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PARALLEL EXECUTION OF THE SIMPLEX ALGORITHM 

ABSTRACT 

This project is concerned with the optimal distribution of the 

computation and the data in parallelized Simplex algorithms. Test cases 

were implemented on a 16-processor Transputer system from INMOS 

Corporation. By careful consideration of distribution of computations and 

data, a nearly linear speedup pattern was obtained. The most 

interesting thing in this study was that 1) the execution time is not 

dependant on communication delay, 2) overhead due to parallelization 

does not significantly increase as the number of processors increase and 

3) the Simplex algorithm communication delay is not so significant if the 

problem size is big enough. 

Keywords and phrases : message-passing, two-phase Simplex, linear 

programming, distributed memory, multiprocessor system 

1.0 Introduction 

Distributed computation has for many years been the focus of 

considerable research, offering a number of advantages, such as ready 

availability, high degree of reliability, high performance, and the ability 

to incrementally add to the system due to their modular structure [1]. 

The objective of this study is to determine the best utilization of parallel 



The objective of this study is to determine the best utilization of parallel 

processors for solving the two-phase Simplex algorithm, which is the 

most popular algorithm for solving linear programming problems [2]. 

This problem can be addressed two ways: 1) algorithm issues, and 2) 

architectural issues. 

Algorithm issues; Two methods may be used to implement the 

parallel Simplex algorithm [3], either 1) segmentation by rows or 2) 

segmentation by columns. The major difference between these two 

methods is the way they perform communication. They may yield almost 

identical results when run on a shared memory machine which is 

assumed to have no communication delay. But experiments show 

segmentation by rows is advantageous for message-passing 

communication as in the Transputer system since row segmentation 

reduces overall communication cost. 

Architectural issues; Compute-Aggregate-Broadcast algorithms are 

composed of three phases: 1) a compute phase which performs some 

basic computation, 2) an aggregate phase which combines local data into 

one or a few global values, and 3) a broadcast phase which returns global 

information back to each process [ 4]. A tree structure with three children 

may be the best means to reduce the communication overhead in 

Transputer systems since it has the shortest diameter, 2log3p, among the 

structures which can be built using Transputer network. But in this 

experiment, a sequential communication path is used, because we found 

no big difference in communication delay between the sequential and 

the tree structured architecture when the communication path is short. 

2 
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In addition it is very hard to map the computation and data to a tree 

structured Transputer system because of the special architecture of the 

Transputer board. If the number of processors gets larger, a tree 

structured communication path may be preferred. 

In this study, almost linear speedup was obtained for Simplex 

algorithms based on a sequential communication path , and careful 

distribution of computation and data. 

3 
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2.0 Background 

2.1 Performance Measures [3] 

Notations are defined as follows : 
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Execution time, T (p,m,n) is the time to compute a Simplex problem 

with m constraints and n variables on p processors. 

Execution time includes initialization and communication time but 

does not include disk input/output time. 

Speedup, S (p,m,n) is the ratio of the time required by the serial 

algorithm divided by T(p,m,n). 

S(p,m,n) = T(l,m,n) / T(p,m,n) 

Efficiency, E (p, m, n) = S(p,m,n) / p. 

Communication delay, D (p, m, n) is the delay time due to data 

communication. 

2.2 The Simplex Method 

The Simplex method, in conjunction with certain auxiliary 

procedures, provides an algorithm for the solution of standard linear 

programming problems. 

2.2.1. Definition [2] 

Linear programming can be defined as the optimization of problems 

such as 

solve for x1, x2, ....... ,xn-I, xn, such that 

max or min f(x 1, ...... ,xn), 
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subject to g(x1, ...... ,~)~or= or;?: bi i = 1, ...... ,n, 

in which the objective and constraint functions are all linear. 

Any given linear programming problem, after suitable algebraic 

manipulation, can be represented in standard form, P: 

Max z = cTx 

subject to Ax = b, 

where x ;?: 0, b ;?: 0, and 

A is an m x n matrix , representing the constraints, 

xis an element solution vector, 

b is the right hand side of m constraints, and 

c is the n coefficients of the objective function. 

5 

A basic feasible solution (BFS) is a non-zero solution which satisfies 

the constraint set Ax= b, x;?: 0, and can be collected into an m x 1 

vector xB. The remaining (n - m) nonbasic variables, whose values are 

required to be zero, are contained in the vector xR. The columns of A 

associated with the variables of a basic feasible solution xB are assembled 

into them x m basis matrix B. By reordering the original problem 

variables, along with their associated columns aj and cost coefficients cj, 

the original vector of variables can be partitioned into basic and nonbasic 

pieces: x = [xB xR]. In accordance with this partition, the constraint 

matrix A then can be partitioned into [BR] where Bis the basis matrix 

associated with xB and R is the m x (n - m) matrix of nonbasic columns. 

The values of the variables for this particular BFS are given by xB = B-1b 

and xR = 0 and the associated partition of the cost vector is cT = [cB T 



cR T]. Now the original problem P can be rewritten as 

Max z = cBTxB + cRTxR 

subject to 

and 

And for any basis B and for any column aj of A, whether or not it is a 

basic column, Yj = B-1aj and zj = cB Tyj = cB T B-1aj can be defined . 

Although Yj and zj by themselves have no particular name, the values of 

Yj are the scalar coefficients in the expression of aj as a linear 

combination of the basic columns of B and the value (zj - c} can be 

expressed as the reduced cost of the jth column or of the jth variable. 

The Simplex method is the most popular algorithm for solving the 

linear programming problem. Even if its time complexity is theoretically 

exponential in its worst case and polynomial in the expected number of 

iterations , practice has shown that it is capable of rapid convergence, 

requiring m to 3m iterations to complete[lO]. 

2.2.2 Computational Procedures [2] [ 10] [ 11] 

The current values of the relevant variables and quantities are 

stored in a skeleton diagram, called a simplex tableau, as shown in Figure 

2-1. All variables, xj, basic or not, are listed across the top and the 

current basic columns , bj, are listed by name at the left. The second 

column of the tableau contains the values of the basic variables and the 

objective function which is being maximized. Each of the remaining 

6 
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columns belongs to ( or is associated with) an xj value and contains an Yj 

vector and its corresponding (zj - c} value. 

Figure 2-1 Simplex Tableau 

Ym1 Ym2 Ymn 

Max z I 

Assume then, that the current basic feasible solution is not optimal 

and that the current values of all xBi, all Yij• and all (zj - c} are known. 

This solution can be improved by changing the value of one of the 

nonbasic variables xj, i.e., pivoting to an adjacent extreme point. If the 

goal is to increase the value of z as fast as possible, an obvious strategy is 

to increase the variable, xj, having the most negative reduced cost; 

Simplex basis entry criterion : The nonbasic variable, xk, is 

7 



chosen to increase and enter the basis if and only if (zk - ck) is 

negative and 

where j is an index over all nonbasic variables. 

Since the variable, xk, is chosen to enter the basis, one of the current 

8 

basic variables must be ejected. But because of the nonnegativity 

constraint of BFS, a pivot must be selected according to the following rule. 

Simplex basis exit criterion : Given that the variable xk is to 

enter the basis, the column brand variable xBr must leave, 

where 

and i is an index of basic variables. 

The next pivot consists of the variable xk entering and xBr leaving the 

basis. At each pivot the old values are read from the current tableau and 

the transformation can be performed. The newly calculated values are 

then entered in a new simplex tableau. 

Although a fair amount of algebraic manipulation is necessary, this 

may be minimized and the chance of error can be reduced by arranging 

the computation in an orderly and symmetrical manner. For example 

form a new vector <I> from the tableau column belonging to xk: 

<I>= (-Y1k/Yrk , ... ,-yr-1,iYrk ,l/Yrk-1, 

-yr+l iYrk•···, -ymk/Yrk ,-(zk - ck) IYrk) , 



Note that the last element, (zk - ck), is treated the same way as all the Yik 

values, with the exception of Yrk· In the previous tableau the element Yrk 

was placed in the column of the newly entering variable, xk• and in the 

row of the departing basic variable, xBr-

In the new tableau the various labels, xj and bi, will be the same as 

in the previous tableau, except that the rth basic column br now will be 

ak. It may then be asserted that each column of entries for the new 

tableau is derived from the ith corresponding column in the old tableau 

by means of the following transformation : 

(new column j) = (old column j) + Yrj <I>. 

Computational Procedures: 

1) Select the pivot column k so that ck< 0. If the column 

does not exist , stop; the optimal solution has been found. 

2) select the pivot row r with the smallest positive ratio, 

b/Yrk• for Yrk> 0. If the row does not exist, stop; the 

objective function is unbounded. 

3) Perform the transformation on matrix A: 

for col := 1. .n+ 1 do 

for row := 1 .. m+ 1 do 

Yrow,col := Yrow,col + <I>row X Yr.col 

4) Return to step (1) and repeat the procedure. 

9 



At each iteration, the Simplex method transforms the problem, 

increasing the objective function while observing the constraints. 

2.2.3 Two Phase Simplex Method [2] 

By means of the Simplex method developed in the previous section, 

any linear programming problem (LPP) in standard form can be solved, 

provided that redundant constraints have been eliminated and that a 

basic feasible solution has been identified. Unfortunatly, an LPP arising 

in the real world may not meet these requirements. Therefore to solve 

any standard-form LPP, an initial basic feasible solution must be grafted 

onto the Simplex method by a preliminary procedure that identifies 

redundant constraints. The preliminary procedure is phase 1 of the 

so-called "two-phase" Simplex algorithm. 

The two-phase Simplex algorithm for solving the linear 

programming problem P can be summarized as follows: 

1) Given the standard form of linear programming problem, the 

auxiliary problem Q can be formed as: 

Max z' = -lw 

subject to Ax + Im w = b 

where X 2:: 0, W 2:: 0 

1 is an m-component row vector with all l's 

1m is an mxm identity matrix 

w is an m-component column vector of artificial 

variables 

1 0 

If the matrix A contains a submatrix Im, it will serve as an initial 
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basis. Then, if there are no redundant constraints and an initial 

basic feasible solution has been found; proceed to step (4). If A does 

not contain an identity submatrix, produce one by adding a 

sufficient number of nonnegative artificial variables, wi. 

2) phase 1. Use the Simplex method to solve the problem Q. If the 

optimal value of the phase-1 objective function is negative then P 

has no feasible solution. But if the minimum value of the sum is 

zero, prolong phase 1 in an effort to drive all artificial variables out 

of the basis. 

3) If all artificial variables can be expelled, then a BPS to problem P has 

been found. On the other hand, for every artificial variable w s that 

cannot be removed from the basis, the sth constraint of problem Pis 

redundant. In either case, so long as phase 1 ends with a zero 

valued objective, the final tableau is converted into the initial 

tableau of the phase 2 simply by deleting the nonbasic artificial 

columns and recalculating objective value, z and all (zj - cj) in 

accordance with the original objective function. 

4) Phase 2. Apply the Simplex method to the modified tableau until 

the optimal solution to problem P is obtained. Note that an artificial 

variable that could not be driven out of the basis in phase 1 will 

remain in the basis with a zero value throughout phase 2. 

2.3 Transputer Systems [5] 

2.3 .1 Transputer Hardware Configuration 

A Transputer is a microcomputer with its own local memory and 
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links for connecting one Transputer to another. Our test system consists 

of the IMS B004 IBM Personal Computer add-in board and four IMS B003 

evaluation boards. The IMS B004 board has one T414 Transputer with 

two megabytes of RAM, and PC subsystem logic, allowing a program 

running on the PC to reset and analyze systems. The IMS B004 board 

also has an IMS C002 link adaptor, interfacing with a parallel 

address/data bus. Each IMS B003 board is a double extended Eurocard 

containing four T414 Transputers, each of which has 256 Kbytes of 

dynamic RAM. Thus the complete system has 16 transputers with a total 

of 4 Mbytes of Ram, connected to the B004 Transputer which is inside the 

PC. 

The 1.5 micrin CMOS IMS T414 (Fig. 2-2) integrates a 32-bit 

microprocessor, four standard Transputer communications links, 2 Kbytes 

of on-chip RAM, and memory and peripheral interfacing on a single chip. 

Each Transputer on the IMS B003 board (Fig. 2-3) is connected in a 

square with rotational symmetry. Link 2 of each Transputer is connected 

to link 3 of the next Transputer and links O and 1 of each Transputer are 

directed to the edge connector. Because of the edge connector, it is 

possible to freely choose the shape of the system used. 

2.3 .2 Transputer Development System 

Our system is designed and developed under the TDS D700C system 

using Occam II as its programming language. The Transputer 

Development System (TDS) provides the following major facilities: 

* Edit, compile, and run an Occam 2 program within the system. 
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Figure 2-2 Transputer (T414) Block Diagram 
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* 

* 

Configure an Occam program for a network of Transputers, and load 

it into the network from a link on the TDS's Transputer board. 

Analyse a network of running Transputers and obtain the program 

source line corresponding to the current process running on each 

processor. 

2.3.3 Occam [6][8] 

Occam is a high level language which provides a framework for the 

design of concurrent systems, using Transputers in the same way that 

boolean algebra provides a framework for the design of 

electronicsystems from logic gates. A program running in a Transputer is 

formally equivalent to an Occam process, so that a network of 

Transputers can be described directly as an Occam program. 

Occam provides some special features for interprocess 

communication and parallelization: primitives like ! to output to a channel 

and? to input from a channel and constructs like Par, which ensures that 

the process is executed in parallel, and Alt which observes a number of 

channels for the first input, then executes the process associated with 

that input. Communication in Occam is synchronous, unbuffered, and 

supported by hardware in the Transputer. To establish interprocess 

communication, processes must execute in parallel and share a common 

channel. 
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3.0 Experiments in parallelized Simplex method 

Parallel processing can be addressed on three levels [7]: 1) 

Architectural issues, including the means of organizing and implementing 

computers with multiple processing elements; 2) Software issues, 

including applications and system software; and 3) Algorithm issues, 

which are concerned with the problem of parallel algorithm design. In 

this section, only the architectural and algorithm issues for 

implementation of the two-phase simplex method in a network of 

Transputers are considered. 

3.1 Architectural Issues 

A Transputer network can be easily transformed into different 

structures, eg., mesh, shuffle or other structures with the limitation that 

each processor has only four links, two of which are already linked 

internally in one board. Each board is limited to four processors. 

The Transputer network was configured as a tree with three 

children (Fig. 3-1) to reduce communication overhead on the first 

implementation. The Simplex method requires a controller processor, 

which is responsible for overall system synchronization (see section 2.2). 

For this mechanism, an architecture with the shortest diameter is most 

suitable in the sense of execution time, but less desirable from the 

development and maintenance point of view. The tree structure with 

three children is hard to map into a real system and the programs can 

not be generalized. In this instance, the tree structured network was 

1 5 



Figure 3-1 Tree structured Transputer Network 
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Figure 3-2 Mesh structured Transputer Network 
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simulated by a sequential Transputer network (Fig. 3-2). In a large 

Transputer network, a tree structure will be required, but for a system 

with 16 processors such as the one in question, there is not a great 

difference in communication overhead between the tree and the 

sequential network. This is shown by the test cases run in section 3.3. 

3 .2 Algorithm Issues 

The Simplex method can be parallelized in two fundamentally 

different ways. One is to parallelize the pivoting process by Simplex 

method step ( 1) and reduce the number of iterations. Another method is 

to distribute the computation and data in accordance with Simplex 

method step (3 ), which is the means of implementation used in this 

study. There are two alternatives, distribution by rows (Fig. 3-3) and 

distribution by columns (Fig. 3-4), which yield nearly identical results. 

However the former method involves less communication overhead in 

step(l) and step(2) of the Simplex method and can reduce the effort of 

redistributing the matrix in phase 2 of the Simplex method (see section 

2.2). 

3.2.1. Distribution by rows 

1 8 

Fig. 3-5 shows the Task Graph [9] of the Simplex method distributed 

by rows in the Transputer network. Tasks in the same columns 

represent processes executed by the same processor, which is made clear 

by the zero communication delays between tasks. Tasks from nodes #2 

to #p are identical, as are those from #p to #2p. Tasks from #2 to #p 
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Figure 3-3 Distribution by rows 
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receive the pivot column from the controller and select the local pivot 

row; tasks from #p to #2p select the global pivot row and send it to the 

controller. Then tasks #1, #2, #3, #(p-1) , #p, #(p+l), #(2p-1), #2p, 

#(2p+ 1), #(3p+2) and #(4p+3) become the critical path. In this 

experiment, external input/output is done by tasks #1 and #(4p+3). 

Theoretical execution time for one iteration is computed as follows: 

Communication delay , the tasks from #2 to #2p, 

20 

D(p, m, n) = (P x (data size x (n + 3))) communication time per byte 

= t}(n X p) 

and the execution time, except for communication delay, as 

t(p,m,n) = (rm/pl divisions) 

+ ((rm/pl X n) multiplications & additions) 

= 1'}( rm/pl X n) 

from the tasks #2, #2p, #2p+ 1, and #3p+ 2. Then the total execution time 

lS Tp(p,m,n) = D(p, m, n) + t(p,m,n) = t}(n X (p + Im/pl)). 

In contrast, for the serial method 

Ts(m,n) = (n + m - 2) comparisons+ (m divisions) 

+ (m x n) multiplications & additions 

= t}( m x n) . 

A speedup may be obtained as 

S(p, m, n) = Ts(m,n) / Tp(p,m,n) 

and efficiency as 

E(p,m,n) = S(p, m, n) / p. 



Figure 3-5 
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Task Description 

1 Initialize the variables and find pivot column. 

2 Send pivot column index to the next. 

3 .. (p-1) Receive pivot column index from the previous 

task and send it to the next. 

p Receive pivot column index. 

Find pivot row among its own data. 

Send its pivot row information to the next. 

(p+ 1 ) .. (2p-1) Find pivot row among its own data. 

Receive pivot row information from the 

previous and compare its pivot row with the 

previous and find the smaller. 

) Send the smaller pivot row information to the next. 

2p Find pivot row among its own data. 

Receive pivot row information from the 

previous and find the global pivot row 

2p+l Send global pivot row information. 

(2p+2) .. 3p Receive and send global pivot row information. 

3p+l Receive global pivot row information. 

3p+2 Check the optimality of the answer. 

Compute new matrix. 

Find new pivot column index. 

(3p+2) .. (4p+2) Compute new matrix. 

4p+3 Terminate. 

) 
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From the above, it may be seen that the execution time, t(p,m,n) 

varies by the factor of rm / pl X n, but that communication delay' 

D(p,m,n) is dependent on the factor of n x p. If the problem gets larger, 

when compared to the number of processors, p, the communication 

delay, D, can be negligeable. If the tree structured Transputer network is 

adapted, the communication delay is dependent on the factor of n x 

log3p. The reason why almost linear performance improvement is 

obtained is that the communication delay is relatively small, compared to 

the entire computation. Real experiments indicate the communication 

delay constitutes 2% to 5% of the entire execution time. 

3 .2.2. Distribution by columns 

If the computation and data are distributed by columns, there will 

be similar results. The communication delay in one iteration will be 

D (p, m, n) = (m divisions)+ 

(P x ( data size x (m + 2) )( communication time per byte) 

The reason why m-divisions are involved in the communication delay is 

that the other processors must wait until the processor which has the 

pivot column selects the exiting pivot row. Also another communication 

delay is caused by redistribution at the beginning of phase 2 of the 

Simplex method. In phase 1 we build an auxiliary problem to get an 

initial basic problem, thus the actual problem size ism x (m + n). 

However in phase 2, the problem size reduces to m x n, but there will be 

(m x n) more communication time. 

23 
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The execution time, except for communication delay is 

t(p,m,n) = (( r n; p 7 + m + p-3) comparisons) 

+ (m divisions)+ ((m X r n /pl) multiplications & additions). 

From the above results , it is obvious that distributing the data by rows 

gives better performance. 

3.3 Test Cases 

In testing the distribution-by-rows parallelized Simplex algorithm, 

64 bit real number computation was performed with 10-15 precision on 

five 100 x 200 test cases with 99% data density and one 300 x 400 test 

case with 1 % data density. The same speedup and efficiency were 

obtained for all test cases because the parallelized Simplex algorithm can 

not find the optimal pivot order and concentrates on the distribution of 

computation and the data of Simplex method step(3). So the results may 

be generalized because the distribution-by-rows parallelized Simplex 

algorithm is the same as the serial Simplex algorithm except for the 

distribution of computation and data to the multiprocessors. The results 

show an almost linear performance improvement , which exceeds the 

theoretical estimate of speedup. 

Fig. 3-6 provides data from a Simplex problem with 100 constraints 

and 200 variables and Fig. 3-7 shows the case of 300 constraints and 500 

variables. The only difference between the two cases is that the speedup 

curve is almost linear until the point for 10 processors is reached in Fig. 

3-7, whereas in Fig. 3-6 the comparable number of processors is 5. The 

main reason for this difference is that as the data size allocated to one 

24 
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Figure 3-6 Execution Time vs. Speedup 
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Figure 3-7 

Execution Timevs. Number of Processors 
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processor gets smaller, the uneven distribution of rows to each processor 

can more easily affect the whole execution time. The graph which shows 

the linear relation between the number of rows assigned to one processor 

and the execution time is shown in Fig. 3-8. Execution time is affected by 

processors which have more rows than other processors. That is, 

speedup T(p, m, n), is a function of Im/ p 7. As the data size assigned to 

one processor becomes smaller, the computation time for one more row 

can significantly affect the whole execution time. An attempt was made 

to distribute the rows evenly. However if there exists a remainder row, 

for example m = 19 and p = 9, then each processor holds 2 rows with one 

row left only, the host processor was assigned first, in order to parallelize 

the effort of computing this redundant row and the data communication. 

That is, because the communication data path is sequential, the host 

processor is idle during the communication time from node #3 to #2p-1 

in Fig. 3-5. This idle time can be used for computation of the remainer 

row by assigning it to the host processors first. Actually the effect is the 

same as reducing the communication delay. 

The most interesting thing in this study is that the execution time is 

not dependent on communication delay which is the most critical aspect 

of a message passing machine. In Fig. 3-9, overhead due to 

parallelization did not significantly increase as the number of processors 

increased. This is because the Transputer system provides fine grain 

parallelism by fast context swithching as well as large grain parallelism. 

By this it is meant that even if the system under study has a sequential 

data communication path, the actual communication delay is two thirds of 
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Figure 3-8 
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D(p,m,n), shown in Fig. 3-9. As a result, the Simplex algorithm 

communication delay is not so significant if the problem size is big, ie., 

the size of the total system memory. For example in Fig. 3-9, the portion 

of the communication delay in the total execution time is less than 5% 

when the number of processors p = 4, and efficiency, E(p,m,n) is 95%. 

Actually pure communication delay is less than 3%, another 2% is due to 

processes that can not be parallelized. The main factor is that execution 

time increases for computing each additional row. The total execution 

time can be formulated from the test data as T(p,m,n) = 9 / 200 x n x rm 

/pl+ 30 when m = 100, n= 200. The overhead due to parallelization 

seems to be constant compared with the whole execution time. 

29 

Every test case indicates algorithmic efficiency of 75% to 95%. This 

is far more than the predicted efficiency 53% to 93% (Fig. 3-10) which 

can be computed from section 3.2.1 and Table 3-1. 

D(p,100,200) = p X (8 X (200 + 3)) X (2.5 X 10-6) 

= 4120 X p X 1 o-6 

t(p,100,200) = r 1001 P 1 x (55.750 x 10-6) 

+ c r1001 P 1 x 200)) x (66.o5o x 10-6) 

= 13265.75xr1001 P 1 x 10-6 

"'(1326575 / p) X 10-6 

Tp(p,100,200) = c 4120 x P + 13265.75xr1001 P 7) x 10-6 

"'(4120 X p + 1326575 / p) X 10-6 

Ts(l00,200) 

S(p, 100,200) 

= 1326575 X 10-6 

= 1326575 / ( 4120 X p + 1326575 / p) 
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Figure 3-9 
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Figure 3-10 Theoretical vs. Experimental Efficiency 
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E(p,100.200) = S(p,100 ,200) Ip 

then E(4,100,200) = 0.95 and E(l6,100,200) = 0.55. 

Usually, in message passing machines such as the Transputer, 

communication delays are the major overhead. The results of this study 



indicate no significant communication overhead problem, which may be 

attributed to a careful distribution of computation and data. 

Table 3-1 Performace of operations in T414 

1) Floating point operations 

Real64 

+ -' 

X 

I 

typical 

28.050 

38.000 

55.750 

worst 

35.000 

47.000 

71.000 

unit : micro seconds 

2) Communication Speed 

400 Kbytes/sec in each direction 
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4.0 Summary 

This study presented an implementation of the Simplex method on 

bith mesh- and tree-structured Transputer networks with a diameters 2p 

and 2log3P respectively. Although difficult to implement on a Transputer 

network, careful design of the algorithm gives nearly identical results for 

both mesh- and tree-structured networks. It was found that T(p,m,n) is 

linearly dependent on the rm/ p 7. In particular the experiment shows 

that T(p, 100,200) = r 100 /pl x 9 + 30 in the 100 by 200 case and that 

T(p,300,500) = r300 /pl x 45 + 145 in the 300 by 500 case. This is far 

better than earlier results for other message passing machines and 

almost identical to results for one shared memory machine. For example, 

the same algorithm implemented by Chandrashekhar Bhide, using Lynx 

on Crystal [3], yields an efficiency seldom above 0.5 (Table 4-1) and test 

cases implemented by Wu using the shared memory Sequent [12] shows 

an efficiency of 0.92 to 0.99 (Table 4-2). In this study, the test case 

indicates an efficiency of 0.89 to 0.95, whereas Wu's results show an 

efficiency of 0.92 to 0.95, when the number of processors is 4 to 8. By 

careful distribution of computation and data and fine grain parallelism, 

almost linear speedup pattern is obtained in this study. These results 

suggest that one of the most important factors in parallel programming is 

a good match between algorithm and architecture. 
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Table 4-1 Test data by Chandrashekhar Bhide, 
using Lynx on Crystal (when p = 2) 

m n speedup 

3 6 .03 
5 10 .08 
10 20 .34 
15 30 .65 
20 40 .69 
25 50 .85 
30 60 1.00 
35 70 .84 
40 80 1.11 
45 90 1.01 
48 96 .92 

where m = number of constraints 
n = number of variables 

Table 4-2 Test data by Y oufeng Wu, 

efficiency 

.015 

.040 

.170 

.325 

.345 

.425 

.500 

.420 

.555 

.505 

.460 

using Pascal on Sequent Balance 

#of processors Speedup efficiency 

1 0.994 0.994 
2 1.956 0.978 
3 2.904 0.968 
4 3.833 0.958 
5 4.741 0.948 
6 5.680 0.943 
7 6.511 0.930 
8 7.437 0.929 
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Appendix A: Program Source Listings 

A.1 Main Program 

PROC simPAR2 (CHAN OF ANY keyboard, screen, 
[4]CHAN OF ANY from.user.filer, to.user.filer) 

**************************************** 
Simplex Method Main partitioned by Rows 

By Sungwoon Choi in Oct. 19, 1987 
**************************************** 

#USE "const2.tsr" 
#USE "userio.tsr" 
#USE "interf.tsr" 
-- vars 
[max.link]CHAN OF ANY chan.in, chan.out: 
CHAN OF ANY chan.read: 

[max.main.module.size] [max.col]REAL64 in.buf: 
[max.col]REAL64 cost.buf: 
[max.row]REAL64 solution: 
[max.row]INT basis.index: 
INT pivot.row, pivot.col, row.size, col.size, main.module.size, status: 
BOOL max.problem: 

TIMER clock: 
INT time.start, time.end, run.time, input.time: 

-- channel definition 
PLACE chan.out AT link0out: 
PLACE chan.in AT link0in: 

-- PROC input.data 
PROC input.data(CHAN OF ANY from.stream, to.stream, 

chan.read, VAL INT fold.no, INT status) 
INT data.size, row.size, col.size, file.error: 
SEQ 

write.full.string (screen, "%% File read ... *c*n") 
-- channel declarations 
CHAN OF INT filekeys: 
CHAN OF INT keyboard IS filekeys: -- channel from simulated keyboard 
CHAN OF ANY echo: 
-- echo channel with scope local to this PAR only 
CHAN OF ANY screen IS echo: 

PAR 

-- read data from file and send to distributor 
-- vars 
[512]BYTE buf: 
INT kchar, row, col, len, index: 
REAL64 in.data: 
BOOL max.problem, error: 

SEQ 
initialize index 

status := 0 
data.size := 0 
kchar := 0 

-- read pre data (size, max or min flag) 
read.char (keyboard, kchar) 

-- determine whether this is max or min problem 
read.char (keyboard, kchar) 
WHILE (kchar =' '(INT)) 

read.char (keyboard, kchar) 
read.char (keyboard, kchar) 
IF 
-- determine whether this is the max problem or min problem 
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(kchar = 'I' (INT)) OR (kchar 
max.problem:= FALSE 

TRUE 
max.problem:= TRUE 

read.char (keyboard, kchar) 
read.char (keyboard, kchar) 

-- read row and column size 

Ii I (INT)) 

read.echo.int (keyboard, screen, row.size, kchar) 
read.echo.int (keyboard, screen, col.size, kchar) 

-- read and send real data 
IF 

(row.size> max.row) OR (col.size> max.col) 
SEQ -- error, data size is too big 

chan.read ! ft.error 
status := 4 

(row.size< max.cpu) 
SEQ -- error, data size is too small 

chan.read ! ft.error 
status := 5 

TRUE 
-- read and send data 
INT char: 
SEQ 

chan.read ! kchar; max.problem; row.size; col.size 

read.char (keyboard, kchar) 
WHILE (kchar <>'%'(INT)) AND (kchar <> ft.terminated) 

SEQ 
data.size :=data.size+ 1 
read.echo.int(keyboard, screen, row, kchar) 
read.echo.int(keyboard, screen, col, kchar) 
read.echo.real64(keyboard, screen, in.data, kchar) 
chan.read ! kchar; row; col; in.data 
read.char (keyboard, kchar) 

chan.read ! ft.terminated 

write end stream 
IF 

(kchar >= 0) OR (kchar = ft.number.error) 
keystream.sink (keyboard) 
-- consume rest of the keyboard file 

TRUE 
SKIP 

write.endstream (screen) -- terminate scrstream.sink 

-- mux 
keystream.from.file (from.stream, to.stream, 

keyboard, fold.no, file.error) 

-- consume everything echoed 
scrstream.sink (screen) -- consume everything echoed 

-- test input.error, if OK tabulate 
IF 

(status= 0) AND (file.error= 0) 
SEQ 

write.full.string (screen, "%% File read OK ") 
write.int (screen, row.size, 0) 
write.full.string (screen, " x ") 
write.int (screen, col.size, 0) 
newline (screen) 
write.full.string (screen, "%% Real Data Size ") 
write.int (screen, data.size, 0) 
newline (screen) 

file.error<> 0 
status := file.error 

TRUE 
SKIP 
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PROC distributeData 
PROC distribute.data([JCHAN OF ANY chan.in, chan.out, CHAN OF ANY chan.r e ad, 

[] []REAL64 in.buf , []REAL64 cost.buf, []INT basis . index, 
INT row.size, col.size, main.module, BOOL max.problem) 

vars 
INT kchar, row, col, module.size, modular: 
REAL64 in.data: 

SEQ 
initialize in.buf for main module 

SEQ row= 0 FOR max.main.module.size 
SEQ col= 0 FOR max.col 

in.buf[row] [col] := 0.0(REAL64) 

SEQ col= 0 FOR max.col 
cost.buf[col] : = 0.0(REAL64) 

SEQ row= 0 FOR max.row 
basis.inde x [row] := 0 

chan.read? kchar 
IF 

kchar = ft.error 
SKIP 

TRUE 
SEQ 

receive problem parameters 
chan.read? max.problem; row.size; col.size 

-- compute module.size and send size and constraint condition 
module.size:= row.size/ (max.cpu PLUS 1) 
modular:= row.size MINUS (module.size TIMES (max.cpu PLUS 1)) 
IF 

modular> 0 
SEQ 

TRUE 

main.module := module.size PLUS 1 
modular : = modular MINUS 1 

main.module := module.size 
chan.out[chan.num] ! main . module; module.size; modular 

-- receive and distribute data 
chan.read? kchar 
chan . out[chan . num] ! kchar 
WHILE (kchar <> ft.terminated) 

SEQ 
chan.read? row; col; in.data; kchar 
IF 

row= 0 -- save object function for phase II 
IF 

max .problem 
cost.buf[col] := in.data 

TRUE 
cost.buf[col] := in.data 

row< main.module 
in.buf[row] [col] := in.data 

TRUE 
chan.out[chan.num] ! row; col; in . data; kchar 

-- new cost 
IF 

(row> 0) AND (col< ((col.size MINUS row.size) PLUS 1)) 
in.buf[0] [col] := in.buf[0] [col] - in.data 

TRUE 
SKIP 

-- get basis variable inde x 
SEQ index= 1 FOR (row.size MINUS 1) 

-- get basic variable inde x vector 
basis.index[inde x ] := inde x PLUS (col.size MINUS r ow. s i ze ) 
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} 

PROC computation 
PROC computation ([) []REAL64 in.buf, [)REAL64 pivot.row.value, 

INT pivot.row, pivot.col, row.size, col.size) 
[max.main.module.size)REAL64 comp.base: 
SEQ 

-- compute new pivot column for computaional base 
SEQ index= 0 FOR row.size 

comp.base [index) := (-(in.buf[index] [pivot.col] / 
pivot.row.value[pivot.col])) 

IF 
pivot.row< row.size 

comp.base [pivot.row] := (l.O(REAL64) - pivot.row.value[pivot.col]) 
/ pivot.row.value[pivot.col] 

TRUE 
SKIP 

compute module 
compute new matrix using basis column 

SEQ col= 0 FOR col.size 
SEQ row= 0 FOR row.size 

in.buf[row] [col] := in.buf[row] [col] + 
(comp.base[row] * pivot.row.value[col]) 

PROC find.min 
PROC find.min ([]REAL64 buf, INT size, min.index) 

SEQ 
min.index:= 1 
SEQ index= 1 FOR size-1 

IF 
buf[index] < buf[min.index] 

min.index:= index 
TRUE 

SKIP 

PROC iteration 
PROC iteration ([]CHAN OF ANY chan.in, chan.out, [] [)REAL64 in.buf, 

[]INT basis.index, INT row.size, col.size, main.module.size, status) 
-- vars 
[max.main.module.size]REAL64 base: 
[max.col]REAL64 pivot.row.value, sub.pivot.row.value: 

REAL64 base.value, sub.base.value, epsilon: 
INT pivot.row, pivot.col, sub.pivot.row: 
BOOL degenerate: 

SEQ 
find pivot column 

find.min (in.buf[O], col.size, pivot.col) 
IF 

in.buf[O] [OJ> ZERO 
status := 2 -- no feasible solution 

in.buf[O] [OJ > (-ZERO) 
status := 0 normal end 

TRUE 
status := 1 

chan.out[chan.num] 
more to compute 
! status 

WHILE status= 1 
SEQ 

-- find pivot row 
chan.out[chan.num) 
degenerate:= TRUE 
epsilon:= ZERO 
WHILE degenerate 

SEQ 
PAR 

pivot.col 

find current processor's pivot row 
SEQ 

pivot.row := 1 



SEQ row 1 FOR (main.module.size MINUS 1) 
SEQ 

IF 
(in.buf[row] [pivot.col] > ZERO) 

IF 
in.buf[row] [OJ < (-ZERO) 

base[row] := MAX.REAL64 
TRUE 

base[row] := in.buf[row] [OJ 
/ in.buf[row] [pivot.col] 

TRUE 
base[row] := MAX.REAL64 

IF 
base[row] < base[pivot.row] 

pivot.row := row 
TRUE 

SKIP 
base.value := base[pivot.row] 

-- receive sub processor's pivot row 
chan.in[chan.num] ? sub.pivot.row; 

[sub.pivot.row.value FROM O FOR col.size]; 
sub.base.value 

degenerate := FALSE 
IF 

base.value= sub . base.value 
-- degenerate case (THE LEXICO MINIMUM RATIO RULE) 
SEQ 

degenerate := TRUE 
chan.out[chan.num] ! degenerate 
SEQ row= 1 FOR (main.module.size MINUS 1) 

SEQ 
epsilon:= epsilon/ 2.0(REAL64) 
in.buf[row] [OJ := in.buf[row] [0] + epsilon 

chan.out[chan.num] ! epsilon 

base.value> sub.base.value 
-- sub processor's pivot row is global pivot row 
SEQ 

TRUE 

chan.out[chan.num] ! degenerate 
pivot.row := sub.pivot.row 
[pivot.row.value FROM O FOR col.size] := 

[sub.pivot.row.value FROM O FOR col.size] 
base.value := sub.base.value 

own pivot row is global pivot row 
SEQ 

chan.out[chan.num] ! degenerate 
[pivot.row.value FROM O FOR col.size] := 

[in.buf[pivot.row] FROM O FOR col.size] 

chan.out[chan.num] pivot.row; 

IF 

[pivot.row.value FROM O FOR col.size] 

base.value>= MAX.REAL64 
status := 3 -- unboundness 

TRUE 
SEQ 

computation (in.bu£, pivot.row.value, pivot.row, pivot.col, 
main.module.size, col.size) 

-- find pivot column 
basis.index[pivot.row] := pivot.col 
find.min (in.buf[O], col.size, pivot.col) 
IF 

in.buf[O] [pivot.col] >= (-ZERO) 
status := 0 -- end 

TRUE 
SKIP 

chan.out[chan.num] status 



-- PROC build.new.object 
PROC build.new.object ((]CHAN OF ANY chan.in, chan.out, [] []REAL64 in.buf, 

[]REAL64 cost.buf, []INT basis.index, BOOL max.problem, 
INT row.size, col.size, main.module.size) 

REAL64 sum: 
INT size, real.col.size, kchar: 
[max.col]BOOL basic: 
[max.col]REAL64 pivot.row.value: 
SEQ 

-- set the basic variable indicator 
SEQ index= 0 FOR col.size 

basic[index] := FALSE 
SEQ index= 1 FOR row.size-1 

basic[basis.index[index]] := TRUE 

-- when the artificial variable is in the basis 
SEQ 

kchar := 0 
real.col.size := (col.size MINUS row.size) PLUS 1 
SEQ row= 1 FOR (row.size MINUS 1) 

IF 
-- then this is artificial var 

(basis.index[row] >= real.col.size) 
SEQ 

-- process pivot row information 
pivot.row := row 
chan.out[chan.num] ! kchar; pivot.row 
chan.in[chan.num] ? [pivot.row.value FROM 0 FOR col.size] 
IF 

IF 

pivot.row< main.module.size 
pivot.row.value :=[in.buf[pivot.row] FROM 0 FOR col.size] 

TRUE 
SKIP 

(pivot.row.value[0]>(-ZERO)) AND (pivot.row.value[0]< ZERO) 
-- select pivot column and zero to zero pivot 
SEQ 

pivot.col := 1 
WHILE (pivot.col< real.col.size) AND 

(basic[pivot.col] OR 
((pivot.row.value[pivot . col] > (-ZERO)) AND 

(pivot.row.value[pivot.col] < ZERO))) 
pivot.col :=pivot.col+ 1 

IF 
pivot.col= real.col.size 

-- redundant case 
PAR 

chan.out[chan.num] ! TRUE 
SEQ 

write.full.string(screen," %% Redundant Case: ") 
write.int(screen, row, 0) 
newline(screen) 

TRUE 
SEQ 

PAR 
computation (in.buf, pivot.row.value, 

pivot.row, pivot.col, 
main.module.size, col.size) 

chan.out[chan.num] ! FALSE; 
[pivot.row.value FROM 0 FOR col.size]; 
pivot.col 

basic[pivot.col] := TRUE 
basis.index[pivot.row] := pivot.col 

TRUE 
send SKIP message to subs 

PAR 
chan.out[chan.num] ! TRUE 
SEQ 

write.full.string(screen, " %% Redundant Case ") 
write.int(screen, row, 0) 
newline(screen) 
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TRUE 
SKIP 

chan.out[chan.num] ft.terminated 

-- send real col size 
col.size := real.col.size 
chan.out[chan.num] ! col.size 

-- send new cost coeficient 
size := row.size MINUS main.module.size 
chan.out[chan.num] ! [basic FROM O FOR col.size]; size 
SEQ row= main.module.size FOR size 

chan.out[chan.num] ! cost.buf[basis.index[row]] 

-- compute new object function 
SEQ col= 0 FOR col.size 

SEQ 
IF 

basic[col] FALSE 
SEQ 

PAR 
SEQ 

in.buf[O] [col] := 0.0 (REAL64) 
SEQ row= 1 FOR main.module.size-1 

in.buf[O] [col] := in.buf[O] [col] + 
(in.buf[row] [col] * cost.buf[basis.index[row]]) 

chan.in[chan.num] ? sum 
in.buf[O] [col] := (in.buf[O] [col] + sum) - cost.buf[col] 

TRUE 
SKIP 

PROC output.result 
PROC output.result (CHAN OF ANY from.stream, to.stream, 

SEQ 

[]CHAN OF ANY chan.in, [max.row]REAL64 solution, []INT basis.index, 
INT input.time, run.time, row.size, col.size) 

PROC recieve.soultion 
PROC receive.solution ([]CHAN OF ANY chan.in, []REAL64 solution) 

INT kchar, row: 
SEQ 

chan.in[chan.num] ? kchar 
WHILE kchar <> ft.terminated 

chan.in[chan.num] ? row; solution[row]; kchar 

PROC writings 
PROC writings (CHAN OF ANY screen, []REAL64 solution, 

[]INT basis.index, INT input.time, run.time, row.size, col.size) 
SEQ 

write. full. string (screen, 11 ## Simplex Method (cpu= 11 ) 

write.int(screen, max.cpu, 0) 
write.full.string(screen, 11 ,REAL64) Start ##*c*n 11 ) 

write.full.string(screen, 11 ## Problem Size : 11 ) 

write.int(screen, row.size, 0) 
write.full.string(screen, 11 x 11 ) 

write.int(screen, col.size, 0) 
newline(screen) 
write.full.string(screen, 11 ## Input Time 11 ) 

write.int(screen, input.time, 0) 
newline(screen) 
write.full.string(screen, "## Run Time 11 ) 

write.int(screen, run.time, 0) 
newline(screen) 
write. full. string (screen, 11## Optimal value 11 ) 

write.real64(screen, solution[O], 0, 2) 
newline(screen) 
write. full. string ( screen, 11 ## Simplex. method ( cpu= 11 ) 

write.int(screen, max.cpu, 0) 
write.full.string(screen, 11 ,REAL64) End ##*c*n 11 ) 

newline(screen) 



) 

write.full. string (screen, "## Solution Start*c*n") 
SEQ row= 0 FOR row.size 

SEQ 
write.int(screen, basis.index[row], 6) 
write.real64(screen, solution[row], 8, O) 
newline(screen) 

write.full.string(screen, "## Solution En d*c*n") 

vars 
CHAN OF ANY fromprog, tofile: 

PAR 

-- data writing 
SEQ 

receive.solution(chan.in, solution) 
writings(tofile,solution,basis.index,input.time,run.time, row.size, 

col.size) 
write.endstream(tofile) 

-- COMMENT screen echo (optional) 

-- mux 
INT result, fold.no: 
SEQ 

fold.no := 0 
scrstream.to.file (tofile, from.stream, 

to.stream, "output", fold.no, result) 
IF 

result 0 
SKIP 

TRUE 
STOP -- only alternative is to call scrstream.sink(tofile) 

-- press any to continue 
write.full.string(screen, "Press [ANY] key to continue") 
INT any: 
read.char(keyboard, any) 

PROC error.message 
PROC error.message (CHAN OF ANY keyboard, screen, INT status) 

error code explanation 
*************************************** 

status 0 normal fin 
1 now doing 
2 no feasible solution 
3 unboundness 
4 data size is too big 
5 data size is too small 

others system error number 
*************************************** 

SEQ 
IF 

(status= 0) OR (status 1) 
SKIP 

status = 2 
write.full.string (screen, "%% ERROR NO feasible solution ! ") 

status = 3 
write.full.string (screen, "%% ERROR Unboundness ! ") 

status = 4 
write.full.string (screen, "%% ERROR Data Size is Too Big ! ") 

status = 5 
write.full.string (screen, " %% ERROR Data Size is Too small ! ") 

TRUE 
SEQ 

write.full.string (screen, " %% File read error ") 



SEQ 

write . int ( screen , status , 0) 
press any to continue 

newline ( screen ) 
write . fu ll. string (screen , " Press [ANY] key to contin u e" ) 
INT any: 
read.char(keyboard , any) 
newline(screen) 

main procedure 
input data 

clock? time . start 
PAR 

input.data ( from . user.filer[2] , to .u ser.filer[2] , 
chan.read, 3 , status) 

distribute.data(chan.in , chan.out , chan.read , 
in.buf , cost.bu£, basis.index, 
row.size , col.size , main.module.size, max . problem) 

clock? time . end 
input.time ·= time.end MINUS time.start 

IF 
status= 0 

-- phase I 
SEQ 

write. full . string ( screen,"%% Simplex Method Start (REAL64) ... *c*n") 
clock? time . start 
chan.out [chan.num] ! col.size 
iteration (chan . in, chan.out,in.buf , basis.index , row . size , 

col.size , main . module.size , status) 
-- Feasibility Check 
IF 

IF 

(in.buf[0] [0] > ZERO) OR (in.buf[0] [ OJ < (-ZERO)) 
status .- 2 - - infeasible solution 

TRUE 
SKIP 

status= 0 
-- phase II 
SEQ 

build.new . object (chan . in,chan . out , in.buf,cost . buf, 
basis.index ,m ax . problem, row . size, 
col.size, main.module.size) 

iteration (chan.in, chan.out , 

IF 

in.bu£ , basis.index, row . size, col . size, 
main.module.size, status) 

status= 0 
-- output result 
SEQ 

TRUE 

clock? time . end 
write.full.string (screen, " %% Simplex Method End 

(REAL64) ... *c*n") 
run.time : = time . end MINUS time . start 
SEQ row= 0 FOR main . module.size 

solution [row] := in . buf [ row] [0] 
output . result (from.user.filer[0], to.user.filer[0] , 

chan.in , solution , basis .i ndex , 
input.time , run.time, row.size, col . size) 

error . message (keyboard , screen , status) 
TRUE 

error . message (keyboard, screen , status) 
TRUE 

error.message (keyboard, screen , status) 



) 

) 

A.2 Subprograms implemented on the Subprocessors 

-- node 
PROC node (VAL INT cpu , CHAN OF ANY from.root, to.root , from.sub, to . sub) 

************************************************ 
Simplex Method Segmentation partitioned by Rows 

By Sungwoon Choi in Oct. 19, 1987 
************************************************ 

#USE "const2 . tsr" 
-- vars 
(max .module] (max.col]REAL64 in.bu£: 
(max.module]REAL64 cost.bu£ , base: 
[max.col ] REAL64 pivot.row.value: 
(max . col ]BOOL basic : 
INT row.size , col.size , pre.size, full.size, row , col, kchar , size, status: 
INT module.size, modular, pivot.row , pivot.col: 
REAL64 in . data, sum: 
BOOL redundant: 

-- PROC inverseMatrix 
PROC inverseMatrix ((] (] REAL64 in.bu£, (]REAL64 pivot.row.value , 

INT pivot.row , pivot.col, pre.size, row . size , col.size) 
SEQ 

full.size ·= pre.size PLUS row.size 
SEQ index= 0 FOR row . size 

base (i ndex] := (-(in.buf(index] (pivot.col] / 
pivot.row . value (pivot.c ol ])) 

IF 
(pivot.row>= pre . size) AND (pivot.row< full.size) 

base [pivot.row MINUS pre . size] : = (1. 0(REAL64) -
pivot . row . value[pivot.col]) / pivot.row.value(pivot . col] 

TRUE 
SKIP 

comp ute new matrix using basis column 
SEQ col= 0 FOR col.size 

SEQ row= 0 FOR row.size 
in . buf(row] [col] := in . buf[row] (col] + 

(base(row] * pivot.row.value(col]) 

PROC computation 
PROC computation (CHAN OF ANY from.root, to.root, from.sub , to.sub , 

(] (]REAL64 in.bu£, INT pre.size, row . size , col . size , status) 
vars 

VAL running IS 1: 
INT sub . pivot .r ow: 
[max.col]REAL64 sub.pivot.row.value : 
REAL64 base.value, sub.base.value , epsilon: 
BOOL degenerate: 

SEQ 
receive and send status 

from.root ? status 
to . sub ! status 

WHILE status= running 
SEQ 

-- receive and send pivot column 
from.root ? pivot . col 
to.sub ! pivot.col 

degenerate : = TRUE 
WHILE degenerate 

SEQ 
PAR 

-- find current processor's pivot row 
SEQ 

pivot.row := 0 



SEQ 

SEQ row 0 FOR row.size 
SEQ 

IF 
(in.buf[row] [pivot.col] > ZERO) 

IF 
in . buf[row] [OJ < (-ZERO) 

base[row] := MAX.REAL64 
TRUE 

base[row] := in.buf[row] [OJ / in.buf[row] [pivot.col] 
TRUE 

base[row] := MAX.REAL64 
IF 

base[row] < base[pivot.row] 
pivot.row := row 

TRUE 
SKIP 

base.value := base[pivot.row] 
[pivot.row.value FROM O FOR col.size] := 

[in.buf[pivot.row] FROM O FOR col.size] 

receive 
from. sub ? 

pivot row from sub processors 
sub.pivot.row; 
[sub.pivot.row.value FROM O FOR col.size]; 
sub.base.value 

-- select pivot row and send to and receive from the root 
IF 

base.value> sub.base.value 
to.root ! sub.pivot.row; 

TRUE 

[sub.pivot.row.value FROM O FOR col.size]; 
sub.base.value 

to.root pivot.row PLUS pre.size; 
[pivot.row.value FROM O FOR col.size]; 
base.value 

from.root? degenerate 
to.sub ! degenerate 
IF 

degenerate 
-- the lexico minimum ratio rule 
SEQ 

from.root? epsilon 
SEQ row= 0 FOR row.size 

SEQ 
epsilon :=epsilon/ 2.0(REAL64) 
in.buf[row] [OJ := in.buf[row] [OJ + epsilon 

to.sub ! epsilon 

TRUE 
SKIP 

compute inverse matrix 
from.root? pivot.row; [pivot.row.value FROM 0 FOR col.size] 
PAR 

to.sub ! pivot.row; [pivot.row.value FROM 0 FOR col.size] 
inverseMatrix (in.bu£, pivot.row.value, 

pivot.row, pivot.col, pre.size, row.size, col.size) 

receive and send status 
from.root? status 
to.sub ! status 

WHILE TRUE 
SEQ 

-- initial data receive 
SEQ row= 0 FOR max.module 

SEQ col= 0 FOR max.col 
in.buf[row] [col] := 0.0 (REAL64) 

from.root? pre.size; module.size; modular 



) 

J 

-- set row.size 
IF 

modular> 0 
SEQ 

row.size := module.size PLUS 1 
modular:= modular MINUS 1 

TRUE 
row.size := module.size 

PAR 
to.sub pre.size PLUS row.size module.size; modular 
SEQ 

from.root? kchar 
WHILE (kchar <> ft.terminated) 

SEQ 
from.root? row; col; in.data 
IF 

row< (pre.size PLUS row.size) 
in.buf[row MINUS pre.size] [col] := in.data 

TRUE 
to.sub ! kchar; row; col; in.data 

from.root? kchar 
to. sub ! kchar 

phase I 
from.root? col.size 
to.sub! col.size 
computation (from.root, to.root, from.sub, to.sub, 

IF 
status= 0 

SEQ 

in.bu£, pre.size, row.size, col.size, status) 

when the artificial variable is in the basis 
from.root? kchar 
to.sub ! kchar 
WHILE (kchar <> ft.terminated) 

SEQ 
from.root? pivot.row 
to.sub ! pivot.row 
from.sub ? [pivot.row.value FROM O FOR col.size] 
IF 

(pivot.row>= pre.size) AND 
(pivot.row< (pre.size PLUS row.size)) 

[pivot.row.value FROM O FOR col.size] := 
[in.buf[pivot.row MINUS pre.size] FROM O FOR col.size] 

TRUE 
SKIP 

to.root ! [pivot.row.value FROM O FOR col.size] 
-- zero to zero pivot 
SEQ 

from.root? redundant 
to.sub ! redundant 
IF 

redundant 
SKIP 

TRUE 
SEQ 

from.root? [pivot.row.value FROM 0 FOR col.size]; 
pivot.col 

PAR 
inverseMatrix (in.bu£, pivot.row.value, 

pivot.row, pivot.col, pre.size, row.size, col.size) 
to.sub ! [pivot.row.value FROM 0 FOR col.size]; 

pivot.col 

from.root? kchar 
to.sub ! kchar 

phase II 
SEQ 

from.root? col.size 
to.sub ! col.size 



receive root processor's data and send to ths sub 
from.root? [basic FROM 0 FOR col.size]; size 
to.sub [basic FROM O FOR col.size]; (size MINUS row.size) 

from.root? [cost.bu£ FROM O FOR row.size] 
REAL64 temp.data: 
SEQ index= row.size FOR (size MINUS row.size) 

SEQ 
from.root? temp.data 
to.sub ! temp.data 

form a new BFS 
REAL64 sum: 
SEQ indexl = 0 FOR col.size 

IF 
basic[indexl] = FALSE 

SEQ 

TRUE 

sum:= 0.0 (REAL64) 
SEQ 

SEQ index2 = 0 FOR row.size 
sum:= sum+ 

(in.buf[index2] [indexl] * cost.buf[index2]) 
from.sub? in.data 

sum:= in.data+ sum 
to.root ! sum 

SKIP 

computation (from.root, to.root, from.sub, to.sub, 
in.bu£, pre.size, row.size, col.size, status) 

-- send solution 
SEQ 

TRUE 
SKIP 

kchar := 0 
SEQ row= 0 FOR row.size 

to.root ! kchar; (row PLUS pre.size); in.buf[row] [OJ 
from.sub? kchar 
WHILE kchar <> ft.terminated 

SEQ 
from.sub? row; in.data 
to.root ! kchar; row; in.data 
from.sub? kchar 

to.root ! kchar 

lastnode 
PROC lastnode (VAL INT cpu, CHAN OF ANY from.root, to.root) 

************************************************ 
Simplex Method Segmentation partitioned by Rows 

By Sungwoon Choi in Oct. 19, 1987 
************************************************ 

#USE "const2.tsr" 
-- vars 
[max.module] [max.col]REAL64 in.bu£: 
[max.module]REAL64 cost.bu£, base: 
[max.col]REAL64 pivot.row.value: 
[max.col]BOOL basic: 
INT row.size, col.size, pre.size, row, col, kchar, size, modular, status: 
INT pivot.row, pivot.col, full.size: 
REAL64 in.data, sum: 
BOOL redundant: 

-- PROC inverseMatrix 
PROC inverseMatrix ([] []REAL64 in.bu£, []REAL64 pivot.row.value, 

INT pivot.row, pivot.col, pre.size, row.size, col.size) 
SEQ 

full.size:= pre.size PLUS row.size 
SEQ index= 0 FOR row.size 

base [index] := (-(in.buf[index] [pivot.col] / 
pivot.row.value[pivot.col])) 



IF 
(pivot.row>= pre.size) AND (pivot.row< full.size) 

base [pivot.row MINUS pre.size) := (l.O(REAL64) -
pivot.row.value[pivot.col)) / pivot.row.value[pivot.col) 

TRUE 
SKIP 

-- compute new matrix using basis column 
SEQ col= 0 FOR col.size 

SEQ row= 0 FOR row.size 
-- COMMENT sparse case 

-- normal case 
in.buf[row] [col] := in.buf[row) [col) + 

(base[row) * pivot.row.value[col)) 

PROC computation 
PROC computation (CHAN OF ANY from.root, to.root, 

[) []REAL64 in.bu£, INT pre.size, row.size, col.size, status) 
vars 

VAL running IS 1: 
REAL64 base.value, epsilon: 
BOOL degenerate: 

SEQ 
full.size:= row.size PLUS pre.size 
from.root? status 
WHILE status= running 

SEQ 
from.root? pivot.col 
degenerate := TRUE 
WHILE degenerate 

~Q 
-- find current processor's pivot row 
SEQ 

pivot.row:= 0 
SEQ row O FOR row.size 

SEQ 
IF 

(in.buf[row) [pivot.col) > ZERO) 
IF 

in.buf[row) [OJ < (-ZERO) 
base[row) := MAX.REAL64 

TRUE 
base[row) := in.buf[row] [OJ / in.buf[row) [pivot.col] 

TRUE 
base[row) := MAX.REAL64 

IF 
base[row) < base[pivot.row) 

pivot.row := row 
TRUE 

SKIP 

-- select pivot row 
base.value := base[pivot.row] 
[pivot.row.value FROM O FOR col.size) := 

to.root 

[in.buf[pivot.row] FROM O FOR col.size) 

pivot.row PLUS pre.size; 
[pivot.row.value FROM O FOR col.size); 

base.value 

from.root? degenerate 
IF 

degenerate 
SEQ 

from.root? epsilon 
SEQ row= 0 FOR row.size 

SEQ 
epsilon:= epsilon/ 2.0(REAL64) 
in.buf[row] [OJ := in.buf[row) [OJ + epsilon 

TRUE 



) 

) 

SEQ 

SKIP 

inverse Matrix 
from.root? pivot.row; [pivot.row.value FROM 0 FOR col.size] 
inverseMatrix (in.bu£, pivot.row.value, 

pivot.row, pivot.col, pre.size, row.size, col.size) 

from.root? status 

WHILE TRUE 
SEQ 

-- initial data receive 
SEQ row= 0 FOR max.module 

SEQ col= 0 FOR max.col 
in.buf[row) [col) := 0.0 (REAL64) 

from.root? pre.size; row.size; modular 
from.root? kchar 
WHILE (kchar <> ft.terminated) 

SEQ 
from.root? row; col; in.data 
in.buf[row MINUS pre.size] [col] := in.data 
from.root? kchar 

phase I 
from.root? col.size 
computation (from.root, to.root, 

IF 

in.bu£, pre.size, row.size, col.size, status) 

status= 0 
SEQ 

when the artificial variable is in the basis 
from.root? kchar 
WHILE (kchar <> ft.terminated) 

SEQ 

SEQ 

from.root? pivot.row 
IF 

(pivot.row>= pre.size) AND (pivot.row<(pre.size PLUS row.size)) 
[pivot.row.value FROM O FOR col.size] := 

[in.buf[pivot.row MINUS pre.size] FROM O FOR col.size] 
TRUE 

SKIP 
to.root ! [pivot.row.value FROM O FOR col.size] 
from.root? redundant 
IF 

redundant 
SKIP 

TRUE 
SEQ 

from.root? [pivot.row.value FROM O FOR col.size]; pivot.col 
inverseMatrix (in.bu£, pivot.row.value, 

pivot.row, pivot.col, pre.size, row.size, col.size) 
from.root? kchar 

phase II 

from.root? col.size 
-- receive cost vector to sub processors for new object function 
from.root? [basic FROM O FOR col.size]; size 
SEQ index= 0 FOR row.size 

from.root? cost.buf[index] 

-- form a new cost vector 
REAL64 sum: 
SEQ indexl = 0 FOR col.size 

IF 
basic[indexl] = FALSE 

SEQ 
sum:= 0.0 (REAL64) 
SEQ index2 = 0 FOR row.size 



) 

TRUE 

sum := sum + 
(in.buf[index2] [indexl] * cost.buf[index2]) 

to. root ! sum 

SKIP 

computation (from.root, to.root, 
in.bu£, pre.size, row.size, col.size, status) 

-- send solution 
SEQ 

TRUE 
SKIP 

kchar := 0 
SEQ row= 0 FOR row.size 

to.root kchar; (row PLUS pre.size); in.buf[row] [OJ 
to.root ! ft.terminated 



) 

) 

A.3 Transputer Network Configuration 

-- vars 
-- define hard link value 
VAL link0out IS 0 
VAL linklout IS 1 
VAL link2out IS 2 
VAL link3out IS 3 
VAL link0in IS 4 
VAL linklin IS 5 
VAL link2in IS 6 
VAL link3in IS 7 

-- define soft link (sequential) 
VAL root.link.in IS [link0in, link2in, 

link0in, link2in, 
link0in, link2in, 
link0in, link2in , 

VAL root .l ink . out IS [link0out, link2out, 
link0out, link2out, 
link0out, link2out, 
link0out, link2out , 

VAL sub.link.in IS [link3in, link3in, 
link3in, link3in, 
link3in, link3in, 
link3in, link3in, 

VAL sub.link . out IS [link3out, link3out , 
link3out, link3out, 
link3out, link3out, 
link3out, link3out, 

-- COMMENT define soft link (tree) 

VAL max . cpu IS 16 : 
[max.cpu)CHAN OF ANY from . root, to.root: 

PLACED PAR 
PLACED PAR cpu = 0 FOR (max . cpu - 1) 

PROCESSOR cpu T4 

link2in, 
link2in, 
link2in , 
link2in , 
link2out , 
link2out, 
link2out, 
link2out, 
link3in , 
link3in , 
link3in, 
link3in, 
link3out, 
link3out, 
link3out, 
link3out, 

PLACE from.root[cpu) AT root.link . in[cpu) 
PLACE to.root [cpu) AT root.link . out[cpu): 
PLACE to.root [cpu+l) AT sub.link.in[cpu) : 
PLACE from.root[cpu+l) AT sub.link . out[cpu): 

link2in, 
link2in, 
link2in , 
link2in) : 
link2out, 
link2out, 
link2out, 
link2out): 
linklin , 
linklin , 
linklin, 
linklin) : 
linklout, 
linklout, 
linklout , 
linklout): 

node (cpu, from . root[cpu), to.root[cpu), to.root[cpu+l), from.root[cpu+l)) 
PROCESSOR (max . cpu - 1) T4 

PLACE from.root[max . cpu - 1) AT root.link.in [max . cpu -1 ) : 
PLACE to.root [max . cpu-1) AT root .l ink.out[max . cpu-1) : 
lastnode (max.cpu-1, from . root[max.cpu -1), to.root[max.cpu-1)) 




