
Use-Case-Based Generation of
Forms from a Class Diagram

by

Mohan Choodamani

A research paper submitted in partial fulfillment of the degree of
Master of Science

Major Professor
Minor Professor
Committee Member

Dr. Toshimi Minoura
Dr. Gregg Rothermel
Dr. Margaret Burnett

Dept. Of Computer Science
Oregon State University

Corvallis
Oregon - 97331

October 6, 1999

Acknowledgements

I am deeply indebted to my major professor, Dr. Toshimi Minoura, for giving me an

opportunity to work on this project. I am grateful to him for all his valuable guidance,

encouragement, and suggestions.

I would like to thank my minor professor, Dr. Gregg Rothermel, for his suggestions

in my report. I also thank Dr. Margaret Burnett for accepting to serve in my committee.

I am thankful to my family, for their support and encouragement during my graduate

program. I would like to thank all my friends, for their help during my graduate studies.

Use-Case-Based Generation of

Forms from a Class Diagram

Mohan Choodamani

Dept. of Computer Science

Oregon State University

Corvallis, OR 97331

choodamo©cs.orst.edu

Abstract

Forms are an easy-to-use interface to access a database, including a remote

database on the Internet. An entity-relationship (ER) diagram, which is a picto

rial representation of a database schema, is widely used in designing a database. A

class diagram, which shows set of classes, relationships among them, and associa

tions, are equivalent to an ER diagram. We present a methodology for generating

forms from a class diagram. An unique aspect of our approach is that we use a

use-case to specify the information to be accessed by a form. To investigate the

applicability of our approach, we developed a Web interface by using Java Servlets.

Key Words and Phrases: Forms, use case, class diagram, java servlet.

L

Contents

1 Introduction 3

2 Overview of our approach 4

2.1 ER Diagram for an E-Order Company 4

2.2 Overview of a Class Diagram ... 6 [

2.3 Overview of a Use-Case Diagram . 6

2.3.1 Access Customer use Case . 6

2.3.2 Access Order Use Case . . 7

2.3.3 Access Product Use Case 7

2.3.4 Access Supplier Use Case 8

2.4 Organization of a Form 8

). 3 Creating Forms from a Class Diagram 9

3.1 Coverage of Entity-Types by a Form 9

3.2 Structure for an Order Form 11

3.3 Explanation of Rules 12

3.4 Soundness and Completeness of rules 14

3.5 Preservation of Structural Integrity . 18

4 Implementation Details 19

4.1 Oracle Database 19

4.2 Java Servlets . . 20

4.2.1 JDBC Connection 22

4.2.2 Method doGet() 22

4.3 Forms for the database application 24

5 Conclusions and Future Work 25

1 Introduction

The ER approach was first proposed by Peter Chen in 1976. Since then it has been
extensively used in designing schemas for database systems and to represent the struc
tures of systems in systems analysis. An ER diagram represents the logical structure of
a database in a pictorial manner. An ER diagram not only provides an intuitive view
of an application, but it is also possible to generate a relational schema automatically
from it. The ER approach has been very effective in the areas of data management and
systems analysis.

A class Diagram is a notation used in Unified Modeling Language (UML}[l]. A class
diagram shows a set of classes and associations among them. Since a class diagram
is more compact than an ER diagram, we consider a class diagram in place of an ER
diagram.

A Use Case Diagram, a notation used in Unified Modeling Language (UML}[l], shows
a set of use cases and actors and their relationships. A use case is a description of set
of sequences of actions a system perform to yield an observable result to an user.

Data stored in a database are mostly retrieved or updated through forms. If forms
are not used, then users must learn a query language to access data. As forms constitute
a simple interface, they are widely used. In database applications, each use case can be
implemented by a form.

A product Open Database Internet Connector (ODBiC} allows SQL statements to be
added to HTML forms to access a database. Currently, many companies, like Microsoft
and Sybase are doing research on automatic form generation. There are a few products
such as Microsoft Access 2000 available on the market today to generate forms for a
database. These products generate forms that can communicate with the database,
even across the Internet. However, these products does not specify that these forms are
built automatically from an ER diagram or a class diagram.

In this paper, we discuss a new approach for generating forms from a class diagram
and use cases. The unique feature of our approach is to use a use-case to specify the
information to be accessed by a form. We analyzed the different relationship types that
exist among entity types, entity types that can be covered in a form, and the entities
that may be covered in one form. Based on the analysis, we formulate a set of rules that
needs to be followed to generate forms. We also discuss a method for generating HTML
forms with Java servlets.

Section 2 covers the overview of our approach. In Section 3 our methodology for
generating forms is discussed. Section 4 gives the implementation details for the e-order
company, which is stored in an Oracle database. In this section, we also describe a
method used to generate forms using Java Servlets. Section 5 concludes the paper and
addresses some future research topics.

3

2 Overview of our approach

To describe our approach, we are using a simple e-order company database. In this
section we show the ER diagram for an e-order company, and also develop an equivalent
class diagram for it. Use cases, as given by UML Notation [5], are used to specify what
information can be accessed by each form. In section 2.4, we specify our organization of
a form for displaying the required information .

2.1 ER Diagram for an E-Order Company

An ER diagram pictorially shows how a database schema is organized. In an ER diagram
the emphasis is on representing the schemas rather than the instances [3]. This is more
useful because a database schema does not change, and is easier to display.

A small e-order company must maintain the following information:

1. The company must keep track of all its customers with their names, addresses,
and the dates of their first orders. A unique customer number is assigned to each
customer.

2. Each order placed by a customer may contain multiple orderlines. Each orderline
is used to order one kind of product for some quantity. The date of the order must
be recorded.

3. Each product has a product number, a product name, color and a unit retail price.

4. Each product may have multiple suppliers. A unique supplier number is assigned to
each supplier. Different suppliers may offer the same product at different wholesale
prices. A supplier may supply multiple products. The name, address and status
of each supplier must be recorded.

5. The company owns multiple warehouses. Each warehouse is identified by the
phone number of its warehouse . The city where the warehouse is located must
also be recorded. The number of each product stocked at each warehouse must
be recorded . A warehouse can stock different products, however each product is
stocked at most at one warehouse.

An ER diagram for an e-order company is shown in Fig. 1. Entity-Types such as
CUSTOMER, ORDER, and PRODUCT are shown in rectangular boxes. Relationship-Types
such as CONTAINS and PLACES are shown in diamond-shaped boxes attached to partici
pating entity-types.

4

I r

date of
1st orde

ORDER

@----- ORDERLINE
M

Figure 1: ER diagram for an e-order company.

5

1

[_

WAREHOUSE I

M

PRODUCT

M

SUPPLIER

2. 2 Overview of a Class Diagram

A class diagram shows a set of classes, interfaces, and collaborations and their relation
ships. Class diagrams address the static design view of a system [l]. The class diagram
for thee-order company is shown in Fig. 2. The class diagram conforms to the notations
specified in the UML notation guide [5].

Customer Order Supplier

number
places

number number
1 * name date name

address address

status

1 .. *
1

contains supplies
WPrice - -
wPrice

1 .. * *
Orderline Product Warehouse

for stored in
number number city

* 1 name 1..* I 1
Qty color

I phoneNo

unitPrice Qty

qty

Figure 2: Class diagram for an e-order company.

2.3 Overview of a Use-Case Diagram

A use case is a unit of functionality as seen by an user. The users participating in a
use case are called actors. A use case diagram shows a set of use cases and actors and
the relationship among them. A use case diagram addresses the static view of a system.
A use case can use other use cases and it may be extended to additional use cases to
perform conditional operations [l]. The use case diagram conforms to the notations
specified in the UML notation guide [5]. The following sections discuss use cases for the
e-order database system.

2.3.1 Access Customer use Case

The customer can place a new order by entering the information needed for a customer
and also the order number and order date for that order . The customer can delete
his information using his number. The customer can also delete/update the information
about his order using the customer number.

6

Customer use

Figure 3: Access Customer Order Use Case Diagram.

2.3 .2 Access Order Use Case

A customer can place a new order by inserting the product information, and the quantity
he wishes to buy. If the information about an order is deleted using its Number, then the
information about Orderlines for that order are also deleted. An order can be updated
by updating the orderline for that order.

select
Customer

access
Order

use

select
product

Figure 4: Access Order Information Use Case Diagram.

2.3.3 Access Product Use Case

A new product can be inserted with its product number, name, color, and unit
price for that product. The information about the supplier who supplies that product ,
and the warehouse where that product is stored , is also inserted. The information about
a product can be deleted/updated using its number. The information about the supplier
who supplied this product can only be updated. The information in Warehouse can be
deleted/updated for this product . The relationship supplied-by between supplier and
product has to be deleted/updated to keep the database in a consistent state.

7

[_

Supplier

Figure 5: Access Product Information Use Case Diagram

2.3.4 Access Supplier Use Case

A Supplier can add a new product by entering the information about the product he
wishes to supply and the details about the warehouse it is located. The information
about a supplier can be deleted/updated using his number. The information about the
Product supplied by that supplier can only be updated. The information in Warehouse
is also deleted/updated for this product supplied by that supplier. The relationship
supplied-by between supplier and product has to be deleted/updated to keep the
database in a consistent state.

access
Supplier

use

access
Product

use

Figure 6: Access Supplier Information Use Case Diagram.

2 .4 Organization of a Form

We have organized a form in such a way that all the · needed information for that form
can be displayed. The main area or main form is the place where the information about
the entity we are interested in is displayed. The main form contains all the attribute
values of the entity we are interested in. The related information for the entity of our
interest is displayed in a subform. In the subform, the attribute values are displayed in
a row of a table. This representation for a subform can be considered as a repeating
group or a nested group. A main form can have as many subforms as the user needs,

8

but we allow only nested subforms up to one level, by which we mean we can not have
a subform within a subform. Our organization of a form is shown in Fig. 7.

a2
a1}

R1 Main Form or Main Area

R1

R2

R3

a3

a4

R4
l-----+--~e--------1---4-------l

R5

Subform

Nested
group

Figure 7: Organization in a Form.

3 Creating Forms from a Class Diagram

In this section we describe our methodology for building forms from a class diagram
and use cases. For this purpose, we formulate a set of rules for entity types that will be
covered by a form. The entities that may be covered by a form are also discussed. In
order to explain our methodology, an order form shown in Fig. 8 is used.

The order form displays the attribute values, order number and order date of that
order. The form also displays the attribute values of the customer to whom that order
belongs and the orderlines for that order. An orderline consists of the quantity and the
attribute values of the product ordered. For every order, the nested group of related
orderline entities are displayed in the same form.

The use case diagram for this order that cover the entities in the class diagram is
shown in Fig. 9.

3.1 Coverage of Entity-Types by a Form

The following rules state the restrictions on a set of entity-types to be displayed simul
taneously in a form. Assume that a form uses an instance of entity type A as an anchor

9

Customer No

Name

~
!John Smith

Order Number Date of Order

I 035781 I 01,0411988 I
Address ! 321,NW 2nd St,Corvallis, OR I
Date of 1st Order I 07/04/1988 !

Part No Part Name Color Qty Unit Price Total Price

0 I p32so I Color Printer White [I] 119.00 119.00

0 ~ Ink Black LI] 18.00 36.00

0 1 p3s11 1 Ink Red w 16.00 32.00

0 ~ Ink Cyan IT] 10.00 20.00

0 ~ Ink Yellow [zJ 10.00 20.00

0

Modify EJ
Figure 8: Form for updating Order Information.

Customer Order Orderline

places
number

contains
number number

1 * date 1 1 .. * Qty name
address ,, ,, ,, ,, ,, ,,

* '
,,

'
,, ,,

'
,,

'
,, for ,,

' ,, i/u/d
s/u\

,, ,,

'
,,

1 ,,
'

,,
'

,,

'
,, ,,

Product '
,, ,,

s number --------------- name
color
unitPrice

Figure 9: Objects accessed by Access Order Information Use Case.

L

entity, which is the main entity whose state the form displays, and that there is an
relationship type between entity type A and entity type B, which is a related entity.

1. When the relationship-type between two entity-types A and B is one-to-one or
many-to-one, the type B entity associated with a type A entity x can be appended
to x. This is called appending and the type B entity is called an appended entity.

2. When the relationship-type between two entity-types A and B is one-to-many or
many-to-many, many instances of a type B entity associated with one type A
entity x can be expanded. This is called expansion and the type B entity is called
an expanded entity.

3. An appending operation is possible for any entity, i.e., the anchor entity, an ap
pended entity, or an expanded entity. Furthoremore, any number of appending
operations are allowed within a form.

4. An expansion is possible only from the anchor entity or from an entity directly
or indirectly appended to the anchor entity. We can show, within one form, only
those entities that can be reached via at most one expansion.

5. The attribute values of the anchor entity and those of the entities appended to it
directly or indirectly can be displayed in the main area of the form.

6. The attribute values of the expanded entity and those entities directly or indirectly
appended to the expanded entity can be displayed as a row of a table in a subform
within a form.

7. Entities that cannot be linked to an anchor entity must be able to become an
anchor entity.

8. Sum of all operations select, insert, update, and delete allowed by all the forms
must cover all the entities and all the relationships in the class diagram.

3.2 Structure for an Order Form

Consider a form for searching records in thee-order company database based on the an
chor entity ORDER. The structure for this form is shown in Fig. 10 In this case, CUSTOMER,
ORDERLINES, and PRODUCT belong to related entity type. The record of the CUSTOMER
is appended with the record ORDER simultaneously in the main form, and the records of
ORDERLINES are expanded for one particular order in the subform. The attribute values
of the corresponding PRODUCT are appended with those of an orderline.

11

r

ORDERLINES
(Expanded Entity)

PRODUCT
(Appended Entity)

ORDER
(Anchor Entity)

CUSTOMER
(Appended Entity)

<E- - - - - - Related Entity

Figure 10: Structure in order form.

3.3 Explanation of Rules

Rule 1
According to this rule, the entity on the one side of a relationship is appended
with the attribute values of the many side . Consider the example in Fig . 8 and
Fig. 9 where anchor entity is ORDER and the related entity is CUSTOMER and the
relationship type is many-to-one. The attribute value of a customer is appended
to one particular order.

Rule 2
According to this rule , the entities on the many side of the relationship are ex
panded for the attribute value of the entity on the one side. Consider the example
in Fig. 11 and Fig. 12, where anchor entity is CUSTOMER and the related entity is
ORDER and the relationship type is one-to-many. The attribute values of order are
expanded for one particular customer.

Rule 3
We do not enforce a restriction on the number of appending operations, because
the appended entities can be displayed as a column in a table .

Rule 4
We enforce a restriction on the number of expanding operations, because more
than one expansion can not be displayed in one form. The expanded entities are
displayed as a row of a table within a form. In that case, we can not display another
expanded entity for an already expanded entity simultaneously in one form.

Rule 5
Consider the example in Fig. 13 and Fig. 14 where anchor entity is PRODUCT and the
related entity types is WAREHOUSE. The attribute values of warehouse are appended

12

I-

Customer Order

number
places

number
1 * name date

address

I
I

I
I

I

sflfu/d ,' i/u/d
I

I Operations I
I

I s - select
I - Insert
u- update
d - delete

Figure 11: Objects accessed by Access Customer Information Use Case .

Customer Number

Customer Name

Customer Address

Date of 1st Order

0

0

0

0

lc4589

!John Smith

I 321, NW 2nd St, Corvallis, OR.

101,0411988 1

Order Number Order Date

09009 10/04/1988

08793 11/24/1988

03089 02/04/1989

l Delete radio buttons

Modify I Reset I

Figure 12: Form for updating Customer Information.

13

with those of a product, and are displayed in the main area of the form along with
the attribute values of a product.

Supplier Product Warehouse

supplies stored in
number number city

1 .. * I

* 1 .. * I

1 name I I name I phoneNo
I I I

address I color

GB WPrice I

status I unitPrice
I

'
'

wPrice I y
✓

' I ✓

' I ✓

' ✓

' I ✓

' i/u/d I ✓

' ✓

' I ✓

' I s/i/u/d ✓

' ✓

s/i/u ' I ✓ i/u/d ' ✓

' I ✓

' I ✓

' ✓

' I ✓

' I ✓
✓

' ' ✓

Access Product
Information

Figure 13: Objects accessed by Access Product Information Use Case.

Rule 6
In Fig. 15 and Fig. 16 the anchor entity is SUPPLIER and the related entity-types
are PRODUCT and WAREHOUSE. The attribute values of the PRODUCT are expanded
for one particular supplier, and are displayed as a subform showing the attribute
values of a product in a row.

Rule 7
This rule can be clearly explained using the class diagram shown in Fig. 2. When
we consider ORDER as an anchor entity for one form, then we can not reach SUPPLIER
entity. So we need to have another form having SUPPLIER as an anchor entity.

Consider the case, where CUSTOMER is an anchor entity, then the entity PRODUCT
can not be reached by that form, so we need to have PRODUCT as an anchor entity
in another form.

Rule 8
This rule says that all the entities and relationships in the class diagram should be
select-able, insert-able, update-able, and delete-able by the set of forms generated
for that particular application.

3.4 Soundness and Completeness of rules

As we have formulated a set of rules to generate forms, we discuss the soundness and
completeness of those rules in this section.

14

L

Product Number p3260 I
Product Name Color Printer

Color White .__ ___ ___.

Unit Price 119.00

Warehouse City I Albany

Phone Number ! (212)346-7832

SNo Name Address Status

0 !s1549I Jim Clark 1203, NE 8th St, Albany, NY I Good

0 ls3968I Sam White I325,Court St., Salem,OR I Good

0 !s5431I Peter Dole ls45 1 Nort First St.1San Jose 1CA I Good

0

Modify I Reset I

Figure 14: Form for updating Product Information.

Supplier

number
name
address

status

supplies

1 .. * I *
I

,-----,\

WPrice \
I

Product

number
name
color
unitPrice

,'--------'

s/i/u/d

I
I

i/u/d \

I
I

I
I

: s/i/u

stored in

1 .. * 1

✓
✓

BE y

✓

✓
✓

✓

✓

✓

✓

✓ ✓ i/u/d

Warehouse

city
phoneNo

Figure 15: Objects accessed by Access Supplier Information Use Case.

15

L
I

Supplier Number s1549 I
Supplier Name Jim Clark

Address 203,NE 8th St, Albany, NY

Status Good

Part No Part Name Color Unit Price City Phone Number

0 lp326ol Color Printer White 119.00 IAlban}'.I I {212)346-1s32 I

0 ip8529i Inkjet printer Cyan 189.00 INewarki I {302}586-1452 I

0 ip46121 Laser Printer White 229.00 IBostonl I {206}389-5624 I
0

Modify I Reset I

Figure 16: Form for updating Supplier Information.

16

Soundness of rules: In order to show that the set of rules are sound, we show that
the forms generated from those rules are correct. The set of rules identifies the
locations of an anchor entity and appended and expanded entities. The anchor
entities can be displayed in the main area of the form. The entities appended to the
anchor entity can be displayed in the main area of the form . Since the rules allow
only one expansion from the anchor entity, one level of nested entities is needed.
The expanded entities can be displayed as rows in a subform. This is because
as there may be many expanded entities, and as we need to display all of them,
each can be displayed in one row of a table. Moreover as there are many entities
displayed in one table, we call them as a nested group. The entities appended to
an expanded entity should be displayed as a row of a table in a subform. This
is correct as the entity that is appended to an already expanded entity has to be
displayed along with the expanded entity. As all the entities selected by one form
can be displayed correctly, we can say that the set of rules given in previous section
is sound.

Completeness of rules: To show that rules are complete, we can generate forms using
every entity type as an anchor type. This is very trivial, and hence there can be
many forms generated which may not be needed.

This can be overcome by minimizing the number of anchors. The problem of
minimizing the number of forms is probably an intracable problem, as it is similar
to the vertex cover problem, which we already know is a NP-Complete problem.
To minimize the number of anchors, what we have to do is select anchors such
that only one expansion is allowed from the anchor.

Completeness of a set of forms: To show the completeness of the generated forms, we
discuss about the operations applied to each entity type and relationship type. The
possible operations for an entity and a relationship are select, insert, update, and
delete. If we can show that all the entities and relationships are select-able, insert
able, update-able, and delete-able, then we can say that the set of forms provided
by the rules are complete. We can do all the operations on the entity customer
using the customer form, where the entity customer is an anchor. We can do all
the operations on the entity order using the order form, where the entity order is
an anchor. We can do all the operations on the entity supplier using the supplier
form, where the entity supplier is an anchor. The entity product is select-able
from order form, insert-able and update-able using supplier form, and delete-able
using product form. So all the operations are possible on the entity product from
all the forms for this e-order application. The relationship type contains between
entities order and orderline is select-able, insert-able, delete-able, and update-able
using order form. In this case, the entity orderline is a week entity, and so the
operations applied to the relationship instance propagates to the related entity.
So we are not showing the operations on the relationship, but directly showing
them on the related entity. In general, when the cardinality at the anchor side
of a relationship is 1, then the operations applied to the relationship cascades to
the related entity. The relationship type supplied-by between entities supplier and
product is also select-able, insert-able, delete-able, and update-able using either
supplier form or product form. The relationship is a many-to-many relation, and

17

I
L

so we have to explicitly apply the operations to the relationship. In general, if the
cardinality at the anchor side is many, then the operations are applied separately
to relationship and entity instances.

Assume that a form uses an instance of entity type A as an anchor entity and that
there is an association type between entity type A and entity type B.

• Complete Linking: If the multiplicity at the A side of this association requires
at least one instance, i.e., the multiplicity is 1, 1..*, and so on, then the
insert and delete operations applied to the instances of B implies that those
operations are also applied to the association. In this case, we say that the
linking is complete.

When the linking is complete, all the entities of B are covered by a form, in
which entity A is an anchor. As the operations applied to the related entity
implies to the relationship type as well, we are not explicitly showing the
operations on the relationship types.

• Partial Linking: If the multiplicity at the A side of this association allows
zero instance, i.e., the multiplicity is 0 .. 1, *, and so on, some instances of
B may not be associated with any instances of A, and hence the operations
applied to the instances of B through the form may not be applicable to all
the instances of B. However, the select, insert, and delete operations applied
to the instances of B through the form imply that those operations are applied
to the association also. In this case, we say that the linking is partial.

When the linking is partial, not all entities of B are covered by a form for
an anchor A. As the operations applied to the related entity does not imply
to the relationship type, we have to explicitly show the operations applied to
the relationship types.

In partial linking, consider the entity types A and Bare connected by an many-to
many association type. Then having one form, e.g., that uses entity type A as an
anchor entity type, and B as an expanded entity type cannot access all the entities
of B. So we need another form that uses B as an anchor entity type. In the e-order
example, the supplier and product have a many-to-many relation, and there exist
2 forms, one with product as an anchor and another with supplier as an anchor.

Entity types that are directly or indirectly connected to the anchor entity type
by patial links can be included simultaneously in one form. Details about the
operations allowed on a form and verification of forms [6] for an application are
beyond the scope of this project report.

3.5 Preservation of Structural Integrity

The referential integrity rule for a relational database states that there must not be any
unmatched foreign key values. This integrity constraint is specified on a database schema
and is expected to hold on every database instance on that schema [2]. Referential in
tegrity constriants typically arise from the relationships among the entities represented

18

L

by the relational schema. Referential integrity and foreign key are both dependent on
each other.
Foreign Key Rules for Delete/Update Operations:
The foreign key rules RESTRICTED and CASCADES for delete/update operations are sup
ported by a relational database system.

In our schema, the entity ORDER and ORDERLINE have a one-to-many relationship type
as shown in Fig . 9. The operation performed on the anchor entity ORDER is also performed
on the entity ORDERLINE. We do not have to explicitly state that the relationship is also
modified by the operation . The delete/update operation on the anchor entity, performs
the same on the relationship and it gets propagated to the related entity ORDERLINE.

Consider the form shown in Fig . 15. As the relationship type between SUPPLIER and
PRODUCT is many-to-many, we have to explicitly state the operation performed on the
relationship. If we are to use supplier form to delete a product, supplied by the supplier ,
then we can get the product details only through the relationship. So we need to specify
the operation on the relationship also.

4 Implementation Details

This section covers the details about creating a database for an e-order company in
an Oracle 8.0 system. Forms for this application are developed using Java Servlets.
Implementation of the Java Servlets is discussed in Section 4.2. In Section 4.3, we
show that all the entities and relationships are covered by the forms generated for this
application .

4.1 Oracle Database

The database created for the e-order application has 7 tables , which were created using
following SQL commands .

create table CUSTOMER
(cno char(6) not null,

cname char(20) not null,
caddr char(30) not null,
forderdt char(10),
primary key (cno)) ;

create table ORDERS
char(6) not null,
char(.10),

(orderno
orderdt
cno char(10) REFERENCES CUSTOMER(cno),

19

primary key (orderno));

create table ORDERLINE
(orderno char(6) REFERENCES ORDERS(orderno),

pno char(6) REFERENCES PRODUCT(pno),
qty varchar2(3),
primary key (orderno, pno));

create table PRODUCT
(pno

pnarne
color

char(6) not null,
char(2O) not null,
char(6),

unitprice smallint,
primary key (pno));

create table SUPPLIER
(sno char(6)

snarne char(2O)
saddr char(3O),
status char(1O),
primary key (sno));

create table SUPPLIED-BY

not null,
not null,

(sno
pno

char(6)
char(6)

REFERENCES SUPPLIER(sno),
REFERENCES PRODUCT(pno),

wprice smallint,
primary key (sno, pno));

create table WAREHOUSE
(city char(2O) not null,

phoneno char(15) not null ,
pno char(6) REFERENCES PRODUCT(pno),
primary key (phoneno));

4.2 Java Servlets

Java Servlets dynamically generate HTML forms and also interact with the back-end
ORACLE database via Java Database Connectivity (JDBC) . The form shown in Fig. 17
is for retrieving customer information from the database . This form is generated by a
Java Servlet code, which is explained in sections 4.2.1 and 4.2.2.

20

Web Application for an E-Order Company

Qistomer lnfonnation
customer No Name Address Date of 1st order

c45B9 John Smith 321,NW 2nd SI, Corvallis, OR 03/07/196B

Related tnfonnation :The orders placed by the customer

orderno orderdt

o357B 03/07/196B

037B5 04/11/1988

05469 01/07/1989

Seach a customer by a name.
Please enter a valid customer name.

Figure 17: Customer Information Retrieval/Request Form

21

4.2.1 JDBC Connection

The section of the code shown below describes how to establish a connection to the
database using JDBC. Dri verManager is the class responsible for loading database
drivers and creating a new database connection. We need to load the driver manager
code using the command class. forName O, so that the program can use it. Statement
object dispStmt is created so that we can query the database.

public class retrieveCustomer extends javax.servlet.http.HttpServlet {
Connection con;
Statement dispStmt;
public void init(ServletConfig conf) {

super.init(conf);

}

try {
Class.forName(11oracle.jdbc.driver.OracleDriver 11);

con= DriverManager.getConnection(
11jdbc:oracle:thin:©pe:1521:cs440 11 , 11user 11 , 11pswd11);

dispStmt = con.createStatement();
}

catch (Exception e) {
throw(new UnavailableException(this, 11Sorry 11));

}

4.2.2 Method doGet()

The form shown in Fig . 17 displays the customer information from the database. The
section of the code given below describes the service method doGet () provided by the
servlet. This method is used to get the request from the webpage, process the request,
and respond by sending the results back to webpage. The servlets allow the user to do a
query on the database based on a attribute. In the section of the code described below
for the example shown in Fig. 17, CNAME is the variable for the customer name. The
value of the variable is the request and it is processed to produce the response. HTML
tags can be used in the servlet, to produce a clear and organized output.

public void doGet(HttpServletRequest req, HttpServletResponse resp) {
ServletOutputStream out= resp.getOutputStream();
resp.setContentType(11text/html 11);

out.println(11<body bgcolor = white>");
out.println(11Customer Information 11);

out.println(11<TABLE><TR>11);

out.println(11<td> Customer No </td> 11);

out.println(11<td> Name </td> 11);

out.println(11<td> Address </td> 11);

out.println(11<td> Date of 1st order </td> 11);

22

I
I

r

}

}

out.println("</tr>");
String name = req.getParameter("CNAME");
if (req.getParameter("CNAME") != null) {

}

try {

}

ResultSet rs= dispStmt.executeQuery("select* from CUSTOMER 11 +
"where customer.cname ="+"'"+name+"'");

while(rs.next()){
out.println("<tr>");

}

String t = new String(rs.getString("cno"));
String e = new String(rs.getString("cname"));
String m = new String(rs.getString("caddr"));
String p = new String(rs.getString("forderdt"));
out.println("<TD>" + t +"<TD>"+ e +"<TD>"+ m +"<TD>"+ p);

rs. close O ;
out.println("</tr></TABLE>");

catch (SQLException e) {
out.println("ERROR WITH DATABASE </table>");

}

out.println("<HR>Seach a customer by a name.
");
out.println("Please enter a valid customer name.");
out.println("<FORM method=GET action=\"retrieveCustomer\">");
out.println("Name:<INPUT TYPE=TEXT NAME=\"CNAME\11>11);

out.println("<INPUT TYPE=SUBMIT VALUE=\"Retrieve\ 11>11);

out.println("<INPUT TYPE=RESET VALUE=\"Reset\11>11);

out.println("</FORM>");
out.println("</BODY></HTML>");
return;

public void dispose() {
try {

dispStmt.close();
con. close();

} catch(SQLException e) {}
}

The related entity order information is obtained in a similar way, using a query to
retrieve information about the order number and date for that particular customer. The
SQL query for retrieving order information using customer name is

select orderno, orderdt from ORDERS, CUSTOMER
where ORDERS.enc= CUSTOMER. cno and

customer.cname ="+"'"+name+"'");

23

r-

4.3 Forms for the database application

Based on the rules discussed in Section 3, we generated forms for the e-order database
application. The generated forms from use cases covered all the entity types and the re
lationship types in the class diagram. Fig. 18 shows that all the entities and relationships
are covered using the four forms generated for this application.

Form Anchor Entity type

Form 1 Customer

Form 2 Order

Form 3 Supplier

Form 4 Product

Form 1 Form3
------------- ---- --------- ----------- -- ------ -, r ···-···- ···- ···- ···- ···- ···- · .. - ···-···- ··-- ···- ···- ···-···- ···- · .. - ··· --·- ·!

i i

Customer Order i Supplier l Supplier
! I

places ! !
number number i number !

1 * i ! name date i name i

address ! address 1 !
'

Product
! status i
! !

1 i 1 .. * ! i !
! ! --------- ------------------
j supplies

WPrice ! contains I - -
I wPrice ! ···-···-···-···-···-···-···-···-···-···-· I i
I ! 1 .. * I *-------, - -

! I

! I

Orderline ! Product
I Warehouse Customer I

! I
I stored in fo, ! I

number i number I city

~ * 1 name 1~-* I 1
I phoneNo Qty color
I I
I

~
I

unitPrice I
I I
I I
I I
I I

y
I I
L---------------- - ------- - - - - - - -- - - - - - - - - - - - -·

Form2
: i • .. ·-···- ···-···-···-···-···-·--.. ,- ... -... -... _.,,_, ____ ., _____ , ____ , ______________________ ,, ___ , ___ , ___________________ , ______ .

Form4

Figure 18: Coverage by forms.

24

5 Conclusions and Future Work

We proposed a new model for generating forms from class diagrams, using use cases.
Use cases were used to specify what information will be accessible by a single form.

We introduced special concepts called anchor entity, which is the main entity in
the main area of a form , and expanded entity and appended entity, which were used to
show where the related entities will be displayed in one form. We further discussed
the entity types covered in a form and the entities covered by a form. We also studied
the operations that can be allowed in order to preserve the structural integrity for the
proposed model.

We demonstrated that the forms can be built on the Internet using Java Servlets
by building forms for the e-order company database. In Fig. 18, we show that all the
entity types and relationship types are covered by the forms generated by the specified
use cases for the e-order company database.

We hope that our model will become a basis for the future development of a software
package for generating forms. Future work for this project includes automatic generation
of forms from class diagram using use cases, and dynamically generating SQL by allowing
the users to select the variables for performing a query.

25

References

[1] Grady Booch, James Rumbaugh, Ivar Jacobson The Unified Modeling Language
User Guide, Addison-Wesley, 1998.

[2] C.J .Date An Introduction to Database Systems, sixth edition, Addison-Wesley, 1995.

[3] Ramez Elmasri, Shamkanth B. Navathe Fundamentals of Database Systems, second
edition, Benjamin/Cummings, 1994.

[4] Edward Honour, Paul Dalberth, Ari Kaplan, Atul Mehta, ORACLES HOW-TO,
Waite Group Press, 1998.

[5] UML Notation Guide, version 1.1, Rational Group, 1997.

[6] Rashmi Dwarakanath, Applying use-cases for Design and Verification for Database
Applications, Masters Project Report, Dept . of Computer Science, Oregon State
University, 1999, in preparation .

26

1-.

I

