
• Define classes that are part of packages on the local system.

Classes loaded in the trusted namespace do not have these restrictions.
The firewall namespace can relax a few or all of the above restrictions.
One of the reasons for the namespaces is so that an anonymous applets
cannot redefine the security model by replacing trusted classes with
classes from the untrusted namespace.

The fourth tier in the security model is the security manager. The
security manager implements the restrictions placed on classes in the
untrusted namespace. In general , whenever a "dangerous " operation is
about to take place the security manager is consulted . The security
manager bases its approval to continue with a dangerous operation on
which class loader was used to load the corresponding code . If the
security manager disallows a dangerous operation, a
SecurityExceptionisthrown.

Both the Securi tyManager and ClassLoader classes are abstract
classes and must be extended in order to provide any security. Any Java
distribution, such as Sun 's, Microsoft 's or Netscape 's distributions , will
have extended these classes to provide appropriate security . However,
the user is still free to override these classes and change the security
provided by those virtual machines. This will only apply to the local
virtual machine.

Only the first security mechanism is enforced at compile time , the
other three mechanisms are enforced at run time. If a compiler does not
generate "safe " Java bytecode , the run time environment should catch
any security violations. However, the run time environments are just

2 1

programs and can have bugs, which allow flaws in the security model to
be exploited. Sun has released several updates to their Java
Development Kits just to fix implementation flaws and not to introduce
new features. The combination of both compile time and run time
security mechanisms enhances the Java security model. If either of
these mechanisms is released by an unknown third party, confidence in
the overall security will drop. A compiler could be created that creates
seemingly "safe" code and yet takes advantage of known security flaws in
the run time environment. Or a run time environment could be created
which either disregards the run time security mechanisms or subverts
them entirely by causing unwanted side effects to otherwise safe Java
code. Nonetheless, with a trusted run time environment, people have
shown an indifference to the compiler used to create the Java programs
that they actually run. If a person runs a Java applet using their favorite
browser, there is no indication as to which compiler actually compiled
the applet that they are running, and yet they still run the applet.

2.9 Other Concerns

If either the preprocessor or compiler break Java 's security
mechanism, it is unlikely that anyone will want to use them. Method 1,
a preprocessor that uses a single instantiation for each different type of
object, as defined above, does not change the compiler at all, so all
normal security mechanisms in the compiler and the interpreter will be
in effect. However, this method requires the programmer to use a pre­
compiler in addition to the compiler, thus increasing the complexity of
building executables. Method 3, a compiler that uses one instantiation
of each object, changes the compiler, so some programmers might not be
as willing to use it for this reason. This should not be a big concern
because the run time environment should still catch all security
violations and building executables should be the same (no extra steps).

The Sun compiler [Sun96a], javac, does not heavily optimize Java
bytecode. Since the tJava compiler is based on javac, it also does not
generated heavily optimized Java bytecode. Therefore, if a programmer
were using an optimizing compiler, they might not want to use the tJava
compiler. This would only be a concern if the compiler were used. If the
tJava preprocessor were used, any compiler could then be used to
generate executables.

Taking into account these concerns, it seemed that the best
approach was to develop both a preprocessor and a compiler and let
developers use whichever method they choose.

22

n
l
l

□
n

l
J

j

J

j

J

n
17

l
D
n

:)

I
j

l

ll
I

11

u
j

Li

Li

u

2.10 Success Criterion

The success of the project is based upon how well the four goals,
outlined in section 2.2 , were met.
1. The syntax of the parameterized type should seem to be a natural fit .

This is successful if someone using or reading the mechanism is able
to understand it without difficulty. I proposed a syntax in section 2.4 .
It is hard to empirically measure the ease with which this mechanism
fits into the existing Java syntax. As Java was modeled using the
syntax from C++ and the implemented parameterized type mechanism
closely models that of C++, I consider this to be successful.

2. The mechanism should permit type-safe data abstractions . This is
successful if the mechanism does not introduce type errors into the
program. Additionally, by virtue of the fact that the compiler will be
creating classes based on a parameter supplied by the programmer,
this mechanism should help to reduce type errors. By using the type
as a parameter, the compiler has the job of enforcing type safety
instead of the programmer . Because the preprocessor uses only a
single instance of each generic class, the preprocessor might not
catch some type errors . The compiler that is used subsequently will
not have all the type information available to the preprocessor and it
will be unable to catch the type error. The run time environment will
catch this error. This problem is exclusive to the preprocessor; the
compiler will always be able to detect this situation. This problem is
explained in detail in section 2.11. So , this mechanism introduces no
new type errors and I consider it to be successful.

3 . The mechanism should be applicable at compile time. If at all
possible , the compiler should perform all changes to the program.
This has the added benefit of allowing the compiler to perform type
checking instead of relying on the run time environment. This is
extremely successful if no run time type checks must be performed to
support this mechanism. It will still be considered successful if few
run time type checks must be performed to support this mechanism.
Since both the preprocessor and the compiler do need to use a
minimal amount of type casts to support parametric polymorphism, I
consider this to be successful.

4. No changes should be made to the Java bytecodes. No new bytecodes
should be introduced to support this mechanism. To allow the widest
range of users to benefit from this addition, the existing Java virtual
machine should be supported. If any new bytecodes are introduced
or any existing bytecodes are changed, then a new virtual machine
must be created to support those changes. This would preclude a
vast majority of users from using Java applications and applets
created with this mechanism. Consider a typical end user who is

23

using a web browser such as Netscape Navigator , Microsoft Internet
Explorer or Sun's HotJava ; all three of these browsers already have a
Java virtual machine built in which adheres to Sun 's Java Language
Specification [Sun96b]. If Java class files are generated which change
the Java bytecode, an end-user using one of these browsers will not
be able to view/ execute the corresponding Java programs. This is
successful if no changes are made to the Java bytecodes. The Virtual
Machine was not changed in any manner and no new bytecodes were
added , so I consider this to be successful as well.

2.11 Timings

To demonstrate the differences between code generated by the
preprocessor and then compiled by the javac compiler and code that
could be generated by a template aware version of the javac compiler
without type conversions, several test runs were performed. A vector was
created with 300 ,000 I nteger elements. Then the elements of that vector
were referenced. The loop below was timed 15 times for various values of
max (up to 300 ,000). Since the actual implementation of the compiler
does the same manipulations to the source code as the preprocessor, it
was not timed.

for (inti= O; i<=ma x ; i++) {
temp= vec_ints . elementAt(i);

}

24

l
}

n
n
I
1

I
J

I
j

j

J

n

d
I
IJ
u
j

u
u
u

30,000 object references

0.21

0.2

0.19

II) 0.18 ,:,
C:
0
(.)
Q) 0.17 II)

0.16

0.15

0.14
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Program run

J · · • · · without casts • with casts J

Figure 9

The standard javac compiler requires that a typecast instruction be
present for this kind of operation. Since the type of vec_ints is known at
compile time to of type Integer, the typecast is unnecessary. Therefore, a
template aware compiler could dispense with the typecast. To simulate
what would happen in byte code generated by the latter type of compiler,
valid bytecode was generated by javac, disassembled , the assembly code
was edited to remove the applicable checkcast instruction, and then the
assembly code was re-assembled into a class file. The two series of data
were used to compare the speedup of using a template aware compiler
without type conversions.

25

1.2 -t-,:----...,.,--,---,...'-------- --,,,-~ ---:,,c,._-, , "-;-:---;-,...,...,-~. --;.-.,----J
• , template aware Javac

compiler with no type
conversions

~ 1-+----------- ------~ ~------~----
c:
0
(.)
Q) u, 0.8 +---- ~------------.,._ ____________ _..,..,

0 30000 60000 90000 120000 150000 180000 210000 240000 270000 300000

Object references

Figure 10

Figure 9 shows 15 trials for each version of the program with
30000 object references each. Figure 10 shows the average of 15 trials
for each of the data set sizes listed at the bottom of the graph.

Both versions of the program have several anomalous spikes in
execution time. At first glance, it could be assumed that these are
caused by the Java virtual machine's garbage collection. However,
disabling the virtual machine's garbage collection did not get rid of the
anomalous readings. Currently, the only versions of the virtual machine ,
that I have access to, run under multiprocessing operating systems. An
attempt was made to not run any other applications while the tests were
performed, but the operating system can still interrupt any process to
perform system level tasks . The tests were run under Windows NT 4.0
on a Pentium 166 with Sun's JDK 1.1.2.

As can be seen from figure 9 and figure 10, the impact of removing
the typecast instruction is minimal. In figure 9, the program with casts
is approximately 0.16 seconds and the program without casts is
approximately 0.15 seconds . In figure 10, the timings are plotted as
discrete points and a least squares linear regression is fitted to the data.

26

l

n
1
]

n

l
l

J

j

J
j

n
n

0

11

II
11

I J

u
u
u
u

It can be observed that the growth of both data series is linear with
respect to the input size and the both versions differ only in a constant
multiple. The result of removing 300,000 checkcast instructions from a
program results in a speedup of only 0.155 seconds .

2.12 Problems

There were several problems , both in syntax and in
implementation, that were uncovered during the creation of the
parameterized type mechanism. Most were described earlier along with
their respective solution.
1.

2.

3.

4.

One of the first problems discovered during implementation was
that objects of the parameterized type could not be created in the
generic class .
The syntax was first chosen to be similar to the Leda language, but
this introduced the lookahead problem with the square brackets.
C++ syntax was used instead to solve this problem.
Another problem was the constant updates to both the JavaCC
application and the Java grammar. There was no workaround and
extra effort was required to keep up with the changes.
Also, a problem best described as the "sibling class" problem was
identified. The preprocessor in an effort to be as generic as
possible must "lose" scoping information. Given the three classes
and one interface in figure 11 , the problem can be described as
follows. When the preprocessor sees the List class, all instances of
Tare replaced with Comparable . So if a class is declared as List

<comparab l einteger> comparab l eintegerL i st it would be expected at
compile time that any arguments passed to the badTest function
would have to be of type comparableintege r. However since the
preprocessor is widening the type of arguments to the parent of the
parameterized type , any object which implements Comparable would
be a valid argument to badTest . For instance , an object of type
comparableFloat could be passed as an argument. The comparison
of an Integer to a Flaa t would have unpredictable results and an
exception would be thrown. There are two potential solutions to
this; the first is to use the method used by C++ - create a new class
for every different declaration of a generic class. The second is to
let the runtime environment throw an exception when this type of
error occurs . Type casting seems to be the most desirable solution
to this problem. There are two possible places where the cast can
occur , in the generic class and in the calling method. If the cast
occurred in the generic class, a different class would need to be
created for each declaration of a generic class . If a cast were
inserted into every instance of a method in the generic class where

27

5.

6.

the type parameter was the same as the parameterized type , then
potentially many unnecessary casts would be inserted. Since the
compiler uses no preprocessor , this problem does not exist when
using the compiler.
Fortunately, after further thought , this turned out to be a non­
issue. In the code in figure 11 , what does it mean for one object to
be less than another object? The lessThan method would need to
call a method or access some data field in order to make a
comparison . Since less Than is operating on a Comparable object ,
the method or data field must be defined in the Comparab l e

interface. The method would have to return some type and the
data field would have to be specified as some type. In both cases ,
some concrete type must be specified and would be caught by the
compiler as an implicit type conversion error.

public interface Comparable {
boolean lessThan (Comparable T);

}

List <Comparable T> {
T value;

}

List (T value) { this . value= value; }
boolean badTest (T testValue) {

return value.lessThan(testValue);
}

public comparableinteger extends Integer
implements Comparable {

// bod y of comparableinteger class
}

public comparableFloat ex tends Float
implements Comparable {

// body of comparableFloat class
}

Figu re 11

A problem in the javac compiler regarding the namespace and
circular dependency was discovered. Bootstrapping was used to
solve this problem.
Finally there was a problem parsing enhanced Java source code in
the compiler. Type conversions needed to be inserted to solve this
problem.

28

l

l
1

n
n

I
J

j

J

J
J

n

n

I J

J

J
Li

u

3. Related Work

When I started work on this project, I was unable to find any
similar research in progress. During the course of the research,
numerous searches turned up other projects in various states of
implementation. Currently I am aware of three other projects that are
doing similar research . There are also rumors circulating that Sun is
working a parameterized type mechanism to be included in a future
version of the Java Development Kit, although nothing has been publicly
released.

At MIT, [Bank96] Bank, Liskov and Meyers have proposed a
mechanism for the creation of parameterized types in Java. Their
research relies on the addition of two new bytecodes and also run time
type checks to ensure type safety . This violates goal 3, (the mechanism
should be applicable at compile time) and goal 4 , (no changes should be
made to the Java bytecodes). Also to support these changes, they
propose to change the Java run time environment . This will make their
method significantly less available to end-users.

Odersky and W adler [Odersky96] have also proposed a mechanism
for supporting parameterized types in Java. However, they have created
a new language, Pizza, which is similar to Java, but nonetheless is a
different language. Pizza also supports higher-order functions and
algebraic data types. They propose to use the Pizza compiler to compile
Pizza and Java code into Java bytecode. Pizza is a superset of Java
much as C++ is a superset of C. While this is a noteworthy change, the
language is modified enough to make the new syntax difficult to
understand for current Java programmers. This compiler creates larger
bytecode files then the method described in this paper. (A new
instantiation is created for each different type of object, similar to C++ 's
STL)

Detlef Hoffner [JUMP97] has also proposed a mechanism for
supporting parameterized types in Java. However, he has essentially
created a C++ compiler that also accepts Java source code and compiles
to the Java Virtual Machine. Features such as operator overloading,
templates and global variables and functions , which are part of the C++
language, are added to his compiler . These too are noteworthy additions
to the language , but they break the Object Oriented Programming model
of Java and allow Procedural Programming . This compiler also has the
disadvantage that it creates larger bytecode files.

4 Conclusion

One of the most useful kinds of classes is the container class , that
is, a class that holds objects of some (other) type [Stroustrup91]. Generic

29

l
I

I

classes allow the creation of classes that operate on a type that is
unspecified at design time, but known at compile time. This mechanism
allows a programmer to create generic class which will be usable with a
wide variety of types, some of which may not have even been considered
by the programmer. A list container class can be built using this
mechanism which works for any type of object. When the list object is
built, the type that it operates on is abstracted away and specified later
when an instance of that object is declared.

I have modified the Java language through the inclusion of
parameterized types. I have implemented two mechanisms for this, a
pre-compiler and a compiler. Both approaches allow a set of container
classes similar to the C++ STL. While this may not be original research, I
added the type of container class library for Java and it is a welcome
addition for the Java programming community. Furthermore, this
mechanism does not incur the larger bytecode file penalty of the other
methods. By adding parametric polymorphism to Java, the language
mechanism for creating container classes is vastly simplified. By
allowing the class type to be specified as a parameter, a type-safe
mechanism for creating generic classes is added to the language.
Furthermore, the implementation will ensure that this language addition
does not require the programmer to learn obscure syntax, sacrifice
execution speed or preclude end users from using the Java programs
because they do not have an enhanced Java virtual machine.

30

l
n
l

I
u
j

J
J

J

l
n
n
l
D
n
I

[J

J

I J

Li

j

u
u

References

[Bank96]

[Budd97]

[Budd96]

[Budd95]

[Cornell96]

[CUP96]

[Djava97]

[Flanagan96]

[Gamma95]

[Jasmin97]

[JOLT96]

[JUMP97]

Joseph A. Bank, Barbara Liskov and Andrew C. Meyers,
Parameterized Types and Java, Technical Report MIT
LCS TM-533, MIT Laboratory for Computer Science ,
Cambridge, MA, May 1996

Timothy A. Budd, An Introduction to Object Oriented
Programming, Addison-Wesley, 1997

Timothy A. Budd, Regarding Parameterized Types and
Java, November 5, 1996

Timothy A. Budd, Multiparadigm Programming in Leda,
Addison-Wesley, 1995

Gary Cornell, Cay S. Horstmann, Core Java , SunSoft
Press , 1996

Scott Hudson , Java Based Constructor of Useful Parsers
(CUP), http:/ /www.cc.gatech.edu/ gvu/people/Faculty /
hudson/java_cup/home.html , March 1996

Shawn Silverman, D-Java,
http:/ /home.cc.umanitoba.ca/ ~umsilve 1 / djava,
May 1997

David Flanagan, Java in a Nutshell, O'Reilly & Associates,
Inc., 1996

Erich Gamma , Richard Helm, Ralph Johnson, John
Vlissides , Design Patterns, Elements of Reusable Object­
Oriented Software, Addison-Wesley, 1995

Jonathan Meyer, Jasmin, (companion software to Java
Virtual Machine), O'Reilly & Associates , Inc ., 1997
http:/ /cat.nyu.edu/meyer/jasmin

The JOLT Project , guavac 0.2.5 A free compiler for the
Java Language, http:/ /www.redhat.com/linux-info/jolt/

Detlef Hoffner, JUMP Compiler, a compiler for a superset
of Java , http://ourworld.compuserve.com/homepages /
DeHoeffner

3 1

[Kim97] Myung Ho Kim, An Approach to Type Constraints of
Generic Definitions, Sigplan Notices, June 1997

[Lam96] John Lam, ATL: Rx for your COM Headaches, PC
Magazine, December 1996, pp333-338

[Lemay96] Laura Lemay and Charles L. Perkins, Teach Yourself
Java in 21 Days, Sams Net, 1996

[Lindholm97] Tim Lindholm and Frank Yellin, The Java Virtual Machine
Specification, Addison Wesley, 1997

[McGraw97] Gary McGraw and Edward Felten, Java Security and
Type Safety, Byte Magazine, January 1997, pp63-64

[Odersky96] Martin Odersky and Philip Wadler, Pizza into Java:
Translating theory into practice, to appear in: Proceedings
24 th ACM Symposium on Principals of Programming
Languages

[Stroustrup91] Bjarne Stroustrup, The C++ Programming Language,
second edition, Addison Wesley, 1991

[Sun96a]

[Sun96b]

[Sun97a]

[Sun97b]

[Wang94]

Sun Microsystems, The Java Development Kit 1.0.2,
http://java.sun.com/ nav /download/index.html

Sun Microsystems, Java Language Specification, version
1.0, http://java.sun.com/nav/download/index.html

Sun Microsystems, JavaCC Compiler Compiler, version
0.6, http:/ /www.suntest.com/

Sun Microsystems, The Java Development Kit 1.1.3,
http:/ /java.sun.com/products/jdk/ I. I/index.html

Paul S. Wang, C++ with Object-Oriented Programming,
PWS Publishing Company, 1994

32

l
n
n
~

D

J

J

J

u
J

n
n
n
n
n
n
ti
n
f I
11

-l J

l I
l]

u
u
J
u
u
LI

