
;

i-t
t .
/· ·. .. .
;)
l .

' ' !, /
? .
\ ·~
;

Report on Masters Project- Jan 1997

Little Smalltalk in Java

Phani Srikanth Pandrangi
Department of Computer Science

Oregon State University
Corvallis, OR 97331

pandraph@research.cs.orst.edu

A research paper
submitted in partial fulfillment of

the requirements for the degree of
Master of Science

Major Professor : Timothy A. Budd
Minor Professor: Toshimi Minoura

Other Committee Member: Bella Bose

)

Little Smalltalk in Java

Phani Srikanth Pandrangi

1.0 Abstract

Little Smalltalk is a small, reasonably fast, easy-to-understand, easy-to-modify Smalltalk

system . The system was originally developed in 1984 as a part of an implementation

project to develop a minimal Smalltalk system, closely resembling Smalltalk-80. The sys

tem was developed in C. The current project is an experiment to port the Little Smalltalk

system to Java with the dual-aim of testing the usefulness of Java for developing interpre

tive systems and also trying to make Little Smalltalk system reach a larger audience thru

the world-wide-web.

2.0 Little Smalltalk - An Introduction

2.1 History

Little Smalltalk was created by Dr. Tnnothy Budd and a group of graduate students in 1984

as part of a graduate level seminar on programming language implementation. The goals

of the implementation project were :

• Support a language that is as close as possible to Smalltalk:-80.

• Make the system run under Unix using conventional terminals.

• Write the system in C so that it is as portable as possible.

• Develop a small system.

The system was succesfully developed and the goals were met. The system was extremely

portable and has been transported to many varieties of Unix running on different machine

architectures.

Little Smalltalk in Java

)

2.2 Philosophy

The guiding principle behind the development of Smalltalk was the idea of recursive

design - "making the part have the same power as the whole". The basic idea of object-ori

ented programming is computation viewed as a process carried out thru interactions of a

collection of autonomous interacting computing units. This idea was the basic principle

behind the development of Smalltalk. The contribution of Smalltalk was not so much the

language per se, but the philosophical approach embodied in the idea of object-oriented

programming.

Little Smalltalk, although a scaled-down version of Smalltalk, follows the basic philoso

phy of object-oriented programming :

• Everything is an object.

There is no way to create within the language an entity that is not an object. This uni

formity created both the simplicity and power of the language.

• The Smalltalk philosophy (Byte 81)

"Instead of a bit-grinding processor raping and plundering data structures, we have a

u~verse of well-behaved objects that courteously ask each other to carry out their vari

ous desires."

There is a universe of objects and the process of computation is initiated with a mes

sage and the computation is performed by sending messages to and fro until the work is

done.

• Smalltalk is typeless.

Any identifier can be used to refer to objects of any type and can be changed at anytime

to refer to objects of different type.

• Objects have unscoped lifetimes.

Objects can exist outside of procedure invocation (if we take message passing in Small

talk equivalent to procedure invocation) and may persist for indefinite periods of time.

• Smalltalk is interactive.

Little Smalltalk in Java 2

r

)

)

The user is free to create or modify identifiers at run-time. Basic features like class

descriptions may also change during execution.

• Smalltalk is a multiprocessing language .

It is possible for a user to specify a number of different processes and have them exe

cute concurrently.

2.3 Differences between Little Smalltalk and Smalltalk-BO

The main differences between Little Smalltalk and Smalltalk-80 are listed below :

• Browser

Little Smalltalk does not include the programming environment and the browser that is

a characteristic of Smalltalk-80.

• Standard Library

The Little Smalltalk system contains fewer classes when compared to the Smalltalk-80

system. For example, lack of browser obviated the need for some of the classes.

• Internal Representation

The internal representation of objects, bytecodes, processes in Little Smalltalk is com

pletely different from that of Smalltalk-80.

• Primitives

Both syntax and the use of primitives is different in Little Smalltalk compared to Small

talk-80. Primitives cannot fail in Little Smalltalk.

• New Syntax in Little Smalltalk

1. Byte Arrays. The syntax is pound sign followed by a left square brace, followed by a

sequence of unsigned integers in the range 0 to 255, followed by a right square brace.

2. Primitives. The new syntax permits specification of primitives with arbitrary number

of arguments. Primitives are of the form <primitive_number argument_list>

• New Semantics in Little Smalltalk

Little Smalltalk in Java 3

1. Cascades. The result of a cascaded expression is always the result of the expression

to the left of the first semicolon.

2. Primitives do not fail in Little Smalltalk. They must return a value.

• Some features missing in Little Smalltalk

1. Class Protocols. Only instance protocol can be redefined.

2. Pool variables , global variables and class variables are not supported.

3.0 Motivation for Version 5 [Little Smalltalk in Java]

The motivation for the Java version of Little Smalltalk is two-fold :

1. Test the usefulness of Java in developing interpretive systems .

Java, being a new language, is looked at skeptically by many people. Several people

have been trying to apply Java to various types of applications to try to analyze its use

fulness and its future.

How useful is Java in developing interpretive systems? What are the features in Java

that help in developing systems like Little Smalltalk? What are the features (or lack of

features) that impede development of interpretive systems?

These are some of the questions we will try to look at in this project.

2. Make Little Smalltalk available to a larger audience.

The unique "applet" feature of Java allows us to make the Little Smalltalk system

available on various platforms, without the need for porting to each platform . The sys

tem will now run on all systems on which Java runs.

JDK (Java Development Kit) is currently available for SPARC/Solaris 2.3,2.4,2.5 , X86

Solaris 2.5, Microsoft Windows NT, Microsoft Windows 95 and MacOS.

Browsers supporting Java on all these platforms are available. This makes the Little

Smalltalk system available to more audience than before.

Little Smalltalk in Java 4

)

3.1 Advantages of Java version

• Applet

"Applets" are Java applications that run inside a Java-enabled web browser. By making

the Little Smalltalk interpreter run in an applet, we take advantage of the platform inde

pendence provided by Java. With the growth of internet and world-wide web, the use of

web browsers has become very common. With the advent of Java technology, there is

an increasing number of web browsers supporting Java. Therefore by making the inter

preter available on the web, we can reach a larger audience.

• Automatic garbage collection

The previous versions of Little Smalltalk had to take care of garbage collection by

themselves because of the lack of automatic garbage collection in C. Most of the code

for the system involved garbage collection routines. Java provides automatic garbage

collection. The runtime system of Java performs the memory management tasks and

therefore the programmer is relieved of the memory management taks.

• Object-Oriented Design

The current version takes advantage of the object-oriented features supported by Java.

This helps in making any changes or upgrades to this version to be done with relative

ease. Some of the advantages of the object-oriented design :

1. Representation of objects : The internal representation of objects can be changed

without affecting the working of the interpreter. For example, instead of using a vector

to hold instance variables and temporaries, we can choose to use a linked list. Only the

metbods addData, insertElement and getData of the class representing objects (LST

genObject/LSTbyteObject) need to be changed. The interpreter doesn't need any

changes .

2. Changes to the GUI : The graphical user interface of the system can be changed

without effecting the working of the interpreter. Any changes to the GUI are made only

in the Smalltalk class.

Little Smalltalk in Java 5

3.2 How useful is Java for developing interpretive systems?

This project seemed to be an ideal candidate to test Java's usefulness, it strong and weak

points as far as the development of systems like this is concerned.

• Interpretive systems are usually slow. Is Java going to make them "slower"?

• How useful is Java's automatic garbage collection in design? How useful is it in perfor

mance of the system?

• What are the features that make Java "slow" and why?

These are some of the issues we examine in this project.

4.0 Little Smalltalk in Java

4.1 Introduction

The Little Smalltalk system requires, to start, a snapshot representation of the memory.

This snapshot representation is called an object image. Several modules are combined to

form the initial object image. The modules include

• module containing basic classes and methods.

• module containing methods for those objects having magnitude, which are the basic

subclasses of class Magnitude.

• module containing methods for the collection subclasses .

• module containing methods and classes used for file operations.

• modules containing code which is used to initialize the initial object image.

• modules containing code for the multiprocessing scheculer.

The object image for this version is the same as the previous version of Little Smalltalk.

So, this versions just makes use of the old object image.

Little Smalltalk in Java 6

I)

The Little Smalltalk system can be broadly divided into two parts - the interpreter and the

user interlace. The interpreter is the bytecode interpreter which does the actual work.

Given a message, the interpreter collects the necessary components for executing the

method associated with the message, namely the bytecodes for the method, receiver of the

message, literals and the context needed by the method, the stack to be used by the virtual

machine executing the method etc., and produces the result. The user interlace is basically

text-oriented and acts as a simple read/eval/print loop. The user interlace on the web page

essentially consists of a text area for displaying results and test field to accept input.

The Little Smalltalk (Version 5) applet is on the web page at the URL

http://www.engr.orst.edu/~pandraph/Smalltalk.html

4.2 User Interface

The user interlace part of the Little Smalltalk system uses the AWT classes of Java. AWT

stands for Abstract Windowing Toolkit and it provides many useful classes for writing

Graphical User Interlaces.

The user interlace of system consists of two main components-the text area and the text

field. The text area is basically used to display the output of the read/eval/print loop and

the text field is used to read the input.

As noted earlier, the interlace to Little Smalltalk is basically a read/eval/print loop.To

form this, we need capabilities to read text from and write text to a window. Since the sys

tem should be written as an applet, all 1/0 must be done thru the AWT components.

Among the AWT components, the only components that are useful for text-based interac

tion are TextArea and TextField. Theoretically speaking, we could use just a TextArea to

get our work done. But taking care . of both reading and writing to the same TextArea

would be difficult to implement. So, I chose to take all the input from a TextField, and use

TextArea for displaying all output. The user basically types-in text in the TextField and

when he presses "return", the text entered in the TextField becomes available for the inter-

Little Smalltalk in Java 7

[

)

J

preter. The interpreter reads in the text character-by-character, does the required work and

prints the output in the TextArea.

The user-interface also consists of a MenuBar. The MenuBar consists of two Menus -

File and Help. The only Menultem that is inside the File Menu is Exit. The user selects

Exit to exit from the Little Smalltalk system. The Help menu consists of two Menultems -

The "How to" help and the manual.

All the AWTcomponents described above are contained in a Frame. The frame pops up

when the user enters the web page and presses the "Start Little Smalltalk" button on the

page. The frame gets destroyed either when the user selects "Exit" from the File menu or

when the user leaves the page.

The hierarchy of various GUI components used is given in fig 1.

FIGURE 1.

Frame

MenuBar TextArea

Menu

Menultem

Little Smalltalk in Java

L

8

)

)

A snap shot of the Little Smalltalk: system user interface is shown in fig. 2.

FIGURE 2.

rying to read the image file .. connection made
711 objects in image
nteri ng execute :

->I

As seen in fig. 2., the user-interface contains a TextArea (on the top) and TextField (on the

bottom). The menubar contains a File menu and a Help menu. As mentioned previously,

the File menu has only one Menultem (Exit) associated with it.

Little Smalltalk in Java 9

)

)

4.2.1 A drawback of version 5

In Little Smalltalk, some messages like editMethod require editing capabilities. In the pre

vious versions, the editing was easy - a standard editor like vi was invoked and the reading

and writing of the file to be edited was taken care of by the editor.

In the current version, editing is complicated by the fact that all 1/0 in this version is done

by reading and writing from a URLConnection. Reading from URLConnection is easy. A

getlnputStream() on URLConnection opens the stream for reading. So, to read a file

tmp.txt from the server, we need the following sequence of code ...

URL u = new URL("http://www.engr.orst.edu/~pandraph/tmp.txt");

URLConnection uc = u.openConnection();

BufferedlnputStream bi= new BufferedlnputStream(uc.getlnputStream());

Writing to a URLConnection is complicated by the fact that we need some CGI program

that takes the output from the output stream of the URLConnection and then actually

writes the data onto the file on the server .

This drawback arises from the fact that we cannot invoke local applications from a Java

applet without giving-up the multiplatform use of the applet. Since one of the rriain aims

of this project was to make Little Smalltalk available on the web, it is not possible to give

up the multiplatform use of the applet.

The implication of the lack of editing is that the user cannot modify the methods in the

class library once the system image is read from the server. The user cannot modify the

methods that he has wrtten once.

The problem could be averted with the use of more complicated mechanisms like using

sockets to do the 1/0. This method would need a server to be running on the server-side

which takes the output from the editor and then actually rewrites the edited file with the

new contents.

Little Smalltalk in Java 10

)

4.3 Interpreter

Little Smalltalk interpreter represents programs internally in an intermediate representa

tion known as bytecode format. There are several reasons for using an intermediate repre

sentation -

• Compactness - Intermediate representation is much smaller than character representa

tion.

• Efficiency - Once we have the class representation in the intermediate format, we can

directly use the internal format without having to reparse the class description each

time a method is invoked .

Bytecodes will be described in detail in section 4.3.2.

Now that we know what bytecodes are, we can walk-thru the internal working and repre

sentations of the Little Smalltalk (version 5) system.

4.3.1 Objects

A fun.,damental problem in the representation of objects in Little Smalltalk is developing a

scheme that permits representation of a method of a class independent of superclasses.

The problem is illustrated by considering the class hierarchy in fig.3.

FIGURE 3.

Object

Class B

Class A

Little Smalltalk in Java 11

I
I
i

)

)

In Little Smalltalk, all classes are subclasses of class Object. Now, in fig.3, class A is a

subclass of class B and class B is a subclass of class C, which in tum is a subclass of

Object. Suppose we have an object objA of class A. If we pass a method calculate to the

object objA and if the calculate method is inherited by class A from class B, when the

method is actually executed, the only variables available to calculate in class B will be the

instance variables of class B and not of class A or class C. So, how do we make sure that

the representation of methods in a class are independent of the class description of super

classes? The Little Smalltalk solution to the problem is to have a reference to an unnamed

object of the superclass as a part of the object representation. So, when an object is cre

ated, we not only have the instance variables corresponding to the class of the object avail

able but at the same time, have access to the methods inherited from the superclasses.

As mentioned above, an object may contain instance variables but only variables appropri

ate to the class of the object. But how many instance variables? This question leads us to

another important member of our object representation-the number of instance variables.

Another important consideration should be the way in which we are going to store the

instance variables. In the previous versions of Little Smalltalk, the object representation

just had a pointer which points to the first instance variable and basically the instance vari

ables are represented as a linked list. But in the current version of Little Smalltalk, the

instance variables are stored in a Vector. The dynamic growth property of vectors in Java

makes the choice particularly attractive.

So, each of the objects contain the following fields :

• Size - The number of instance variables in the object

• Class - This represents the class to which the object belongs to.

• Instance variables - The values of the instance variables.

There are three types of objects in Little Smalltalk.

• LSTgenObject

This represents the general object type consisting of size, class and the values of

instance variables.

Little Smalltalk in Java 12

)

)

J

-•,•

• LSTbyteObject

These objects are used to represent strings and symbols.

• LSTintObject

These are integer objects that are used to represent small integers.

The Little Smalltalk: interpreter has the following class hierarchy for the representation of

objects.

FIGURE 4.

LSTobject

contains methods for setting and accessing

size and class for the object.

LSTgenObject LSTbyteObject LSTintObject

contains methods to ad contains methods to contains methods to

and retrieve LSTobjects add and retrieve Byte set and retrieve an

to the object. to the object. integer value.

The LSTbyteObjects can hold values of type Byte. The Byte class is basically a type

wrapper for short values.

The LSTgenObjects can hold values of any LSTobject - LSTgenObject, LSTbyteObject

or LSTintObject.

The LSTintObjects, as mentioned previously hold integer values.

Little Smalltalk in Java 13

[

)

)

4.3.2 Bytecodes

The Little Smalltalk system represents the class descriptions internally in an intermediate

representation called bytecodes. This internal representation is advantageous over the

character representation because of its compactness. The internal representation , once

built, can be used any number of times without having to reparse the class description.

The Little Smalltalk system has a stack-based virtual machine. The virtual machine basi

cally performs actions like :

• Accessing the instance variables.

• Modifying the instance variables.

• Accessing arguments to a method call.

• Accessing temporary variables.

• Modifying temporary variables.

• Accessing literals.

• Sending messages etc.

All these operations should be represented in such a way that the virtual machine has

access to the opcode (the operation) and the values used by the opertation.

The current version of Little Smalltalk system follows the same opcode format as the pre

vious versions of Little Smalltalk. The opcode-value pairs are represented as shown in

fig.5.

FIGURES.

Opcode Value

Little Smalltalk in Java 14

[

)
The opcode values and the description of what they represent is given in table. I.

TABLE 1.

Opcode Description

0
Extended : Implies that the value field contains an opcode and the entire next
byte is a value.

1
Push Instance : As the name implies, push the instance variable onto the stac~ of
current context.

2
Push Argument : Push an argument onto the stack of the current context

3
Push Temporary : Push the temporary onto the stack of the current context

4
Push Literal : Push the given literal onto the stack of the current context

5
Push Constant : Push the given constant onto the stack of the current context

6
Assign Instance : The specified instance variable gets a value.

) 7
Assign Temporary : The given temporary variable is assigned a value

8
Mark Arguments : Load the argument array

-· 9
Send Message : Send a message to a receiver, which is already pushed onto the
stack. The necessary argeuments are also on the stack.

10
Send Uncary : Send a special unary mess~e based on the lower order byte.
Basically handles isNil and notNil. Use for optimizing unary messages.

11
Send Binary : Used for optimizing certain binary messages. Handles<.<= and+.

12
Push Block : Create a block object and pushes onto stack.

l3
Do Primitive: Performs afrrimitive operation like block invocation, new object
allocation, reading a char rom input, multiplication, division etc.

14 Not Used.

15
Do Special : Special operations like stack pop, block return etc are handled here.

Little Smalltalk in Java 15

)

)

4.3.3 Structure of the interpreter

The Little Smalltalk interpreter is basically a read/eval/print loop. The structure of the

interpreter is given below as pseudo-code :

while(system_not_exited) {

high= nextByte();

low = high & OxOF; II The lower nibble

high>>= 4; II Shift the higher nibble

if (high==O) { I I Extended operation

high= low;

low= nextByte(); II actual operand

}

switch(high) {

case Pushlnstance :

case PushArgument: ...

}

As seen above, the heart of the interpreter is the switch statement which executes the

code sequence corresponding to the bytecode that is read. The structure of the interpreter

closely resembles the structure of the previous versions of Little Smalltalk interpreter.

I

)

)

5.0 Implementation Overview

The following are the main classes that were used in the implementation of current ver

sion of Little Smalltalk :

• Smalltalk : The Applet This class contains methods to initialize the user interface and

start the interpreter thread. Also contains methods to add text to the TextArea and get

text from TextField.

• Monitor : Monitor is the class responsible for setting-up the link between the user

interface and the interpreter. Reading text from TextField is not as easy as it might seem

because the input is non-blocking for a TextField and the interpreter requires a blocking

input. So a monitor, consisting of two methods - get() and put() was used to set-up the

link between the user-interface and the interpreter. The user-interface does a put() on

the monitor and the interpreter does a get() to read data. Fig 6. shows how the inter

preter reads data from the TextField.

• LSTmain : The Interpreter. This contains the code for the interpreter. As shown in

fig.6., writing data to TextArea does not require a monitor.

• LSTobject, LSTgenObject, LSTbyteObject and LSTintObject are already discussed

previously. The are used to represent the various types of objects handled by the Little

Smalltalk system.

FIGURE 6.

Smalltalk LSTmain

Monitor

_ _ ~ Write text to TextArea Read text from TextField

Little Smalltalk in Java 17

)

The Little Smalltalk: interpreter was initially implemented as a stand-alone application.

The stand-alone application version of Little Smalltalk: reads input with System.in.read()

which is blocking. So it does not require the monitor class. The user interface for the

stand-alone version is text-based. It does not use any java.awt classes.

6.0 Porting to Java : Problems and Solutions

6.1 User Interface

6.1.1 TextField

The older versions of Little Smalltalk: take input from the terminal and the interpreter

expects that the input is blocking input. But in the current version, the input is accepeted

from a TextField Gava.util.TextField) and the get Text() method in the TextField is

non-blocking. The problem therefore was to somehow simulate blocking input while still

using the TextField for input

The problem was solved by setting-up a monitor and sending the input to the interpreter

by a get() method on the monitor object and accepting input from the user from the

TextField using a put() method on the monitor object. The simple task of accepting input

has now become a producer-consumer problem.

6.2 Interpreter

6.2.1 The method cloneQ

Netscape Navigator, a popular web browser, does not run any applet that calls

Object. clone(). Clone() is a method provided injava.lang.Object which is used to

create a new object of the same class as the object with which it is invoked. So, we are

now forced not to use clone() in the applet. This means that we have to get around the

problem by copying each element of the object on which we intended to use clone() into a

new object.

Little Smalltalk in Java 18

)

)

6.2.2 Lack of pointers in Java

The previous versions of Little Smalltalk made extensive use of pointers and the relation

ship between pointers and arrays. For example, code resembling the following snippet is .

used extensively in the previous versions.

object *data;

some Val = data[the_index];

Because of lack of pointers in Java, the current version is faced with the problem of decid

ing on a data structure which not allows indexed access but also allows dynamic resizing.

Vectors provide both these features. The current version therefore makes extensive use of

vectors wherever these features are required.

6.2.3_ Slowness of the interpreter

The Java version of Little Smalltalk is very slow. The slowness of the interpreter can be
• I

attributed to several reasons:

• Reading-in the image file.

The snap-shot image file is read byte-by-byte. This takes up a lot of time. One way to

get around the problem is to read object-by-object instead of byte-by-byte. This is pos

sible because of the availability of Object Serialization mechanism in Java. Object

Serialization extends the Java input/output classes with support for objects. But the cur

rent version of Little Smalltalk does not use Object Serialization. [See sec 7 .2]

The current version reads-in the image file in the following way:

1. Reads-in the type of the object (LSTbyteObject, LSTgenObject or LSTintObject)

2. Depending on the type of the object, keeps reading in byte-by-byte until the object

data is filled.

Little Smalltalk in Java 19

l

)

)

With Object Serialization, the above steps could be replaced by:

1. Read the type of the object

2. Read in the object in its entirety. [One step instead of byte-by-byte .]

• Automatic garbage collection.

Java provides automatic garbage collection. This means that the Java runtime system

does the memory management for the programmer by freeing him from the tasks of

manually tracking the allocation and deallocation of memory. There is an asynchronous

thread that is always running in the Java runtime which takes care of the garbage col

lection.

However, the problem with automatic garbage collection is that it takes up some time

· in doing its work. Little Smalltalk system creates lots of objects in the execution and

obviously the time taken by the garbage collector is also proportionate to the number of

objects created.

The following table shows the total time taken by the garbage collector in comparision

with the total time taken to execute the command "File class".

TABLE2.

Run# GC Total Percent

1. 1770 7525 23.52

2. 1773 7934 22.34

3. 1385 7085 19.54

4. 1750 7916 22.10
5. 1678 7483 22.42

From the above table, we see that about 20 to 25% of the time is spent by the interpreter

in garbage collection alone.

• API Classes

API classes like Vector do more than what is needed in a typical application with a cor

responding increase in the execution time. The Little Smalltalk system uses Vectors a

lot and the performance of Vector plays a major role in the performance of the inter

preter on the whole.

Little Smalltalk in Java 20

)
When the usage of class java.util.Vector is replaced by a class called my Vector, which

has just the methods needed by the application viz. elementAt(), insertElementAt() and

addElement(), it was observed that the execution time has considerably improved.

When this was further investigated, it was found that the difference in the performance

of my Vector and java.util. Vector was mainly due to the lack of the synchronized access

to member functions in my Vector.

The APls written in native code are fast. But API classes like java.util.Vector which are

written for very high level reuse, in Java, make no attempt to be fast.

The following table shows the results of an experiment to compare the performance of

java.util.Vector and myVector. Thousand elements are added and accessed using

addElement() and elementAt() to obtain the results. addElement() and elementAt() are

frequently used in the interpreter.

TABLE 3.

Run# java.util.Vector myVector Improvement %

1. 44 23 48

2. 44 20 55

3. 43 20 53

4'.. 46 21 54

5. 57 32 44

From the above table we see that our hypothesis aboutjava.util.Vector is indeed cor

rect. We see that there is a speed-up of about 50% by using my Vector in the place of

java.util.Vector.

Another java.util class that is used extensively is Stack. Since my Vector is more effi

cent than Vector for this application, it makes sense to add the stack operation push(),

pop(), peek() and peekAt() to my Vector and use it as a stack also. Note that peekAt() is

not supported in java.util.Stack. Since we are using our own implmentation of stack, it

is easy to write the methods that suit our needs. With java.util.Stack, peekAt() was sim

ulated by
-

someReturnedValue = ((Vector) stackObject).elementAt(somelndex);

Little Smalltalk in Java 21

)

)

because java.util.Stack subclasses from java.util.Vector. As seen above, a run-time cast

is needed here.

Since push() and pop() are the most frequently used Stack operations, an experiment

involving push()ing and pop()ing 1000 elements was conducted to compare the effi

ciency of java.util.Stack and my Vector used as stack.. The following table presents the

results of the experiment.

TABLE 4.

Run# java.util.Stack myVector

1. 66 27

2. 65 27

3. 68 25

4. 74 24

5. 67 25

• "Register" Variables

Java does not provide C style "register" variables.

Improvement %

59.09

58.46

63.23

67.56

62.68

In the Little Smalltalk system, the context associated with a process is accessed fre

quently. In the older C versions of the interpreter, the context was declared as a register

variable. But in the current version, we do not have that facility.

• All references of objects are through memory pointers. These pointers must be tra

versed for each access.

• Object-Orientedness

Object-Oriented methodology can inhibit the performance of Java code. Polymorphic

variables/methods require run-time type resolutions. Reusable code (say, the Java API)

provide generic interfaces most of which are often not used by the application.

• More Instructions

Java executes more instructions. Why? There are several reasons . Some of them are

listed below :

1. Array bounds checking

Little Smalltalk in Java 22

) Java does extensive array bounds checking to ensure that a reference to an element out

of the array bounds is always caught. While this type of checking is definitely advanta

geous in avoiding errors, it does consume a lot of time because of the checking done for

each reference. To prove this point, an experiment was conducted to compare the exe

cution times of using the container class my Vector (described previously) with and

without array bounds checking. This experiment is significant because my Vector is

used extensively in the implementation and the performance of my Vector plays a vital

role in the overall performance of the interpreter. Any improvement in the performance

of my Vector can increase the speed of the interpreter significantly. The following table

shows the results of the experiment.

TABLES.

Run# myVector myVector2

1. 22 20

2. 23 21

3. 26 20

4. 25 22

5. 23 22

While the values in the above table do not carry any significance the difference in the

times taken for execution of the test program using my Vector (with array bounds

check) and myVector2 (without array bounds check) shows that array-bounds checking

does indeed consume a significant time.

2. Security considerations

A user running a Java applet in his browser should feel secure running it. To achieve

this, Java designers have imposed certain restrictions on the capabilities of applets.

Each applet viewer (browser) has a Security Manager object associated with it that

checks for applet security violations. This checking is done by some "extra" code. As

seen above, "extra" code means "extra" time.

While time consumed due to security considerations is an issue for the performance

considerations of any applet, it is even more important for applets which demand high

performance like Little Smalltalk intepreter.

Little Smalltalk in Java 23

)

)

3. Type checking

Dynamic binding demands extensive type checking to be done by the Java run-time.

Again, this task requires extra instructions to be executed (for determining the type)

and as said previously executing these extra instructions consumes extra time.

While dynamic binding is a desirable feature for this project and for writing many

object-oriented systems, it does involve a perlormance overhead.

Let us briefly go thru why dynamic binding is a perlormance issue for this project.

As said previously, there are three types of objects in the Little Smalltalk interpreter.

LSTgenObject, LSTbyteObject and LSTintObject - all subclasses of LSTobject.

When a method is invoked on an object of class LSTobject, the runtime should know

the runtime class of the value contained in that object and invoke the method in the cor

responding class. This type of type-checking is always used when virtual functions are

used.

• File Operations

Java does not allow applets to connect to any host other than the host it came from. So,

all the files that are needed for the Little Smalltalk system should be kept on the server.

All file operations need to fetch/write data from the server. This is extremely slow for

two reasons:

1. Network delays: Connecting to the server by opening a URLConnection to it and

fetching/writing data will experience the network delays inevitably.

2. Data transfer : All data transfer is done byte-by-byte. This makes the file I/O

extremely slow in Java. In Little Smalltalk, when a user wants to fileln or fileOut a file,

the file is going to be read/written byte-by-byte.

This problem can be avoided to a certain extent by using BufferedDatainput

Stream and Buff eredData0utputStreamfor reading and writing respectively.

Reading and writing to buffered streams does not necessarily cause a call to the under

lying system for each byte read/written. The data is read block by block and kept in a

buffer.

• Run-time Casts

Little Smalltalk in Java 24

l

)

)

Why are run-time casts required at all? Java's static type checking combined with the

generic classes provided by the Java API will require the use of run-time casts in some

situations. The problem is illustrated below :

In the Little Smalltalk interpreter, we are using a vector to store instance variables and

temporaries. Internally, a vector has an array of class Object to hold the values that will

be stored in the vector. So, an elementAt() on a vector will return an object of class

Object. Now, when we try to compile code with the following sequence of declaration

and assignment, we get a syntax error because of Java's static type checking.

LSTgenObject someObject = new LSTgenObject();

myVector vec = new my Vector();

// somewhere here we put an LSTgenObject at location 10

someObject = vec.elementAt(l0);

What is needed here is a cast from the type of object returned by elementAt() to LST

genObject. So, we need to replace the last statement with

someObject = (LSTgenObject) vec.elementAt(lO);

Now the question arises - how to avoid run-time casts?

Since we are using our own version of vector (called my Vector) for this project, why

not make the array in my Vector to be of type LSTgenObject instead of Object? Well,

this solves the problem only for LSTgenObjects. But a vector can contain LSTobject,

LSTgenObject, LSTbyteObject or LSTintObject in it. This means that making the array

contained within my Vector to LSTgenObject/LSTbyteObject/LSTintObject/LSTobject

does not solve the problem.

• Compiler

One of the major reasons for the slowness of the current version is the lack of an opti

mizing compiler for this version. The javac compiler provides an optimization option

Gavac -0) which basically optimizes by inlining static, final and private methods. This

is the only optimization done by the javac compiler. The previous versions of the Little

Little Smalltalk in Java 25

)

Smalltalk system had the advantage of having optimizing compilers because of the

availability of different optimizations (code motion, strength reduction, common sub

expression elimination etc.) in C compilers.

7.0 Comparing the C version with Java version

In this section, we will compare the previous versions of Little Smalltalk with the current

version.

• Implementation

Implementation of Little Smalltalk in C was cumbersome because of the following rea

sons:

1. Memory management - Done by the programmer.

2. Pointers - Managing pointers is a cumbersome and risky issue. So, a lot of care is

needed when dealing with pointers.

Implementation in Java was relatively easy because of the following reasons :

1. No memory management - Automatic garbage collection.

2. Using container classes eliminated most of the need for pointers and since pointers

were anyway unavailable in Java, the risk involved in dealing with pointers is not there.

• Performance

The previous versions are much faster than the current implementation. The following

table shows a comparision of the execution speeds for some Little Smalltalk statements

TABLE 6.

Statement Version 4 (C) Version 5 (Java) Slow-down

File class 237 7466 31

2+3 195 5930 30
Object subclass:#foo 389 10042 26

Object listMethods 295 8693 29
File viewMethod:#fileln 1182 34687 29

Little Smalltalk in Java 26

)

From table 6., we see that the Java version of Little Smalltalk has about 25 to 30%

slow-down compared to the C version.

We have to keep the following points in mind when we compare the two execution

speeds:

1. We are comparing compiled code (C) with interpreted code (Java).

2. To have a unbiased comparision of the execution speeds, we need a compiled version

of the Little Smalltalk interpreter in Java. This is possible with what are known as

"Just-In-Time" compilers, which convert the java byte code to machine code before

running the code. There are several JITs available now mainly for Windows 95/NT

platforms. JITs promise a 10-30 times increase in the speed of Java programs. This

means that the current version is not actually as slow as it appears to be - because with

a JIT, it could reach the speed of the C version.

The performance of the Java version therefore not as big a disadvantage as it appears to

be because with more and more JITs for various platforms and better Java compilers in

future, the Java version will be as good as the C version of Little Smalltalk.

. 8.0 Using the Little Smalltalk (ver 5) System

Using Little Smalltalk system (ver 5) is very much like using the previous versions of Lit

tle Smalltalk. The input is typed in the text field of the user interface. Another difference is

that the previous versions used a standard editor available on the system for editing pur

poses. We have seen previously (sec. 4.2.1) that the editing option is not available in this

version. The text area portion of the user interface is only for display and no editing is

allowed in the text area.

The user starts-off by opening the URL for the Little Smalltalk page. The interpreter win

dow pops up and the system is ready.

The user will get best performance from the interpreter if the user's browser supports a

TIT. Netscape Navigator has IlTs included in the Windows 95 and Windows NT versions.

IlTs for Solaris versions of Netscape Navigator are expected.

Little Smalltalk in Java 27

)

)

)

9.0 Future Work

9.1 What can be done?

• Object Serialization

Object serialization can be used to read object-by-object instead of reading the data

byte-by-byte. The object serialization package is a relatively new feature provided by

Java and doesn't come with JDK . It can be downloaded separately and installed.

• Just-]n-Time Compilers

Just-in-time compilers translate the Java byte codes into machine code which can make

many Java programs execute considerably faster. Just-in-time compilers are currently

available from some of the vendors of JDK.

• Support the class browser

Coming versions of Little Smalltalk can make attempts to support a class browser

which is currently not available.

• B ytecode format

Coming versions of Little Smalltalk can make attempts to change and experiment with

new bytecode formats to increase the performance of the system .

9.2 Why not now?

• Object Serialization

Object serialization is not currently available on all platforms. It is not available on

Mac OS versions of JDK.

• Just In Time Compilers

Just-in-time compilers are also not available for all platforms. The user's browser, if it

contains a JIT compiler , will improve the speed of the interpreter. Not many vendors

have come-up with JITs for the Unix versions of JDK.

• Class Browser and New bytecode format

Little Smalltalk in Java 28

I
I

)

)

The current project was basically aimed at porting Little Smalltalk to Java as-it-is and

observe the difficulties in the process. Modifying the Little Smalltalk system wasn't

one of the objectives.

10.0 Conclusions

The development of interpretive systems like Little Smalltalk in Java have the following

advantages :

• The programmer is relieved of the memory management tasks. Explicit garbage collec

tion is not required.

• Java provides several features that are easy to use and make system development easy.

For example, there are many classes available that are specific to graphical user inter

face design. Several classes are available for networking needs.

• Object-Oriented features of Java are helpful in design process.

Although Java is very helpful as far as designing systems like this is concerned, it has sev

eral disadvantages that are specific to interpretive systems :

• The slowness of Java is a major drawback in developing interpretive systems. JITs are

the main hope right now.

• Garbage collection, although helpful as far as development of the system is concerned,

makes the system slow because of the time it takes in freeing objects and managing

memory.

• Lack of features like register variables make development of interpretive systems diffi

cult.

• Lack of an optimizing compiler is another major drawback. As said previously, the

j avac compiler does not do many useful optimizations.

All in all, it can be concluded from this project that although Java is extreme!y helpful in
-

the design and development of interpretive systems, it loses much of its charm when it

Little Smalltalk in Java 29

I

)

comes to performace of the system. Since Java is a new language, we can expect that some

of these drawbacks will be eliminated as the language and implementation evolve.

11.0 References

1. A Little Smalltalk. Timothy Budd. Addison -Wesley Publishing Company.

2. The Java Tutorial. Object-Oriented Programming for the Internet.

http:/ /www.javasoft.com: 80/books/Series/Tutorial/index.html

3. Java API Documentation. James Gosling, Frank Yellin, The Java Team

http://www.javasoft.com:80/products/JDK/l.0.2/api/

4. Object Serialization

http://chatsubo.javasoft.com/current/serial/index.html

5. Introduction to Object-Oriented Programming. Timothy Budd. Addison -Wesley Pub

lishing Company.

6. Java as an Intermediate Language. Jonathan C. Hardwick and Jay Sipelstein.

http://www.cs.cmu.edu/ ~scandal/html-papers/javanesl/

7. A~vanced Java- Idioms, Styles, Programming Tips and Pitfalls. Chris Laffra. Tutorial

Notes, OOPSLA 1996.

8. How Do I...

http:/ /www.digitalfocus.com/ digitalf ocus/faq/howdoi.html

9. Not Using Garbage Collection, Chuck McManis, Java World September 1996.

http://www.javaworld.com/javaworld/jw-09-1996/jw-09-indepth.html

10. Java Unleashed. Sams Net.

11. Performance Optimization

http://g.oswego.edu/dl/oosdw3/ch25/ch25.html

12. The comp.lang.java FAQ List

http://sunsite.unc.edu/javafaq/javafaq.html

Little Smalltalk in Java 30

)

13. Performance Java, Paul Tyma, preEmptive Solutions Inc.

http://www.preemptive.com/lectures/Optimization.html

14. Performance testing C++ code, Neil Hunt, Pure Software

http://www.pure.com/quality/performance.html

15. Java Newsletter Back Issues, Glen McCluskey & Associates

http://rmi.net/~glenm/backjava.html

Little Smalltalk in Java

I

31

