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Abstract 

Hayes, in his Naive Physics Manifesto, identified two alternate ontologies for 

reasoning about liquids, an ontology based on the notion of a contained substance and one 

based on the notion of a molecular collection. Qualitative Process theory, proposed by 

Forbus, lends itself easily to encoding the contained substance ontology. It does not, 

however, provide any mechanism to perform molecular collection reasoning. The primary 

objective of this research is to implement a mechanism for supporting molecular collection 

reasoning and evaluate its usefulness in various domains. 
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Introduction 

The subfield of Qualitative Reasoning arose due to the disparity between how humans 

reason and act and the formalism introduced by the more rigid classical physics. Human 

beings with little or no mathematical background seem to gain an fairly good understanding 

of such concepts as mass, force, speed, etc. which seems to indicate that these are 

perceived in a qualitative rather than quantitative way. As humans are able to reason and 

react to the real world well, it may be believed that in order to build computers capable of 

doing the same we need to have a qualitative theory based on our mental model. An 

immediate gain of developing such a physics would be building expert systems equipped 

with commonsense models. (The lack of such a model in expert systems has been a major 

drawback as they have been unable to solve simpler versions of problems they were 

designed to solve and are hence brittle and inflexible [l].) 

Developing models of the real world entails constructing a suitable ontology of the 

world and formalizing the 'commonsense' knowledge. The ontology defines the objects 

and their relationships. As objects in the real world are created and destroyed dynamically 

and at random, it is impossible to enumerate all the objects in a domain. It is therefore 

necessary to establish general criteria for individuating objects. Current research at 

formalizing the physical world has identified criterias for individuating solids and liquids 

[2]. 

Two alternative ontologies for individuating liquids have been constructed. They are: 

• Contained Substance ontology. 

• Molecular Collection ontology. 
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The Contained Substance ontology views a piece of liquid in a container as a generic 

liquid substance occupying a contained space enclosed by the container. The ontology does 

not refer to the liquid in the cup as an individual. Properties may be associated with the 

object modelled and these may be influenced by various processes. The result of viewing 

an object in this perspective is that the molecular identity of the object being modelled is not 

preserved. Hence, though the ontology identifies a new object coming into existence when 

a cup of coffee is poured into another cup, it treats a cup of coffee being emptied and 

refilled as essentially the same object. This shortcoming makes it impossible to reason with 

this ontology in situations where the molecular identity of the fluid needs to be preserved . 

Molecular Collection ontology overcomes this shortcoming by considering a liquid as a 

particular collection of molecules. Reasoning about fluids proceeds by considering a small 

collection of molecules (of the fluid) and constructing its history as it participates with other 

objects in various processes. 

Objective of this Project 

There have been a number of programs developed to encode commonsense knowledge 

and reason about the real world. One such implementation, Qualitative Process Theory, 

proposed by Forbus[3], lends itself easily for encoding the Contained Substance ontology 

described above. It, however, does not support any mechanism to perform Molecular 

Collection reasoning. 

The primary objective of this research is to implement a mechanism for supporting MC 

reasoning (based on Forbus & Collins [ 4] work) and evaluate its usefulness in various 

domains. 
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Ontologies For Modelling Fluid Flows 

Two alternative ontologies exist for reasoning about fluids. They are: Contained Substance 

Ontology and Molecular Collection Ontology. The following sections discuss these 

ontologies in more detail and relates them to the modelling task. 

2.1 The Contained Substance Ontology 

A Contained Substance ontology is a means of individuating liquids without 

referring to pieces of liquids, but rather to containers which contain them. The liquid is 

viewed as a generic liquid substance occupying a contained space enclosed by the 

container. A contained space is a connected volume of three dimensional space which has a 

contiguous rigid boundary below and around it. The container is the solid object 

supporting the contained space, which is not a physical object but is characterised by a 

certain capacity and by being in a certain relation to a container. Figure 2.1 shows two 

containers connected by a conduit. A Contained Substance ontology views the liquid in the 

containers as a 'generic' water occupying the contained space enclosed by the containers. 

Figure 2.1: Two Containers Example 
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A Contained Substance ontology thus enables us to talk about a certain liquid in a 

container without having to say the same for each and every molecule of the liquid. Thus 

we can now say that the Water in Container-a is participating in a flow from Container-a to 

Container-b. 

The Contained Substance ontology allows us to associate macroscopic properties to the 

liquid object under consideration. For example, we can associate 'amount-of with a 

contained substance and talk about changes to 'amount-of occurring due to interactions 

between the contained substance and other objects. (Associating 'amount-of with a 

particular object, either a solid or a molecule (as in the MC perspective), does not seem to 

make much sense as it is always a constant. Because of the generic stuff part of the 

contained substance ontology we can consider 'amount-of for that liquid object.) 

Macroscopic properties can be compared to detect possible interactions between contained 

substances. Thus we can now compare the pressures between the two contained 

substances of figure 2.1 and determine that a fluid flow process is possible through the 

conduit. This ability - to recognize interactions and predict how current interactions may 

change with time based on how the properties are changing - is very useful in describing 

behaviors of fluid systems. 

The Contained Substance ontology, however, does not preserve the molecular identity of 

the liquid. Thus , though it enables us to describe behaviors of a system, it does not 

provide us with a mechanism which can describe the places and changes which a particular 

liquid molecule may be subjected to within a system. This ability requires tracing the 

molecule 's history through the interactions in which it participates. The Molecular 

Collection ontology enables exactly this type of reasoning . This ability, however, requires 

that the current set of interactions be known already, as macroscopic properties cannot be 

associated with individual molecules. Thus the Molecular Collection ontology depends on 
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Contained Substance ontology to identify the current set of interaction in a system. 

2.2 The Molecular Collection Ontology 

Molecular Collection Ontology is a specialization of Hayes' Piece-of-stuff ontology and 

is another way to individuate liquids . Piece-of-stuff ontology is very rigid in that it 

considers a particular piece of stuff as an object (like a particular fixed collection of 

molecules say, Ml, M2, M3 ... ) and any physical change caused to this entity such as 

addition, splitting or cutting results in the destruction of the original entity and creation of 

new ones. For example, consider a glass containing 100cc of water. The 100cc of water is 

considered as a specific object. If we pour 10cc into another container, then the intial object 

vanishes and two new objects - a 90cc piece-of-water and a 10cc piece-of-water - appear. 

If we pour the 10cc piece back then we have the original 100cc object reappearing! (The 

100cc object is however not destroyed if we transfer the entire 100cc into a different glass.) 

This disappearance and appearance of objects poses a problem as it is difficult to keep track 

of them and reason about them. Molecular Collection ontology is a specialization of the 

piece-of-stuff ontology in that it considers a piece-of-stuff so small that it never occupies 

more than one place at any time and hence cannot be subjected to such physical changes as 

splitting or cutting. (Thus the identity of the object is not lost unlike in the contained 

substance ontology or Piece-of-stuff ontology.) This tiny piece-of-stuff is viewed as a 

collection of molecules - as opposed to a single molecule - so that it may possess such 

macroscopic properties as pressure and temperature . The possibilities (transitions of 

substance, state and location) of the whole piece-of-stuff is constrained by considering this 

unit Molecular Collection. 

Molecular Collection reasoning is a technique that traces the history of this arbitrary 
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collection of molecules (which can be considered as a single unit) through the various 

interactions in which the whole piece-of-stuff participates. Thus applying this reasoning on 

the system of figure 2.1 (two containers example) provides us the information that a MC 

unit will transit from container-a to the conduit and into container-b. 

The macroscopic properties associated with an MC unit are primarily those associated with 

the contained substance view. The CS view identifies the overall changes occuring in the 

system and hence the values to the macroscopic properties. The values of the macroscopic 

properties for a MC unit will change according to the place and state transitions that it 

participates in, as it travels through the system. Hence it is now possible to answer 

questions that require molecular identity to be preserved i.e. changes that an MC unit 

undergoes in a system. This was not possible in the contained substance view due to the 

fact that an object ceases to exist once it changes place. 

2.3 Relationship between CS and MC 

Research in the area of Qualitative Reasoning has evolved a number of different 

theories and programs to model physical systems. Prominent among the theories is the 

Qualitative Process Theory propounded by Forbus[3]. (For a more detailed discussion of 

QP theory, refer appendix A.) 

QP theory provides a convenient and flexible tool to model and reason about physical 

situations. It is based on Hayes' notion of histories (described in [2]) and Forbus' idea of 

processes to model real world situations. The basic idea is to construct the history of the 

objects in the system (a history is a description of the object through time as it participates 

in various interactions). A history may be generated at two levels of detail for a given 
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system. One predicts the future states and interactions of the objects in the system while the 

other traces the changes that a particular object is undergoing in the current situation. The 

first level of detail, that of identifying the current and future states of a physical system has 

been incorporated in the QP theory through the idea of processes (that identifies the current 

state), slices (which allow a projection of the object through time to be constructed) and 

limit analysis (to predict future states). At the second level of detail a MC reasoning is 

performed on the current state. Thus MC reasoning takes place within one episode of the 

CS history. 

As explained in the previous chapter, Molecular Collection reasoning is a technique that 

traces the history of an arbitrary collection of molecules (which can be considered as a 

single unit) through the various interactions in which the whole piece-of-stuff participates. 

A MC unit is identified by three factors: the substance it is, the state it is in and the place it 

is in. MC history construction involves the determination of changes caused by the set of 

active processes to these factors and to the properties associated with the MC. This 

information i.e changes in properties of the MC, is provided by the modeller through a set 

of rules, each rule stating the process and the changes it causes to the derivatives of the 

properties. 

(A detailed discussion of MC reasoning is provided in [4] and Appendix.) 

We have implemented the MC reasoning discussed above as an extension to the OSU 

implementation of QP. The implementation is written in Lisp on Hybrid Uncertainity 

Manager (HUM, an A TMS based shell incorporating numerical methods for uncertainity 

management, developed at OSU by Dr. Bruce D'Ambrosia). 

The next section contains details of some physical situations modelled and tested on the 

MC method. 
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Examples 

In this section I shall illustrate, through a few examples, the task of modelling and 

generating the behavior of a system and the histories of the objects in it. The prediction of 

the behavior is enabled through QP and the history generation through MC reasoning. 

A MC unit is modelled based on the substance it is, the state it is in and the place it is 

in. Properties are also associated with MC units. Modelling in the MC ontology must 

therefore specify changes occurring to each of these features due to the active processes in 

the system. This information is specified using rules having preconditions. The properties 

associated with an MC are, in general: Pressure, Temperature, Heat, Volume and 

Height. In the current implementation this information is specified in the form: 

(defrule :name me-properties 

:if ((:intern (Exists-in (me ?substance liquid ?location) ?qpstate))) 

:then ((quantity-me (heat (me ?substance liquid ?location))) 

(quantity-me (temp (me ?substance liquid ?location))) 

(quantity-me (pressure (me ?substance liquid ?location))) 

(has-qp-value (pressure (me ?substance liquid ?location))) 

(quantity-me (volume (me ?substance liquid ?location))) 

(quantity-me (height (me ?substance liquid ?location))))) 

Properties that assume values from their QP counterparts (ex: Pressure, above) are 

indicated by the proposition (has-qp-value .... ). (In such cases it means that the MC 

property acquires its value from the surrounding contained substance.) Modelling the other 

features described above (i.e property changes) will be illustrated in the following 

examples. Further details are listed in the appendix . 
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3.1 Two Containers Problem 

The Two Containers problem consists of a two containers connected by a pipe. The 

containers contain unequal amounts of a liquid initially. The task is to model the system 

and generate the possible and consistent future states of the system. The system is 

illustrated pictorially below: 

Container-a Container-b 

Conduit 
Figure 3.1: Two Containers Problem 

3.1.1 QPModel 

A representation of the system, in QP theory, contains structural information about the 

system, properties associated with the components of the system, and processes and 

views that are possible in the system. The processes and views encode the physics of the 

domain. 

In the above system , the liquid in each of the containers has been modelled in QP as a 

contained substance of the form (C-S Substance State Place). Hence the water in 

Container-A is represented as (C-S Water Liquid Container-A). The containers and the 

conduit have water carrying/containing capability. The fluid flow process is modelled to be 

possible only if the two containers contain some liquid and there exists a fluid path between 
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the containers, and active if there is a pressure difference between the two containers. The 

fluid flow process in turn affects the amount of liquid in each of the container . Details of 

the actual model are given in the Appendix. The system is modelled to have a pressure 

gradient across the containers initially. 

A run of QP on this model leads to the recognition of a state in which contained 

substance views are active in each of the containers and a fluid flow process is active in the 

system from Container-A to Container-B across the Conduit. QP also identifies the 

changes occurring to the macroscopic properties associated with the objects of the modelled 

system. The properties undergoing change are summarised below: 

At Time TO: 

Amount of water in Container-A is positive and decreasing. 

Pressure of water in Container-A is positive and decreasing. 

Amount of water in Container-B is positive and increasing. 

Pressure of water in Container-B is positive and increasing. 

Fluid flow rate is positive and decreasing. 

The above changes to the water in Container -A translate to the x-axis as follows: 

0 

Amount-of 
Pressure 
Fluid-flow-rate 

Based on the qualitative mathematics used in QP theory, a further prediction of future 

states results in three possible next states: one in which the contained substances views are 

active and the fluid flow process continues to remain active; one in which the contained 

substances views are active but the fluid flow process is inactive; and a third state in which 
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the contained substance view in Container-A and the fluid flow process are inactive and the 

contained substance view in Container-B is active. (This third state is an invalid state as 

the contained substance views in Container-A and Container-B can never be inactive. This 

is, however, predicted as QP cannot determine which of pressure and flow rate, tends to 0 

first.) 

3.1.2 MC model 

The MC model encodes information about the changes to a MC unit's properties by the 

various processes of the system. This information is provided in a rule form and can be 

classified into transition rules and Ds rules. Transition rules specify the changes made to 

either the substance, state or place of a MC unit while Ds rules specify the changes that the 

MC unit's properties are undergoing. Transition rules may be further classified according 

to the particular attribute they effect. Thus the implementation contains separate predicates 

such as Create-Substance, Transition-State and Transition-Place for representing changes 

to each of substance, state and place of the MC unit. 

The MC model for the Two Containers Problem encodes the changes effected by the 

Fluid Flow Process. This process affects the 'Place' attribute and Pressure, Volume and 

Height of a MC unit. The corresponding MC rules for the Fluid Flow Process are shown 

below: 

; ; Transition rules 

(defrule :name fluid-flow-src-to-path 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s)))) 

:then ((Transition-Place ?mcl ?path (state ?s)))) 
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(defrule :name fluid-flow-path-to -dst 

:if ((:intern (status (at (fluid-flow ?mcl (me ?substance ?state ?dst) 

?src-cntr ?dst-cntr ?path) ?qpstate) active)) 

(:intern (Exists-in (me ?substance ?state ?path) ?qpstate))) 

:then ((Transition-Place (me ?substance ?state ?path) ?dst ?qpstate))) 

;; DS rules. 

(defrule :name ds-rules-fluid-flow 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s))) 

(:intern (Exists-in ?mc2 (state ?s)))) 

:then ((ds (height ?mcl) -1) 

(ds (height ?mc2) 1))) 

A run of MC on State 1 yields the following information . The implementation sketches 

MC's history and the changes to properties (as derivatives). A summary of the latter is 

shown here for better readability. The actual outputs are shown in detail in the Appendix. 

MC's HISTORY : 

(PLACE (MC WATER LIQUID CONTAINER-A) (STATE 1)) 

(NEXT-PLACE (MC WATER LIQUID CONTAINER-A) (MC WATER LIQUID CONDUIT) (STATE 1)) 

(NEXT-PLACE (MC WATER LIQUID CONDUID (MC WATER LIQUID CONTAINER-B) (STATE I)) 

MC's DS VALUES : 

ds values for (MC WATER LIQUID CONTAINER-A) are : 

(HEIGHT (MC WATER LIQUID CONTAINER-A)) is decreasing. 

(PRESSURE (MC WATER LIQUID CONTAINER-A)) is decreasing. 

ds values for (MC WATER LIQUID CONDUID are: 

(PRESSURE (MC WATER LIQUID CONDUID) is increasing/steady/decreasing. 
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ds values for (MC w ~ TER LIQUID CONTAINER-B) are: 

(HEIGHT (MC WATER LIQUID CONT AINER-B)) is increasing. 

(PRESSURE (MC WATER LIQUID CONTAINER-B)) is increasing. 

The pressure of the MC unit in the conduit is unknown and is hence represented as an 

ambiguous value. Note that this is quite different from the value 'steady'. 

Having done the MC reasoning we can now explain in more detail (than was possible 

before) about what is actually is going on in the system. The water in Container-A comes 

down into the conduit, passes through it and up into Container-B. This information was 

not available before in the CS reasoning. 

3.2 The Furnace Problem 

This system consists of a furnace with an inlet (bin), and two outlet (off-gas-chamber and 

slag outlet) . Raw materials enter into the furnace via the bin, undergoes warming up as 

they descend in the furnace. Reaction occurs when the raw materials reach reaction 

temperature in the reaction zone. The products of the reaction are slag and off-gas which 

are both at a higher temperature than the raw materials above the reaction zone. As the off

gas moves up the furnace into the off-gas-chamber, it warms the incoming raw material. 

Heating is accomplished by passing a current across carbon electrodes that are inserted into 

the raw material in the furnace, from the top and by the slag below the reaction zone. The 

task is to model the furnace with all its components and processes and generate the QP and 

MC history for the system. A pictorial representation of the system is shown below 

followed by a discussion of the QP and MC models. 
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Electrodes 

Reactants 

Figure 3.2: Furnace Example 

3.2.l QP and MC Models 

Off-gas-chamber 

WarmupZone 
Reaction Zone 

Slag 

Slag outlet 

Furnace 

A model of the above system has been developed in QP and MC. Details of the 

modelling are listed in the Appendix. The various processes and views modelled include 

the following: Material Flow Process, Heat Flow Process, Reaction Process, Contained 

Substance View and Counter Current Heat Flow View. In the steady state the following 

processes are identified by QP: 

• Material Flows: 

- Reactants 

- Bin to Furnace_-Warmup-zone. 

- Furnace-Warmup-zone to Furnace-Reaction-zone. 

- Off-gas 

- Furnace-Reaction-zone to Furnace-Warmup-zone. 

• Reaction Process 
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• Heat Flows: 

- Heater to Reactants in Furnace-Reaction-zone. 

- Off-gas to Reactants in Furnace-Warmup-zone . 

Resolving the changes to the properties of the contained susbstances in the system at 

steady state indicates that derivatives for amount-of, pressure and heat are all O for all 

contained substances as they all gain and lose equal amounts of heat. 

For this steady state, MC reasoning generates the history shown below. 

Reaction 

Figure 3.3: MC History for the Furnace Problem 
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The information generated by the MC reasoning can be summarized as follows: 

'The Place of the MC unit changes from Bin to the reaction-zone during the material flow 

process and the MC unit gains in heat during this process. Also the MC unit representing 

the Off-gas decreases in heat as it participates in the heat flow process in the Warmup 

Zone.' 

3.3 Heated Conduit Problem 

The Heated Conduit problem is very similar to the Two Containers Problem except that the 

Conduit is heated by a heat source. A figure of the system is shown below along with a 

summary of the QP and MC models. 

Container-A Container-

Water 

Heater 

Figure 3.4: Heated Conduit Problem 
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3.3.1 QPandMCmodels 

One of the ways to model this system in QP would require that the water in the Conduit 

be modelled as a contained substance which then participates in a heat flow process. This, 

however, has the disadvantage that QP will indicate that the temperature of the contained 

substance is increasing due to the heat flow, which would lead the water in the conduit to 

boil which will be inconsistent with the behavior observed in the system because the heated 

water also participates in the fluid flow process. Hence this would be an inconsistent 

model. A better way to model the system would be to encode the fact that the water 

flowing into the conduit contains a certain amount of heat which increases with the heat 

flow process. This view would indicate that the temperature of water in the conduit is a 

constant as the total gain in heat in the conduit is equal to the lose of heat that goes out of 

the conduit with the water . This is, infact, a consistent observation in the system. 

Modelling the system in MC ontology indicates, however, that the heat of the water 

actually increases due to the fact that the MC unit passes through the Conduit where it gains 

heat from the heater. 

3.4 Discussion 

3.4.1 Why MC reasoning 

From the above examples it is evident that MC reasoning provides additional 

information which cannot be derived through CS reasoning . While CS reasoning identified 

the possible states of the system and the changes that the contained substances were 

undergoing in the states, it did not identify the changes that the piece-of-stuffs in the 

system were being subjected to. The difference between the two types of information is 
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subtle. CS ontology enables a global view of the system and hence provides only global, 

'aggregated' information like: 'pressure in Container-A is decreasing' . MC ontology takes 

a local view of the changes in the system and hence explicates information about the 

changes that a piece-of-stuff in the system is undergoing. Hence though the overall effect 

of a process may be Zero, its effect on a single piece-of-stuff may not be Zero. 

Thus MC reasoning is essential to reasoning about fluids as it provides more information 

by preserving molecular identity. 

3.4.2 Problems encountered 

The main problems encountered in the project were that of modelling in MC ontology 

and the choice of problems to test. Modelling in MC ontology, presently, requires that 

the designer determine the set of properties that may be of interest in the objects being 

modelled and the set of changes that the properties will undergo in each of the active 

processes in the system . The models seem ad hoc sometimes and the lack of a facility to 

check for consistency with the QP models adds to problem . Research in this area has tried 

to derive some of the MC rules from the QP models. The second problem mentioned 

above, namely, that of selecting interesting problems, is probably a problem in any 

venture that involves testing theories about the real world. Without a dense cluster of 

formalisations of the real world, it is difficult to determine the boundaries of applicability 

of the theories that are being tested. In other words, we need to some tools to identify 

potentially interesting physical situations. For example, the furnace example described 

above, though large and complex, was uninformative (probably due to sheer complexity!) 

and difficult to model. 
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Future Research 

Qualitative Physics is, basically, aimed at modelling physical systems and reasoning 

about them the way humans beings do. MC reasoning is a particular way of reasoning 

about liquids that preserves. molecular identity. The types of questions that can be 

answered by an MC reasoning (which cannot be answered by QP) are usually of the type: 

1) Where did the water in Container-B come from? 

2) Did the water from Container-A gain in temperature? 

3) Is there a heat transfer in the system (ex: refridgerator)? 

Analysing just what types of questions MC reasoning answers will provide scope on 

where this type of reasoning may be more beneficial. 

The difficult task of modelling a physical system in MC ontology raises the issue of 

new methodologies and techniques to help in the task of modelling physical systems. 

Also, the varying levels of details at which humans beii:igs reason may be indicative of 

other problem solving areas where a MC type of reasoning may be useful. 

MC reasoning may also be applied to systems involving currents. It is our intuition that 

MC reasoning may be used to model heat flows and momentum currents where an object is 

considered as a entity capable of carrying a certain amount of fluid 'heat' or fluid 

'momentum'. MC reasoning may also be extended to cases where multiple MC units 

(representing different piece-of-stuffs) may be simultaneously undergoing change in a 

single state of the system. 

20 



References 

1. De Kleer, J. and Brown, J.S., A Qualitative Physics based on Confluences, Artificial 

Intelligence 24 (1984). 

2. Hayes, P.J., The Naive Physics Manifesto, in: D. Michie (Ed.), Expert Systems in the 

MicroElectronic Age (Edinburgh University Press, Edinburgh, 1979). 

3. Forbus, K.D., Qualitative Process Theory, Artificial Intelligence 24 (1984). 

4. Forbus, K.D., and Collins, J.W., Reasoning About Fluids Via Molecular Collections, 

Proceedings of AAA/ 87, (Vol 2), (1987): 

5. Bobrow, D.G., (Ed.), Qualitative Reasoning About Physical Systems, MIT Press, 

(1985). 

21 



Appendix 

Construction of MC Reasoning 

Constructing the MC history occurs in three steps. The first step is to generate the total 

envisionment for the given system using the domain knowledge and the Qualitative Process 

Engine (QPE) . QPE generates all consistent situations connected by the possible 

transitions between them. For each of the consistent situations it determines the active 

processes and views and indicates the direction of change for the properties of the objects. 

Next, a single situation is selected for which the MC history is desired. In order for the 

history to be meaningful and interesting , the situation should involve some active 

processes . MC reasoning begins with determining the possible locations and states of the 

MC. (These are interned into the ATMS by detecting their QP counterparts.) The active 

processes in the situation are also determined from the output of the QPE and are interned 

into the ATMS in an appropriate MC format. These are then used along with the MC 

domain rules (transition rules) to establish how the locations and states of the MC can 

change. Each process (transition rule) specifies a fragment of the MC's history. A graph 

of the transitions is output. 

In the final step, the Ds values for the MC's properties are computed . Some of the values 

are determined from the output of influence resolution of the QPE while the others need to 

provided by the user through the MC domain rules. Ambiguities which cannot be resolved 

are indicated appropriately. 

Thus with the above information it is possible to recognize such phenomena as branching 
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or cycles of flow. Note that a single state in the envisionment can give rise to a number of 

episodes inthe MC history. 

Modelling in MC 

The following is a description of the MC implementation that has been developed. 

At the surface, MC reasoning involves modelling a system in QP theory, determining the 

active processes in the system and resolving the changes to the properties of the objects in 

the system, modelling the system in MC theory, generating the MC history and resolving 

the changes to MC's properties for one of the QP states. The following treatment outlines 

the latter three steps listed above. 

A MC unit is represented as a 3 slot list of the form (MC Substance State Place). Modelling 

a system in MC terms requires determining the set of properties of the MC such as 

Temperature, Pressure, Place etc., that are of interest and providing information (in a rule 

form) as to how these are being varied by the active processes in the QP state of interest in 

the system. 

Modelling the properties of a MC unit in the implementation takes the form shown below: 

(defrule :name me-properties 

:if ((:intern (Exists-in (me ?substance liquid ?location) ?qpstate))) 

:then ((quantity-me (heat (me ?substance liquid ?location))) 

(quantity-me (temp (me ?substance liquid ?location))) 

(quantity-me (pressure (me ?substance liquid ?location))) 

(has-qp-value (pressure (me ?substance liquid ?location))) 

(quantity-me (volume (me ?substance liquid ?location))) 

(quantity-me (height (me ?substance liquid ?location))))) 

23 



As a MC unit is considered to be a fixed collection of molecules, it does not therefore have 

the 'amount-of property. The properties of the MC may be macroscopic or microscopic. 

Macroscopic properties obtain their values form the contained substance counterparts or 

from explicit statements about the set of active processes in the system. The (has-qp-value 

... ) proposition informs the MC engine (MCE) that the value for that property is obtained 

form QP's influence resolution phase. Properties that do not obtain their values form the 

QP objects are modelled explicitly in a rule form. Each rule specifies a process and the 

changes it causes to the properties (possibly, a subset) of the MC unit. Such rules 

generally fall into one of two types: Transition rules and Ds rules. Transition rules specify 

changes to the 3 attributes based on which the MC unit is identified, i.e., Substance, State 

and Place. Ds rules specify changes made to the properties of the MC. An example of 

each is illustrated below. (Ds values to the properties must be fully engineered .) 

;; Transition rules 

(defrule :name fluid-flow-src-to-path 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s)))) 

:then ((Transition-Place ?mcl ?path (state ?s)))) 

;; DS rules. 

(defrule :name <ls-rules-fluid-flow 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s))) 

(:intern (Exists-in ?mc2 (state ?s)))) 

:then ((ds (height ?mcl) -1) 

(ds (height ?mc2) 1))) 
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As may be evident from the above examples, the preconditions of the rules have to 

carefully engineered so as not to contradict with the QP reasoning, nor should they be 

triggered before the actual MC reasoning is done. For such reasons, the rules represent 

the processes in a slightly differently than QP does. In order to distinguish between the 

representations for a time slice in QP and MC, the latter explicitly represents slices in the 

form of a (State ?s) list. The '?s' corresponds to a QP state thus validating the fact that MC 

reasoning is performed on a QP state. Thus, for example the precondition of a rule in MC 

for an a~tive Fluid-flow process takes the form, 

(status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active) 

Sometimes, the structure of the MC unit may also be used to distinguish between the QP 

and MC rules. For example the same rule may equivalently be written in the form: 

(status (at (fluid-flow (me ?substance ?state ?place) ?mc2 ?src-cntr ?dst-cntr ?path) 

?qpstate) active) 

This has the added advantage that it not only distinguishes itself from QP rules, but also 

provides access to information (within the body of the rule) to the substance, state and 

place of the MC unit. 

Having modelled the system in MC ontology, the MC reasoning procedure is applied on 

the model by calling the function 'me-analysis' with the desired state as the parameter. 

This in turn generates the history and resolves the Ds values for the MC unit. A complete 

example with the QP and MC models and output of a run is shown below for convenience. 

The code for the MC reasoning is also provided at the end of this section. 
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The Two Containers Problem -OP Model 

(defProcess (fluid-flow ?src ?dst ?src-cntr ?dst-cntr ?path) 

:Individuals ( 

(?src (Contained-substance ?src )) 

(?src-cntr (contains ?src-cntr ?src)) 

(?dst (Contained-substance ?dst)) 

(?dst-cntr (contains ?dst-cntr ?dst)) 

(?path (fluid-path ?path) (fluid-Connected ?src-cntr ?dst-cntr ?path))) 

:Conditions ( 

((A (pressure ?src)) greater-than (A (pressure ?dst)))) 

:Relations ( 

(Local flow-rate (Quantity flow-rate)) 

(flow-rate Q= (- (pressure ?src) (pressure ?dst)))) 

:Influences ( 

((amount-of ?dst) I+ flow-rate) 

((amount-of ?src) I- flow-rate))) 
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( def scenario two-containers 

:Individuals ( 

Container-a Container-b Conduit 

(c-s water liquid container-a) 

(c-s water liquid container-b)) 

:Facts ( 

(Exists-always Container-a) 

(Exists-always Container-b) 

(Exists-always Conduit) 

(Exists-always Water) 

(substance water) 

(substance heat) 

(state heat gas) 

(state water liquid)) 

:Always ( 

(container Container-a) 

(container Container-b) 

(fluid-path Conduit) 

(fluid-connected Container-a Container-b Conduit) 

(can-contain-substance Container-a water) 

(can-contain-substance Container-b water) 

(aligned Container-a Container-b Conduit) 

(aligned Container-b Container-a Conduit)) 

:In-Situation (TO 

((A (amount-of-in water Container-a)) greater-than zero) 

((A (amount-of-in water Container-b)) greater-than zero) 

((A (Pressure (c-s water liquid Container-a))) Greater-than 

(A (Pressure (c-s water liquid Container-b)))))) 
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The Two Containers Problem -MC Model 

;; Transition rules 

(defrule :name fluid-flow-src-to-path 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s)))) 

:then ((Transition-Place ?mcl ?path (state ?s)))) 

(defrule :name fluid-flow-path-to-dst 

:if ((:intern (status (at (fluid-flow ?mcl (me ?substance ?state ?dst) 

?src-cntr ?dst-cntr ?path) ?qpstate) active)) 

(:intern (Exists-in (me ?substance ?state ?path) ?qpstate))) 

:then ((Transition-Place (me ?substance ?state ?path) ?dst ?qpstate))) 

;; DS rules. 

(defrule :name ds-rules-fluid-flow 

:if ((:intern (status (at (fluid-flow ?mcl ?mc2 ?src-cntr ?dst-cntr ?path) (state ?s)) active)) 

(:intern (Exists-in ?mcl (state ?s))) 

(:intern (Exists -in ?mc2 (state ?s)))) 

:then ((ds (height ?mcl) -1) 

(ds (height ?mc2) 1))) 

Load the above files along with the files me.cl, quantities.cl, qp.cl, and transition

rules.cl. 

A run of QP on this model produces the following states: 

> (elaborate) 

nil 

> (determine-vps) 

"Solution: " 

AS (STATUS (AT (FLUID-FLOW (C-S WATER LIQUID CONTAINER-A) (C-S WATER LIQUID 

CONTAINER-B) CONTAINER-A CONTAINER-B CONDUIT) TO) ACTIVE): TAXONOMY 
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A3 (STATUS (AT (CONTAINED-SUBSTANCE WATER CONTAINER-A) TO) ACTIVE): 

TAXONOMY 

Al (STATUS (AT (CONTAINED-SUBSTANCE WATER CONTAINER-B) TO) ACTIVE) : 

TAXONOMY 
tt II 

(STATE 1) 

T 

> (influence-res '(state 1)) 

"Solution : " 
ti It 

(AMOUNT-OF (AT (C-S WATER LIQUID CONTAINER-B) TO)): (+)/(+) 

(AMOUNT-OF-IN WATER (AT CONTAINER-B TO)): (+)/(+) 

(AMOUNT-OF (AT (C-S WATER LIQUID CONTAINER-A) TO)):(+)/(-) 

(AMOUNT-OF-IN WATER (AT CONTAINER-A TO)):(+)/(-) 

(HEAT (AT (C-S WATER LIQUID CONTAINER-B) TO)):(+)/ (0) 

(PRESSURE (AT (C-S WATER LIQUID CONTAINER-B) TO)):(+)/(+) 

(TEMP (AT (C-S WATER LIQUID CONTAINER-B) TO)):(+)/ (0) 

(HEAT (AT (C-S WATER LIQUID CONTAINER-A) TO)): (+)/ (0) 

(PRESSURE (AT (C-S WATER LIQUID CONTAINER-A) TO)): ( +) / (-) 

(TEMP (AT (C-S WATER LIQUID CONTAINER-A) TO)): ( +) / (0) 

(FLOW-RATE (AT (FLUID-FLOW (C-S WATER LIQUID CONTAINER-A) (C-S WATER LIQUID 

CONTAINER-B) CONTAINER-A CONTAINER-B CONDUIT) TO)):(+) I(-) 

A run of MC on State 1 yields the following information. 

> (me-analysis '(state 1)) 

MC's HISTORY: 

(PLACE (MC WATER LIQUID CONTAINER-A) (STATE 1)) 

(NEXT-PLACE (MC WATER LIQUID CONTAINER-A) (MC WATER LIQUID CONDUIT) (STATE 1)) 

(NEXT-PLACE (MC WATER LIQUID CONDUIT) (MC WATER LIQUID CONTAINER-B) (STATE 1)) 
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MC's DS VALUES : 

ds values for (MC WATER LIQUID CONTAINER-A) are: 

(DS (HEIGHT (MC WATER LIQUID CONTAINER-A)) -1) 

(DS (VOLUME (MC WATER LIQUID CONTAINER-A)) 0) 

(DS (PRESSURE (MC WATER LIQUID CONTAINER-A))-1) 

(DS (TEMP (MC WATER LIQUID CONTAINER-A)) 0) 

(DS (HEAT (MC WATER LIQUID CONTAINER-A)) 0) 

ds values for (MC WATER LIQUID CONDUIT) are: 

(DS (HEIGHT (MC WATER LIQUID CONDUIT)) 0) 

(DS (VOLUME (MC WATER LIQUID CONDUIT)) 0) 

(DS (PRESSURE (MC WATER LIQUID CONDUIT)) (-101)) 

(DS (TEMP (MC WATER LIQUID CONDUIT)) 0) 

(DS (HEAT (MC WATER LIQUID CONDUIT)) 0) 

ds values for (MC WATER LIQUID CONTAINER-B) are: 

(DS (HEIGHT (MC WATER LIQUID CONTAINER-B)) 1) 

(DS (VOLUME (MC WATER LIQUID CONTAINER-B)) 0) 

(DS (PRESSURE (MC WATER LIQUID CONT AINER-B)) 1) 

(DS (TEMP (MC WATER LIQUID CONT AINER-B)) 0) 

(DS (HEAT (MC WATER LIQUID CONTAINER-B)) 0) 
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The files me.cl and transition-rules.cl are listed below: 

;;; -*- Package: Common Lisp; 

,,, date: sept. 3rd, 1988; 

'" 

"' 
"' 

creator: Vijay Srinivasan. 

modified: Oct. 6th 1988; 

;;; file: me.cl 

"' 
;;; This file contains the code that performs the MC analysis. 

;;; The file is to loaded after loading HUM and QP. 

"' 
;;; Oct 6th, 1988. Modifications: (exists-in (me ... ) ?t) is no longer 

;;; interned during me-analysis phase. Previously me-analysis used to intern 

;;; the above prop for every corresponding (exists-in (c-s .. ) ?t) of qp 

;;; BEFORE building the actualhistory. Now (exists-in (me .. ) ?t) is interned 

;;; only for the starting placeof me history by a rule triggered by 

;;; (place (me ... ) ?t). 

(defmacro printdot () 

(list 'format 't ".")) 

(defvar *MC-STATE* nil) 

(defun me-analysis (state-prop 

&aux (time (fifth (rval-value 

(lookup '(time-of state ,(second state-prop) is ?x)))))) 

(setq *MC-STATE* (lookup state-prop)) 

(intern-active-processes state-prop time) 

(generate-me-history state-prop) 

(resolve-ds-values state-prop)) 
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(defun me-analysis! (state-prop 

&aux (time (fifth (rval-value 

(lookup '(time-of state ,(second state-prop) is ?x)))))) 

(setq *MC-STATE* (lookup state-prop)) 

(intern-active-processes state-prop time)) 

(printdot) 

(defun intern-active-processes (state-prop time &aux process-bindings process rval 

bindings continue) 

(multiple-value-bind (rval bindings continue) 

(lookups '(status (at (*var* . process-bindings) ,time) active) nil) 

(loop 

(if (null rval) (return t)) 

(if (env-superset-of-label-p 

(car (rval-label *MC-STA TE*)) 

(rval-label (car rval))) 

(progn 

(setq process-bindings (cadr bindings)) 

(setq process (subst 'me 'c-s process-bindings)) 

(->-1 '((status (at ,process-bindings ,time) active)) 

'((status (at ,process ,state-prop) active))))) 

(multiple-value-setq (rval bindings) 

(funcall continue))))) 

(printdot) 

( defun generate-me-history (state-prop) 

(format t "~%MC's HISTORY:~%") 

(run-rules)) 
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(defun show-history (list) 

(format t "~%~s" list)) 

(defun me-quantities (substance state location &aux quantities) 

(setq quantities nil) 

(multiple-value-bind (r b c) 

(lookups '(quantity-me ((*var* . prop-name) (me ,substance ,state ,location))) nil) 

(loop 

(if (null r) (return quantities)) 

(setq prop-name (cadr b)) 

(push (list prop-name '(me ,substance ,state ,location)) quantities) 

(multiple-value-setq (r b) (funcall c))))) 

(printdot) · 

(defun get-ds-values (state-prop env substance state location quantities 

&aux (time (fifth (rval-value 

(lookup '(time-of state ,(second state-prop) is ?x))))) ds-list) 

(progn 

(dolist (quantity quantities) 

(multiple-value-bind (rval binds) 

(lookup '(ds ,quantity (*var*. sign))) 

(cond ((null rval) 

(push (get-qp-d-value env time quantity substance state location) ds-list)) 

((env-superset-of-label-p env (rval-label rval)) 

(progn 

(setq sign (cadr binds)) 

(push '(ds ,quantity ,sign) ds-list)))))) 

ds-list)) 

(printdot) 

(defun resolve-ds-values (state-prop &aux (env (car (rval-label *MC-STATE*))) 

quantities substance state location <ls-values) 

33 



(format t "~%~%MC's DS VALUES:~%") 

(multiple-value-bind (rval bindings continue) 

(lookups 

'(exists-in (me (*var*. substance) (*var*. state) (*var*. location)) ,state-prop) nil) 

(loop 

(cond ((null rval) 

(progn 

(t 

(format t "~%******** end of me analysis.********~%") 

(return t))) 

'(progn 

(setq substance (getf bindings 'substance)) 

(setq state (getf bindings 'state)) 

(setq location (getf bindings 'location)) 

(setq quantities (me-quantities substance state location)) 

(setq <ls-values (get-ds-values state-prop env substance state location quantities)) 

(print-ds-values substance state location <ls-values)))) 

(multiple-value-setq (rval bindings) (funcall continue))))) 

(printdot) 

(defun print-ds-values (substance state location <ls-values) 

(progn 

(format t "~% ds values for (MC ~s ~s ~s) are:~%" substance state location) 

(dolist (<ls-value ds-values)-

(format t" ~s ~%" <ls-value)))) 

(printdot) 

(defun get-qp-d-value (env time quantity substance state location &aux relation) 

(cond ((lookup '(has-qp-value ,quantity)) 

(multiple-value-bind (rval bindings continue) 

(lookups '((D (,(car quantity) (at (c-s ,substance ,state ,location) ,time))) 

(*var* . relation) Zero) nil) 

(loop 

(cond ((null rval) 
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(multiple-value-bind (rvall bindings 1) 

(lookup '(Zero greater-than 

(D (,(car quantity) (at (c-s ,substance ,state ,location) ,time))))) 

(if (and rvall (env-superset-of-label-p env (rval-label rvall))) 

(return '(ds ,quantity -1)) 

(return '(ds ,quantity (-101)))))) 

((env-superset-of-label-p env (rval-label (car rval))) 

(if (equal (getf bindings 'relation) 'greater-than) 

(return '(ds ,quantity 1)) 

(return '(ds ,quantity 0))))) 

(multiple-value-setq (rval bindings) (funcall continue))))) 

(t '(ds ,quantity 0)))) 

Transition-rules.cl: 

;;; -*- Mode: LISP; Syntax: Common Lisp; Package: ATMS; -*-

"' 
,,, -*- date: Sept. 5th, 1988. 

Transition-rules.cl ... -*
"' 

file: 

;;; -*- Creator: Vijay Srinivasan 

;;; -*- last modified: 26th October 1988. 

"' 
,,, 

"' 

"' 

This file contains the intermediate rules that intern propositions with their 

appropriate transistions substituted. 

(defrule :name intern-exists-from-place 

:if ((:intern (place (me ?substance ?state ?place) (state ?s)))) 

:then ((exists-in (me ?substance ?state ?place) (state ?s)))) 
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(defrule :name Transition-Place 

:if ((:intern (Transition-Place (me ?substance ?state ?Placel) ?Place2 ?qpstate))) 

:then ((Exists-in (me ?substance ?state ?Place2) ?qpstate))) 

(defrule :name Transition-State 

:if ((:intern (Transition-State (me ?substance ?state ?Place) ?Newstate ?qpstate))) 

:then ((Exists-in (me ?substance ?Newstate ?Place) ?qpstate))) 

(defrule :name Create-substance 

:if ((:intern (Create-substance (me ?substance ?state ?place) 

?newsubstance ?newstate ?qpstate))) 

:then ((Exists-in (me ?newsubstance ?newstate ?place) ?qpstate))) 

(defrule :name history-generationl 

:if ((:intern (Place (me ?substance ?state ?Placel) ?qpstate)) 

(:intern (Transition-Place (me ?substance ?state ?Placel) ?Place2 ?qpstate))) 

:then ((Next-Place (me ?substance ?state ?Placel) (me ?substance ?state ?Place2) 

?qpstate)) 

:do ((show-history '(Place (me ?substance ?state ?Placel) ?qpstate)) 

(show-history '(Next-Place (me ?substance ?state ?Placel) 

(me ?substance ?state ?Place2) ?qpstate)))) 

(defrule :name history-generation2 

:if ((:intern (Next-Place (me ?substance ?state ?Placel) ?Place2 ?qpstate)) 

(:intern (Transition-Place ?Place2 ?Place3 ?qpstate))) 

:then ((Next-Place ?Place2 (me ?substance ?state ?Place3) ?qpstate)) 

:do ((show-history '(Next-Place ?Place2 (me ?substance ?state ?Place3) ?qpstate)))) 
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(defrule :name history-generation3.1 

:if ((:intern (Place (me ?substance ?statel ?Place) ?qpstate)) 

(:intern (Transition-State (me ?substance ?Statel ?Place) ?State2 ?qpstate))) 

:then ((Place (me ?substance ?State2 ?Place) ?qpstate) 

(Next-State (me ?substance ?Statel ?Place) (me ?substance ?State2 ?Place) 

?qpstate)) 

:do ((show-history '(Place (me ?substance ?State2 ?Place) ?qpstate)) 

(show-history '(Next-State (me ?substance ?statel ?Place) 

(me ?substance ?state2 ?Place) ?qpstate)))) 

(defrule :name history-generation3.2 

:if ((:intern (Next-Place (me ?substance ?state ?Placel) (me ?substance ?state ?Place2) 

?qpstate)) 

(:intern (Transition-State (me ?substance ?state ?Place2) ?newstate ?qpstate))) 

:then ((Place (me ?substance ?newstate ?Place2) ?qpstate) 

(Next-State (me ?substance ?State ?Place2) (me ?substance ?newstate ?Place2) 

?qpstate)) 

:do ((show-history '(Next-State (me ?substance ?statel ?Place) 

(me ?substance ?state2 ?Place) ?qpstate)))) 

(defrule :name history-generation4.1 

:if ((:intern (Place (me ?substance ?state ?Place) ?qpstate)) 

(:intern (Create-Substance (me ?substance ?State ?Place) ?newsubstance ?newstate 

?qpstate))) 

:then ((Place (me ?newsubstance ?newstate ?Place) ?qpstate) 

(New-Substance (me ?substance ?State ?Place) (me ?newsubstance ?newstate 

?Place) ?qpstate)) 

:do ((show-history '(New-Substance (me ?substance ?state ?Place) 

(me ?newsubstance ?newstate ?Place) ?qpstate)))) 

(defrule :name history-generation4.2 

:if ((:intern (Next-Place (me ?substance ?state ?Placel) (me ?substance ?state ?Place2) 

?qpstate)) 

(:intern (Create-Substance (me ?substance ?state ?Place2) ?newsubstance ?newstate 
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?qpstate))) 

:then ((Place (me ?newsubstance ?newstate ?Place2) ?qpstate) 

(New-Substance (me ?substance ?State ?Place2) (me ?newsubstance ?newstate 

?Place2) ?qpstate)) 

:do ((show-history '(New-Substance (me ?substance ?state ?Place2) 

(me ?newsubstance ?newstate ?Place2) ?qpstate)))) 

END 
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