
Parallel Execution of the Simplex Algorithm

)

Sungwoon Choi

)

Parallel Execution of the Simplex Algorithm

by

Sungwoon Choi

A research project submitted in partial fulfillment of

the degree of Master of Science

Major Professor

Dr. T. G. LEWIS

Department of Computer Science

Oregon State University

Corvallis, Oregon

April 30, 1988

)

Acknowledgements

I am grateful to my advisor, Professor Ted Lewis, for his guidance,

understanding, helpfulness and encouragement. His experience and

assistance have been instrumental at innumerable points in the

progression of this problem. I would also like to thank my parents for

their support, as well as my wife, Yejung, and my daughter, Eunyung, for

their patience, help and understanding.

Sungwoon Choi

May, 1988

Table of Contents

1.0 Introduction 1

2.0 Background 4

2.1 Performance Measures 4

2.2 Simplex Methods 4

2.2.1 Definition 4

2.2.2 Computational Procedures 6

2.2.3 Two-Phase Simplex Method 10

2.3 Transputer Systems 11

2.3.1 Transputer Hardware Configuration 11

2.3.2 Transputer development system 12

2.3.3 Occam 14

3.0 Experiments in parallelized Simplex method 15

3.1 Architectural issues 15

3.2 Algorithm issues 18

3.2.1 Distribution by rows 18

3.2.2 Distribution by columns 23

3.3 Test cases 24

4.0 Summary 33

References 35

Appendix A : Program Source Listing

A.I Main Program

A.2 Subprograms implemented on the Subprocessors

A.3 Transputer Network Configuration

) List of Figures

2-1 Simplex Tableau 7

2-2 Transputer (T414) Block Diagram 13

2-3 IMS B003 Evaluation Board Link Connection 13

3-1 Tree Structured Transputer Network with Three Child 16

3-2 Mesh Structured Transputer Network 17

3-3 Distribution by rows 19

3-4 Distribution by columns 19

3-5 Task Graph of Simplex Method

with Sequential Data Loading path 21

3-6 Execution Time vs. Speedup 25

3-7 Execution Time vs. Number of Processors 26

) 3-8 Execution Time vs. Number of Rows

assigned to one processors 28

3-9 Execution Time vs. Overhead due to Parallelization 30

3-10 Theoretical vs. Experimental Efficiency 31

)

)

)

1

PARALLEL EXECUTION OF THE SIMPLEX ALGORITHM

ABSTRACT

This project is concerned with the optimal distribution of the

computation and the data in parallelized Simplex algorithms. Test cases

were implemented on a 16-processor Transputer system from INMOS

Corporation. By careful consideration of distribution of computations and

data, a nearly linear speedup pattern was obtained. The most

interesting thing in this study was that 1) the execution time is not

dependant on communication delay, 2) overhead due to parallelization

does not significantly increase as the number of processors increase and

3) the Simplex algorithm communication delay is not so significant if the

problem size is big enough.

Keywords and phrases : message-passing, two-phase Simplex, linear

programming, distributed memory, multiprocessor system

1.0 Introduction

Distributed computation has for many years been the focus of

considerable research, offering a number of advantages, such as ready

availability, high degree of reliability, high performance, and the ability

to incrementally add to the system due to their modular structure [1].

The objective of this study is to determine the best utilization of parallel

The objective of this study is to determine the best utilization of parallel

processors for solving the two-phase Simplex algorithm, which is the

most popular algorithm for solving linear programming problems [2].

This problem can be addressed two ways: 1) algorithm issues, and 2)

architectural issues.

Algorithm issues; Two methods may be used to implement the

parallel Simplex algorithm [3], either 1) segmentation by rows or 2)

segmentation by columns. The major difference between these two

methods is the way they perform communication. They may yield almost

identical results when run on a shared memory machine which is

assumed to have no communication delay. But experiments show

segmentation by rows is advantageous for message-passing

communication as in the Transputer system since row segmentation

reduces overall communication cost.

Architectural issues; Compute-Aggregate-Broadcast algorithms are

composed of three phases: 1) a compute phase which performs some

basic computation, 2) an aggregate phase which combines local data into

one or a few global values, and 3) a broadcast phase which returns global

information back to each process [4]. A tree structure with three children

may be the best means to reduce the communication overhead in

Transputer systems since it has the shortest diameter, 2log3p, among the

structures which can be built using Transputer network. But in this

experiment, a sequential communication path is used, because we found

no big difference in communication delay between the sequential and

the tree structured architecture when the communication path is short.

2

)

')

In addition it is very hard to map the computation and data to a tree

structured Transputer system because of the special architecture of the

Transputer board. If the number of processors gets larger, a tree

structured communication path may be preferred.

In this study, almost linear speedup was obtained for Simplex

algorithms based on a sequential communication path , and careful

distribution of computation and data.

3

)

2.0 Background

2.1 Performance Measures [3]

Notations are defined as follows :

4

Execution time, T (p,m,n) is the time to compute a Simplex problem

with m constraints and n variables on p processors.

Execution time includes initialization and communication time but

does not include disk input/output time.

Speedup, S (p,m,n) is the ratio of the time required by the serial

algorithm divided by T(p,m,n).

S(p,m,n) = T(l,m,n) / T(p,m,n)

Efficiency, E (p, m, n) = S(p,m,n) / p.

Communication delay, D (p, m, n) is the delay time due to data

communication.

2.2 The Simplex Method

The Simplex method, in conjunction with certain auxiliary

procedures, provides an algorithm for the solution of standard linear

programming problems.

2.2.1. Definition [2]

Linear programming can be defined as the optimization of problems

such as

solve for x1, x2, ,xn-I, xn, such that

max or min f(x 1, ,xn),

)

)

subject to g(x1, ,~)~or= or;?: bi i = 1, ,n,

in which the objective and constraint functions are all linear.

Any given linear programming problem, after suitable algebraic

manipulation, can be represented in standard form, P:

Max z = cTx

subject to Ax = b,

where x ;?: 0, b ;?: 0, and

A is an m x n matrix , representing the constraints,

xis an element solution vector,

b is the right hand side of m constraints, and

c is the n coefficients of the objective function.

5

A basic feasible solution (BFS) is a non-zero solution which satisfies

the constraint set Ax= b, x;?: 0, and can be collected into an m x 1

vector xB. The remaining (n - m) nonbasic variables, whose values are

required to be zero, are contained in the vector xR. The columns of A

associated with the variables of a basic feasible solution xB are assembled

into them x m basis matrix B. By reordering the original problem

variables, along with their associated columns aj and cost coefficients cj,

the original vector of variables can be partitioned into basic and nonbasic

pieces: x = [xB xR]. In accordance with this partition, the constraint

matrix A then can be partitioned into [BR] where Bis the basis matrix

associated with xB and R is the m x (n - m) matrix of nonbasic columns.

The values of the variables for this particular BFS are given by xB = B-1b

and xR = 0 and the associated partition of the cost vector is cT = [cB T

cR T]. Now the original problem P can be rewritten as

Max z = cBTxB + cRTxR

subject to

and

And for any basis B and for any column aj of A, whether or not it is a

basic column, Yj = B-1aj and zj = cB Tyj = cB T B-1aj can be defined .

Although Yj and zj by themselves have no particular name, the values of

Yj are the scalar coefficients in the expression of aj as a linear

combination of the basic columns of B and the value (zj - c} can be

expressed as the reduced cost of the jth column or of the jth variable.

The Simplex method is the most popular algorithm for solving the

linear programming problem. Even if its time complexity is theoretically

exponential in its worst case and polynomial in the expected number of

iterations , practice has shown that it is capable of rapid convergence,

requiring m to 3m iterations to complete[lO].

2.2.2 Computational Procedures [2] [10] [11]

The current values of the relevant variables and quantities are

stored in a skeleton diagram, called a simplex tableau, as shown in Figure

2-1. All variables, xj, basic or not, are listed across the top and the

current basic columns , bj, are listed by name at the left. The second

column of the tableau contains the values of the basic variables and the

objective function which is being maximized. Each of the remaining

6

)

columns belongs to (or is associated with) an xj value and contains an Yj

vector and its corresponding (zj - c} value.

Figure 2-1 Simplex Tableau

Ym1 Ym2 Ymn

Max z I

Assume then, that the current basic feasible solution is not optimal

and that the current values of all xBi, all Yij• and all (zj - c} are known.

This solution can be improved by changing the value of one of the

nonbasic variables xj, i.e., pivoting to an adjacent extreme point. If the

goal is to increase the value of z as fast as possible, an obvious strategy is

to increase the variable, xj, having the most negative reduced cost;

Simplex basis entry criterion : The nonbasic variable, xk, is

7

chosen to increase and enter the basis if and only if (zk - ck) is

negative and

where j is an index over all nonbasic variables.

Since the variable, xk, is chosen to enter the basis, one of the current

8

basic variables must be ejected. But because of the nonnegativity

constraint of BFS, a pivot must be selected according to the following rule.

Simplex basis exit criterion : Given that the variable xk is to

enter the basis, the column brand variable xBr must leave,

where

and i is an index of basic variables.

The next pivot consists of the variable xk entering and xBr leaving the

basis. At each pivot the old values are read from the current tableau and

the transformation can be performed. The newly calculated values are

then entered in a new simplex tableau.

Although a fair amount of algebraic manipulation is necessary, this

may be minimized and the chance of error can be reduced by arranging

the computation in an orderly and symmetrical manner. For example

form a new vector <I> from the tableau column belonging to xk:

<I>= (-Y1k/Yrk , ... ,-yr-1,iYrk ,l/Yrk-1,

-yr+l iYrk•···, -ymk/Yrk ,-(zk - ck) IYrk) ,

Note that the last element, (zk - ck), is treated the same way as all the Yik

values, with the exception of Yrk· In the previous tableau the element Yrk

was placed in the column of the newly entering variable, xk• and in the

row of the departing basic variable, xBr-

In the new tableau the various labels, xj and bi, will be the same as

in the previous tableau, except that the rth basic column br now will be

ak. It may then be asserted that each column of entries for the new

tableau is derived from the ith corresponding column in the old tableau

by means of the following transformation :

(new column j) = (old column j) + Yrj <I>.

Computational Procedures:

1) Select the pivot column k so that ck< 0. If the column

does not exist , stop; the optimal solution has been found.

2) select the pivot row r with the smallest positive ratio,

b/Yrk• for Yrk> 0. If the row does not exist, stop; the

objective function is unbounded.

3) Perform the transformation on matrix A:

for col := 1. .n+ 1 do

for row := 1 .. m+ 1 do

Yrow,col := Yrow,col + <I>row X Yr.col

4) Return to step (1) and repeat the procedure.

9

At each iteration, the Simplex method transforms the problem,

increasing the objective function while observing the constraints.

2.2.3 Two Phase Simplex Method [2]

By means of the Simplex method developed in the previous section,

any linear programming problem (LPP) in standard form can be solved,

provided that redundant constraints have been eliminated and that a

basic feasible solution has been identified. Unfortunatly, an LPP arising

in the real world may not meet these requirements. Therefore to solve

any standard-form LPP, an initial basic feasible solution must be grafted

onto the Simplex method by a preliminary procedure that identifies

redundant constraints. The preliminary procedure is phase 1 of the

so-called "two-phase" Simplex algorithm.

The two-phase Simplex algorithm for solving the linear

programming problem P can be summarized as follows:

1) Given the standard form of linear programming problem, the

auxiliary problem Q can be formed as:

Max z' = -lw

subject to Ax + Im w = b

where X 2:: 0, W 2:: 0

1 is an m-component row vector with all l's

1m is an mxm identity matrix

w is an m-component column vector of artificial

variables

1 0

If the matrix A contains a submatrix Im, it will serve as an initial

)

1 1

basis. Then, if there are no redundant constraints and an initial

basic feasible solution has been found; proceed to step (4). If A does

not contain an identity submatrix, produce one by adding a

sufficient number of nonnegative artificial variables, wi.

2) phase 1. Use the Simplex method to solve the problem Q. If the

optimal value of the phase-1 objective function is negative then P

has no feasible solution. But if the minimum value of the sum is

zero, prolong phase 1 in an effort to drive all artificial variables out

of the basis.

3) If all artificial variables can be expelled, then a BPS to problem P has

been found. On the other hand, for every artificial variable w s that

cannot be removed from the basis, the sth constraint of problem Pis

redundant. In either case, so long as phase 1 ends with a zero

valued objective, the final tableau is converted into the initial

tableau of the phase 2 simply by deleting the nonbasic artificial

columns and recalculating objective value, z and all (zj - cj) in

accordance with the original objective function.

4) Phase 2. Apply the Simplex method to the modified tableau until

the optimal solution to problem P is obtained. Note that an artificial

variable that could not be driven out of the basis in phase 1 will

remain in the basis with a zero value throughout phase 2.

2.3 Transputer Systems [5]

2.3 .1 Transputer Hardware Configuration

A Transputer is a microcomputer with its own local memory and

)

1 2

links for connecting one Transputer to another. Our test system consists

of the IMS B004 IBM Personal Computer add-in board and four IMS B003

evaluation boards. The IMS B004 board has one T414 Transputer with

two megabytes of RAM, and PC subsystem logic, allowing a program

running on the PC to reset and analyze systems. The IMS B004 board

also has an IMS C002 link adaptor, interfacing with a parallel

address/data bus. Each IMS B003 board is a double extended Eurocard

containing four T414 Transputers, each of which has 256 Kbytes of

dynamic RAM. Thus the complete system has 16 transputers with a total

of 4 Mbytes of Ram, connected to the B004 Transputer which is inside the

PC.

The 1.5 micrin CMOS IMS T414 (Fig. 2-2) integrates a 32-bit

microprocessor, four standard Transputer communications links, 2 Kbytes

of on-chip RAM, and memory and peripheral interfacing on a single chip.

Each Transputer on the IMS B003 board (Fig. 2-3) is connected in a

square with rotational symmetry. Link 2 of each Transputer is connected

to link 3 of the next Transputer and links O and 1 of each Transputer are

directed to the edge connector. Because of the edge connector, it is

possible to freely choose the shape of the system used.

2.3 .2 Transputer Development System

Our system is designed and developed under the TDS D700C system

using Occam II as its programming language. The Transputer

Development System (TDS) provides the following major facilities:

* Edit, compile, and run an Occam 2 program within the system.

)

1 3

Figure 2-2 Transputer (T414) Block Diagram

Reset -
Analyse -
Error ._. System
BootFromRom-+ seruices
Clockin -
vcc
GND

CapPlus
CapMinus

2k bytes
of

On-chip
RAM

ProcClockOut ~
nottv1emS0-4 ._. Memory
nottv1em80-3 ._. interface
nottv1em Rd ._.
nottv1em Rf ._.
MemWait -
memconfig -+

<-- MemReq
--> MemGranted
<-> MemAD0-31

32 bit
Processor

Link
Interface

Link
Interface

Link
Interface

Link
Interface

[11ent

<-- Linkln0
--> LinkOut0

<--Linkln1
--> Li nkO ut1

<--Linkln2
--> Li nkO ut2

<--Linkln3
--> LinkOut3

--> EventAck
I<--Eve ntReq

Figure 2-3 IMS B003 Evaluation Board Link Connection

I I
I L"I I ILO I

--LO TO L2 L3 T1 L"I-

I L3__j I L2 I
I I

I L2j r-L3 I L "I T3 L3 L2 T2 Lo-

I LO I LL .. I
I I

1 4

*

*

Configure an Occam program for a network of Transputers, and load

it into the network from a link on the TDS's Transputer board.

Analyse a network of running Transputers and obtain the program

source line corresponding to the current process running on each

processor.

2.3.3 Occam [6][8]

Occam is a high level language which provides a framework for the

design of concurrent systems, using Transputers in the same way that

boolean algebra provides a framework for the design of

electronicsystems from logic gates. A program running in a Transputer is

formally equivalent to an Occam process, so that a network of

Transputers can be described directly as an Occam program.

Occam provides some special features for interprocess

communication and parallelization: primitives like ! to output to a channel

and? to input from a channel and constructs like Par, which ensures that

the process is executed in parallel, and Alt which observes a number of

channels for the first input, then executes the process associated with

that input. Communication in Occam is synchronous, unbuffered, and

supported by hardware in the Transputer. To establish interprocess

communication, processes must execute in parallel and share a common

channel.

)
3.0 Experiments in parallelized Simplex method

Parallel processing can be addressed on three levels [7]: 1)

Architectural issues, including the means of organizing and implementing

computers with multiple processing elements; 2) Software issues,

including applications and system software; and 3) Algorithm issues,

which are concerned with the problem of parallel algorithm design. In

this section, only the architectural and algorithm issues for

implementation of the two-phase simplex method in a network of

Transputers are considered.

3.1 Architectural Issues

A Transputer network can be easily transformed into different

structures, eg., mesh, shuffle or other structures with the limitation that

each processor has only four links, two of which are already linked

internally in one board. Each board is limited to four processors.

The Transputer network was configured as a tree with three

children (Fig. 3-1) to reduce communication overhead on the first

implementation. The Simplex method requires a controller processor,

which is responsible for overall system synchronization (see section 2.2).

For this mechanism, an architecture with the shortest diameter is most

suitable in the sense of execution time, but less desirable from the

development and maintenance point of view. The tree structure with

three children is hard to map into a real system and the programs can

not be generalized. In this instance, the tree structured network was

1 5

Figure 3-1 Tree structured Transputer Network

with Three Children

.,._,. [IN,._.._,
%!1~!1%1 a ~~!~::;--2

;!!._,.

,iir~W

Al%H~ll% /

I 1!l~H%!l[• I~ 0li%li~ I

,.,_,,..,.,~.,,.,_..,.

1 6

I "'l~li~~ ' r&!!~!!~!! 2 ~"--•::;z• :I
~Hr•0H~,. ~

~·~ ~i!~ll~ll~z

- ~,~ .. ,2 .. u~I
ii%ii%il%l ,,_..,.,,, ... ,,,_.,,., ,, , .. ~.,,.......,,

"'~!!0

~H%,lirali
5~~~=~~~=:: 2!

~"'-l!~ll~"' ·-~~-'1'¾ /. ,_,,_5

iraffi{
r·:• 1!;-~\flil~
, ,,,_,,,

. fli%ii

0 0 ½~ ::~!!~
.~..,, .. .,,._,

l~H%!
"----: :0 0 0 , 1: 0 i%lirau---

"- ~·~/ '\ ~!1~!!1~!1~
,H~m~~~~ /. 'f/. /.

Figure 3-2 Mesh structured Transputer Network

__ : internal link
__ : external link

1 7

)
simulated by a sequential Transputer network (Fig. 3-2). In a large

Transputer network, a tree structure will be required, but for a system

with 16 processors such as the one in question, there is not a great

difference in communication overhead between the tree and the

sequential network. This is shown by the test cases run in section 3.3.

3 .2 Algorithm Issues

The Simplex method can be parallelized in two fundamentally

different ways. One is to parallelize the pivoting process by Simplex

method step (1) and reduce the number of iterations. Another method is

to distribute the computation and data in accordance with Simplex

method step (3), which is the means of implementation used in this

study. There are two alternatives, distribution by rows (Fig. 3-3) and

distribution by columns (Fig. 3-4), which yield nearly identical results.

However the former method involves less communication overhead in

step(l) and step(2) of the Simplex method and can reduce the effort of

redistributing the matrix in phase 2 of the Simplex method (see section

2.2).

3.2.1. Distribution by rows

1 8

Fig. 3-5 shows the Task Graph [9] of the Simplex method distributed

by rows in the Transputer network. Tasks in the same columns

represent processes executed by the same processor, which is made clear

by the zero communication delays between tasks. Tasks from nodes #2

to #p are identical, as are those from #p to #2p. Tasks from #2 to #p

)
Figure 3-3 Distribution by rows

matriH

L--J---
Figure 3-4 Distribution by Columns

)

matriH

l
processors 1

1

processors

1 t

31,___ 4 ___.
i

1 9

4

receive the pivot column from the controller and select the local pivot

row; tasks from #p to #2p select the global pivot row and send it to the

controller. Then tasks #1, #2, #3, #(p-1) , #p, #(p+l), #(2p-1), #2p,

#(2p+ 1), #(3p+2) and #(4p+3) become the critical path. In this

experiment, external input/output is done by tasks #1 and #(4p+3).

Theoretical execution time for one iteration is computed as follows:

Communication delay , the tasks from #2 to #2p,

20

D(p, m, n) = (P x (data size x (n + 3))) communication time per byte

= t}(n X p)

and the execution time, except for communication delay, as

t(p,m,n) = (rm/pl divisions)

+ ((rm/pl X n) multiplications & additions)

= 1'}(rm/pl X n)

from the tasks #2, #2p, #2p+ 1, and #3p+ 2. Then the total execution time

lS Tp(p,m,n) = D(p, m, n) + t(p,m,n) = t}(n X (p + Im/pl)).

In contrast, for the serial method

Ts(m,n) = (n + m - 2) comparisons+ (m divisions)

+ (m x n) multiplications & additions

= t}(m x n) .

A speedup may be obtained as

S(p, m, n) = Ts(m,n) / Tp(p,m,n)

and efficiency as

E(p,m,n) = S(p, m, n) / p.

Figure 3-5

>

)

0

Task Graph of Simplex Method

with Sequential Data Loading Path

ker
X task number

21

y communication delay in bytes

m number of constraints
n: number of variables

y p number of processors

0
0 0 0

4*(n+1)

0 ~--- --., _ -
4*(n+1) ··--.,.

0

0

22

)
Task Description

1 Initialize the variables and find pivot column.

2 Send pivot column index to the next.

3 .. (p-1) Receive pivot column index from the previous

task and send it to the next.

p Receive pivot column index.

Find pivot row among its own data.

Send its pivot row information to the next.

(p+ 1) .. (2p-1) Find pivot row among its own data.

Receive pivot row information from the

previous and compare its pivot row with the

previous and find the smaller.

) Send the smaller pivot row information to the next.

2p Find pivot row among its own data.

Receive pivot row information from the

previous and find the global pivot row

2p+l Send global pivot row information.

(2p+2) .. 3p Receive and send global pivot row information.

3p+l Receive global pivot row information.

3p+2 Check the optimality of the answer.

Compute new matrix.

Find new pivot column index.

(3p+2) .. (4p+2) Compute new matrix.

4p+3 Terminate.

)

)

)

From the above, it may be seen that the execution time, t(p,m,n)

varies by the factor of rm / pl X n, but that communication delay'

D(p,m,n) is dependent on the factor of n x p. If the problem gets larger,

when compared to the number of processors, p, the communication

delay, D, can be negligeable. If the tree structured Transputer network is

adapted, the communication delay is dependent on the factor of n x

log3p. The reason why almost linear performance improvement is

obtained is that the communication delay is relatively small, compared to

the entire computation. Real experiments indicate the communication

delay constitutes 2% to 5% of the entire execution time.

3 .2.2. Distribution by columns

If the computation and data are distributed by columns, there will

be similar results. The communication delay in one iteration will be

D (p, m, n) = (m divisions)+

(P x (data size x (m + 2))(communication time per byte)

The reason why m-divisions are involved in the communication delay is

that the other processors must wait until the processor which has the

pivot column selects the exiting pivot row. Also another communication

delay is caused by redistribution at the beginning of phase 2 of the

Simplex method. In phase 1 we build an auxiliary problem to get an

initial basic problem, thus the actual problem size ism x (m + n).

However in phase 2, the problem size reduces to m x n, but there will be

(m x n) more communication time.

23

)
The execution time, except for communication delay is

t(p,m,n) = ((r n; p 7 + m + p-3) comparisons)

+ (m divisions)+ ((m X r n /pl) multiplications & additions).

From the above results , it is obvious that distributing the data by rows

gives better performance.

3.3 Test Cases

In testing the distribution-by-rows parallelized Simplex algorithm,

64 bit real number computation was performed with 10-15 precision on

five 100 x 200 test cases with 99% data density and one 300 x 400 test

case with 1 % data density. The same speedup and efficiency were

obtained for all test cases because the parallelized Simplex algorithm can

not find the optimal pivot order and concentrates on the distribution of

computation and the data of Simplex method step(3). So the results may

be generalized because the distribution-by-rows parallelized Simplex

algorithm is the same as the serial Simplex algorithm except for the

distribution of computation and data to the multiprocessors. The results

show an almost linear performance improvement , which exceeds the

theoretical estimate of speedup.

Fig. 3-6 provides data from a Simplex problem with 100 constraints

and 200 variables and Fig. 3-7 shows the case of 300 constraints and 500

variables. The only difference between the two cases is that the speedup

curve is almost linear until the point for 10 processors is reached in Fig.

3-7, whereas in Fig. 3-6 the comparable number of processors is 5. The

main reason for this difference is that as the data size allocated to one

24

)

25

Figure 3-6 Execution Time vs. Speedup

- 100 constraints and 200 variables test case

- T (p,m,n) = 9 I 200 x n x Im/pl + 30

where m= 100

n=200

p = 1..16

200 -

IOO -

1000(sequential method)

12.05
/.

10.20 1~19-- ■
9 .35 ----- • ._ ■ ,--, 10 .87

217
■ ----- ■ r 10.00

'-. /·8.70

'179 ■ 8.06
·-...... 160 /

' ■ 142 , ■ 7 .52

'· 133
_.......... '· 124

/ 6.25 115
4.61/s.ss ,~ 7 98 100 I ----- ■ 91 92

■-- 8■3

1.00 (sequential method)

--1--1-1--1--1-1-1--1-1--1--1--1-1
5 6 1 8 9 10 11 12 13 14 15 16 11

number of proc:elilsars

16

12

8

4

Figure 3-7

Execution Timevs. Number of Processors

- 300 constraints and 500 varaibles test case

-T (p,m,n) = 9 I 100 x n x Im/pl+ 145

where m=300

n =500

p = 1..16

[Kee:ution Time-in SM~nd~

.
253'0.

',,,,,, 2215

2[)00 -

...,
,

......... ___

Real Data

Estimation

26

Jgsi5 ... ,., J 755
... ..., ... _____ • 1440

1 oao-

/5115 ,.,._

"- 1267
1359'-, 1133

11]~--■-- 1[)00
--■...,,

1[)43

--1--,-1--1-1-1-1--1-l--l--l-1-1-
5 , 1 e g 10 11 12 13 14 1s 16 11

number of processors

)

27

processor gets smaller, the uneven distribution of rows to each processor

can more easily affect the whole execution time. The graph which shows

the linear relation between the number of rows assigned to one processor

and the execution time is shown in Fig. 3-8. Execution time is affected by

processors which have more rows than other processors. That is,

speedup T(p, m, n), is a function of Im/ p 7. As the data size assigned to

one processor becomes smaller, the computation time for one more row

can significantly affect the whole execution time. An attempt was made

to distribute the rows evenly. However if there exists a remainder row,

for example m = 19 and p = 9, then each processor holds 2 rows with one

row left only, the host processor was assigned first, in order to parallelize

the effort of computing this redundant row and the data communication.

That is, because the communication data path is sequential, the host

processor is idle during the communication time from node #3 to #2p-1

in Fig. 3-5. This idle time can be used for computation of the remainer

row by assigning it to the host processors first. Actually the effect is the

same as reducing the communication delay.

The most interesting thing in this study is that the execution time is

not dependent on communication delay which is the most critical aspect

of a message passing machine. In Fig. 3-9, overhead due to

parallelization did not significantly increase as the number of processors

increased. This is because the Transputer system provides fine grain

parallelism by fast context swithching as well as large grain parallelism.

By this it is meant that even if the system under study has a sequential

data communication path, the actual communication delay is two thirds of

)

Figure 3-8

Execution Time

vs.

Number of Rows assigned to One Processors

300 constraints and 500 varaibles test case

T (p,m,n) = 9 / 100 x n x Im/pl+ 145

100 constraints and 200 variables test case

T (p,m,n) = 9 / 200 x n x Im/pl + 30

3000·

21)00

IDOO

411

255 ,........
•• ,,...,..,. •• ~•r-"··~·

~-~· ~--~-~··

20 2!5 30 40 4!5 !50 !55

number of constraints assigned to one processor

28

3112!5 •

60 6!!i

)
D(p,m,n), shown in Fig. 3-9. As a result, the Simplex algorithm

communication delay is not so significant if the problem size is big, ie.,

the size of the total system memory. For example in Fig. 3-9, the portion

of the communication delay in the total execution time is less than 5%

when the number of processors p = 4, and efficiency, E(p,m,n) is 95%.

Actually pure communication delay is less than 3%, another 2% is due to

processes that can not be parallelized. The main factor is that execution

time increases for computing each additional row. The total execution

time can be formulated from the test data as T(p,m,n) = 9 / 200 x n x rm

/pl+ 30 when m = 100, n= 200. The overhead due to parallelization

seems to be constant compared with the whole execution time.

29

Every test case indicates algorithmic efficiency of 75% to 95%. This

is far more than the predicted efficiency 53% to 93% (Fig. 3-10) which

can be computed from section 3.2.1 and Table 3-1.

D(p,100,200) = p X (8 X (200 + 3)) X (2.5 X 10-6)

= 4120 X p X 1 o-6

t(p,100,200) = r 1001 P 1 x (55.750 x 10-6)

+ c r1001 P 1 x 200)) x (66.o5o x 10-6)

= 13265.75xr1001 P 1 x 10-6

"'(1326575 / p) X 10-6

Tp(p,100,200) = c 4120 x P + 13265.75xr1001 P 7) x 10-6

"'(4120 X p + 1326575 / p) X 10-6

Ts(l00,200)

S(p, 100,200)

= 1326575 X 10-6

= 1326575 / (4120 X p + 1326575 / p)

)

30

Figure 3-9

Execution Time

vs.

Overhead due to Parallelization

[1tt!-e:ution Tim~ in s~c,ond:1

total ~1tecuti6n timoe-
JOO -

ouerhead due 1o PBrellelization

217
■

200 -

100 -

"179

■" 160
■....... 142
'■ 133

'•, 124
........ 115 107

- • 98 100
-----~91 92

■-- 8■3

17 13 18 17 22 24 25 24 22 29 25 30 24
--- ■'-- ■--■- ■----- ■-■- •-- • .__ ■- ■--.. ■- -~ ■

--1--1-1-1-1-1-1--1-1--1-1-1-1-
5 6 7 0 9 IO 11 12 13 14 15 16 11

number of proc:eisars

)

Figure 3-10 Theoretical vs. Experimental Efficiency

- 100 constraints and 200 variables case

Hficiency

1.0 ■

1.00 (SequentiBU

0.9

0.8

\
,,\ 0.92 0.93

~~-- ~;99 0.98 0.90
0. 93 0 . 90----- ■ .,.,....,.0.9~---■ ••• 0.91

o. 97--.......... ■ - ,. ■, 0.95 0.95
--.......... -----.

0 . 83 ------._

0 . 8 0 '-----.

0. 76-............

0.1
0.73~

31

[HP erimental

Theoretical

0.6

0.69"
0.66"-

0.5

0.62-...........
0 .59~

0.56......____
0.53

L ... ·-l--l-1-1-1-1-1--1-1--1-1-1-1-
5 6 1 0 9 10 11 12 13 14 15 1, 11

number of procusars

E(p,100.200) = S(p,100 ,200) Ip

then E(4,100,200) = 0.95 and E(l6,100,200) = 0.55.

Usually, in message passing machines such as the Transputer,

communication delays are the major overhead. The results of this study

indicate no significant communication overhead problem, which may be

attributed to a careful distribution of computation and data.

Table 3-1 Performace of operations in T414

1) Floating point operations

Real64

+ -'

X

I

typical

28.050

38.000

55.750

worst

35.000

47.000

71.000

unit : micro seconds

2) Communication Speed

400 Kbytes/sec in each direction

32

4.0 Summary

This study presented an implementation of the Simplex method on

bith mesh- and tree-structured Transputer networks with a diameters 2p

and 2log3P respectively. Although difficult to implement on a Transputer

network, careful design of the algorithm gives nearly identical results for

both mesh- and tree-structured networks. It was found that T(p,m,n) is

linearly dependent on the rm/ p 7. In particular the experiment shows

that T(p, 100,200) = r 100 /pl x 9 + 30 in the 100 by 200 case and that

T(p,300,500) = r300 /pl x 45 + 145 in the 300 by 500 case. This is far

better than earlier results for other message passing machines and

almost identical to results for one shared memory machine. For example,

the same algorithm implemented by Chandrashekhar Bhide, using Lynx

on Crystal [3], yields an efficiency seldom above 0.5 (Table 4-1) and test

cases implemented by Wu using the shared memory Sequent [12] shows

an efficiency of 0.92 to 0.99 (Table 4-2). In this study, the test case

indicates an efficiency of 0.89 to 0.95, whereas Wu's results show an

efficiency of 0.92 to 0.95, when the number of processors is 4 to 8. By

careful distribution of computation and data and fine grain parallelism,

almost linear speedup pattern is obtained in this study. These results

suggest that one of the most important factors in parallel programming is

a good match between algorithm and architecture.

33

Table 4-1 Test data by Chandrashekhar Bhide,
using Lynx on Crystal (when p = 2)

m n speedup

3 6 .03
5 10 .08
10 20 .34
15 30 .65
20 40 .69
25 50 .85
30 60 1.00
35 70 .84
40 80 1.11
45 90 1.01
48 96 .92

where m = number of constraints
n = number of variables

Table 4-2 Test data by Y oufeng Wu,

efficiency

.015

.040

.170

.325

.345

.425

.500

.420

.555

.505

.460

using Pascal on Sequent Balance

#of processors Speedup efficiency

1 0.994 0.994
2 1.956 0.978
3 2.904 0.968
4 3.833 0.958
5 4.741 0.948
6 5.680 0.943
7 6.511 0.930
8 7.437 0.929

34

)

35

References

[1]. Sayed Atef Banawan, "An Evaluation of Load Sharing In Locally

Distributed Systems," Ph.D Dissertation, University of Washington,

Seattle, 1987.

[2]. Donald M. Simmons, Linear Programming for Operations Research,

pp. 89-162, Holden-Day Inc., 1972.

[3]. Leah H. Jamieson, Dennis B. Gannon and Robert J. Douglass, The

Characteristics of Parallel Algorithms, pp. 21-63, The MIT Press,

1987.

[4]. Philip Arne Nelson, "Parallel Programming Paradigms," Ph.D.

Dissertation, University of Washington, Seattle, 1987.

[5]. Transputer Reference Manual Inmos Inc., 1987.

[6]. Dick Pountain, A Tutorial Introduction to Occam programming,

Inmos Inc., 1986.

[7]. Shreekant S. Thakkar, "Parallel Programming Issues and

Questions," IEEE Software, 5(1):8-9, Jan 1988.

[8]. Marta Kallstrom and Shreekant S. Thakkar, "Programming Three

36

Parallel Computer," IEEE Software, 5(1):11-22, Jan 1988.

[9]. Boontee Kruatrachue and Ted Lewis, "Grain Size Determination for

Parallel Processing," IEEE Software, 5(1):23-32, Jan 1988.

[10]. Frederick S. Hiller and Gerald J. Lieberman, Introduction to

Operations Research, Holden-Day Inc, 1980.

[11]. Katta G. Murty. Linear and Combinatorial programming, Wiley and

Sons Inc., 1976.

[12]. Y oufeng Wu and Ted Lewis, "Performance of Parallel Simplex

Algorithms," Unpublished, Oregon State University, Oregon, 1988.

)

Appendix A: Program Source Listings

A.1 Main Program

PROC simPAR2 (CHAN OF ANY keyboard, screen,
[4]CHAN OF ANY from.user.filer, to.user.filer)

**
Simplex Method Main partitioned by Rows

By Sungwoon Choi in Oct. 19, 1987
**

#USE "const2.tsr"
#USE "userio.tsr"
#USE "interf.tsr"
-- vars
[max.link]CHAN OF ANY chan.in, chan.out:
CHAN OF ANY chan.read:

[max.main.module.size] [max.col]REAL64 in.buf:
[max.col]REAL64 cost.buf:
[max.row]REAL64 solution:
[max.row]INT basis.index:
INT pivot.row, pivot.col, row.size, col.size, main.module.size, status:
BOOL max.problem:

TIMER clock:
INT time.start, time.end, run.time, input.time:

-- channel definition
PLACE chan.out AT link0out:
PLACE chan.in AT link0in:

-- PROC input.data
PROC input.data(CHAN OF ANY from.stream, to.stream,

chan.read, VAL INT fold.no, INT status)
INT data.size, row.size, col.size, file.error:
SEQ

write.full.string (screen, "%% File read ... *c*n")
-- channel declarations
CHAN OF INT filekeys:
CHAN OF INT keyboard IS filekeys: -- channel from simulated keyboard
CHAN OF ANY echo:
-- echo channel with scope local to this PAR only
CHAN OF ANY screen IS echo:

PAR

-- read data from file and send to distributor
-- vars
[512]BYTE buf:
INT kchar, row, col, len, index:
REAL64 in.data:
BOOL max.problem, error:

SEQ
initialize index

status := 0
data.size := 0
kchar := 0

-- read pre data (size, max or min flag)
read.char (keyboard, kchar)

-- determine whether this is max or min problem
read.char (keyboard, kchar)
WHILE (kchar =' '(INT))

read.char (keyboard, kchar)
read.char (keyboard, kchar)
IF
-- determine whether this is the max problem or min problem

)

(kchar = 'I' (INT)) OR (kchar
max.problem:= FALSE

TRUE
max.problem:= TRUE

read.char (keyboard, kchar)
read.char (keyboard, kchar)

-- read row and column size

Ii I (INT))

read.echo.int (keyboard, screen, row.size, kchar)
read.echo.int (keyboard, screen, col.size, kchar)

-- read and send real data
IF

(row.size> max.row) OR (col.size> max.col)
SEQ -- error, data size is too big

chan.read ! ft.error
status := 4

(row.size< max.cpu)
SEQ -- error, data size is too small

chan.read ! ft.error
status := 5

TRUE
-- read and send data
INT char:
SEQ

chan.read ! kchar; max.problem; row.size; col.size

read.char (keyboard, kchar)
WHILE (kchar <>'%'(INT)) AND (kchar <> ft.terminated)

SEQ
data.size :=data.size+ 1
read.echo.int(keyboard, screen, row, kchar)
read.echo.int(keyboard, screen, col, kchar)
read.echo.real64(keyboard, screen, in.data, kchar)
chan.read ! kchar; row; col; in.data
read.char (keyboard, kchar)

chan.read ! ft.terminated

write end stream
IF

(kchar >= 0) OR (kchar = ft.number.error)
keystream.sink (keyboard)
-- consume rest of the keyboard file

TRUE
SKIP

write.endstream (screen) -- terminate scrstream.sink

-- mux
keystream.from.file (from.stream, to.stream,

keyboard, fold.no, file.error)

-- consume everything echoed
scrstream.sink (screen) -- consume everything echoed

-- test input.error, if OK tabulate
IF

(status= 0) AND (file.error= 0)
SEQ

write.full.string (screen, "%% File read OK ")
write.int (screen, row.size, 0)
write.full.string (screen, " x ")
write.int (screen, col.size, 0)
newline (screen)
write.full.string (screen, "%% Real Data Size ")
write.int (screen, data.size, 0)
newline (screen)

file.error<> 0
status := file.error

TRUE
SKIP

)

PROC distributeData
PROC distribute.data([JCHAN OF ANY chan.in, chan.out, CHAN OF ANY chan.r e ad,

[] []REAL64 in.buf , []REAL64 cost.buf, []INT basis . index,
INT row.size, col.size, main.module, BOOL max.problem)

vars
INT kchar, row, col, module.size, modular:
REAL64 in.data:

SEQ
initialize in.buf for main module

SEQ row= 0 FOR max.main.module.size
SEQ col= 0 FOR max.col

in.buf[row] [col] := 0.0(REAL64)

SEQ col= 0 FOR max.col
cost.buf[col] : = 0.0(REAL64)

SEQ row= 0 FOR max.row
basis.inde x [row] := 0

chan.read? kchar
IF

kchar = ft.error
SKIP

TRUE
SEQ

receive problem parameters
chan.read? max.problem; row.size; col.size

-- compute module.size and send size and constraint condition
module.size:= row.size/ (max.cpu PLUS 1)
modular:= row.size MINUS (module.size TIMES (max.cpu PLUS 1))
IF

modular> 0
SEQ

TRUE

main.module := module.size PLUS 1
modular : = modular MINUS 1

main.module := module.size
chan.out[chan.num] ! main . module; module.size; modular

-- receive and distribute data
chan.read? kchar
chan . out[chan . num] ! kchar
WHILE (kchar <> ft.terminated)

SEQ
chan.read? row; col; in.data; kchar
IF

row= 0 -- save object function for phase II
IF

max .problem
cost.buf[col] := in.data

TRUE
cost.buf[col] := in.data

row< main.module
in.buf[row] [col] := in.data

TRUE
chan.out[chan.num] ! row; col; in . data; kchar

-- new cost
IF

(row> 0) AND (col< ((col.size MINUS row.size) PLUS 1))
in.buf[0] [col] := in.buf[0] [col] - in.data

TRUE
SKIP

-- get basis variable inde x
SEQ index= 1 FOR (row.size MINUS 1)

-- get basic variable inde x vector
basis.index[inde x] := inde x PLUS (col.size MINUS r ow. s i ze)

)

}

PROC computation
PROC computation ([) []REAL64 in.buf, [)REAL64 pivot.row.value,

INT pivot.row, pivot.col, row.size, col.size)
[max.main.module.size)REAL64 comp.base:
SEQ

-- compute new pivot column for computaional base
SEQ index= 0 FOR row.size

comp.base [index) := (-(in.buf[index] [pivot.col] /
pivot.row.value[pivot.col]))

IF
pivot.row< row.size

comp.base [pivot.row] := (l.O(REAL64) - pivot.row.value[pivot.col])
/ pivot.row.value[pivot.col]

TRUE
SKIP

compute module
compute new matrix using basis column

SEQ col= 0 FOR col.size
SEQ row= 0 FOR row.size

in.buf[row] [col] := in.buf[row] [col] +
(comp.base[row] * pivot.row.value[col])

PROC find.min
PROC find.min ([]REAL64 buf, INT size, min.index)

SEQ
min.index:= 1
SEQ index= 1 FOR size-1

IF
buf[index] < buf[min.index]

min.index:= index
TRUE

SKIP

PROC iteration
PROC iteration ([]CHAN OF ANY chan.in, chan.out, [] [)REAL64 in.buf,

[]INT basis.index, INT row.size, col.size, main.module.size, status)
-- vars
[max.main.module.size]REAL64 base:
[max.col]REAL64 pivot.row.value, sub.pivot.row.value:

REAL64 base.value, sub.base.value, epsilon:
INT pivot.row, pivot.col, sub.pivot.row:
BOOL degenerate:

SEQ
find pivot column

find.min (in.buf[O], col.size, pivot.col)
IF

in.buf[O] [OJ> ZERO
status := 2 -- no feasible solution

in.buf[O] [OJ > (-ZERO)
status := 0 normal end

TRUE
status := 1

chan.out[chan.num]
more to compute
! status

WHILE status= 1
SEQ

-- find pivot row
chan.out[chan.num)
degenerate:= TRUE
epsilon:= ZERO
WHILE degenerate

SEQ
PAR

pivot.col

find current processor's pivot row
SEQ

pivot.row := 1

SEQ row 1 FOR (main.module.size MINUS 1)
SEQ

IF
(in.buf[row] [pivot.col] > ZERO)

IF
in.buf[row] [OJ < (-ZERO)

base[row] := MAX.REAL64
TRUE

base[row] := in.buf[row] [OJ
/ in.buf[row] [pivot.col]

TRUE
base[row] := MAX.REAL64

IF
base[row] < base[pivot.row]

pivot.row := row
TRUE

SKIP
base.value := base[pivot.row]

-- receive sub processor's pivot row
chan.in[chan.num] ? sub.pivot.row;

[sub.pivot.row.value FROM O FOR col.size];
sub.base.value

degenerate := FALSE
IF

base.value= sub . base.value
-- degenerate case (THE LEXICO MINIMUM RATIO RULE)
SEQ

degenerate := TRUE
chan.out[chan.num] ! degenerate
SEQ row= 1 FOR (main.module.size MINUS 1)

SEQ
epsilon:= epsilon/ 2.0(REAL64)
in.buf[row] [OJ := in.buf[row] [0] + epsilon

chan.out[chan.num] ! epsilon

base.value> sub.base.value
-- sub processor's pivot row is global pivot row
SEQ

TRUE

chan.out[chan.num] ! degenerate
pivot.row := sub.pivot.row
[pivot.row.value FROM O FOR col.size] :=

[sub.pivot.row.value FROM O FOR col.size]
base.value := sub.base.value

own pivot row is global pivot row
SEQ

chan.out[chan.num] ! degenerate
[pivot.row.value FROM O FOR col.size] :=

[in.buf[pivot.row] FROM O FOR col.size]

chan.out[chan.num] pivot.row;

IF

[pivot.row.value FROM O FOR col.size]

base.value>= MAX.REAL64
status := 3 -- unboundness

TRUE
SEQ

computation (in.bu£, pivot.row.value, pivot.row, pivot.col,
main.module.size, col.size)

-- find pivot column
basis.index[pivot.row] := pivot.col
find.min (in.buf[O], col.size, pivot.col)
IF

in.buf[O] [pivot.col] >= (-ZERO)
status := 0 -- end

TRUE
SKIP

chan.out[chan.num] status

-- PROC build.new.object
PROC build.new.object ((]CHAN OF ANY chan.in, chan.out, [] []REAL64 in.buf,

[]REAL64 cost.buf, []INT basis.index, BOOL max.problem,
INT row.size, col.size, main.module.size)

REAL64 sum:
INT size, real.col.size, kchar:
[max.col]BOOL basic:
[max.col]REAL64 pivot.row.value:
SEQ

-- set the basic variable indicator
SEQ index= 0 FOR col.size

basic[index] := FALSE
SEQ index= 1 FOR row.size-1

basic[basis.index[index]] := TRUE

-- when the artificial variable is in the basis
SEQ

kchar := 0
real.col.size := (col.size MINUS row.size) PLUS 1
SEQ row= 1 FOR (row.size MINUS 1)

IF
-- then this is artificial var

(basis.index[row] >= real.col.size)
SEQ

-- process pivot row information
pivot.row := row
chan.out[chan.num] ! kchar; pivot.row
chan.in[chan.num] ? [pivot.row.value FROM 0 FOR col.size]
IF

IF

pivot.row< main.module.size
pivot.row.value :=[in.buf[pivot.row] FROM 0 FOR col.size]

TRUE
SKIP

(pivot.row.value[0]>(-ZERO)) AND (pivot.row.value[0]< ZERO)
-- select pivot column and zero to zero pivot
SEQ

pivot.col := 1
WHILE (pivot.col< real.col.size) AND

(basic[pivot.col] OR
((pivot.row.value[pivot . col] > (-ZERO)) AND

(pivot.row.value[pivot.col] < ZERO)))
pivot.col :=pivot.col+ 1

IF
pivot.col= real.col.size

-- redundant case
PAR

chan.out[chan.num] ! TRUE
SEQ

write.full.string(screen," %% Redundant Case: ")
write.int(screen, row, 0)
newline(screen)

TRUE
SEQ

PAR
computation (in.buf, pivot.row.value,

pivot.row, pivot.col,
main.module.size, col.size)

chan.out[chan.num] ! FALSE;
[pivot.row.value FROM 0 FOR col.size];
pivot.col

basic[pivot.col] := TRUE
basis.index[pivot.row] := pivot.col

TRUE
send SKIP message to subs

PAR
chan.out[chan.num] ! TRUE
SEQ

write.full.string(screen, " %% Redundant Case ")
write.int(screen, row, 0)
newline(screen)

)

TRUE
SKIP

chan.out[chan.num] ft.terminated

-- send real col size
col.size := real.col.size
chan.out[chan.num] ! col.size

-- send new cost coeficient
size := row.size MINUS main.module.size
chan.out[chan.num] ! [basic FROM O FOR col.size]; size
SEQ row= main.module.size FOR size

chan.out[chan.num] ! cost.buf[basis.index[row]]

-- compute new object function
SEQ col= 0 FOR col.size

SEQ
IF

basic[col] FALSE
SEQ

PAR
SEQ

in.buf[O] [col] := 0.0 (REAL64)
SEQ row= 1 FOR main.module.size-1

in.buf[O] [col] := in.buf[O] [col] +
(in.buf[row] [col] * cost.buf[basis.index[row]])

chan.in[chan.num] ? sum
in.buf[O] [col] := (in.buf[O] [col] + sum) - cost.buf[col]

TRUE
SKIP

PROC output.result
PROC output.result (CHAN OF ANY from.stream, to.stream,

SEQ

[]CHAN OF ANY chan.in, [max.row]REAL64 solution, []INT basis.index,
INT input.time, run.time, row.size, col.size)

PROC recieve.soultion
PROC receive.solution ([]CHAN OF ANY chan.in, []REAL64 solution)

INT kchar, row:
SEQ

chan.in[chan.num] ? kchar
WHILE kchar <> ft.terminated

chan.in[chan.num] ? row; solution[row]; kchar

PROC writings
PROC writings (CHAN OF ANY screen, []REAL64 solution,

[]INT basis.index, INT input.time, run.time, row.size, col.size)
SEQ

write. full. string (screen, 11 ## Simplex Method (cpu= 11)

write.int(screen, max.cpu, 0)
write.full.string(screen, 11 ,REAL64) Start ##*c*n 11)

write.full.string(screen, 11 ## Problem Size : 11)

write.int(screen, row.size, 0)
write.full.string(screen, 11 x 11)

write.int(screen, col.size, 0)
newline(screen)
write.full.string(screen, 11 ## Input Time 11)

write.int(screen, input.time, 0)
newline(screen)
write.full.string(screen, "## Run Time 11)

write.int(screen, run.time, 0)
newline(screen)
write. full. string (screen, 11## Optimal value 11)

write.real64(screen, solution[O], 0, 2)
newline(screen)
write. full. string (screen, 11 ## Simplex. method (cpu= 11)

write.int(screen, max.cpu, 0)
write.full.string(screen, 11 ,REAL64) End ##*c*n 11)

newline(screen)

)

write.full. string (screen, "## Solution Start*c*n")
SEQ row= 0 FOR row.size

SEQ
write.int(screen, basis.index[row], 6)
write.real64(screen, solution[row], 8, O)
newline(screen)

write.full.string(screen, "## Solution En d*c*n")

vars
CHAN OF ANY fromprog, tofile:

PAR

-- data writing
SEQ

receive.solution(chan.in, solution)
writings(tofile,solution,basis.index,input.time,run.time, row.size,

col.size)
write.endstream(tofile)

-- COMMENT screen echo (optional)

-- mux
INT result, fold.no:
SEQ

fold.no := 0
scrstream.to.file (tofile, from.stream,

to.stream, "output", fold.no, result)
IF

result 0
SKIP

TRUE
STOP -- only alternative is to call scrstream.sink(tofile)

-- press any to continue
write.full.string(screen, "Press [ANY] key to continue")
INT any:
read.char(keyboard, any)

PROC error.message
PROC error.message (CHAN OF ANY keyboard, screen, INT status)

error code explanation

status 0 normal fin
1 now doing
2 no feasible solution
3 unboundness
4 data size is too big
5 data size is too small

others system error number

SEQ
IF

(status= 0) OR (status 1)
SKIP

status = 2
write.full.string (screen, "%% ERROR NO feasible solution ! ")

status = 3
write.full.string (screen, "%% ERROR Unboundness ! ")

status = 4
write.full.string (screen, "%% ERROR Data Size is Too Big ! ")

status = 5
write.full.string (screen, " %% ERROR Data Size is Too small ! ")

TRUE
SEQ

write.full.string (screen, " %% File read error ")

SEQ

write . int (screen , status , 0)
press any to continue

newline (screen)
write . fu ll. string (screen , " Press [ANY] key to contin u e")
INT any:
read.char(keyboard , any)
newline(screen)

main procedure
input data

clock? time . start
PAR

input.data (from . user.filer[2] , to .u ser.filer[2] ,
chan.read, 3 , status)

distribute.data(chan.in , chan.out , chan.read ,
in.buf , cost.bu£, basis.index,
row.size , col.size , main.module.size, max . problem)

clock? time . end
input.time ·= time.end MINUS time.start

IF
status= 0

-- phase I
SEQ

write. full . string (screen,"%% Simplex Method Start (REAL64) ... *c*n")
clock? time . start
chan.out [chan.num] ! col.size
iteration (chan . in, chan.out,in.buf , basis.index , row . size ,

col.size , main . module.size , status)
-- Feasibility Check
IF

IF

(in.buf[0] [0] > ZERO) OR (in.buf[0] [OJ < (-ZERO))
status .- 2 - - infeasible solution

TRUE
SKIP

status= 0
-- phase II
SEQ

build.new . object (chan . in,chan . out , in.buf,cost . buf,
basis.index ,m ax . problem, row . size,
col.size, main.module.size)

iteration (chan.in, chan.out ,

IF

in.bu£ , basis.index, row . size, col . size,
main.module.size, status)

status= 0
-- output result
SEQ

TRUE

clock? time . end
write.full.string (screen, " %% Simplex Method End

(REAL64) ... *c*n")
run.time : = time . end MINUS time . start
SEQ row= 0 FOR main . module.size

solution [row] := in . buf [row] [0]
output . result (from.user.filer[0], to.user.filer[0] ,

chan.in , solution , basis .i ndex ,
input.time , run.time, row.size, col . size)

error . message (keyboard , screen , status)
TRUE

error . message (keyboard, screen , status)
TRUE

error.message (keyboard, screen , status)

)

)

A.2 Subprograms implemented on the Subprocessors

-- node
PROC node (VAL INT cpu , CHAN OF ANY from.root, to.root , from.sub, to . sub)

**
Simplex Method Segmentation partitioned by Rows

By Sungwoon Choi in Oct. 19, 1987
**

#USE "const2 . tsr"
-- vars
(max .module] (max.col]REAL64 in.bu£:
(max.module]REAL64 cost.bu£ , base:
[max.col] REAL64 pivot.row.value:
(max . col]BOOL basic :
INT row.size , col.size , pre.size, full.size, row , col, kchar , size, status:
INT module.size, modular, pivot.row , pivot.col:
REAL64 in . data, sum:
BOOL redundant:

-- PROC inverseMatrix
PROC inverseMatrix ((] (] REAL64 in.bu£, (]REAL64 pivot.row.value ,

INT pivot.row , pivot.col, pre.size, row . size , col.size)
SEQ

full.size ·= pre.size PLUS row.size
SEQ index= 0 FOR row . size

base (i ndex] := (-(in.buf(index] (pivot.col] /
pivot.row . value (pivot.c ol]))

IF
(pivot.row>= pre . size) AND (pivot.row< full.size)

base [pivot.row MINUS pre . size] : = (1. 0(REAL64) -
pivot . row . value[pivot.col]) / pivot.row.value(pivot . col]

TRUE
SKIP

comp ute new matrix using basis column
SEQ col= 0 FOR col.size

SEQ row= 0 FOR row.size
in . buf(row] [col] := in . buf[row] (col] +

(base(row] * pivot.row.value(col])

PROC computation
PROC computation (CHAN OF ANY from.root, to.root, from.sub , to.sub ,

(] (]REAL64 in.bu£, INT pre.size, row . size , col . size , status)
vars

VAL running IS 1:
INT sub . pivot .r ow:
[max.col]REAL64 sub.pivot.row.value :
REAL64 base.value, sub.base.value , epsilon:
BOOL degenerate:

SEQ
receive and send status

from.root ? status
to . sub ! status

WHILE status= running
SEQ

-- receive and send pivot column
from.root ? pivot . col
to.sub ! pivot.col

degenerate : = TRUE
WHILE degenerate

SEQ
PAR

-- find current processor's pivot row
SEQ

pivot.row := 0

SEQ

SEQ row 0 FOR row.size
SEQ

IF
(in.buf[row] [pivot.col] > ZERO)

IF
in . buf[row] [OJ < (-ZERO)

base[row] := MAX.REAL64
TRUE

base[row] := in.buf[row] [OJ / in.buf[row] [pivot.col]
TRUE

base[row] := MAX.REAL64
IF

base[row] < base[pivot.row]
pivot.row := row

TRUE
SKIP

base.value := base[pivot.row]
[pivot.row.value FROM O FOR col.size] :=

[in.buf[pivot.row] FROM O FOR col.size]

receive
from. sub ?

pivot row from sub processors
sub.pivot.row;
[sub.pivot.row.value FROM O FOR col.size];
sub.base.value

-- select pivot row and send to and receive from the root
IF

base.value> sub.base.value
to.root ! sub.pivot.row;

TRUE

[sub.pivot.row.value FROM O FOR col.size];
sub.base.value

to.root pivot.row PLUS pre.size;
[pivot.row.value FROM O FOR col.size];
base.value

from.root? degenerate
to.sub ! degenerate
IF

degenerate
-- the lexico minimum ratio rule
SEQ

from.root? epsilon
SEQ row= 0 FOR row.size

SEQ
epsilon :=epsilon/ 2.0(REAL64)
in.buf[row] [OJ := in.buf[row] [OJ + epsilon

to.sub ! epsilon

TRUE
SKIP

compute inverse matrix
from.root? pivot.row; [pivot.row.value FROM 0 FOR col.size]
PAR

to.sub ! pivot.row; [pivot.row.value FROM 0 FOR col.size]
inverseMatrix (in.bu£, pivot.row.value,

pivot.row, pivot.col, pre.size, row.size, col.size)

receive and send status
from.root? status
to.sub ! status

WHILE TRUE
SEQ

-- initial data receive
SEQ row= 0 FOR max.module

SEQ col= 0 FOR max.col
in.buf[row] [col] := 0.0 (REAL64)

from.root? pre.size; module.size; modular

)

J

-- set row.size
IF

modular> 0
SEQ

row.size := module.size PLUS 1
modular:= modular MINUS 1

TRUE
row.size := module.size

PAR
to.sub pre.size PLUS row.size module.size; modular
SEQ

from.root? kchar
WHILE (kchar <> ft.terminated)

SEQ
from.root? row; col; in.data
IF

row< (pre.size PLUS row.size)
in.buf[row MINUS pre.size] [col] := in.data

TRUE
to.sub ! kchar; row; col; in.data

from.root? kchar
to. sub ! kchar

phase I
from.root? col.size
to.sub! col.size
computation (from.root, to.root, from.sub, to.sub,

IF
status= 0

SEQ

in.bu£, pre.size, row.size, col.size, status)

when the artificial variable is in the basis
from.root? kchar
to.sub ! kchar
WHILE (kchar <> ft.terminated)

SEQ
from.root? pivot.row
to.sub ! pivot.row
from.sub ? [pivot.row.value FROM O FOR col.size]
IF

(pivot.row>= pre.size) AND
(pivot.row< (pre.size PLUS row.size))

[pivot.row.value FROM O FOR col.size] :=
[in.buf[pivot.row MINUS pre.size] FROM O FOR col.size]

TRUE
SKIP

to.root ! [pivot.row.value FROM O FOR col.size]
-- zero to zero pivot
SEQ

from.root? redundant
to.sub ! redundant
IF

redundant
SKIP

TRUE
SEQ

from.root? [pivot.row.value FROM 0 FOR col.size];
pivot.col

PAR
inverseMatrix (in.bu£, pivot.row.value,

pivot.row, pivot.col, pre.size, row.size, col.size)
to.sub ! [pivot.row.value FROM 0 FOR col.size];

pivot.col

from.root? kchar
to.sub ! kchar

phase II
SEQ

from.root? col.size
to.sub ! col.size

receive root processor's data and send to ths sub
from.root? [basic FROM 0 FOR col.size]; size
to.sub [basic FROM O FOR col.size]; (size MINUS row.size)

from.root? [cost.bu£ FROM O FOR row.size]
REAL64 temp.data:
SEQ index= row.size FOR (size MINUS row.size)

SEQ
from.root? temp.data
to.sub ! temp.data

form a new BFS
REAL64 sum:
SEQ indexl = 0 FOR col.size

IF
basic[indexl] = FALSE

SEQ

TRUE

sum:= 0.0 (REAL64)
SEQ

SEQ index2 = 0 FOR row.size
sum:= sum+

(in.buf[index2] [indexl] * cost.buf[index2])
from.sub? in.data

sum:= in.data+ sum
to.root ! sum

SKIP

computation (from.root, to.root, from.sub, to.sub,
in.bu£, pre.size, row.size, col.size, status)

-- send solution
SEQ

TRUE
SKIP

kchar := 0
SEQ row= 0 FOR row.size

to.root ! kchar; (row PLUS pre.size); in.buf[row] [OJ
from.sub? kchar
WHILE kchar <> ft.terminated

SEQ
from.sub? row; in.data
to.root ! kchar; row; in.data
from.sub? kchar

to.root ! kchar

lastnode
PROC lastnode (VAL INT cpu, CHAN OF ANY from.root, to.root)

**
Simplex Method Segmentation partitioned by Rows

By Sungwoon Choi in Oct. 19, 1987
**

#USE "const2.tsr"
-- vars
[max.module] [max.col]REAL64 in.bu£:
[max.module]REAL64 cost.bu£, base:
[max.col]REAL64 pivot.row.value:
[max.col]BOOL basic:
INT row.size, col.size, pre.size, row, col, kchar, size, modular, status:
INT pivot.row, pivot.col, full.size:
REAL64 in.data, sum:
BOOL redundant:

-- PROC inverseMatrix
PROC inverseMatrix ([] []REAL64 in.bu£, []REAL64 pivot.row.value,

INT pivot.row, pivot.col, pre.size, row.size, col.size)
SEQ

full.size:= pre.size PLUS row.size
SEQ index= 0 FOR row.size

base [index] := (-(in.buf[index] [pivot.col] /
pivot.row.value[pivot.col]))

IF
(pivot.row>= pre.size) AND (pivot.row< full.size)

base [pivot.row MINUS pre.size) := (l.O(REAL64) -
pivot.row.value[pivot.col)) / pivot.row.value[pivot.col)

TRUE
SKIP

-- compute new matrix using basis column
SEQ col= 0 FOR col.size

SEQ row= 0 FOR row.size
-- COMMENT sparse case

-- normal case
in.buf[row] [col] := in.buf[row) [col) +

(base[row) * pivot.row.value[col))

PROC computation
PROC computation (CHAN OF ANY from.root, to.root,

[) []REAL64 in.bu£, INT pre.size, row.size, col.size, status)
vars

VAL running IS 1:
REAL64 base.value, epsilon:
BOOL degenerate:

SEQ
full.size:= row.size PLUS pre.size
from.root? status
WHILE status= running

SEQ
from.root? pivot.col
degenerate := TRUE
WHILE degenerate

~Q
-- find current processor's pivot row
SEQ

pivot.row:= 0
SEQ row O FOR row.size

SEQ
IF

(in.buf[row) [pivot.col) > ZERO)
IF

in.buf[row) [OJ < (-ZERO)
base[row) := MAX.REAL64

TRUE
base[row) := in.buf[row] [OJ / in.buf[row) [pivot.col]

TRUE
base[row) := MAX.REAL64

IF
base[row) < base[pivot.row)

pivot.row := row
TRUE

SKIP

-- select pivot row
base.value := base[pivot.row]
[pivot.row.value FROM O FOR col.size) :=

to.root

[in.buf[pivot.row] FROM O FOR col.size)

pivot.row PLUS pre.size;
[pivot.row.value FROM O FOR col.size);

base.value

from.root? degenerate
IF

degenerate
SEQ

from.root? epsilon
SEQ row= 0 FOR row.size

SEQ
epsilon:= epsilon/ 2.0(REAL64)
in.buf[row] [OJ := in.buf[row) [OJ + epsilon

TRUE

)

)

SEQ

SKIP

inverse Matrix
from.root? pivot.row; [pivot.row.value FROM 0 FOR col.size]
inverseMatrix (in.bu£, pivot.row.value,

pivot.row, pivot.col, pre.size, row.size, col.size)

from.root? status

WHILE TRUE
SEQ

-- initial data receive
SEQ row= 0 FOR max.module

SEQ col= 0 FOR max.col
in.buf[row) [col) := 0.0 (REAL64)

from.root? pre.size; row.size; modular
from.root? kchar
WHILE (kchar <> ft.terminated)

SEQ
from.root? row; col; in.data
in.buf[row MINUS pre.size] [col] := in.data
from.root? kchar

phase I
from.root? col.size
computation (from.root, to.root,

IF

in.bu£, pre.size, row.size, col.size, status)

status= 0
SEQ

when the artificial variable is in the basis
from.root? kchar
WHILE (kchar <> ft.terminated)

SEQ

SEQ

from.root? pivot.row
IF

(pivot.row>= pre.size) AND (pivot.row<(pre.size PLUS row.size))
[pivot.row.value FROM O FOR col.size] :=

[in.buf[pivot.row MINUS pre.size] FROM O FOR col.size]
TRUE

SKIP
to.root ! [pivot.row.value FROM O FOR col.size]
from.root? redundant
IF

redundant
SKIP

TRUE
SEQ

from.root? [pivot.row.value FROM O FOR col.size]; pivot.col
inverseMatrix (in.bu£, pivot.row.value,

pivot.row, pivot.col, pre.size, row.size, col.size)
from.root? kchar

phase II

from.root? col.size
-- receive cost vector to sub processors for new object function
from.root? [basic FROM O FOR col.size]; size
SEQ index= 0 FOR row.size

from.root? cost.buf[index]

-- form a new cost vector
REAL64 sum:
SEQ indexl = 0 FOR col.size

IF
basic[indexl] = FALSE

SEQ
sum:= 0.0 (REAL64)
SEQ index2 = 0 FOR row.size

)

TRUE

sum := sum +
(in.buf[index2] [indexl] * cost.buf[index2])

to. root ! sum

SKIP

computation (from.root, to.root,
in.bu£, pre.size, row.size, col.size, status)

-- send solution
SEQ

TRUE
SKIP

kchar := 0
SEQ row= 0 FOR row.size

to.root kchar; (row PLUS pre.size); in.buf[row] [OJ
to.root ! ft.terminated

)

)

A.3 Transputer Network Configuration

-- vars
-- define hard link value
VAL link0out IS 0
VAL linklout IS 1
VAL link2out IS 2
VAL link3out IS 3
VAL link0in IS 4
VAL linklin IS 5
VAL link2in IS 6
VAL link3in IS 7

-- define soft link (sequential)
VAL root.link.in IS [link0in, link2in,

link0in, link2in,
link0in, link2in,
link0in, link2in ,

VAL root .l ink . out IS [link0out, link2out,
link0out, link2out,
link0out, link2out,
link0out, link2out ,

VAL sub.link.in IS [link3in, link3in,
link3in, link3in,
link3in, link3in,
link3in, link3in,

VAL sub.link . out IS [link3out, link3out ,
link3out, link3out,
link3out, link3out,
link3out, link3out,

-- COMMENT define soft link (tree)

VAL max . cpu IS 16 :
[max.cpu)CHAN OF ANY from . root, to.root:

PLACED PAR
PLACED PAR cpu = 0 FOR (max . cpu - 1)

PROCESSOR cpu T4

link2in,
link2in,
link2in ,
link2in ,
link2out ,
link2out,
link2out,
link2out,
link3in ,
link3in ,
link3in,
link3in,
link3out,
link3out,
link3out,
link3out,

PLACE from.root[cpu) AT root.link . in[cpu)
PLACE to.root [cpu) AT root.link . out[cpu):
PLACE to.root [cpu+l) AT sub.link.in[cpu) :
PLACE from.root[cpu+l) AT sub.link . out[cpu):

link2in,
link2in,
link2in ,
link2in) :
link2out,
link2out,
link2out,
link2out):
linklin ,
linklin ,
linklin,
linklin) :
linklout,
linklout,
linklout ,
linklout):

node (cpu, from . root[cpu), to.root[cpu), to.root[cpu+l), from.root[cpu+l))
PROCESSOR (max . cpu - 1) T4

PLACE from.root[max . cpu - 1) AT root.link.in [max . cpu -1) :
PLACE to.root [max . cpu-1) AT root .l ink.out[max . cpu-1) :
lastnode (max.cpu-1, from . root[max.cpu -1), to.root[max.cpu-1))

