
l
l

Process Communic:ation through Proxy Pipe

Shuping Chen
Department of Computer Science

S(;ptember l 7, l 999

Ma_jo: P~0fessor: Dr. Timothy Budd

Report completed in partial fulfillment of the requirements for
the ~;faster of Science at Oregon State University

l
·n

l
n
n

j

' J

u
u
J

J

J

J

Process Communication through Proxy Pipe

Shuping Chen
Department of Computer Science

September 17, l 999

Major Professor: Dr. Timothy Budd

Report completed in partial fulfillment of the requirements for
the Master of Science at Oregon State University

i l
n
n
n
D

n

t1

f I
l l
J
! l
LI

IJ

u
u
Li

Li

J

l
n
n
~

n
n
l
n

l I

l
lJ

u
J

u
J

J

Table of Contents

1. Introduction

2. Requirement Analysis

3. Class Design
3 .1 From Use Case to CRC Cards
3 .2 From CRC Cards to Sequence Diagram
3.3 From Sequence Diagram to State Machine Diagram
3.4 Structure of the Real Problem
3.5 Class ControlProxy and ControlProxyServer
3.6 Relationship of the Involved Classes

4. Implementation Details

5. Conclusions

6. Future Directions

References

! I
n
n
7
D

:l
: I
:1
. l

i I
I
! I
J
lJ
lJ
lJ

LI

LI

J

l
l
l
J
n

1

I

11

j

lJ
u
J

J

J

u

Abstract

Proxy Pipe is designed to be a bus in the transport layer of the communication between the two

different processes. Its major function is to transfer bytes. When the client process tries to send a command

to the server process , it will talk to a proxy as if it were talking to a remote object. The proxy then translates

the command into bytes and then asks the server Proxy Pipe to write the bytes to the client Proxy Pipe . The

client Proxy Pipe the reads the bytes and translates them into the command. Proxy Pipe define s a user

friendly interface and it encapsulates all the related NT system calls. Proxy Pipe will be implemented in

Micro soft Visual C++. We will present the requirement analysis and design part by using UML (Unifi ed

Modeling Language). Design pattern s like proxy, state and observer will also be applied .

; l

fl

~l
;]
n
~l
. I

~l
, I

L I
L I
l I
: I I
, I I t I

lJ
. I
JI

J
J

l
l
l

'l

n

J

I

ll
~ I
j

u
J

J

Special Thanks

I would like to thank Dr. Budd and my other committee members, Dr. Burton (my major advisor

in math) and Dr. Quinn, for their patience and feedback. I would also like to give spec ial thanks to Steve

McBride who is my manager when I was doing this project in Electroglas, one of the biggest company in

inspection products.

. j

)

: I
I I
fj

u
'j

j I

]

j

~

n
n
l
n
l

l

J

l J

lJ
j

J

j

j

1. Introduction

In the computer-engineering field, sometimes it is necessary to separate one application program into at least two

different processes. As an example, in the Wafer Bump Inspection Machine software system, there are two major

processes:

• Control.exe - To control the movement of a Machine. The machine has devices such as Robot, Pre-Aligner, OCR

(Optical Code Reader) and Camera, etc.

• Image.exe - To check if the bump on the wafer is in good condition by its image .

It is very possible to have two computers in two different rooms. One computer is installed with Control.exe and

the other has Image.exe. Two different teams can work on the two processes separately. These make it necessary for

the two processes to be separated. However, these two processes need to talk with each other. For example, Image.exe

needs to tell the Machine in Control.exe to adjust the position of a Camera in order to focus best. One possible solution

would be that the process Image.exe creates a pointer /object of class Machine that is in a different process from that in

Control.exe. Then send message to this object to move focus . However due to the memory protection, two different

processes take their own private CPU memory space. Pointer in one memory space would not be able to point to a

different memory space. This would make sure that when one process is running , it would not affect the other. For

example, we could run a game and Microsoft Word at the same time in the same computer without affecting each other.

However this gives hard time for the two different processes to communicate with each other.

A Proxy Pipe is used to work as a bus in the transport layer of the communication between the two different

processes . The Proxy Pipe will play roles of both server and client. Windows NT has some built-in system calls that do

the process communication . Those system calls are hard to find for the users that are not familiar with NT system

functions. And some function calls like Connect() will not return instantaneously . User will have to create a thread for

each blocking call. With multiple threads, a race condition would easily happen . A race condition exists when the

success of your operation depends on which of two threads finishes its task first, and the two threads operate

independently of one another. Based on the Named Pipe of Windows NT, Proxy Pipe overcomes the above difficulties

in the following ways. First, it provides the Proxy pattern so that the calling application thinks it is talking directly to

the object in the different memory space, though in realty it is talking to a proxy. A proxy is an object which represents

the intended object, but in a different memory space. Second, Proxy Pipe is Object Oriented . It defines a high level

interface so that the user doesn't have to know the names of NT system calls. Finally, Proxy Pipe controls its behavior

though a state machine so that the least threads will be needed .

The purpose of this project is to allow the Image process to send commands to the Control process through a proxy

pattern . In the Image process we will create a proxy object to which the Image process can send commands. This proxy

object will then send message across the different processes /memory spaces by using the Proxy Pipe in the transport

layer. According to the book Design Patterns, Proxy is applicable whenever there is a need for a more versatile or

sophisticated reference to an object than a simple pointer. Proxy would have all the necessary functions that the object

has. Here are several common situations in which the Proxy pattern is applicable:

1. A remote proxy provides a local representative for an object in a different address space.

2. A virtual proxy creates expensive objects on demand.

3. A protection proxy controls access to the original object. Protection proxies are useful when objects shou ld

have different access rights. For example, KernelProxies in the Choices operating system [CIRM9 3] provide

protected access to operating system objects.

4. A smart reference is a replacement for a bare pointer that performs additional actions when an object is

accessed. Typical uses include

• Counting the number of references to the real object so that it can be freed automatically when there

are no more references (also called smart pointers).

• Loading a persistent object into memory when it's first referenced

• Checking that the real object is locked before it's accessed to ensure that no other object can change

it.

The proxy that we use in our project would be a remote proxy. Another application of remote proxy is the

marshaling in COM (the Component Object Model). Marshaling is the process by which parameters are sent across

apartment, process, or machine boundaries . In COM , interface-specific proxies carry out marshaling . A proxy runs in

the address space of the client and looks exactly like the interface it represents . The proxy accepts function calls from

the client , then packages up the parameters to transmit them to a corresponding stub in the receiver's address space .

The stub receives the parameters from the proxy , unmarshals them, and makes the necessary calls against the server ' s

interface in its own process . It then takes the result of the calls and passes them back to the proxy , so that it, in turn, can

pass them on to the client. The proxy and the stub allow the c lient and server code to be written without regard to their

relative locations. In the following diagram, the server and c lient are each in separate processes and require the

intervention of in-process proxies and stubs to carry out the cross -proces s calls transparently.

;iii, y ; " \Ii .. ·'' ,',; h

Client Process Server Process
,f

I I ' J Stub I Proxy -
I '" ~I I rl

..

Client DLL DLL Server
~ I n I M ~ rl Proxy I rl Stub I

r

--·-···---
,; "

;, .. ;,, faC{;°

The rest of the paper is organized to match the phases of object-oriented development in this computer software

project. It will focus on requirement analysis, design, implementation and testing . The paper will start with requirement

2

l
l
l
n
n

.

"'!- j
'

J

j

J

J

l
l
l

j

j

u

J

j

u

analysis through the use cases technique. Next, class design is presented from a sequence diagram to a state machine. In

the design part we will unwrap the problem layer by layer so that the relationship of the all the classes involved in this

project will be clear . This can also help test each component of the project solidly . Then we will implement a

synchronization mechanism called multiple lock. Finally , the paper will document the project by attaching all the class

specifications .

2. Requirement Analysis

The phases of the software development are requirement analysis , design, implementation and testing. First let' s figure

out the detailed requirements . A key tool in this phase is the development of use cases . Use cases describe how the

system will be used. A use case is a description of an interaction between the system we are building and a person or

another system . We call the object taking part in the interaction the actor .

Let ' s develop a few use cases for the system Proxy Pipe:

Actor: The customers of Proxy Pipe - both server and client

For each of the actors , we should consider the following questions:

What tasks does the customer want the ProxyPipe to pe1form?

The server would want the Proxy Pipe to declare itself as a server Proxy Pipe. The Client would want Proxy Pipe to

declare itself as a client Proxy Pipe.

Both server and client want to read and writ e bytes through the Proxy Pipe.

Proxy Pipe should be able to shutdown itself.

What information must the actor provide to the sys fem 7

This actor must provide pipe names for both client end and server end. They have· to be same for the connecti on to

complete . The actor must also provide the character buffer to store the data that has been read from the Proxy Pipe and

the character array to be written to the Proxy Pipe

Are there events the actor must tell the system about ?

No.

Does the actor need to be informed when something happens ?

The actor needs to be informed when the Proxy Pipe state machine changes its state .

Does the actor help initialize or shutdown the system ?

No

Resulting use cases:

I .The sever /client provides the pipe name for the Proxy Pipe to initialize itself.

2.The server writes a string to the ProxyPipe

3.The client reads the string from the ProxyPipe

4 .The server writes a character array with '\O' in the middle to the Proxy Pipe

3

5.The client reads the character array with ' \O' in the middle the ProxyPipe

6.The server writes a number to the ProxyPipe

7.The client reads the number from the ProxyPipe

8.The client writes a string to the Proxy Pipe

9.The server reads the string from the ProxyPipe

1 O.The client writes a character array with '\ O' in the middle to the Proxy Pipe

11. The server reads the character array with '\O' in the middle from the ProxyPipe

12.Server/client shutdown

Ifwe take a second look at our list of use cases, we can aggregate the similar ones. For example, use cases 2, 4

and 6 can be consolidated into "The server writes bytes to the ProxyPipe". Use case 3, 5 and 7 can be consolidated into

"The client reads bytes from the ProxyPipe". Use case 8, 10 and 12 can be consolidated into "The client writes bytes to

the ProxyPipe" . Use case 9, 11 and 13 can be consolidated into "The server reads the bytes from the ProxyPipe".

The use cases can be simplified into:

I .The sever/client provides the pipe name for the Proxy Pipe to initialize itself.

2.The server writes bytes to the ProxyPipe

3.The client reads the bytes from the ProxyPipe

4.The client writes bytes to the ProxyPipe

5.The server reads the bytes from the ProxyPipe

6.Server /client shutdown

Now we can get a draft user interface . This will be a set of screen shots . We still keep the different cases for

bytes in order to do a better testing .

4

l
l
l
]

l

l

j

j

J

j

J

l
n
fl

l
n
n

11

J

fl
lJ

J

u
J

Many use cases provide a flow of events called a scenari o. For exa mple, we have the use case "The server

sends bytes to the client ". The scenario might read

The server tells the ProxyPipe to send the bytes. Then the ProxyPipe calls the right NT system call to do the work.

As part of exploring the use case, we will represent some of the interactions between the actors and the system in an

interaction diagram in the next part.

3. Class Design

For each use case, we will identify those objects that are needed , and we will flesh out the functionality of the objects ,

based on the behavior dictated by the use case . We will build at least one sequence diagram for every identified use

case .

When we go through the process of requirement analysis, we focus on creating the use cases that identify how the

product will be used. Along the way we identify the interactions and associations of objects in the problem domain . In

design , we turn attention to the solution. We will have to ask ourselves the following questions:

What are the objects in the design ?

What are their attributes and capabilities?

5

How will they interact?

We will try to decide what the properties and methods of our objects are and what their parameters and return

values of these methods will be and so forth. We will try to sketch out the public interface for all of our classes . In

short, we will have created the object model that serves as the blueprint for our implementation.

3.1 From Use Case to CRC Cards

One way to get started with determining the responsibility and fundamental associations of a class is by using a

technique called CRC cards . CRC cards are simply index cards on which we write the name of each class . CRC stands

for Class-Responsibility-Collaboration, and these cards will track the responsibility of each class . We will also note the

collaborators - the other classes to which each class delegates responsibility.

Across the top we write the class name and possibly its derived classes and its super classes. On the rest of the

card we use the left two thirds for Responsibilities and the right one third for collaborations . On the back of the card,

we write a short definition of the class.

Now it is the time to flesh out the use case scenario . To make the connection between the server and the client ,

we can imagine that both client and server Proxy Pipe object will talk to the NT system , then the two ends of NT system

makes the connection. Two NT systems are necessary especially when the client and server stay in two different

machines. So server , client , 2 ProxyPipe objects and 2 NT Systems will be involved . Here is a sequence of things that

could happen: (Here ProxyPipel & ProxyP ipe2 are the two ends of the named pipe.)

Server tells ProxyPipel to initialize itself to represent a server

PrmyPipe I creates a handle to the server end of a named pipe instance

Proxy Pipe! tries to connect with the client end of the nwned pipe instance, if no client available it will wait

Client tells ProxyPipe2 to initialize itself to represent a client

ProxyPipe2 saves the NamedPipe name

Client tells ProxyPipe2 to write/send a character array to the Named Pipe

ProxyPipe2 opens the client side of a named pipe and tries to connect with the server end

After the connection completes, ProxyPipe2 can write the character array to the named pipe

Server tells Proxy Pipe I to read/receive the character array from write end of the named pipe

Client tells ProxyPipe2 to shutdown. That is to disconnect the client end from the named pipe

Server tells ProxyPipel to try writing; it will get an error message saying that the client end is not available

By examining the use cases in last part, we can find there are three major classes that will be involved: Client,

Sever, and ProxyPipe. Proxy Pipe communicates with NT system by the NT calls. We would not really see the NT

system in our application . There is no need to have the NT system as a class. Since we are focused on the process

communication part, we are only interested in those functions in client and server that have to deal with crossing the

6

l
~

l
l
n

I

J

J

I
u
j

j

n
n
n
n
n

1

I J

l J

I
j

u
u

ProxyPipe . Client could send any commands to the server as long as the command belongs to the server 's interface , and

vice versa . Sending any command is just writing bytes to the Proxy Pipe. So we will not worry about the details of

different commands for either server or client first. We will use Write/Read to start with . In this case the interface for

the client and server is really simple . We will concentrate on class ProxyPipe.

From the detailed use case above, we noticed that server and client have the same interface. They both

initialize themselves first and then do read or write to the other . Finally they can both shutdown themselves. So for

right now, to be simple enough, we will make only one class for both server and client. This is like a single person is

playing two different roles in a movie . This class is a prototype used to test the function ality of the class Proxy Pipe. It

will also handle the Graphical User Interface .

(R~~-~trill1':j.
·;;, -~-R~:Wi#s:;· ·1

R~l\<ls,r,g I
"R·e~d #'3 · ' I

We will share one CRC card for Client/Server class and Proxy Pipe class:

Class : Client / Server Superclass :

Res2onsibilities Collaborations

Init its ro l e as cl i ent or server ProxyP i p e

Wri t e by t es to the Proxy Pi pe

Read by t es f r om the Pr oxyPipe

Sh ut d own

Class: ProxyPipe Superclass :

StateMachine

Res2onsib il ities Co ll aborat i ons

I nit th e c l ient or server end

o f the named pipe NT sys t em

Wri t e byes to the named pipe Client/Sever

Read bytes from the named pipe

Disconnec t the cl i ent or server end

7

3.2 From CRC Cards to Sequence Diagram

Once the responsibilities are understood, it is time to turn our attention to how these responsibilities will be played out

in object interactions . The path from CRC cards to sequence diagrams is often quite straightforward. We have assigned

a responsibility to a particular class and that class will then interact with other classes to fulfill that responsibility. The

sequence captures these interactions. Look at the following diagram.

8

n
n

J

J

J

j

j

J

l

0
n
l

I
)

d
I
IJ
lJ
I
j

J
J

ProxyPipe1 System1 System2 ProxyPipe2 Client

11: Read

15: Write 1

4: lnitClient

5: SaveNamedPipe

7: CreateFile R.,ite
8: Connection Completes

: 9: WriteFile

12: ReadFile

1J 14: CloseFile

er
13: Shutdown

l7 16: WriteFile ~

17: Error:ClientNotAvailable

LJ
18: AckError

19: I nitClient
,K -----~

20: SaveNamedPipe

~ ead
22: CreateFile ,...:_·~--· --~

23: ~onnection Completes

24: ReadFile

25: error:lnvalidState
26: AckError

9

3.3 From Sequence Diagram to State Machine Diagram

As we come to understand the interactions among the objects , we will need to understand the various possible states of

each individual object. The state of an object is the current set of values for each of its member variables . We can

model these states in a state transition diagram .

Every state diagram begins with a single start state and ends with zero or more end states . States are

represented as rounded rectangles; each state has an identifying name . States are linked via unidirectional connections

called transitions . An event is used as a trigger to go from one state to another.

Let's start with state diagram for ProxyPipe. The state diagram for ProxyPipe to initialize it to be the Server

end is shown below

.START

I~
REQ_INIT_SERVER REQ SHUTDOWN

I -

I ~ (j)SHUTDOWN

w
INITIALIZING_SERVER

entry : DoCreateNamedPipe

-----EVT ERROR

'
~. "'--'rl' ~ SERVER ERR-OR ,_ 'r'U-"' 1 EVT _NAMEDPIPE_CREATED
~ - -

~
EVT_ERROR

WAITING_FOR_CONNECT

entry : DoConnect

To have the named pipe connected, we will have to initialize the client. After both server and client are

initialized, they might not be connected yet. The connection only happens when client tries to Read or Write. This is

because we only want the connection completed when it is needed. If an error occurs in the server before the pipe

connected, it is not recoverable . State INITIALIZING_SERVER AND WAITING_FOR _CONNECT both have a path

to go to this error state . They can be described as being in the INITIALIZING_SERVER super state. Similarly , we can

apply the super state for other states to simplify the transition. Let 's first separate client and server and consider the

following state transition diagram:

n

l
n
l

l

u

J

J

10

J

1

n

0
l

j

d
J

ll

j

J

REQ_SHUTDOWN~ SHUTDOWN

REQ_INIT_CUENT

INITIALIZING_CLIENT

INITIALIZING_CLIENT

entry: DoSavePipeName

INITIALIZING_SERVER

entry: DoCreateNarnedPipe
EVT_SERVER_UNAVAILABLE

REQ_SHUTDOWN

EVT NAMEDPIPE CREATED - I -
WAITING_FOR_CONNECT

entry: DoConnect

EVT_CONNECT

srn=-"~[='~""
~----~ RSP_WRITE ~-~-~
SERVER_WRITING t---~ a.

entry:DoWrite
~----~ REQ_WRITE ~--~~

EVT _CLIENT_ UNAVAILABLE

SERVER_READING

entry: DoRead

~---- R-E/_ s_e_uT_D~OWN REQ_ACK_ERROR /\ Error / ERROR

I
>--S_E_RV_E_R~-~SH_U_T_T_IN_G_~D_O_W_N----1<e-- -----, SERVER_ERROR_STATE

~- •-nt_ry_: D_oS~ h_u_lD_ow_ n_~ REQ_SHUTDOWN ~------~

I
I

I EVT _S,HUTOOWN

----➔i SERVER_SHUTDOWN

CLIENT_PIPE_CONNECTED

EVT_FILErREA TED

RSP_WRITE
CLIENT_WRITINGi-----_,,, CLIENT_IDLE

entry: DoWrite
REQ_WRITE

REQ SHUTDOWN

/
CLIENT_SHUTTING_DOWN

REQ_ACK_ERROR

EVT ERROR

- -----._________,-=----~------
CLIENT_ERROR_STATE

~-- •n_try_:_D_oS_h_ut_do_w_n_ ~ REO_SHUTOOWN ~------~

EVT_SHUTOOWN

____ __,,,,, CLIENT_SHUTDOWN

We also noticed that in the diagram above the super state, SERVER_PIPE_CONNECTED and

CLIENT _PIPE_ CONNECTED have the same kind of structure, states and transition. So can combine them into one as

showed in the following. However the INITIALIZING_SERVER AND INITIALIZING_CLIENT can not be combined

into one since INITIALIZING CLIENT has three states and INITIALIZING SERVER has two states and their - -

transitions are different too. INITIALIZING _SERVER goes to the INIT_SERVER_ERROR, which is not recoverable

and INITIALIZING_ CLIENT goes to INIT _CLIENT_ ERROR, which is recoverable.

11

NON_FINAL_STATE

EVT_ERROR
UNINITIALIZED

REQ_INIT_SERVER

SERVER_INITIALIZING

entry: DoCreateNamedPipe

EVT NAMEDPIPE CREATED - ' -

REQ_INIT_CLIENT

INITIALIZING_CLIENT

entry: DoSavePipeName

REQ_READ

REQ_ACK_ERROR

REQ_WRITE

WAITING_FOR_WRITE WAITING_FOR_READ

entry: DoCreateFile entry: DoCreateFile

REQ ACK ERROR/ DoAckError

REQ_ACK_ERROR / DoAckError

- - I /

EVT ERROR I EVT ERROR
- ~ ✓ -

EVT CONNECT CLIENT_UNAVAILABLE_ERROR

T) INIT_CLIENT_ERROR
entry: DoDisconnect

I ~
~ EVT_CLIENT_UNAVAILABLE

EVT_FILE_CREATED
EVT_FILE_CREATED

WRITING

entry: DoWrite

PIPE_CONNECTED

•
IDLE

REQ_ACK_ERROR / DoAckError

REQ SHUTDOWN

1
SHUTTING DOWN

entry: DoShutdown

EVT SHUTDOWN - 1
'SHUTDOWN

3.4 The Structure of the Real Problem

READING

entry: DoRead

EVT_ERROR

SERVER_UNAVAILABLE_ERROR

entry: DoDisconnect

I
E/ SERVER_UNAVAILABLE

Now let's take a second look at the user of ProxyPipe-Client, Server, and ProxyPipe itself in our real problem.

We have two different process, Control.exe and Image.exe, which possibly are installed in different machine. We will

take Image.exe as the client process and Control.exe as the server process .

l

n
1

UI
I
j

I
12

J

l
~

l
n
0
n

l
1

I
I

J

11

j

j

LI

J

Here are the three objects that are involved in our real problem:

• Control Proxy object - The proxy for the Machine object of Control.exe process . It stays in the Image.exe process .

The Image .exe process , the client , can send messages to Contro!Proxy as if it were sending message to real

Machine object. These messages include FocusMove() , FocusJog() and FocusGetState{), etc . The interface of class

Contro!Proxy should be exactly the part of class Machine interface that is involved in the process communication .

• ControlProxyServer object - The server that listens to the message sent from the Contro!Proxy and tells the

Machine to respond to the message. It stays in the Control.exe process. Since the server always keeps listening , we

need a listener thread.

• ProxyPipe Object - The transport bus between the Contro!Proxy object and the ControlProxyServer object. The

same Proxy Pipe class will play roles of both server and client. Both Control Proxy and ControlProxyServer classes

are user of Proxy Pipe object. That is, they both have an instance of Proxy Pipe as their member variable .

The Contro!Proxy class and the ControlProxyServer class work together to allow other processes to send commands to

the Control. exe process.

To understand the relationship of objects mentioned above , let's divide them into the following different layers, which

go from more abstract to more concrete levels.

Layer 0: Process Layer

Image Process Control Process

Read/Write
◄

13

Layer 1: Object - Machine Layer

Image Process Control Process

Send/Receive
Machine Class

Send/Receive

Layer 2: Proxy Layer

Image Process Control Process

Machine Class

Commands Notification

Read/Write ControlProxyServer ControlProxy
Class --------- Class

14

l
7
l
l

□
7
I
I

I
l
I
J

J I

J

1

fl Layer 3: Proxy Pipe Layer

n
l
n
l
l
I

Image Process

ControlProxy
Class

Read/Write

Control Process

Machine Class

Commands Notification

ControlProxyServer
Class

ProxyPipe Class ------------ ProxyPipe Class

11

l
lJ
ll
J

J

J

J

Layer 4: NT system

Image Process

ControlProxy
Class

ProxyPipe Class i.--~

Read/Write

Control Process

Machine Class

Commands Notification

ControlProxyServer
Class

NT System i.--~ ProxyPipe Class

15

3.5 Class ControlProxy and ControlProxy Server

We have modeled the states of Class ProxyPipe in a state diagram . Now let's look at the states for ControlProxy . The

commands FocusAckError(), FocusJog() , FocusMove() , FocusReportPosition() follow the same pattern of Proxy Pipe

Write and Read. So its state machine could be abstracted into the following :

16

l
n
l
I

□
n

I
I
u
J

J

J

J

l
l
n
l

n
I
l
I
j

I
lJ
ll
I
J

u

Abstract Control Proxy State Machine

• UNINITIALIZED

entry: DoRead

j BEFORE_SHUTDOWN

on EVT _IPE_DATA_PRESENT: DoParsePipeDataAndHangRead

BEFORE_ERROR
REQ_INIT

\/

INITIALIZING SENDING

entry: DoWrite entry: Dolnit ~
I REQ_~TE ~ ~--~\--~

EVT INIT ~~ EVT WRITE

1 ~ VT ~VER UNAVAILABLE \ -
IDLE ~ - -

~
~- ~ --~ EVT _READ / DoReadFinished

REQ_ACK_ERROR / DoAckError
I

EVT _PROX _Y _PIPE_ERROR

PROXY _PIPE_ERROR_STATE

I
REQ SHUTDOWN -1

SHUTTING_DOWN

entry : DoShutdown

EVT SHUTDOWN - I
.SHUTDOWN

RECEIVING

entry : DoRead

ControlProxyServer does nothing but listen to the commands from ControlProxy and pass the commands to the

Machine object. After it is initialized, it will stay in this one state until it is shut down.

I

I

17

The state machines defined by UML are deterministic . Therefore, a state diagram must not leave any room for

ambiguous constructs . This means, in particular, that it is always necessary to describe the system 's initial state. For a

given hierarchical level, there is always one and only one initial state. Converse ly, it is always possible to have several

final states that each corresponds to a different end condition.

4. Implementation

4.1. Observer

As we discussed above, class ControlProxy and Contro lProxyServer both need to include a header file of class

ProxyPipe . They both depend on class ProxyPipe . When the ProxyPipe changes its state, ControlProxy and

ControlProxyServer both need to be notified and updated automatically. In addition, the ControlProxy cannot start

sending commands until the ProxyPipe is ready to transfer bytes. In order to prevent the ControlProxy state machine to

receive the invalid input, we need certain way of controlling the startup of the function. We don 't want busy waiting

since that will need an additional thread. So we use ControlProxy state machine to be an observer of the ProxyPipe.

The collaboration diagram for the observer pattern looks like the following:

Observer
Update()

Observable

Update() Notify()

Observer

18

l
l
n
l
0
n

J

j

j

J
J

J

11

n
l
0
n
1

l
l

j

J

ll
J

J

LI

A simple sequence diagram with one observer would look like this:

Observer Observable

! 1: Let me know if something happens ! : > :

u. 1.
2: Something happens :< :

0 u

There could be more than one observer to one observable object. As an example, we will describe

Control Proxy as an observer of class Proxy Pipe in the details of code .

First we declar e the class ControlProxy in the file ControlProxy.h as a subclass of class Observer:

#include "Control\Observer.h"

#include "Control\StateMa chine .h"

class ControlProxy : public Observer , public StateMachine

public:

virtual void Update(class Observable* observable);

private:

class ProxyPipe* proxyPipe;

};

Second, we will implement the function Update(). The class ControlProxy updates its states based on the
states of class Proxy Pipe . In the following code, we are mapping the state of class Proxy Pipe into the state of class
ControlProxy.

void ControlProxy ::Update(class Observable* observable)

19

switch(proxy Pipe->GetState())

{

case ProxyPipe::IDLE:

if(lsValidlnput(EVT _ READ))

{

Input(EVT _ READ);

}

if(IsValidlnput(EVT_ WRITE))

{

Input(EVT _ WRITE);

break ;

case ProxyPipe ::INITIALIZING _ CLIENT:

if(IsValidlnput(EVT _ INJT))

Input(EVT _ INIT) ;

else if(lsValidlnput(EVT _SERVER _ UNAVAILABLE))

Input(EVT _SERVER _ UNAVAILABLE);

break ;

case ProxyPipe: :SHUTDOWN :

if(JsValidlnput(EVT _ SHUTDOWN))

Input(EVT _ SHUTDOWN);

break ;

case ProxyPipe::ERROR _STATE:

case ProxyPipe::INIT_CLIENT _ERROR:

case Proxy Pipe: :INIT _SERVER_ ERROR:

{

}

break;

default:

break;

if(lsValidlnput(EVT _FROXY _PIPE_ ERROR))

{

lnput(EVT _FROXY _FIPE _ ERROR) ;

}

20

l
l
~

□
1

I
j

I
j

j

j

j

J

l
l
l
l
0
l
l
l

J

u
J

u
u
J

Finally, we will attach the class ControlProxy to the observer list of class ProxyPipe, which is the observable .

We will do the following in the constructor of class ControlProxy :

ControlProxy ::ControlProxy() :

StateMachine("ControlProxy State Machine" ,UNINITIALIZED ,ST ATE_ COUNT ,INPUT _ COUNT),

Observer(),

proxy Pipe->GetS tateObservab le()-> Attach(this) ;

4.2. Concurrency

In UML , states may also contain actions ; these are executed upon entering or exiting a state , or when an event occurs

while the object is in the state as shown below .

State A

entry :
on AnEvent:

exit:

The action on entry (which is symbolized by the keywo rd entry:) is executed in an instantaneous and atomic

way upon entry into the state. Similarly, the action on exit (symbolized by exit:) is exec uted upon exiting the state. The

action on an internal event (symbolized by the event name followed by :) is executed upon the occurrence of an event

that does not lead to another state.

We don ' t want state machin e blocked on the entry function since in that case the state machine can ' t accept

another input. In the ProxyPipe state machine above, the state WAITING_FOR_CONNECT has an entry function

DoConnect(), which could possibly call the NT function ConnectNamedPipe(). If the client end of ProxyPipe has not

been created , then ConnectNamedPipe() would be waiting there until the client end of the Proxy Pipe is created. If so,

the entry function DoConnect() might not be able to be executed instantaneously. Now when we try to shut down the

server end while it is waiting for connection with the client pipe , the ProxyPipe state machine would not change its

state to be SHUTDOWN since it is hanging on the ConnectNamedPipe() call. Then we could not shut down the server

right away .

The reason for this is that we are only using one thread . Only one thing can happen at a time . The way to solve

this problem is to create another thread to do the ConnectNamedPipe() job. And the entry function DoConnect() only

needs to notify the other thread that a connect event has occurred.

Similarly, the state READING has an entry function DoRead(). If either the server or the client end of the

Proxy Pipe try to read bytes while the other end has not write the bytes yet , it will hang on NT system call ReadFile().

21

We could also let another thread to handle the NT ReadFile() call. The DoRead() entry function will only notify that

second thread that a read event has happened .

We could share the same thread to handle both ConnectNamedPipe() and ReadFile() NT system calls . Since

ConnectNamedPipe() , ReadFile() and Shutdown() can not happen at the same time, we need an access-control

mechanism .

The Microsoft Foundation Classses (MFC) supports four synchronization objects: critical sections, mutexes,

semaphores and events . The MFC also supports two types of locks: single locks and multi-locks. The details of the

implementation of the locks and even of the synchronization objects are encapsulated in the objects and opaque to the

application developer.

In a typical multithreaded application, we need to create thread-safe classes . Thread-safe means the

application designed so that no harm can come from being interrupted in mid-operation. To make a class fully thread

safe, first add the appropriate synchronization class to the shared classes as a data member. Next add synchronization

calls to the appropriate member functions of each thread-safe class . This means that all member functions that modify

the data in the class or access a controlled resource should create either a CSingleLock or CmultiLock object and call

that object ' s Lock function . That is, in order to use the synchronization classes CSemaphore , CMutex ,

CcriticalSection , and CEvent ,, we must create either a CSingleLock or CmultiLock object to wait on and release the

synchronization object.

In our application here , we will create a connect event , a read event and a shutdown event for the entry

function DoConnect() , DoRead() and DoShutdown() separately to notify the other thread that some event has

happened. The connect event , read event and shutdown event are all instances of class CEvent . Here we will use

CmultiLock, since there are multiple objects that we could use at a particular time . Here, locks are semaphores that are

used to serialize access to critical regions, such as the region where only one ofConnectNamedPipe(), ReadFile() and

Shutdown() can be executed.

To explain how we use the MFC synchronization classes CEvent and CmultiLock in more detail, here is what

the real code looks like:

First, in class ProxyPipe, we create three instances class CEvent :

ProxyPipelmpl : public ProxyPipe

{

CEvent *connectEvent;

CEvent *readEvent;

CEvent *shutdownEvent;

22

l
l

I
I
I
I
j

J

J

fl

n
0
rl

I

I
[I

I
J

j

J

J

Second, implement the entry functions DoConnect(), DoRead() and Do Shutdown() in the following way:

Void ProxyPipelmpl::DoConnect()

{

connectEvent. SetEvent();

}

void ProxyPipelmpl: :DoRead()

{

readEvent.SetEvent();

}

void ProxyPipelmpl: :DoShutdown()

{

shutdownEvent.SetEvent() ;

Third , create a second thread by doing the following:

a) Declared the second thread in the header file

class ProxyPipelmpl : public ProxyPipe

{

private :

static DWORD _s tdcall ProxyPipeThread(void * thisPtr);

virtual DWORD ProxyPipeThreadFunc() ;

CWinThread* proxyPipeThread;

b) Implement the threadfimction in the cpp file.

DWORD _stdcall ProxyPipelmpl::ProxyPipeThread(void* thisPtr)

{

return ((ProxyPipelmpl *) thisPtr)->ProxyPipeThreadFunc();

}

DWORD ProxyPipelmpl::ProxyPipeThreadFunc()

{

static const int CONNECT_ EVENT= WAIT_ OBJECT_ O;

23

GetProxyError());

static const int READ_ EVENT= WAIT_ OBJECT_ 0+ 1;

static const int SHUTDOWN_EVENT = WAIT_OBJECT_0+2;

CSyncObject* event[3] = { &connectEvent, &readEvent, &shutdownEvent};

CMultiLock lock(event,3);

while(!)

{

switch(lock.Lock(INFINITE, FALSE))

{

case CONNECT EVENT:

connectEvent.ResetEvent();

NT: :ConnectN amedPipe(hPipe, &overLappedRead , ntError);

if(ntError.Getld() == ERROR_SUCCESS II
ntError.Getld() == ERROR _PIPE_ CONNECTED)

TRACE("pipe connected\n");

error.Set(MachineError::PROXY, NO_ERROR , "NO ERROR");

else

error.Set(MachineError::PROXY , PROXY _PIPE_ERROR,

break;

case READ EVENT:

error.Clear();

Read Overlapped();

break;

case SHUTDOWN EVENT:

return 0;

break;

default:

24

l
n
l
. l
D
1
l

I

I
I
J

I

l
l
l
n
n
n
l
]

J

J

J

J
J
J

}

error .Set(MachineError::PROXY, PROXY_PIPE_ERROR, GetProxyError());

assert(false);

break;

Notice that in the code above we have a class ProxyPipelmpl that extends the class Proxy Pipe. Here

ProxyPipelml is one way of implementing class ProxyPipe . Separation of class ProxyPipe and class ProxyPipelmpl

will give us flexibility to switch to a different implementation of class Proxy Pipe.

4.3. Error Report

Suppose in the middle of the process communication some accident happens in the system. How could the software

detect the reason of the problem and report it to the user?

The Windows NT system can return some error code by calling the function GetLastError(). However , the

user might not be able to read the error code. So our job now becomes how to translate the NT system error code into

the user understandable error message.

The solution is to try each possible case to interrupt the proce ss communication and record the error code

returned by GetLastError(). For example, when client tries to read or write bytes to the server before server starts or

after server is shut down , GetLastError() will return the error code called ERROR_FILE _NOT _ FOUND. We could

translate this error code into an error message "Server is unava ilable". Here are more examples:

Detected ProxyPipe Error From NT System
CLIENT UNAVAILABLE ERROR_NO_DATA[232]: The pipe is being closed.
Start up the client application (When the server tries to write after the client is shutdown)

ERROR_BROKEN_PIPE [109] : The pipe has been ended .
(when the server tries to read after the client is shutdown)

BUFFER TOO SMALL ERROR_MORE_DATA [234}: More data is available . - -
Increase the buffer size (When the ProxyPipe class tries to read if the buffer size is smaller

than the number of characters in the named TJif)e.)
SERVER BUSY ERROR_PIPE_BUSY [231]: All pipe instances are busy.
Only run one client at one time (When a client tries to connect to the server, which has been connected

bv another client .)
SERVER UNAVAILABLE ERROR_FILE_NOT_FOUND [2] : The system cannot find the file
Start up the server application specified .

(When the client tries to read and write before the server is open .)
ERROR_PIPE_NOT_CONNECTED [233] : No process is on the
other end of the pipe.
(When the client tries to read and write after the server is shutdown)

25

5. Conclusions and Future Directions

ProxyPipe, together with the proxy, make the communication between two processes easier by encapsulating the NT

system calls. We can concentrate on sending commands across different memory space rather than dealing with the

communication details. Proxy Pipe is designed to transfer bytes instead of a string. That is, the Proxy Pipe can also

transfer the character ' \O', which is the ending character for a string .

By using state machine and observer pattern, we can control the start up of certain function without busy

waiting . That could avoid using an additional thread.

When the server shut down, the client can detect it by the error message returned when the client was trying to

do a read or write. After the server restarts, it can automatically connect to the same client. It is vice versa for the client

to shut down and reconnect.

This project has two limitations. First the ProxyPipe will only deal with one server and one client. Second , the

ProxyPipe can only handle one read or write at one time. So the future work will include the two points:

I. Develop the ProxyPipe that can deal with multiple servers and multiple clients.

2 . Develop the Proxy Pipe that can do overlapped read and write at the same time.

26

l
l
. I
l
D
n
l
1

J

J

J

J
J

1

l
l
l
D
n
l
n

. I

I
u
LI

I
J

J

J

References

1. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Elements of

Reusable Object-Oriented Software. 1995 Addison-Wesley Professional Computing Series.

2. Pierre-Alain Muller. Instant UML. 1997 Wrox Press.

3. Timothy Budd. An introduction toObject-Oriented Programming , Second edition. 1997 Addison

Wesley Longman, Inc.

4. Jesse Liberty. Beginning Object-Oriented Analysis and Design with C++. 1998 Wrox Press .

5. MSDN Library October 1998 release

	Chen_Shuping_1999_09_17_A
	Chen_Shuping_1999_09_17_B

