
90-60 -1

LifUUEAS~T't'

5C~EflCE

Graphical Editor for DataLab (GEDL)

A Graphical Editor For Specifying And
Synthesizing Abstract Data Types

Hae-sung Kim
Dr. T. G. Lewis

Department of Computer Science
Oregon State University

Corvallis, OR 97331-3902

l
~

l
l
n
n

l
I

I
ll

]

u
I

LJ

J

J

Graphical Editor for DataLab (GEDL)

A Graphical Editor For Specifying And
Synthesizing Abstract Data Types

Hae-sung Kim

l

l

l
n
I
I
I

I
I
I
I

J

l
n
l

0
n

I
J

ll

J
J

u

Graphical Editor for DataLab (GEDL)

A Graphical Editor For
And Synthesizing Abstract

by

Hae-sung Kim

Specifying
Data Types

A research project submitted in partial fulfillment of
the degree of Master of Science

Major Professor
Dr. T . . G. Lewis

Department of Computer Science
Orego.n State University

Corvallis, Oregon

December 1, 1989

l
n
~

l

l
]

]

I
I

I J

[J

J

l
7

n
rl
r]

. 1

[J

l J

u

u
J
u

Acknowledgements

I am grateful to my advisor, Professor Ted Lewis, for his guidance,
understanding, helpfulness and encouragement. His experience and assistance
have been instrumental at innumerable points in the progression of this

project.

I thank Muhammed Al-Mulhern ,who is in charge of the code generation part
of DataLab project, for his cooperations.

Also I would like to thank my parents for their support, as well as my
wife, Hee-chan, and my son, Chang-whan, for their patience, help and
understanding .

l
n
~

-l

□

l

I
I
I J

u
J

J

J

l
l
l
l
n
n
I
I
. l

l

l I

u
j

u
J
J

Table of Contents

Abstract -- 1

1.0
1.1

1.2

Introduction
O.S.U. project

GEDL(Graphical Editor for DataLab) and O.S.U.
2

2

2.0 Background
2.1

2.2
2.3

2.4

Abstract Data Type and Object Oriented Design

Visual Programming ---------------------------------
Statement of The Problem - ---------------------- - ----

Approach --

3
4

5

6

3.0 Graphical Editor for DataLab (GEDL)

3.1

3.2

3 . 3

What is GEDL?

Graphical Language Syntax

Sematics of User Action

7

8

--------------------------- - 14

4. 0 Using GEDL
4.1 Menu Reference -- 17
4.2 Tutorial (Binary tree ADT example) ---------------------- 21

5.0 Implementation
5.1

5.2

5.3

5.4

5.5

6.0

7.0

Design Considerations ---------------------------------- 31

Data Structure -- 33

Possible Extensions ----------- ---------------------- 38

Requirements and Limitations ---------------------------- 38

Application Statistics ---------------------------------- 38

Summary -- 39

Bibliography -- 40

8.0 Appendices
8.1

8.2

8.3

8.4

Unit Frame Syntax

UNT_TYPE_DSD Listing
---------------------------------- 41

---------------------------------- 42

GEDL Data File Format ---------------------------------- 45
Data File Example (BIN_traverse) ---------------------- 46

Fig 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4

Fig. 3.5
Fig. 3.6
Fig. 3.7

Fig . 3 . 8
Fig. 3.9
Fig. 3 . 10
Fig. 3.11
Fig. 3.12
Fig. 3 .13

Fig. 3.14
Fig . 4.1
Fig. 4.2
Fig. 4.3
Fig. 4. 4
Fig. 4.5
Fig . 4 . 6
Fig . 4.7
Fig. 4 . 8
Fig. 4 . 9
Fig. 4.10
Fig. 4 . 11
Fig. 4.12
Fig. 4 .13
Fig. 4.14
Fig. 4.15
Fig. 5.1
Fig. 5 . 2
Fig. 5 . 3

List of Figures

An object in the window 8

9 Two representations of the pointer
Assigning the "next" field of "node" to nil -------- -- --- 10

Pointer assignment methods ------------------------------- 11

"Don't Care" object --------------------------------- - --- 11
Object referred by "tree" can be nil or non-nil ------- 11

Constant objects ------------------------------------- 12
Case "start" symbol
"transform" symbol

------------------------------------- 12
------------------------------------- 12

"return" symbol --- 13

"loop" symbol --- 13
"Exp I Stmt" symbol --------------- -- -------------------- 13
Tools in the Palette ------------------------------------- 14
Object information dialog ------------------------------- 15
File menu
Edit menu
Window menu

----- -------------------------------------- 17
--- 18
--- 19

Operation display dialog ------------------------------- 21
Interface part of the binary tree example ------------- 22
Parsing Error diagnosis ------------------------------- 23
Case sequence dialog and a start symbol ------------- 24
Object kind dialog ------------------------------------- 25
Object Name Dialog
Type list dialog
A pointer object

--- - --- --r -------------------- 25

----- -------------------------------- 26
------------------------------------- 26

Automatic creation of a dynamic object
Placing "transform" icon

------------------- 27
28

Expression/Statement dialog ------------------------- 28
Specification for the BIN-traverse procedure ------------- 29
Data structure of UNIT unit ------------------------- 35
UNT_objectRecord list ------------------------------- 36
The top-level DFD of GEDL ------------------------------- 37

l
7

n
7

7
l

J

j

J

J

J

l
n
n
1

0
n

I
l

l
]

J

u
I
j

J
J

1

Abstract

This report describes the Graphical Editor part of DataLab, a visual
programming tool for the specification and synthesis of abstract data types
(ADTs). DataLab consists of two major components: graphical editor and source
code generator. The graphical editor is used to design an abstract data
structure and its operations by direct manipulation of data objects. The code
generator uses the graphical editor's internal data structure to generate
target source code.

DataLab is powerful enough to specify most elementary and intermediate
data structures. However, the main result of this work has been to understand
the benefits and limitations of graphical (visual) programming within the
narrow domain of ADT synthesis.

Experiments suggest that graphical programming is useful in some aspects
of programming, and textual programming remains the most effective in other
aspects.

2

1. 0 Introduction

1. 1 O. S. U. Project

Oregon Speedcode Universe(O.S.U.) is a software development system
employing on-screen editing of standard user interface objects, prototyping,
program generation, and automatic analysis tools which are typically used to
accelerate the production of running applications. A programmer uses OSU to
design and implement all user interface objects such as menus, windows,
dialogs, and icons. These objects are then incorporated into an application

specific sequence which mimics the application during program development, and
performs the desired operations of the application during program execution.

1.2 GEDL(Graphical Editor for DataLab) and O.S.U.

Experimental results suggest that the techniques employed by OSU can be
used to develop 50-90% of an application without explicit programming,

yielding productivity improvements of 2-10 fold. [Lewis 88]

However, OSU is currently limited in its functionality, although it is ·
aimed at wide-spectrum prototyping. To gain wide-spectrum prototyping
functionality, many domain-specific tools must be designed and implemented.

DataLab is one of several domain-specific software development

accelerators for OSU. It generates an Abstract Data Type (called a "unit") by
showing and modifying a data structure in graphical form.

l
l
0
l
]

l
]

]

]

]

l

n
l
0
l

l
lJ

ll
J

3

2.0 Background

2.1 Abstract Data Type and Object Oriented Design

An abstract Data Type(ADT) is a user defined type with its operations.
A classical example of an ADT is, for example, a stack which has pop, push,
and testEmpty operations. ADT enforces modular design of software and
information hiding, which are among the most powerful techniques for combating
software complexity.

Object Oriented Design (OOD) is an approach to software design in which
a system is decomposed by identifying data/function encapsulations called
objects, and arranging these objects into a whole by defining messages which
connect objects together. OOD starts from ADT (OOD is ADT plus inheritance).
OOD emphasizes objects and their decomposition rather than functional or data

structure decomposition.
and operation. OOD is a
communicational cohesion,

Like ADTs, objects contain or encapsulate both data
very powerful force for designing systems with high
low coupling with its corresponding desirable

information hiding, and ease of maintenance.

GEDL itself was implemented following OOD and it enforces the OOD
concept by generating an ADT. GEDL's code generator produces a Pascal source
code module (ADT) in the form of a unit.

- Unit is an ADT (similar to class in object oriented programming),

- The interface part of a unit is public,

- Implementation part contains private data and functions for the class,

- The uses clause provides an import mechanism for connecting ADTs
together.

However, the ADT units synthesized by DataLab do not implement
inheritance. Details on unit structure will be found in the appendix section.

4

2.2 Visual Programming

Programmers often encounter difficulties when they attempt to transform
the human mind's multidimensional, visual, and often dynamic concept of a
problem's solution into the one dimensional, textual, and static
representation required by traditional programming languages.

A new approach to software creation involves languages and means of
problem specification that dramatically increase our ability to express
requirements to the computer. One approach is the creation of graphical
languages like GEDL. Visual programming goes one step further than
conventional text based languages by providing visualization of the software .
This is claimed to improve the process of software development and
maintenance.

Visual programming has a very short history and I believe some short
comings need to be eliminated, through both refinement of visual programming
concepts and hardware improvement. After designing and implementing GEDL, I
realized the pros and cons of visual programming as follows.

Pros:

- Visualization of the software -- excellent for maintenance,

- Intuitive and natural because of its direct simulation of human mind,

- Random access of any information in the screen -- easy to understand,

- Encoding information can be more compact in theoretical sense.

Cons:

- Restrictions on displaying dialogs and graphical objects on the
limited screen,

- Hard to change object property -- text based language has
efficient tool for making changes (lexical analyzer and parser)
,but graphical language is actually a collection of internal data
structures which represent graphical objects in the screen,

n
n
n
□
l
I

)
)

I J

I
J
J
J

J

l
7
7

n
n
1

1

u
I J

j

j

J
u

5

- Current methods, which just hold graphic information in memory as
an internal data structure, are slow and take more memory space
than conventional text based systems. We need to find a way of
storing graphic images directly and restoring them by using a
special graphic parser.

2 . 3 Statement of the Problem

The problems addressed by this research are

1) How to represent data and the operations on the data in a graphical
manner,

2) How to "edit" these representations, and efficiently store the
editing informa~ion,

3) How best to use both text and graphics in combination such that
programming is made "easier", "faster", and more "maintainable".

In addition, this research attempts to answer the following questions,
but were not addressed by GEDL :

4) How is actual code synthesized from data and operations represented
in graphical symbols?

5) How can "realistically large" and complex ADTs be automatically
synthesized?

6

2.4 Approach

The approach to these problems was to :

1) Invent a new text/graphical language for describing both static and
dynamic behavior of ADTs,

2) Implement a program (called GEDL) which incorporates direct
manipulation of te xt and graphics in order to devise editing and storage
techniques for the new language, and

3) Apply t~is new technology to the creation of many ADTs. The results
of this empirical study should provide some early indications of the
usefulness of the approach.

Accordingly, I have participated in the design and implementation of the

graphical language for DataLab, and implemented a running prototype of the
direct manipulation editor, called GEDL.

1

n
n
l

7
l

J

u
l
J
j

l
n
n

0
l
l

I

l l

j

u
j

J

7

3.0 Graphical Editor for DataLab (GEDL)

3.1 What is GEDL?

As its name implies, GEDL is a graphical editor for DataLab. GEDL lets
a user create data objects and algorithms, which represents an operation in an
ADT. DataLab generates target code by interpreting GEDL' s internal data
structure.

DataLab is one of several new visual programming systems, but its
approach to creating software is different from most other systems . Simply
speaking, a program is a data structure plus algorithm (or control). Most
previous work in graphical programming emphasizes "control", such as V. I. P
which models a conventional flow-chart. [Mainstay]

A modern software development tool should enforce good programming style
to improve software maintainability. Visualization of the data object is ver y
useful in developement and maintenance, because most programming languages
support · dynamic data type objects (run-time allocation variable -- pointer
type in Pascal) as well as static data type objects, such as simple type or
array.

DataLab emphasizes visualization of data objects and modular design of
the software. In fact, DataLab' s syntax restricts the user's arbitrary
programming style, enforcing encapsulation and modularity. DataLab uses
"control", of course, but it is much more abstract and declarative than
conventional flow-chart-like control .

The theory of program transformation is used for control flow -
"condition/action" transformation. The programmer simply draws sev .eral
"condition" and "action" cases, then the system generates an "operation"
(function or procedure) for the module (ADT).

r

8

3.2 Graphical Language Syntax

Before I explain the language synta x, I want to acknowledge that
"Transformation", "Loop", and "Return 11 constructs which form "Condition / Action
transformation", and "Don't care object" are incorporated by Muhammed Al
Mulhem. The precise semantics of DataLab language will be presented i n his
paper, "DataLab: A Graphical System for Specifying and Synthesizing
ADT I s". [Al-Mulhem 89]

There are five categories of graphical objects in GEDL

pointers, constants, controls, and expressions/ statements.

3 . 3.1 Objects

I node

Fig 3.1 An object in the window

obje cts,

This object symbol represents any non-pointer variable or parameter. An

object can be considered as a five-tuple :

object= (name, type, kind, sequence, object ID)

The real data structure of an object in the window has the additional

graphical information .

Name-- The object name is defined by the user and can be any legal Pascal

identifier. The name is displayed inside the graphical representation

and is truncated if it does not fit. The object name can be changed

if the object is a static variable or parameter, by double clicking

on the object and clicking on "Change name" button.

Type-- The obj _ect type is defined by the user by either selecting a

predefined or user defined type from the type list of the "type

display dialog". Type information will be displayed by double

l
l
l
l

□
n
l
7
l

1

J

j

J
j

j

l
l

fl

l
0
1

~

j

l I

l J

J

J
j

J

9

clicking on the object.

Kind-- The object kind can be a local variable, global variable, or

procedure/function parameter. The user specifies the kind by

select _ing a radio button which shows object kind from the "object

kind dialog". The object kind will be displayed by double clicking on

the object.

Sequence-- The object sequence (or order) number corresponds to the creation

order of the object in the "Condition/Action" transformation. This

number is created automatically by GEDL and is displayed as part of

the graphical representation of the object.

Object ID-- The object's unique ID number (OID) will be assigned to each

object when it is created . The OID of any object is unique for each

file or internal data structure, so that GEDL could find user

selected object and update all object drawings.

3.3.2 Pointers

Pointers are represented graphically as follows

tree
0
0

tree 2 . .i.r I .i. A 0 . \ ee .,. \ree

0

Fig. 3.2 Two representations of the pointer

Initially, there is no "arrow", only the circle. The circle has the

same meaning as the object's rectangle on the screen -- it represents a

memory location for an address or dereferenced space. The user can establish

pointer by dragging the circle. The arrow is the conventional graphic way of

representing "dereference space".

10

A pointer object also can be considered as a five-tuple,

pointer (name, type, kind, sequence, dereference Object ID)

The dereference OID stores the OID of the pointer's derefereced obje ct.

This is a good place to show how to assign a pointer. Consider a record

"node" of type "nodeRecord" as follows

nodePtr = "nodeRecord;

nodeRecord = record

data

next

end;

integer;

nodePtr;

Assume that we want to set the "next" field of "node" to nil, which is
represented in Fig . 3 . 3 .

0

I node 2: next

Fig. 3 . 3 Assigning the "next" field of "node" to nil

Note that the object "nil" is created before dragging the pointer

"next" out of "node". This is indicated by the sequence number "l" for the

nil object and "2" for the "next" field".

Now consider a pointer "list, " shown in Fig. 3. 4. "list" can be set to

point to an existing object of compatible type, in this case, "node". GEDL

does type checking so that a pointer must assign to compatible type of an

existing object. Assigning "next field of node" to a default object

(node. next") is done by dragging the pointer out of "node" to an empty

location on the screen. GEDL will automatically create an object of

compatible type and make "node" point to it, as shown in Fig. 3.4.

l
l
7
l
D
n

l

-I
l
I
I
l
u
l
J
l
J

l
n
l
l
D
n
7
f I

-l
I
I
j

I I
j

j

j

j

u

list
0
3

5
1-6_: n_e_x_t __ ...inode .n ..

Fig. 3.4 Pointer assignment methods

A special object that is related to pointers is the "Don't Care"

object, which is shown in Fig . 3.5.

?

Fig. 3.5 "Don't Care" object

11

This object when associated with a pointer, · represents a "Don't Care"

instance of that pointer. A "Dqn' t Care" instance means the pointer can be

either "nil or non-nil". The pointer "tree" in Fig. 3. 6, can be either nil or

non-nil.

tr0ee 2 : tree I
·-------~- ?

0

Fig. 3.6 Object referred by "tree" can be nil or non-nil

12

3.3.3 Constants

This category includes three constant objects : the "nil", and boolean

"true" and "false". These objects have only a sequence number and do not have

types, kinds or names. They are shown in Fig. 3.7.

3.3.4

~
0

2

[I]
3

[]

Fig. 3.7 Constant objects

Controls

There are four controls used to build transformations. They do not have

names, types or kinds; they have only a sequence number.

The first control is "start". This has a "case" sequence number, which

has a different meaning from the object sequence number.

Fig. 3. 8 Case "start" symbol

The next control symbol is "transform". It separates the "Condition"

part from the "Action" part of a transformation.

Fig. 3. 9 "transform" symbol

.1

~

~

l
~

n
~

l
I
j

I
I
j

I
I

. J

J

l
n
l
l
0
7
l

I
]

j

j

I
j

J

13

The next control symbol is "return". It returns a single value from a

function. The returned value is represented graphically in the "Action" part

of the transformation.

Fig. 3.10 "return" symbol

The last control symbol is "loop" which is used to construct a loop

transformation.

¢::J
Fig. 3.11 "loop" symbol

3.3.5 Statement and Expression~

These are represented by the "expression/ statement" symbol. It allows

the user to define any legal Pascal statements or expressions that include :

Procedure calls, including recursive calls, e.g. compare(sl,s2);.

Assignments, e.g. x := 6;

Relational expressions, e.g.

Input/Output statements, e.g.

tree <> nil;.

writeln('Current Node • I . , tree".data)

The specified expression or statement is displayed inside this symbol

if it fits, otherwise it is truncated to fit. For example, the statement

"writeln('hi');" is represented as shown in Fig. 3.3.5.

7

Fig. 3 .12 "Exp I Strnt" symbol

14

3.3 Semantics of User Action

The macintosh user interface uses "clicking and dragging". GEDL takes

full advantage of this simple-yet-powerful method, by careful observation of

mapping between the user action and the semantics of the computer language.

The meaning of a user action is given by the meaning of the current

"tool selection". The palette (or Tool window) is shown in Fig. 3 .13.

1. Selection arrow [8J 2. Sta.rt icon

3. Pointer Drag arrow ~ l □BJI 4. Object icon

5. Transformation icon ¢ [TI 6. Don't ca.re object icon

7. Loop icon <> ~ 8. NIL object icon

9 . Return icon () IT] - l O. TRUE object icon

11.Expression/Statement l2 . FALSE object icon

Fig. 3 . 13 Tools in the Palette

Click on a graphical object with "selection arrow":

Select a graphical object. The selected object will be highlighted and

the item(s) of the "Edit" menu will be activated or inactivated according to

object kirid. For example, if the user selects a "start" object, "Clear" and

"Copy" under the "Edit" menu will be activated. Note that "Clear" just

deletes graphical object (s) from the screen, but does not mean "algorithmic

delete operation".

l
n
n
l

□
n
l
]

l
]

J
I
J

j

J

. l
7
l
n
D
n
l
l
I

lJ

u
J

j

j

15

-- Double click on graphical object with "sell"ction arrow":

Invoke a dialog which displays the object's properties (name, type, and

scope) for variables or parameters (Fig. 3 .14). For statement/expression, it

shows the full description for browsing or modification.

0 BJ E CT TYPE: B I N_ t Pt r

OBJECT NAME: tree

SCOPE: Parameter

(OK) (Change Name

Fig. 3.14 Object information dialog

)

-- Click on vacant space with any tool but "selection arrow" or "pointer drag
arrow":

This action creates a graphical object and appends it to the object

list of the internal data structure. If the user selected "object" tool from

the palette, consequent dialogs ask the user to enter object name, to select

object type and scope. This is equivalent to the "variable declaration" in

Pascal syntax, such as "var fooPtr: Pointer;". At this point, if the object

has any pointer field(s) then the pointer field(s) are instantiate as well.

16

-- Drag from an object to another object with "pointer drag arrow":

Pointers can only be dragged out of objects which contain pointer

fields. The dereferenced object type should be compatible with the pointer,

or NIL, or "Don't care object". Note that GEDL perf arms type checking

between pointer type and dereferenced object to · prevent the user from

incorrect pointer assignment.

Other than those conditions, the pointer (a line with arrow head) will

not be drawn. This is equivalent to "pointer assignment" of Pascal syntax,

such as "aPointer : = @aPointedObject; ".

Drag from an object to vacant space with "pointer drag arrow":

This action creates a default dynamic object which has the same type as

the dragged pointer, and assigns the pointer to the automatically created

dynamic object. Equivalent Pascal syntax of this action will be;

aPointer := Object-type(New(size of(dereferenced object)));

{Create a dynamic object and type cast to object type}

{and aPointer is assigned to newly created object}

l
I
I
LI

I
LI
j

J

n
n

D
n

. J

lJ

u
j

J
u

17

4.0 Using GEDL

4.1 Menu Reference

4 .1.1 Apple Menu:

About GEDL... : Display the author name and GEDL version number.

4 .1.2

New

File Menu:

Fig. 4.1 File menu

Create a new "unit window" to specify its types and operations
(function or procedures). Syntax of unit is the same as
LightSpeed Pascal's unit syntax, except implementation part's
operations only have their names like interface part's operations.
Details on unit syntax will be shown in appendix.

Open : Open an existing GEDL file.

Close : Close the current GEDL file.

Save/Save As ... : Save current state of GEDL's data into a file.

Quit Quit GEDL application and to back to finder.

18

*** Note that unlike common applications such as text editor, the GEDL
data file includes the unit frame window, all local type windows and
operation windows. Opening or closing a file is not related to opening
or closing such windows. Showing each window is handled by the "Window"

·menu and the user must click on the "GoAway box" to close the window.

4 .1. 3 Edit Menu:

Window
XH
XC

BIN_JREE _

XU I!!!!!!'!

type
B IN_tPtr = AB IN_tNode;
B IN_tNode = record

left :B IN_tPtr;
rigM :B IN_tPtr;
data :integer-;

end;

Fig. 4.2 Edit menu

Copy, Cut, Paste, and Clear: These are standard editing features for
text windows (unit window and local type window).

For the graphic window (operation window) only "Clear" and "Copy" will
be activated depending on which object is selected.

Copy Copy all objects of the "Condition" part and paste them right
after the "transform symbol". This will be enabled only if there
exist a transform symbol in the case, and the user selected a
"start symbol".

Clear : Delete graphical object(s) including pointers . Enabled only if
the user selected an object, which is:

l

l

□
n

I
u
I
J

j

j

u

l
n
1

D

7

J

l I
j

u
J

19

- The last object the user created,

- Transformation object. Delete all objects from transformation
to the last object within a case,

- Start object. Delete selected case.

4 .1. 4 Window Menu:

r

Show Operations
Show Unit
Show Local Types

Show Uses

Show Tool a€T

Fig. 4.3 · Window menu

procedure BI N_1

Show Operations : Put up a dialog which contains the list of operations
(function or procedures) to be chosen by the user. An operation
window will be shown if user choose an operation from this dialog.
If there is no operation window, then the tool window (or palette)
will be shown with the operation window.

Show unit : Show the unit frame window for referencing or modifying
unit.

Show Local types : Show currently active operation window's local types
for reference or modifying local type.

20

Show Uses : Show only interface parts of other GEDL files, which are
included in uses clause of current file, for reference. Uses
window is just for browsing and it can not be modified.

Show Tool : Make the tool window visible . Used when the tool window is
covered by other windows .

Reduce to fit. . . Miniaturize current operation window's content.
Click on the content of reduced window to close.

l
n
n
n
□
n

l

J

lJ

u
J

J
J

n
n
l
0
n

. I

lJ

LJ

LJ

U.

21

4.2 Tutorial (Binary tree ADT example)

An example, binary tree ADT, will be presented to illustrate DataLab's
operations. The GEDL has a palette, as shown above Fig. 4.2.1, which contains
a variety of icons to define data structures, constants, statements,
expressions, and control structures. This binary tree example is based on the
paper "DataLab: A graphical system for specifying and Synthesizing ADT" by
Al-Mulhern and Lewis. Users who are more interested in the theory of DataLab
graphical language syntax and semantics should read this paper. [Al-Mulhern 89)

The ADT's interface part is defined textually while its operations are

defined graphically. To define an ADT operation, the user selects an

operation window from the "Show operation" menu item under the menu "Window"

and chooses an operation from the "Operation display dialog" shown in

Fig.4.4.

,..
File l: di1 lUindom

I

Select operation:

procedure B IN_insert

(__ oK_~) (Cancel J

Fig. 4.4 Operation display dialog

r

22

Now you have a window where you can define the operation (procedure or

function) through a set of algorithmic examples. These examples are built by

selecting graphical icons from a palette and placing them on the screen. The

graphical representations are mapped into an internal representation which is

used by the source generator to generate Pascal modules.

A binary tree module is defined as follows. First, the interface part

is entered in textually using the "unit frame" window which is inv oked by

selecting the "New" menu item under the "File" menu. The interface part of a

binary tree is shown in Fig. 4.5 .

S File f: di1 Window

_ EE;
interface
uses LINKED...l.lST;

type

BIN_TREE

B IN_tPtr = "B IN_tNode;
B IN_tNode = record

left :8 IN_tPtr;
right :8 IN_tPtr;
data :integer;

end;

procedure 8 IN_tr averse(tree :B IN_tPtr);
procedure 8 IN_insert(var tree :8 IN_tPtr;

newData :integer);

Fig. 4 . 5 Interface part of the binary tree example

l

7

D
l

n

J

j

J

J

J

J

l
n
n
n
0
n
I
1

l
l
I

u
I J

J

J

u

23

After entering all interface specifications as above, close the unit

frame window by clicking on the "GoAway" box for the window. The interface

part is then parsed to generate the specified type objects, which include

externally defined types (uses clause types) if any, and the list of

operations(procedure/ functions) which will be used as separate operation

windows. The parser checks unit syntax so that if there is any syntax error,

it stops parsing and reports the error diagnosis with the line number

(Fig.4.6) and does not close the unit frame window.

line: 3 Missing INTERFACE keyword

([OK J)

Fig. 4.6 Parsing Error diagnosis

The operations are defined next. Let us define the operation

"BIN traverse" first. The user selects "Show operation" under the "Window"

menu, then the operation list dialog will be shown for the user to select the

procedure names. Select "BIN traverse" from the operations list, then GEDL

opens an operation window with window title "BIN traverse". If this is the

first operation window, GEDL automatically shows the palette too. If the

user selects an operation which is already open, GEDL simply brings this

operation window to the front. This is convenient when an operation window

is completely covered by other windows

24

Now we have the empty window named by "BIN_traverse", and let's make

the BIN traverse procedure as follows.

The procedure "BIN_traverse" is defined by describing its behavior as a

set of "Condition/Action" transformations. Each transformation must start

with the "start" icon, which represents its beginning. The first

transformation for "BIN traverse" is created by selecting the "start II icon

from the palette and placing it on the screen, then we see a dial og which

asks "case order" (Fig. 4.7). Type "0" and click OK button and you wi ll see

a start icon on the screen.

Giue case sequence number:

(___ O_K __,) (Cancel)

0

~

Fig. 4.7 Case sequence dialog and a start symbol

Next, the transformation's condition (the "Condition" part) is defined.

The condition that we want to represent is the procedure's parameter "tree 11

being not nil. To represent this first the "object" icon is selected from the

palette and placed on the screen. Then DataLab will ask the user to specify

its kind from the "object kind dialog" (Fig. 4. 8), give a name to the object

(Fig. 4 . 9), and specify its type by selecting from the "type list dialog"

(Fig. 4.10) .

l
~

~

l

□
7
l
1

l
I
I
I
J

u
j

J

J
j

J

~ l

I
. I

J

l
j

J

J

J
J

J

Select object kind:

O Local variable

O Global variable

~Parameter

Fig. 4. 8 Object kind dialog

Giue object name:

op (Cancel)

Fig. 4.9 Object Name Dialog

25

Select type:

(

CHAR
INTEGER

OK ~)

Fig. 4.10

26

(Cancel J

Type list dialog

We specify its kind as parameter, choose the name, "tree", and specify

its type as "BIN tPtr". "tree" is then displayed as a small circle, which

represents "pointer object" :

0

~
tree a
0

Fig. 4.11 A pointer object

The integer number "0" below the "tree" pointer object is a sequence

number that shows the order in which objects are created, this provides the

sequence of the algorithm as well as the visual effect (later the user can

see what he/she did by tracing these numbers).

The "Start" symbol has the sequence number that was provided by the

user through the dialog (Fig. 4. 7) instead of an automatically generated

l
n
~

l
0
7
1

'1

l
]

I
J

J

l
l

l
j

l
n
n

l

l J

I J

u
J

LJ

J

27

number like those used for other graphical objects. The order of the "start"

icon has a different meaning from other graphical objects' sequence orders.

The start symbol means "here we start a new case of algorithm description",

and sometimes the order among the cases is very important.

we have three cases;

if (condition) then begin

else if (condition) begin

else begin----- end;

end

end

For example, if

The order of the conditions ("Condition" part of cases) is critical in

forming an algorithm. Thus GEDL provides flexibility in representing case

order .

To sum up, the start icon's order affects the operation's algorithm

while any other objects' order applies only within the scope of one case.

Next we want to show that "tree" points to a non-nil object; this is

done by dragging the pointer out of the "tree" pointer object , using the

"pointer drag arrow" tool . GEDL then automatically creates a non-nil object

· of compatible type and assigns it the name "tree"". Our transformation now

looks like this :

0

~ .-j ._ _tr_e_e_A

Fig. 4.12 Automatic creation of a dynamic object

This completes our specifications of the "Condition" part of the

transformation, which represents the condition "tree is not nil".

28

Now ~e need to define the "Action" part. This is done by first

selecting the "transform" icon from the palette and placing it on the screen.

The transformation now looks like this :

0

[21 1111 I _tr_e_e_A

Fig. 4 .13 Placing "transform" ic on

Next we specify the actions of the "Action" part that need to be

performed if the "Condition" part is true. For the "BIN_ traverse" procedure

there are three actions that need to be done if "tree" is not nil. These

actions are (1) printing the value of the node, (2) calling "BIN traverse"

recursively on the left subtree, and (3) calling "BIN_traverse" recursively on

the right subtree, for the pre-order tree traversal. Each of these actions is

specified by selecting the "Exp I Stmt" icon from the palette. When this icon

is selected, GEDL asks the user to type any legal Pascal expressi on or

statement textually (Fig. 4.14).

Giue statement/eHpression:

writeln(tree ".data)~

((Cancel J

Fig. 4.14 Expression/Statement dialog

l

l
l

l
l

I
j

j

j

j

u

l
n
n
l
D
n

J

I
lJ

l J

j

J

u
u

29

After specifying the statement, it is displayed inside the icon as long

as it fits; otherwise it is truncated to fit. Specifying the three actions

as "wri teln (tree". data) 11 , 11 BIN~ traverse (tree". left) 11 , and "BIN traverse

(tree". right) 11 would make our transformation appear as shown in Fig. 4 .15.

r c File I: di 1 Window

Tool ~□ procedure BI N_trauerse

cgJ

~ l □BJI

9 rn
0

~
tree -1---0 __ 2_:_t_re_e __ ~~I tree·

0

~ 0
~ [I]
~ [f]

Fig. 4.15 Specification for the BIN-traverse procedure

4
(write ln(tree· .d ..)

5 f IN_tr averse(t. ·)

6

30

This single transformation is all we need to specify the "BIN_traverse"

procedure, because, if the tree "tree" is empty, BIN traverse returns

nothing. The semantics of this transformation is as follows :

Condition --"tree" has at least one node, i.e. it is not empty. This is

represented by making the "tree" pointer point to the non-nil

object, "tree"".

Action -- Do three actions print the value of the current "tree" node,

call "BIN traverse" recursively on the left subtree, and finally

call "BIN traverse" recursively on the right subtree.

This report does not cover the "code generation" part of DataLab, but

the . "BIN traverse" example will generate Pascal code as follows:

procedure BIN_traverse(tree: BIN tPtr);

begin

if (tree<> nil) then begin

writeln(tree".data);

BIN_traverse(tree".left);

BIN_traverse(tree".right);

end; {if}

end; {BIN_traverse}

. l

l
l

l
l

J

I

j

j

l
l
1

n
l
n

J

J

J

31

5.0 Implementation

5. 1 Design Considerations

The hardest thing in designing software is making "trade-offs", and
designing/implementing GEDL was no exception. Some major design
considerations for GEDL are as follows:

- Easy to use:

GEDL follows Macintosh's standard user interface conventions so that
menus and dialogs are intuitive and natural.

- Portability:

GEDL does not produce executable code, instead it generates target
source code (currently Pascal code) to provide flexibility and ease of
optimization. By using text description of "unit frame" and "local type or
constant information", it should be easy to change the "target language"
without rewriting most of the GEDL source code -- the only changes required
are in the parser section.

- Combination of graphics and text:

This is related to ensuring easy-to-use and portability as mentioned
above, but it has more meaning. We do not believe graphics is the panacea,
but both graphics and text have their pros and cons, and we tried to use them
in appropriate places. Imagine, if we try to visualize all data object's
properties and operations. For example, parameters of the procedure, and
function return values are not easy to represent in graphical forms, and
further there is no common interpretation of those situations. GEDL tried to
use the graphical representation where it is most common, undoubtedly this is
the "pointer". We also believe that "simplicity" is the most important factor
of a successful user interface design and as a consequence, all objects are
represented as simple box shapes, and if an object has pointer(s) then it can
be dragged out to connect with other objects. Statements and expressions are
represented as "expression/ statement" boxes and the user can see or change
their content by double clicking on them.

32

- Object Oriented Design of GEDL:

GEDL is a good example to demonstrate the power of 00D. It took more
time to define module (or class) and design inter-module dependencies, but
this time was compensated by ease of implementation ,finding bugs, and
changing/adding operations in the module. The source code is much more
readable and maintainable ,and size was reduced . . Also by extensive use of
functions/procedures for accessing public part data structures -- types which
are in the interface part of the unit, I could minimize side-effects and
maximize information hiding. Actually there are no public global variables
(interface part variable in unit) in GEDL.

- Data file format:

I used a text file instead of a binary file to store the application's
data. One of the main reasons to choose the text file format is that the user
can examine his/her saved internal data structure of what he/she did by using
a simple text editor. It was also very helpful during development and
debugging of GEDL. Another reason is that by using text format I can maintain
a single data file which includes both plain text informa~i9n and formatted
object information. This is very hard if I use a binary file for text
information. File format is shown in appendix 8.3.

I
n
n
l
Q

n
l
l

I
J

I
J

l
l
l

1

7
I

I
I
j

33

5.2 Data Structure

GEDL project consists of 15 units as follows: For historical reasons,
all files have the extension, "DSD", which stands for Data Structure Designer.

1) GLOBAL_DSD It contains operations, which are used in most units,
such as application finish flag, cursor shape changing routines.

2) DIALOG DSD It contains all dialog or alert routines.

3) TYPE_DSD It contains all type object manipulation routines. Its
"type structure" is used for creating objects with type.

4) LEXER DSD It performs lexical analysis of the given text.
Produces the token string and its token type .

5) PARSER DSD : It performs parsing on ·unit frame and local
type/constants. Makes an operation list to be used in creating the unit

record list in UNITJ_DSD, and type objects.

6) DRAW DSD It contains all object drawing routines.

7) UNT TYP~ DSD 7,8,9,10 units are
functionality, but they are divided because
restriction on the unit (smaller than 32K).
part types and procedures.

actually one unit in
of LightSpeed Pascal's size

UNT TYPE DSD has only interface

8) UNT GLOBAL DSD : Only has implementation part global variables.

9) UNITl_DSD, UNIT2 DSD : They have all operations on UNT_unitRecord
list, objects and pointers, such as creating, deleting or selecting an object.
More explanations on above UNIT data structures will be given.

10) WINDOW_DSD It has all window, which include drawing, text and

browsing windows, manipulation routines.

11) FILE DSD : It contains all file manipulation routines, such as

opening, closing, saving, reading and writing files.

r

34

12) MENU DSD It has all menu operations .

13) EVENT DSD It contains all event related routines for user
actions, such as activate / deactivate windows, mouse event, key event and event
main loop for the application.

14) DSD.pas : This is the main program, which calls initialization
routines and enters the main event loop.

The most important data structure of GEDL is, of course, the UNIT data
structure. Its data structure is shown in Fig. 5.1 and Fig. 5.2, which show
data structure of the "BIN traverse". Note that there are some global
variables that hold current state of GEDL as follows:

unitHandle: Holds whole data structure of UNIT unit .
currentPart: Indicates which UNT unitRecord is currently being used.
currentObject: Indicate which object is selected.
currentPointer: Indicate which pointer is selected.

More information on the object record can be found in appendi x 8.2,
"UNT_TYPE_DSD" listing.

The top-level data flow diagram of GEDL is shown in Fig.5.3

l
l

l
1

J

J

J
J

n
l
D
l

' j

j

I
j

I
J

unitHandle "currentPart ", if user working on BIN_traverse window.

UNT _unitRecord of "unitFr ame"

name = > BIN_ TREE

part=> unitFrame

objedH

endObject

objectOrder => 0

textH

next

a

unit BIN_traverse;
interface
type

B IN_tPtr = recor

unit frame text

q,

UNT _unitRecord of "B IN_tr averse"

name=> BIN_traverse

part = > procOper ation

objectH

endObject

ob jectOrder = > 7

next

a

type nothing = char

q,

local type/constant text

Fig . 5 . 1 Data structure of UNIT uni t (continued i n Fig. 5 . 2)

35

0
0
::,
5·
C
'l>
c..
5· .,,
,o'
U1
iv

36

r
"object H" fie 1 d of p raced u re BI N_t rave rse I
"endObject" field points to the last created object (statement "Bl N_traverse(treeA.right) ")

UNT ...objectRecord "-= >
name => NULL name => tree name => treeA

typeName => NULL type=> BI N_t Ptr type =>Bl N_tNode
/

01 D => 0
~ DID=> 1 01 D => 2

kind => start kind=> pointer dynamicObject

scope => void scope=>parameter scope => void

order => 0 order => O order => 1 To next object

isArray => FALSE isArray => FALSE isArray => FALSE
-

additional info's additional info 's additional info 's

pointerH => NIL poi nterH ~ poi nte rH ,___.
next ..- next I, next /
I\ j UNT ...pointerRecord

name=> tree name=> left name = > right

ty peName = > B IN_tNode ty peName= >B IN_tNode ty peName= >B IN_tNode

order=> 2 order=> -1 order=> - 1

pointTo pointTo => NIL pointTo => NIL

next=> NIL next - ~

next=> NIL - .,,

other info's other info's other info's

"currentObject", if user select the start symbol

"current Pointer" i3 NIL

Fig . 5. 2 UNT_objectRecord list (continued from Fig.5.1)

l
. l

l
]

7
I

j

l

j

J

J

c:_ '--- .____

(Jl

w

>-3
::,
(I)

rt
0
'Cl

I
I-'
(I)
<!
(I)
I-'

0
"1
0

0
H,

G)
t>:I
0
t""'

G1
n,
C,
r
C,
a, C
,-+ :,
a, Lu :;::;:

:, .,, Q. "Tl ,
0 Lu
O"' 3 m
II) 'I>
0
,+ r
:i " 0

0
o' ~ ,

.+ 3 ..c
Lu ~
,+ II) o· Vi
:,

:.::.__J

0 -.
C,
a,
a,
r
a,
0-

n
0
Q.
(I)

C")
(I)
:::,
(I) .,
a,
0 .,

"Q
a, .,
......

G.>
rn
0
r

~

I
I

:;,,;:
'I>

..c
CD
0
Lu ,
Q.
,+
..c
~

5·
'°

~L.:..J

Vi O
,+ ~-
Lu Vi
,+~
C ~
Vi Lu

0
..c

..... 0
C) C ,
('Tl ,
0 'I> r :,

.+

"U -,
0

(0 -,
a,

3
3
m -,

:..::J _,I

(.u
-....J

38

5. 3 . Possible Extensions

1) Currently the code generation part of DataLab produces Pascal source
code, but it can be extended to generate other target languages, such as C or

C++,

2) Array bound and enumerated type range check facility,

3) Support Macintosh tool box types.

5.4 Requirements and Limitations

1) Users should be familiar with modular design concepts and LightSpeed
Pascal experience is required.

2) Generally, graphical language lacks the flexibility to provide the
consistency in changing specification, and GEDL is not an exception as we
discussed before.

5.5 Application Statistics (without code generation part)

1) Application size 53 K

2) The lines of source code : about 9 K

3) LightSpeed project size without I/0 library 230 K

4) Resource size

Uncompiled (DSD.R) : 14 K

Compiled (DSD.RSRC) : 6 K

5) The number of units in GEDL project 15

l
l
7
l

7

7

)

J

j

J

J

J

J

n
0
n

[J

I
l l

l I

J

J

J

39

6.0 Summary

DataLab is an experimental tool for exploring the advantages of a
graphical language system. We tried to use graphics in most appropriate
places, as a result, I think we succeeded in this respect. I am sure that

GEDL will be a good example for future graphical language systems.

However, as I mentioned before, there are many problems to be solved
before practical use. Text-based languages far exceed graphical-based
languages in speed, space usage, and flexibility. I believe graphics is
appropriate and has advantages over text-based descriptions in some instances,
and improvements in those instances will result in wide acceptance of the
graphical paradigm.

40

7.0 Bibliography

1) T.Lewis, CASE: Computer Aided Software · Engineering,
Press Software Engineering Series Book, 1988

An Information

2) M.Al-Mulhem and T.Lewis, DataLab: A graphical System for Specifying and
Synthesizing Abstract Data Type, Computer Science Department, Oregon State
University, 1989

3) S.Yang, T.Lewis and H.Chia-Chi, OSU: Integrating CASE and UIMS,
Computer Science Department, Oregon State University, 1988

4) A.Aho, R.Sethi, J.Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1987

5) T.Budd, A Little SmallTalk, Addison-Wesley Publishing Company, 1987

6) D.Sandberg, What is Object-Oriented Programming?, · Computer Science
Department, Oregon State University, 1987

7) Apple Computer, Inside Macintosh Vol.I-V, Addison-Wesley Publishing
Company, 1988

8) Symantec Corporation, Light speed Pascal User's Manual, Symantec
Corporation, 1988

9) Mainstay, V.I.P 2.51 (Visual Interactive Programming), 1989

n
n
n
0
n

n

j

I
I
J

LI

LI

LI

J
J

l
n
fl
l
0
fl
l
n

j

lJ

u
u
J

41

8. 0 Appendices

8.1 Unit Frame Syntax

The unit frame synta x is very similar to the "unit" syntax of Lightspeed

Pascal, except the implementation part. DataLab uses the graphical

representation of operation's algorithm so that GEDL's unit frame does not

have the textual description of operation's algorithm.

unit <unit name>;

interface -- public part of the unit

uses <file name list>;

con st <constants, if any -- optional>;

type <types, if any -- optional>;

procedure or function lists with parameter (s);

implementation -- private part of the unit

const <constants, if any -- optional >;

type <types, if any -- opti onal >;

procedure or function lists with parameter (s);

end.

More information on the "unit" syntax can be found in Lightspeed Pascal

User's Manual .

8 . 2 UNT TYPE DSD Listing

{written by hae-sung Kim}

{Created on : 6-18-89}

{Last update on :8-16-89}

{--- ----------- -------------}
{This unit contains ONLY unit type templates} .

{---}

unit UNIT_TYPE_DSD;

interface

uses

DIALOG_DSD;

type

{Different object kinds -- ALSO will be used in WINDOW unit's TOOL kind}

42

{DRAG and POINTERDRAG are NOT object kinds, they will be used for drawing ToolsWindow }

{To summarize, REAL object kinds: from 'transform' to 'dynamicObject'}

{Actually kind of objects are STATICOBJECT, UNDEFINED, POINTER and DYNAMICOBJECT}

{Dynamic object means created by New function, NOT by variable declaration}

{Tools kind used in window unit: from 'drag' to 'falseValue'}

{---}

UNT _objectKind = (drag, ·pointerDrag, transform, loop, return, statement,

start, staticObject, undefined, nilValue, trueValue, falseValue, pointer, dynamicObject);

{Unit part-- decide wether unit record refers unit frame or operation}

UNT _part = (unitFrame; procOperation, funcOperation);

{Definitions of handles}

UNT _pointerH = "UNT _pointerP;

UNT_pointerP = "UNT_pointerRecord;

UNT_objectH = "UNT_objectP;

UNT _objectP = "UNT _objectRecord;

UNT _unitH = "UNT _unitP;

UNT _unitP = "UNT _unitRecord;

l
n

n

]

u
j

J

l
n
. l

n
l
n
I
. I
j

I
u
J

J

J

{Object record's pointer field }

UNT_pointerRecord = record

{general pointer information}

name: Str255;

typeName: Str255;

pointedOID : longint;

order: Str255;

{pointer name}

{pointer's dereference type name -- used for checking}

{must keep this for saving to/reading from the file}

{object pace order for each case}

{drawing information}

drawingRect: Rect;

positionRect: Rect;

startPoint, endPoint: Point;

highlight: boolean;

copy: boolean;

{for use of global coordinate}

{for use of drawing pointer arrow line}

{is this object selected?}

{is this object is a copy?}

{handles to object and next pointer}

pointTo: UNT _objectH; {which object is pointed -- initially set to NIL}

next: UNT_pointerH;

end; {UNT_p6interRecord}

{Object record defintion}

UNT_objectRecord = record

{general obect information}

name: Str255;

typeName : Str255;

{points next pointerRecord}

{object name}

{object's type name}

43

O1D: longint;

kind: UNT_objectKind;

scope: DIA_objectScope;

order: Str255;

{Object ID number -- used when reading from the file}

{the kind of graphical object}

{the scope of the normal object}

{object place order for each case}

isArray: boolean; {If array object, set to TRUE -- used by code generation part}

{drawing information}

drawingRect: fleet;

positionRect: Rect;

highlight: boolean;

copy: boolean;

{for use of global corninate}

{is this object selected?}

{is this object is a copy?}

f

{handles from object record}

pointerH: UNT_pointerH;

next: UNT _objectH;

end; {UNT_objectRecord}

{Unit record definition}

UNT _unitRecord = record

name: Str255 ;

part: UNT _part ;

objectH : UNT_objectH;

endObject: UNT_objectH ;

objectOrder: longint;

textH: Handle;

next: UNT_unitH;

end ; {UNT_unitRecord}

implementation

{Nothing here}

I

end. {UNIT_ TYPE_DSD}

{pointer list if object has any}

{points next objectRecord}

{whether unit name or unit operation's name}

{whether unit frame or operation}

{an operation's drawing part info}

{maintains a handle that points the last object}

{maintains a last order of the operation}

{an operation's local type info or unit frame info}

44
l
~

7
l
n
1
I
7

I
J

J

J

J

j

J

1

n
l
l
0
l

l1

u

J

J

u

45

8.3 GEDL Data File Format

<unit frame text -- the same as the user typed in unit frame window>
<blank line>
%

<blank line>
<operation name -- such as
<local type/constant text,
BEGIN

"procedure BIN_traverse">
if any -- optional>

% -- object record information start symbol
<object name>
<object type name, object ID, object kind>
<object scope, order, isArray, copy>
<object drawingRect information>
%% -- pointer record information, if the object has pointer(s)
<pointer name, pointer type, pointed object OID>
<order, copy>
<pointer drawingRect information>
<pointer line startPoint, endPoint>
%% -- next pointer record, if any

% -- next object information start from here

%%% -- save next sequence order for each operation
<next sequence order>
END; -- an operation's specification end here
<blank line>
<other operations, the same as above format

----------->
<next object ID number>

r

8. 4 Data File Example

unit BIN_TREE;

interface

uses LINKED_LIST;

type

BIN_tPtr = "BIN_tNode;

BIN_tNode = record

left:BIN_tPtr ;

right:BIN_tPtr;

data:integer;

end;

procedure BIN_traverse(tree:BIN_tPtr);

procedure BIN_insert(var tree:BIN_tPtr ;

(BIN_traverse)

newData:integer);

implementation

end.

%

procedure BIN_traverse

BEGIN

%

06

3000

66 60 86 80

%

tree

BIN_tPtr 1 12

2 0 0 0

66 126 76 136

%%

tree BIN_tNode 2

2 0

59 153 71 173

71 131 71 216

46
1

7
l
l
Q

-n

l
n

J

J I

J

11

J

I
J

u

-l

n
l
~

0
7
I
I
I

I
u
u
j

u
u

%

tree"

BIN_tNode 2 13

3 1 0 0

61 216 81 256

%%

left BIN_tNode -1

%%

right BIN_tNode -1

%

32

3 3 0 0

57 292 77 332

%

-writeln(tree" .data);

45

3 4 0 0

103 277 123 357

%

BJN_traverse(tree" . left);

5 5

3 5 0 0

159 257 179 337

%

BI N_traverse(tree". rig ht) ;

65

3600

203 252 223 332

%%%

7

END;

procedure BIN_insert

BEGIN

%%%

0

END;

7

47

	Kim_Lewis_90_60_01_A
	Kim_Lewis_90_60_01_B

