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Abstract 

In this paper we outline an implementation of Linda on a network of Unix worksta­
tions. A literature survey was done to gain a better perspective on state of the art 
and to learn from the experiences of other implementations. The tuple space which 
is central to the Linda system is implemented as multiple segments distributed on 
different systems. The biggest challenge in implementing Linda is management of the 
tuple space. We outline a mechanism for creation and management of the distributed 
tuple space. Linda has been embedded in C with a partial support for the underlying 
datatypes of C. Results of some of the test routines run on the system along with 
some comparative timings are provided. 
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1 Introduction 

In writing parallel programs, the conventional choice has been between shared mem­
ory systems, which are easy to program but very difficult to program correctly, and 
distributed, message passing systems, which are harder to program, but safe. In ei­
ther case writing programs for parallel machines has been much harder than writing 
programs for sequential machines. What is worse, a program written for one system 
is not easily portable to another. Linda was developed at Yale [ACG86] to make the 
task of writing parallel programs an easy and an enjoyable experience. 

In this paper we outline an implementation of Linda on a network of Unix worksta­
tions. A description of the language is given as an introduction. A literature survey 
was done to gain a better perspective on state of the art and to learn from the experi­
ences of other implementations. The tuple space which is central to the Linda system 
is implemented as multiple segments distributed on different systems. The biggest 
challenge in implementing Linda is management of the tuple space. We outline a 
mechanism for creation and management of the distributed tuple space. 

The implementation was originally done on a network of Tektronix workstations. 
The program was later ported to a network of Sun workstations. We ran some 
test programs to get a feel for the performance of the system while using the Linda 
primitives. The timing was done for the Sun implementation. 

2 Linda, the language 

Linda was first defined by Gelernter [Gel82]. Linda is an explicitly parallel program­
ming language and not tied to any parallel hardware architecture. · Linda has been 
implemented on shared memory multiprocessors like Sequent Balance; disjoint memo­
ry systems such as the Intel iPSC/2 hypercube [Bjo89] and a network of VAX systems 
[Lei89]. Linda is not a language on its own standing. Rather, it is a set of objects 
and operations on those objects that are intended to be embedded into an existing 
language, thus producing a new language for distributed programming [Lei89]. 

2.1 Fundamental objects 

Linda is based on two fundamental objects: tuples and tuple spaces. 

2.1.1 Tuples 

Tuples are ordered collections of fields. Fields have fixed types associated with them; 
the types are drawn from the underlying language. A field can be a formal or an 
actual. A formal field is a place-holder - it has a type, but no value. An actual 
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field carries a value drawn from the set of possible values allowed for that type by the 
underlying language. 

Supposing the underlying language has types int and float. Then 

is a tuple consisting of three fields: Two integers, 1 and 2, and a floating point value, 
3.5. This tuple has only actual fields. The tuple 

contains an integer actual, and a float formal. 

Linda places no a priori restrictions on what types are allowed. It is determined by 
what the underlying language allows. So you could have records, arrays, and pointers 
as types. 

2.1.2 Tuple space 

Tuples live in tuple space, which is simply a collection of tuples. It may contain any 
number of copies of the same tuple; thus it is a bag, not a set. Tuple space is the fun­
damental medium of communication in Linda. Unlike in traditional message passing 
models of communication, in Linda all communication is three-party communication. 
Sender interacts with tuple space and tuple space interacts with receiver, rather than 
sender and receiver directly interacting with each other. 

Tuple space is a global, shared object - all Linda processes that are part of the same 
program have access to the same (logical) tuple space. 

2.2 Operations 

The out operation inserts a tuple into tuple space. 

If f is a float with value 3.5 and i an integer with value 2. The expression 

out(l, f, i) 

will insert into the tuple space the tuple < lint, 3.5float, 2int > we saw earlier. The 
operation out is nonblocking. So, it inserts the tuple in to the tuple space and then 
returns control to the program immediately. 

The in operation extracts tuples from tuple space. It finds tuples that match its 
arguments. in is a blocking operation. So, if a matching tuple is not available in the 
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out("test ", 4) in("test",? y) ( => y = 4) 

< "junk", 3.21 > 

< "test", 4 > 

Tuple Space 

< "zero", 0 > 

< "square", 400 > 

~ 

eval( "square", square(20)) 

· rd("square", ? x) ( => x = 400) 

Figure 1: A Snapshot of Tuple Space 

3 
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tuple space, then this operation would block till a match is found. 

So, the tuple which was inserted into the tuple space can be extracted by the opera­
tion: 

in(l, 3.5, 2) 

The rd operation works very similar to in but it doesn't extract the tuple from the 
tuple space . 

A successful in or rd results in variable assignments. This means that on a successful 
match of a template to a tuple, the formal parameters specified in the template will 
have actual values assigned from the tuple. 

An eval operation is similar to the out operation, in that it inserts a tuple into 
the tuple space. The difference is in the fact that eval inserts an unevaluated tuple 
into the tuple space. The eval operation produces an active tuple. An active tuple 
cannot be matched by any in or rd operation. The tuple begins evaluating soon as 
it is created. On completion of evaluation, the active tuple becomes a passive tuple 
and this in turn can be matched in the usual way. 

3 A literature survey 

The following sections summarize some of the existing implementations of Linda. 

3.1 VAX Linda 

Leichter and Whiteside in their paper "Implementing Linda for Distributed and Par­
allel Processing" describe the implementation of Linda on a network of VAX systems 
[LW89]. VAX Linda allows a single application program to utilize many machines 
on a network simultaneously. In their implementation they demonstrate that, for 
suitable applications, a collection of separate machines on a network can be treated 
as a "virtual multicomputer." VAX Linda operates on two levels. At one level, it 
uses shared memory for communication among multiple processes running on a single 
"node" of the network. At the second level, the implementation views multiple nodes 
connected to the network as a "virtual multiprocessor." 

VAX Linda uses a hash table to implement the tuple space. The tuples have a type 
signature, and this in turn is used for-hashing into the tuple space. The second level 
( called the LAN level) combines multiple segments of tuple memory into a unified 
single tuple space. The system has to ensure that matching tuples and templates find 
each other. In VAX Linda tuples are handled locally, while templates are broadcast. 
The authors argument in favor of template broadcast is as follows. On an ethernet 
based network, there is bound to be packet loss and it is simple to allow the broadcast 
of a templat e to be repeated rather than that of the tuple. 

The linda process interacts with a Listener process on its node. A Listener receiving 
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a template searches its local tuple space segment. On failure, it does nothing. On 
success, it effectively does an in on the matched tuple. It then sends the matched 
tuple to the requesting Listener, using a virtual circuit. Once successful transmission 
has been completed, the tuple is deleted from the sending tuple space segment. 

In this implementation, Linda is embedded into the C language and the interpreter 
interprets Linda-C programs and puts out C code. 

3.2 Linda on a Hierarchical Multiprocessor 

Here we look at an implementation by Lothar Borrmann, Martin Herdieckerhoff and 
Axel Klein, of Linda on Parwell-1 multicomputer, a hierarchical multiprocessor [BH 
88]. 

Parwell-1 is a 37-node distributed memory multiprocessor developed and manufac­
tured by pl GmbH, a Munich-based company and installed at Siemens. Its nodes 
consist of a Motorola processor pair 68020/68881, up to four MByte of local memory, 
two 32-bit bus connections and an address translation logic. The interconnection 
between nodes is achieved via an hierarchical bus system and the memories between 
the nodes of adjacent hierarchical levels. The Parwell multiprocessor is not a stand 
alone system, but is operated as a co-processor connected to a host station. In this 
implementation they have used an Apollo workstation running UNIX System Vas a 
host station. All memory accesses are top-down. Each processor in the hierarchy has 
access to its own local memory as well as to the local memories of all the nodes in 
the subtree below it. 

The implementation uses the physically shared memory as a global tuple space. In 
this implementation Linda is embedded into Modula-2. Tuple classes are declared 
statically like types and variables. A tuple class declaration states the name of that 
particular class and the types of each list element. These types can be any Modula-2 
types like strings, open arrays, etc., but not pointers. Such a class declaration allows 
for type checking to be done at compile-time, reducing complexity of run-time kernel 
and facilitates error detection. The number of parameters in a tuple or template is 
restricted to a maximum of eight. 

The tuple to template matching is done efficiently by utilizing the hierarchical nature 
of the memory. The tuples are stored locally whereas the templates migrate between 
nodes looking for a match. 

3.3 Kernel linda 

QIX is a parallel operating system based on Linda, developed at Cogent Research, 
Beaverton, OR. Kernel Linda [Cogent 89.16] is a version of Linda designed to be used 
as the interprocess communication mechanism for the operating system. The system 
employs a kernel that provides memory management, process scheduling, synchroniza­
tion, and interprocess communication via Linda. The rest of the operating system is 
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implemented through servers, which communicate with each other and with user pro­
cesses using Linda. Cogent has developed an advanced version of Linda that supports 
multiple tuple spaces, persistent tuple spaces, and communication between programs 
written in different languages, including C, c++, FORTRAN, and PostScript . All 
communication is handled by Linda. 

Servers are used to implement a high degree of compatibility with the UNIX operating 
system, while the user interface is a parallel implementation of SUN Micro Systems 
NeWS window system. 

In Kernel Linda, a tuple to template match is done by allowing a single key in a tuple 
and using standard hashing techniques to search the tuple space for a match. Kernel 
Linda allows tuple space to be stored as a field of a tuple. In addition to supporting 
Linda operations, the Kernel Linda data types provide a shared object space, which 
can be implemented on a system that contains shared memory, or simulated on a 1 

distributed system . 

3 .4 Conclusion 

Linda has become a popular choice for program development in the parallel envi­
ronments. It has been implemented on several different systems and embedded into 
different languages. We have studied the implementation here on a network of VAX 
systems, on a hierarchical processor and as an operating system primitive. This study 
gives us a feel for the power and flexibility of Linda as a language and as a tool. Linda 
makes the task of writing parallel programs as easy as it can get. Though industry 
has accepted Linda by supporting various installations, we are yet to see some solid 
results to prove the efficacy of Linda systems. The tuple space search seems to make 
the overall system very sluggish and we need more efficient implementations to take 
care of this potential problem. 

4 Multiple and persistent tuple spaces 

Existing definitions of Linda [Gel85, Car87] are built around the assumption of a single 
tuple space though some definitions like [Lei89] and [Kl89] allow for the creation and 
use of multiple, persistent tuple spaces. Similarly, existing implementations create 
evanescent tuple spaces, which exist_ only as long as a given Linda program runs. 
However, it's clear that persistent tuple spaces might be useful objects, which would 
reduce the overhead of initializing the tuple space every time a program is run. In 
our implementation we support persistent tuple spaces for the above reason. 
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5 C-Linda, an embedding of linda in C 

In our implementation, the Linda primitives in, out, rd, and eval are provided as C 
callable functions. So, the programmer writes C-Linda code as if writing a C program. 
The primitives interact with the Tuple Space Manager (TSM) to insert tuples, or 
extract tuples from the Tuple Space (TS). The primitives use the Unix socket based 
Inter Process Communication to communicate with the TSM. A preprocessor converts 
the C-Linda code to C code which is then passed on to a standard C compiler for 
parsing and putting out code. The standard C data types like integer, char, float, 
double and arrays. 

6 Implementation 

Here we outline the details of implementing Linda on a network of workstations 
running Unix Operating System. 

6.1 Tuples 

A tuple consists of a key field, a count field, and the actual data. The key field 
is a string of characters which identifies the tuple. The tuple key is primarily used 
for matching the template with the tuples in the TS. The count field contains the 
count of the number of data items that are contained in the tuple. The data itself is 
represented as pairs of values. The first identifies the type of the field and the next is 
the actual value itself. For example consider the tuple which is inserted into the TS 
using out as out( "TEST", a, 10), where a is an integer. This would be translated 
internally as out( "TEST", 2, INT, a, INT, 10). Here "TEST" is the tuple key, 2 is 
the number of data items in the tuple, INT is the data type representing the C data 
type integer. 

6.2 Tuple space (TS) 

The TS in our implementation is distributed across a network of Unix workstations. 
The physically distinct TS's appear as a single entity because the TSM's keep the 
distributed nature of the TS transparent from the application or the programmer. 
When an application executes an in, a match is tried in the local TS by the corre­
sponding TS manager. If no matching tuple is found, then a broadcast message is 
sent to other managers. A matching tuple, if found in a remote TS, is sent back to the 
requesting application or process. So, the application doesn't know if the matching 
tuple was found locally or from a remote system. The TS is implemented as a hash 
table for quick access of a required tuple. When an out is encountered, the hash value 
is computed based on the key and the tuple is installed in the appropriate bucket. 
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When an in is encountered, the hash is computed based on the key, the correspond­
ing bucket is scanned using the key as a filter. A full match is then attempted to 
find the required tuple. The first tuple that matches is removed and returned to the 
requesting process. 

Hash Table 

• - - - - - - - - - - - -► 

• - - - - - - - - - - - -► 

Tuple 1 Tuple 2 

• - - - - - - - - - - - - -► 

Figure 2: Hash table representing Tuple Space 

6.3 Tuplespace manager (TSM) 

The TSM is a daemon program, that is, it runs in the background without a control­
ling terminal. The TSM's on all the nodes in the network are started automatically 
when the system starts up. This can be arranged by putting the appropriate start-
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up command in the /etc/re.local file. Once the TSM's are started, they wait in the 
background awaiting requests from either the C-Linda programs or from other TSM's. 

The C-Linda programs (actually the C-Linda library routines) communicate with the 
TSM using socket based interprocess communication (IPC). The TSM's communicate 
with each other over the ethernet also using socket based IPC. When a TSM is started 
up, a socket is created and it is then bound to a well known address. The TSM then 
waits at one end of the socket listening for any requests. These requests could be for 
inserting a tuple in to the local tuple space (TS), a request to match a template with 
a tuple or a request from another TSM for a tuple. 

The request is in the form of a string of characters. The multiple fields of a tuple are 
space separated. The TSM then parses the string and determines the type of request. 
If the request is an out, then the string which represents the tuple is converted into 
an internal storage format and stored in the linked list representing the TS. If the 
request is an in instead, then an appropriate routine to find a matching tuple is 
invoked by the TSM. If a matching tuple exists in the TS, that tuple is sent to the 
requesting process over the socket. The tuple is then deleted from the local TS. If 
it is a rd request instead, a similar process matches the tuple, but the tuple is not 
removed from the TS. 

If a matching tuple is not to be found in the local TS, this request is queued in 
a template queue for future processing. A request is then broadcast to the other 
TSM's for a matching tuple. Now, depending on whether a remote TSM has a 
matching tuple, the following possibilities arise. The broadcast sent by the local 
TSM is translated to an in request by the other TSM's. So, this request is treated 
like a local in request, but the socket address connected to this request would be 
a remote socket address. Supposing a matching tuple exists in one of the remote 
TS, then the corresponding TSM would do an out of that tuple to the TS of the 
requesting TSM. Once the tuple gets deposited into the local TS, a match can occur 
in the usual way when the template queue is processed. The tuple is removed from 
the remote TS soon as it is sent to the local TS. Now, once the match occurs, the 
local TSM would send back the tuple to the requesting process and remove the tuple 
from the local TS too. If it were a rd request, then the tuple is not removed. 

Suppose a matching tuple is not available in any of the TS's, the template is then 
queued in the local template queue of all the TSM's. If a matching tuple is deposited 
at a later stage as a result of an out then a match would take place in the usual way 
and the tuple is sent to the blocked process. If more than one TSM has a matching 
tuple, then all the matching tuples are deposited by the remote TSM's into the local 
TS. This is not a problem because, one of the tuples is matched with the template, 
whereas the remaining tuples remain in the local TS and can satisfy future requests. 
If a remote TSM requires a tuple it sent earlier, then the local TSM will send it back. 



6 IMPLE!vfENTATION 10 

6.4 Matching 

It is easy to envison tuple space implementation on a shared memory system like 
Sequent Balance. But, on a network of Unix workstations with disjoint memories, 
where are tuples to be stored? How are they to be found? 

We use an implementation called negative broadcast as defined in [Lei89]. In this 
scheme, out's always act only on memory local to the machine they run on, storing 
their tuple in the local segment of the tuple space. Conversely in's act globally. First, 
the search is made in the local TS for a match. ff this fails, a broadcast request is 
made to all other TSM's. Any manager that can respond with a matching tuple will 
do so. 

Negative broadcast works as follows: 

• If a matching tuple exists in the local segment, it will be found quickly. Since 
out's insert tuples into the local segment, an in or rd for a tuple out'ed by the 
same process a short while before will almost certainly be found locally. 

• If there are no matching tuples locally, but matches can be found in more than 
one remote segment, there will be multiple tuples sent in response. One will be 
used to satisfy the operation initiating the request; the others will be stored in 
the local segment, where subsequent in's or rd's can find them quickly. 

In figure 3, the nodes represent the Unix workstations interconnected by ethernet on 
the local area network. Each of the nodes has multiple processes sharing memory 
representing the multiple TS segments. The TSM shown is the daemon process on 
each node. At the node level an out places a tuple in the local tuple space and awakens 
any local process waiting for it. On an in or rd, if the local tuple segment doesn't 
have a matching tuple, the TSM multicasts the template to an address that all TSM's 
know. A TSM receiving a · template searches its local TS for a matching tuple. On 
failure it does nothing; on success, it effectively does an in on the matched tuple from 
the local TS segment. It then sends the matched tuple to the requesting TSM using 
a socket based virtual circuit. Once successful transmission has been completed, the 
tuple is deleted from the sending TS segment. 

As explained before, every tuple or template has a key which uniquely identifies the 
tuple or template. When an in or rd request is received by the TSM, the match 
routine tries to find a tuple which has the same key as the template. If no such tuple 
exists, the match fails immediately. Supposing such a tuple does exist, then the next 
field which represents the number of data items is compared. If this fails, then the 
TS is searched for the next matching tuple based on the key. This goes on until all 
the tuples in the TS are exhausted. Supposing the number of data items matches, 
then a comparison is made to determine if the data types match. If they do then the 
tuple matches the template, else it doesn't. 
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TSM TSM 

shared memor shared memor 

Pi ....... Pn 

Figure 3: Tuple Space Manager's on the Network 

6.5 Implementing the primitives 

The section on TSM covers the implementation of in,out and rd. The tuple or 
template given as an argument to these are converted to an internal format and 
either stored in the TS or a search for a match is initiated. If more than one TSM is 
available on the local network, then the TSM's communicate with each other using 
socket based IPC and maintain the distributed TS. If a matching tuple is unavailable 
in the local TS, then a request for a tuple is broadcast on the network. If a matching 
tuple exists elsewhere on the net, the corresponding TSM will send the tuple back. 

Implementation of eval is slightly different and involved. The argument to eval is 
not a tuple, but a function. This function is forked off in parallel with the parent 
code. When the function eventually completes execution, it returns an integer value 
( the current version supports functions that return integer value only). This integer 
value is combined with the rest of the tuple and a tuple is now inserted into the TS 
using out. This tuple can then be extracted by an eventual in or rd request in the 
usual way. 
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7 Performance and timing 

The performance of our implementation of Linda is presented with respect to timings 
measured on some primitive operations and for a couple applications. Some basic 
code was timed to obtain some measurements to give us a feel for the performance 
on the workstations. Most of the timing routines used here are taken from [Car87] 
and modified to suit our requirements. 

Each loop had the form: 

for (i = 0; i < 10000 i++) { 

<body> 
} 

One iteration took 1.1 µsecs for a null loop body, 1.4 µsecs for "sum += i;" as the 
body, and 2.3 µsecs for "foo();" as the body. The variables i and sum were declared 
int and foo() was the null function "{;}." 

7.1 Local TS timings 

The timing measurements were made for a simple form of out of a tuple consisting 
of a key and an integer field. The following code was used to time the out call. 

main() 
{ 

} 

int i; 
long j, k; 

j = lindatime(); 
for (i = 0; i < 10000; i++) { 

out( 11string 11 , 4); 
} 

k = lindatime(); 
printf( 11elapsed time ¼ld\n", k - j); 

The timing routine lindatime() was written using the Unix system calls for measur­
ing process time. The average execution time for five trials was 27 secs, or 2.7 msecs 
per out. Now to find out the time taken for an in call, a corresponding in was added 
to this program, the time for an out-in pair was measured and then the time for an 
in calculated from that. 
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So, the program to test in is as below. 

main() 
{ 

} 

int i; 
long j, k; 

j = lindatime(); 
for (i = 0; i < 10000; i++) { 

out ("string", 4); 
} 

for (i = 0; i < 10000; i++) { 
in("string", 4); 

} 

k = lindatime(); 
printf("elapsed time o/.ld\n", k - j); 

13 

The average execution time for five trials was 73 secs, or 7.3 msecs per out-in pair. 
So, for a simple in the timing was 4.6 msecs. The rd version of the above code needs 
to out only once. That code resulted in a timing of 4.4 msecs per rd. 

7 .2 Multiple TS timings 

In the following timings we have the TSM's on multiple systems communicating with 
each other to find matches to queued tuple templates. The first measurement is the 
basic transaction time - from an out on one system to an in on another. 

The first process on system A executes: 

main() 
{ 

} 

int i; 
long j, k; 

j = lindatime(); 
for (i = 0; i < 10000; i++) { 

out("string", 4); 
} 

in("done"); 
k = lindatime(); 
printf("elapsed time o/.ld\n", k - j); 

The second process on system B ( started before the first process) executes: 
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main() 
{ 

} 

int i; 

for (i = 0; i < 10000; i++) { 
in("string", 4); 

} 

out ("done"); 

14 

The results were 76 secs total execution time, or 7.6 msecs per out-in transaction. 

The next test measures round-trip time, simulating a series of RPC calls between two 
processes. 

The pair of processes are: 

ping() 
{ 

int i; 
long j, k; 

j = lindatime(); 
for (i = 0; i < 10000; i++) { 

out("a", 4); 
in("b", 2); 

} 

k = lindatime(); 
printf("elapsed time ¼ld\n", k - j); 

} 

pong() 
{ 

} 

int J.; 

for (i = 0; i < 10000; i++) { 
in("a", 4); 
out ("b", 2) ; 

} 

The time per iteration was 32.18 msecs, which reduces to 16.09 msecs per transaction. 
This transaction took longer time due to the fact that there is a tighter synchroniza­
tion between the two processes, thus serializing most of the work. 



8 PORTING TO SUN WORKSTATIONS 15 

j Test routine/ Linda system II Cogent I Sequent I S/Net I Net Linda j 
Basic - Null body µsecs 2.4 7 5.19 1.1 
Basic - sum += i µsecs 3.7 9 7.37 1.4 
Basic - foo() µsecs 5.6 20 14.19 2.3 
Simple out millisecs 0.22 0.09 1.03 2.7 
Simple in millisecs 0.41 0.11 0.97 4.6 
Simple rd millisecs 0.41 0.09 0.46 4.4 
Multiple in/ out millisecs 2.1 0.1 1.54 7.6 
RPC millisecs 3.1 0.37 1.99 12.09 

Table 1: Comparative Timings 

7 .3 Comparative timing analysis 

The table 1 summarizes the timings for the example routines shown in the previous 
section. The Cogent timings were obtained by running the test routines on a Cogent 
Research XTM workstation with 4 processors and 16 MB memory. The Sequent 
timings were obtained by running the routines on a Sequent Balance 2000 with 28 
processors and 32 MB memory. The compiler used was SCA Linda compiler version 
2.0. The timings for the S/Net implementation are from (Car87]. The timings for the 
Net Linda implementation were obtained on a network of Sun4 workstations. 

The best timings were obtained on the Sequent implementation. This is because 
the SCA Linda compiler uses a preprocessor to determine the patterns of tuple us­
age. This assists in using efficient mechanisms while searching the tuple space for a 
matching tuple. The next best timings were obtained on the Cogent implementation. 
As described in the literature survey section, the Cogent implementation uses some 
hardware mechanisms to make the Linda system efficient. The Cogent XTM work­
station has a 32-bit parallel LindaBus shared by all the processors . LindaBus is used 
to transmit short messages between processors in an efficient manner. It also has a 
dedicated 32-bit microprocessor on the mother board responsible for controlling the 
communication between the processors. This allows a transmission of 64 simultane­
ous messages using a crossbar switch. Our implementation uses socket based IPC 
mechanisms of Unix for communication which has a lot of overhead and is not known 
to be terribly fast. We also do not have the benefit of a preprocessor to analyze 
the tuple space usage. So, the timings obtained compare favourably with the other 
implementations. 

8 Porting to Sun workstations 

The orig inal impl ementation of C-Linda was on a network of Tektronix 4315 work sta ­
tions running ver sion 3.1 of tek OS. \Ve then decided to port th e C-Linda code to a 
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network of Sun-4 SPARCt workstations running version 4.0.3 of SUN OS. The port­
ing itself was trivial requiring minimal modifications in the socket based code. The 
performance gains were significant probably because of better networking software on 
the SUNs. 

9 Concluding remarks 

The implementation of Linda in a distributed environment has been addressed before 
but managing the tuple space efficiently was a challenging task. We have outlined the 
mechanism of implementing the Linda primitives, the tuple space manager and the 
tuple space itself. Our implementation of Linda on a network of Unix workstations 
is a minimal system in the sense that only a subset of C datastructures have been 
supported. Also, the implementation of eval is very limiting on what functions can 
be passed to it as a parameter. We haven't provided for fault tolerance in the system; 
that is there is no backup mechanism in the case of one of the tuple space manager's 
failure in the midst of a program execution. A preprocessor to analyze the tuple space 
usage during the compilation phase might improve the performance of the system. 

tsPARC is a trade mark of Sun Microsystems, Inc. 
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I* 
* Include file Linda.h 

* * Author: Janakiram Cherala 
* Date : March 1990 

* * This is the header file for netlinda 
* Contains defines and other declarations 
*I 

#include <stdio. h> 
#include <string. h> 
#include <sys log. h> 
#include <fcntl. h> 
#include <sys/ ioctl. h> 
#include <sys/types. h> 
#include <sys/ socket. h> 
#include <netinet/in.h> 
#include <net/if.h> 
#include <net db. h> 

#define GUB(x) 

#ifdef DEBUG 

(0) 

#undef DEBUG 
#define DEBUG(x) 
#define DEBUGGING 
#else 

(printfx, ffiush(stdout), 1) 
(1) 

#define DEBUG(x) 
#define DEBUGGING 
#endif DEBUG 

#define TRUE 1 
#define FALSE 0 
#define QUEUE 1 
#define DONTQUEUE 0 
#define LOCAL 0 
#define REMOTE 1 
#define LINDAPORT 1098 
#define TUPLELEN 1024 
#define TUPLEKEYLEN 20 
#define BUFLEN 1024 

typedef struct TupleSpace { 

(0) 
(0) 

I* port at which to listen for requests */ 

char tuple_key[TUPLEKEYLEN]; 
int tuple_comps; 
struct Tuple Data *tuple_data; 
struct TupleSpace *next; 
struct TupleSpace *prev; 

) TUPLESPACE, *TSPOINTER; 

typedef TSPOINTER *DICTIONARY; 

typedef struct TupleData { 
int data; 
int type; 
struct TupleData *next; 

) TUPLEDATA, *TDPOINTER; 

typedef struct TupleQueue { 
int operation; 
int site; 
int dequeue; 
struct sockaddr_in from; 
TSPOINTER tuple; 
struct TupleQueue *next; 

) TUPLEQUEUE, *TQPOINTER; 

#define TSNULL ((TSPOINTER)NULL) 
#define TDNULL ((TDPOINTER)NULL) 
#define TQNULL ((TQPOINTER)NULL) 

#define ARGSIZE 20 
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#define MAXTUPLESIZE 1024 
#define DATA "Initializing th e socke t s." 

I* 
* it is important that these values start from O because I use them as 
* indices into an array for formatting the tuples 
*I 

#define IN 0 
#define OUT 1 
#define RD 2 
#define RQST 3 
#define DEQUEUE 4 

#define BLANKSTRING " " 
#define INSTRING "in" 
#define RDSTRING "rd" 
#define OUTSTRING "out" 
#define RQSTSTRING "rqst" 
#define DEQUEUESTRING "d e q" 
#define ACKSTRING "ack" 
#define COMPCHAR ";" 

I* C type declarations 
* it is important that these values start from O because I use them as 
* indices into an array for formatting the tuples 
*I 

#define CHAR O 
#define INT 1 
#define FLOAT 2 
#define DOUBLE 3 

I* set the value ofTYPEOFFSET to the maximum assigned datatype value +1 above. 
* This value is used as an offset during matching in the match_tuple 
* function - see listener.c 
*I 

#define TYPEOFFSET 4 

I* The corresponding address values for the data types 
*I 

#define CHARPTR 
#define INTPTR 
#define FLOATPTR 
#define DOUBLEPTR 
#define FUNPTR 

I* for broadcast *I 
#define MSG_REQUEST 

(CHAR+TYPEOFFSET) 
(INT+TYPEOFFSET) 
(FLOAT+ TYPE OFFSET) 
(DOUBLE+ TYPEOFFSET) 
10 

((char) O) 
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I* 
* 
* 

A C-Linda library 

* Author: Janakiram Cherala 
* Date: Feb 26 1990 

* * This library supports the following calls 
* * init_linda() 

Monday 28-Jan-91 8:20pm 

· * This function creates sockets and sets up the communication 
* with the Linda daemon 

* 
* 
* 
* 
* 
* 
* 

in (argument_list) 
try to get a matching tuple if possible, else hang 
remove the tuple from tuple space if successful 
argument_list is the formals to match 
eg: in (i, f, 2) 

* out (tuple) 
* put the tuple into tuple space, return immediately 
* eg: out (1, 3.5, 2) 

* * eval (function) 
* evaluate the function and out the resulting tuple to 
* tuple space 
* * rd (argument_list) 
* try to get a matching tuple if possible , else hang 
* do not remove the tuple from tuple space if successful 
* just assigns the values of actual paramet ers to formals 
* eg: rd(i, f, 2) would assign the match ed tuple s's 
* actual parameter values to i and f 

* 
*I 

#Include <vararg s. h> 
#include "linda. h" 

staticcharrcsid[]= "$Header : /u2/ r am/l i nda/RCS/l i nda.c , v 2. 8 90/07/28 12 : 06 : 04 ram Exp Locker : ram$" ; 

char *type_str[] = ("%c", "%d", "%f", "%1 f"}; 
char *prim_string[] = (INSTRING, OUTSTRING, RDSTRING}; 

int inited = FALSE; 
int sock; 
struct sockaddr_in name; 
struct hostent *hp, *gethostbyname(); 
int dummy; 

init_linda() 
( 

struct servant *sp ; 
char hostname[32]; 

inited = TRUE ; /* init has been called before *I 
sp = getservbyname( "brd _t est ", "udp"); 
ifl:sp == NULL) ( 

} 

perror( "unknown se r vice \n "); 
exit(l); 

sock = socket(AF _INET , SOCK_DGRAM, O); 
if (sock< 0) ( 

} 

perror( "ope ning datagra m socket "); 
exit(l); 

ifl:gethostname(hostname, sizeof(hostname)) == -1) 
perror(" erro r get ting host name \n "); 
exit(l); 

} 
hp= gethostbyname(hostname); 
if(hp==O) ( 

fprintft:stderr, "%s: unknown hos t o", hostname); 
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exit(2); 

} 
bcopy(hp->h_addr, &name.sin_addr, hp->h_length); 
name.sin_family = AF _INET; 
name.sin_port = sp->s_port; 

in (va_alist) 
va_dcl 
{ 

va_list ap; 
char tuple[TUPLELEN]; 

iiUnited == FALSE) 
init_linda(); 

va_start(ap); 
make_tuple(IN, ap); 
ifi'.recvfrom(sock, tuple, TUPLELEN, 0, &dummy, &dummy) < 0) 

perror("recei ving datagram packet"); 
DEBUG(("in: tuple received %s\n", tuple)); 
ifi'.strcmp (tuple, ACKSTRING) == 0) { 

if(recvfrom(sock, tuple, TUPLELEN, 0, &dummy, &dummy)< 0) 
perror("receiving datagram packet"); 

DEBUG(("in: tuple received %s\n", tuple)); 
} 
va_start(ap); 
assign_ values_to_ variables(ap, tuple); 

rd (va_alist) 
va dcl 
{ -

va_list ap; 
char tuple[TUPLELEN]; 

ifi'.inited == FALSE) 
init_linda(); 

va_start(ap); 
make_tuple(RD, ap); 
ifi'.recvfrom(sock, tuple, TUPLELEN, 0, &dummy, &dummy)< 0) 

perror("recei ving datagram packet"); 
DEBUG(("rd: tuple received %s\n", tuple)); 
ifl'.strcmp (tuple, ACKSTRING) == 0) { 

if(recvfrom(sock, tuple, TUPLELEN, 0, &dummy, &dummy) < 0) 
perror("receiving datagram packet"); 

DEBUG(("rd: tuple received %s\n", tuple)); 
} 
va_start(ap); 
assign_ values_to_ variables(ap, tuple); 

out(va_alist) 
va_dcl 
{ 

va_list ap; 
char tuple[TUPLELEN]; 

ifi'.inited == FALSE) 
init_linda(); 

va_start(ap); 
make_tuple(OUT, ap); 
ifi'.recvfrom(sock, tuple, TUPLELEN, 0, &dummy, &dummy) < 0) 

perror("recei ving datagram packet"); 
DEBUG(("out: tuple received %s\n", tuple)); 

eval(va_alist) 
va_dcl 
{ 

va_list ap; 

ifi'.inited == FALSE) 
init_linda(); 
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va_start(ap); 
make_tuple(OUT, ap); 

make_tuple(primitive, ap) 
int primitive; 
va_list ap; 
{ 

char *tuple_comp, *ptr; 
char tuple[TUPLELEN]; 
char tmp[TUPLELEN]; 
int tuple_component; 
long int tuple_long; 
double tuple_double; 
int i, count; 
int fork_id = 0; 
int type=0; 
int type_flag=0; 

int (*fun_ptr)O; 

tuple[0] = NULL; 
strcat (tuple, prim_string[primitive]); 
strcat (tuple, BLANKSTRING); 
tuple_comp = va_arg(ap, char*); 
strcat (tuple, tuple_comp); 
strcat (tuple, BLANKSTRING); 

I* fiag to tell us * I 
I* we are reading a C type *I 

/* tuple key *I 

DEBUG(("%s: tuple key %s\n", prim_string[primitive], tuple_comp)); 
tuple_component = va_arg(ap, int); /* count *I 
count = tuple_component*2 ; 
sprintfttmp, "%cl", tuple_component); 
strcat(tuple, tmp); 
strcat (tuple, BLANKSTRING); 
type_flag = 1; 
for(i = 0; i <count; i++) 

if(type_flag) { 

GUB(("clata type 
} 
else 

GUB(("clata value 

type_flag = 0; 
tuple_component = va_arg(ap, int); 
type = tuple_component; 
if(tuple_component == FUNPTR) 

tuple_component = INT; 
sprintfttmp, "%cl", tuple_component); 
%d\n", tuple_component)); 

{ 
type_flag = 1; 
switch(type) 
case CHAR: 

tuple_component = va_arg(ap, int); 
sprintf(tmp, type_str[type], tuple_component); 

%cl\n", tuple_component)); 
break; 

case INT: 
case INTPTR: 
case CHARPTR: 
case FLOATPTR: 
case DOUBLEPTR: 

tuple_component = va_arg(ap, int); 
sprintf(tmp, type_str[INT], tuple_component); 

GUB(("clata value %cl\n", tuple_component)); 
break; 

case FUNPTR: 
DEBUG(("executing a function")); 
fun_ptr = (int(*)()) va_arg(ap, int *); 
if( fork_id = fork()) { 

} 
break; 

case FLOAT: 

tuple_component = (*fun_ptr) () ; 
sprintfttmp, type_str[INT], tuple_component); 
exit(0); 

tuple_long = va_arg(ap, long); 
sprintf(tmp, type_str[type], tuple_long); 
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GUB(("data value %f\n", tuple_long)); 

break; 
case DOUBLE: 

tuple_double = va_arg(ap, double); 
sprintf(tmp, type_str[type], tuple_double); 

GUB(("data value %lf\n", tuple_double)); 
break; 

} 
strcat(tuple, tmp); 
strcat (tuple, BLANKSTRING); 

} 
va_end(ap); 
rn: type != FUNPTR I I ( type == FUNPTR && fork_id )) 

if( sendto(sock, tuple, strlen(tuple), 0, &name, 
sizeof(name)) < 0) 
perror("sending datagram message"); 

assign_values_to_variables( ap, tuple) 
va_list ap; 
char *tuple; /* matched tuple */ 
( 

char 
char 
int 
int 
char 
double 
int 
char 
double 

*token, *tmp_str; 
*tuple_comp; 
i, tuple_component, type, count; 
int_data; 
char_data; 
double_data; 
*pitmp; 
*pctmp; 
*pdtmp; 

token= strtok(tuple, BLANKSTRING); 
tuple_comp = va_arg(ap, char*); 

/* key *I 
I* key *I 

count = atoi(strtok(NULL, BLANKSTRING)); 
tuple_component = va_arg(ap, int); 
for ( i = 0; i < count; i++ ) ( 

type = atoi(strtok(NULL, BLANKSTRING)); 
if(type == CHAR) ( 

I* count *I 

tmp_str = strtok(NULL, BLANKSTRING); 
char_data = tmp_str[0]; 

} 
else if (type == INT) ( 

int_data = atoi(strtok(NULL, BLANKSTRING)); 
} 
else if(type == FLOAT I I type== DOUBLE) ( 

double_data = atof(strtok(NULL, BLANKSTRING)); 

tuple_component = va_arg(ap, int); 

if(tuple_component == INTPTR) 
pitmp = va_arg(ap, int*); 
*pitmp = int_data; 

} 
else i:fl'.tuple_component == CHARPTR) 

pctmp = va_arg(ap, char*); 
*pctmp = char_data; 

} 

I* get type */ 

else i:fl'.tuple_component == FLOATPTR I I 
tuple_component == DOUBLEPTR) 

pdtmp = va_arg(ap, double*); 

} 
else 

} 
va_end(ap); 

*pdtmp = double_data; 

va_arg(ap, int); 
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I* 
* 
* 

Listener module for Net Linda 

* Author: Janakiram Cherala 
* Date: Feb 26 1990 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*I 

Description: 

This is the daemon process that is started on each node 
of the network when a Linda program is executed. 
When the Linda program executes any of the Zinda library 
calls, they are internally translated to calls to the 
listener. Here, socket calls are used for communicating 
with the Zinda process as well as the other listeners. 

#include <s ignal. h> 
#include "lind a. h" 

staticcharrcsid[]="$ Header: / u2/ram / li nda/RCS/ listen e r.c, v 2.15 90/07/28 12 :0 6: 18 ra m Exp Locker : ra m $"; 

char *convert_tuple_to_string( ); 
TSPOINTER parse_tuple(), match_tuple(); 
void insert_tuple(), queue_tuple(), process_queue(), request_tuple(); 
void remove_tuple(), dequeue_tuple() , send_broadcast_msg(), send_matched_tuple(); 
void send_dequeue_msg(); 

char *type_str[] = {"%c", "%d", "%f", "%l f", "%d", "%d", "%d"}; 
char *operation_string[] = { INSTRING, OUTSTRING, RDSTRING, RQSTSTRING, DEQUEUESTRING}; 
TSPOINTER tuple_space[102]; 
TQPOINTER tuple_queue; 
int sock, port; 
struct sockaddr_in from; 
int fromsize = sizeof(from); 

main() 
{ 

int cntrlc_handler() ; 
int length, 

request, 
rqst; 

struct sockaddr_in name; 
struct servent *sp; 
char bufIBUFLEN], 

Stuple[TUPLELEN] , tmpstr[TUPLELEN]; 
TSPOINTER Ttuple, Mtuple; 
char *Ptuple; 

#ifdef DAEMON 
disassociate_ terminal(); 

#endif 
#lfdef CNTRLC 

#endif 
signal(SIGINT, cntrlc_handler); 

sp = getservbyname(" br d_test ", "udp"); 
ittsp == NULL) { 

syslog(LOG_ERR, "l i ste ne r: unknown service : %m"); 
exit(l); 

port = sp->s_port; 
sock = socket(AF _INET, SOCK_DGRAM, O); 
if (sock< 0) { 

syslog(LOG_ERR, "listener : opening datagram socket : %m"); 
exit(2) ; 

} 
name .sin_family = AF _INET; 
name.sin_addr.s_addr = htonl(INADDR_ANY) ; 
name.sin_port = sp->s_port; 
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I* 
* 
* 
* 
* 

*I 

if(bind(sock, &name, sizeof(name))) ( 

} 

syslog(LOG_ERR, "lis t ener: bind i ng d a tagram socket : %m"); 
exit(3) ; 

length= sizeof(name); 
if (getsockname(sock , &name , &length)) 

} 

syslog(LOG_ERR, "li st en e r: g e tt i ng sock et n ame: %m"); 
exit(4); 

while (TRUE) ( 
bzero(buf, BUFLEN); 
if(recvfrom(sock, buf, BUFLEN, 0, &from, &fromsize) < 0) 

syslog(LOG_ERR, "li s tene r: r ec eiv i ng datagram pa cket : %m"); 
if(strcmp(buf, ACKSTRING) == 0) 

continue; 
I* separates the buffer into type of tuple (request) & the tuple Stuple *I 
request = process_request( buf, Stuple ); 
switch( request ) ( 
case IN: 
case RD: 

Ttuple = parse_tuple(Stuple) ; 
if( Mtuple = match_tuple( Ttuple ) ) 

send_matched_tuple(Mtuple); 
if(request == IN) ( 

remove_tuple(Mtuple); 
} 
free( Ttuple ); 

} 
else ( 

break; 
case OUT: 

request_tuple( request, Stuple ); 
I* queue th e template as a local request *I 
queue_tuple( request, LOCAL, Ttuple); 

Ttuple = parse_tuple(Stuple); 
insert_tuple(Ttuple); 
break; 

case RQST: 
I* this is a request from anoth er listener for a tuple *I 

strcpy(tmpstr, Stuple); 
I* to get rid of the request ID */ 
rqst = process_request(tmpstr, Stuple); 
Ttuple = parse_tuple(Stuple) ; 
if( Mtuple = match_tuple( Ttuple)) ( 

Ptuple = convert_tuple_to_string(Mtuple); 
buf{0] = NULL; 
I* out the matched tuple to another TS *I 
strcpy( buf, OUTSTRING ); 
strcat( buf , BLANKSTRING ); 
strcat( buf, Ptuple ); 
if(sendto(sock, buf, BUFLEN, 0, &from, fromsize) < 0) ( 

syslog(LOG_ERR , " listener : sending packet : %m"); 
} 
send_dequeue_msg(Mtuple) ; 

Actually the tuple should be removed only if the requ est is an IN 
but there is a problem with duplicate tuple s, if I don 't delete it 
even for rd requests. So, let us del ete it, but get it back if 
required here locally 

if(rqst == IN) 

remove_tuple(Mtuple) ; 

} 
I* queue the template as if it were a local request *I 
else 

queue _tuple( rqst, REMOTE, Ttuple); 
break; 

case DEQUEUE: 
Ttuple = parse_tuple(Stuple); 
dequeue_tuple(Ttuple); 
break; 
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} 
process_queue(); 
butIO] =NULL; 
I* send acknowlegement *I 
strcpy(buf, ACKSTRING ); 
if ( sendto( sock, buf , BUFLEN , 0, 

(struct sockaddr *) &from, fromsize ) < 0 ) { 
perror( "sendto " ); 
exit(5); 

#ifdef CNTRLC 
cntrlc_handler() 
{ 

} 

DEBUG(("cl eaning up th e tup le spac e\n ")); 

while(tuple_space) { 

} 
exit(6); 

printf("t upl e in T S %s\n", convert_tuple_to_string(tuple_space)); 
tuple_space = tuple_space->next; 

#end if CNTRLC 

char* 
convert_tuple_to_string( tuple ) 
TSPOINTER tuple; 
{ 
I* 
* 
* 
*I 

/* 

* 
* 
* 
* 
* 
*I 

This function converts the given tuple into a string form which 
can then be conveniently manipulated , for eg. to print or to 
send over the socket 

inti; 
TDPOINTER tmp_data ; 
char *string, tmp_string[64] ; 

string= (char *) calloc(l, TUPLELEN ); 
rn: string == (char *) NULL) { 

} 

syslog(LOG_ERR, "li stener : i nsuff i ci ent memory"); 
exit(7) ; 

string[0] = NULL ; 
strcpy( string, tuple->tuple _key); 
strcat( string, BLANKSTRING); 
sprintf(tmp_string, "%d", tuple->tuple_comps); 
strcat( string, tmp_string); 
strcat( string, BLANKSTRING); 
tmp_data = tuple->tuple_data; 
for(i = 0; i < tuple->tuple_comps; i++) { 

sprintf(tmp_string," %d", tmp_data->type); 
strcat( string , tmp_string); 
strcat( string, BLANKSTRING); 
sprintf(tmp_string,type_str[tmp_data ->type], tmp_data->data); 
strcat( string, tmp_string); 
strcat( string, BLANKSTRING); 
tmp_data = tmp_data->next; 

} 
return(string); 

void dequeue_tuple(TSPOINTER Ttuple) 

This function removes the Ttuple from the templat e queue . This 
is necessary to ensur e that more than one tupl e is not match ed 
per template. 

void 
dequeue _tuple(Ttuple) 
TSPOINTER Ttuple; 
{ 
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int match= FALSE, i; 
TSPOINTER tuple; 
TQPOINTER tmp_tq, remove_q, prev_q; 
TDPOINTER tuple_data, tmp_data; 
char buf[BUFLEN]; 

DEBUG{("dequeue tuple: dequeue tuple %s\n", convert_tuple_to_string(Ttuple))); 
tmp_tq = tuple_queue; 
prev_q = tmp_tq; 
while( tmp_tq ) { 

I* see if key matches *I 
tuple = tmp_tq->tuple; 
if( (strcmp(tuple->tuple_key, Ttuple->tuple_key) == 0) && 

I* number of components same? *I 
(tuple->tuple_comps == Ttuple->tuple_comps)) 
match = TRUE; 

} 

tuple_data = tuple->tuple_data; 
tmp_data = Ttuple->tuple_data; 
for(i=0; i<tuple->tuple_comps; i++) { 

} 

if((tuple_data->type == tmp_data->type) && 
(tuple_data->data == tmp_data->data)) 
match = TRUE; 

else if(tuple_data->type == 
tmp_data->type+TYPEOFFSET) 

match = TRUE; 
else { 

} 

match= FALSE; 
break; 

tuple_data = tuple_data->next; 
tmp_data = tmp_data->next; 

if(match == TRUE) 
remove_q = tmp_tq; 
prev_q->next = tmp_tq->next; 
tmp_tq = tmp_tq->next; 
free(remove_q); 

prev_q = tmp_tq; 
tmp_tq = tmp_tq->next; 

disassociate_terminal() 
{ 

inti; 
I* disassociate the listener from the controlling terminal 

*I 

I* 
* 
* 
* 
* 
*I 

for(i = O; i < 3; i++) 
close(i); 

open(";", O_RDONLY); 
dup2(0, 1); 
dup2(0, 2); 

i = open("/dev/tty", O_RDWR); 
if(i >= 0) { 

ioctl(i, TIOCNOTTY, O); 
close(i); 

int get_ifc( int sock) 

Put the IFCONF data structure into the ifc structure and return 
the number of ifreq structures it contains. 

static struct ifconf ifc; 

int 
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get_ifc( sock ) 
int sock; 
( 

static char ifc_buffer[BUFSIZ]; 

ifc.ifc_len = sizeof(ifc_buffer); 
ifc.ifc_buf = ifc_buffer; 
if( (ioctl( sock, SIOCGIFCONF, (char *) &ifc )) < 0) ( 

perror( "get ifc onf " ); 
exit(l); 

} 
return ifc.ifc_len / sizeof(struct ifreq); 

hash( key) 
char *key; 
( 

I* 
* 
* 

inti, sum = O; 
int len; 

len = strlen(key); 

for( i = O; i < len ; i++ ) 
sum += key[i]; 

return(sum % 101 ); 

void insert_tuple( TSPOINTER Ttupl e) 

* return value: nothing 

* * insert the tuple pointed to by Ttuple in the tupl e space 
* this is a result of an "out" or "eval " request in to the tuple space 
*I 

void 
insert_tuple( Ttuple ) 
TSPOINTER Ttuple; 
( 

) 
I* 
* 
* 
* 
* 
* 
* 
* 
*I 

int bucket; 
TSPOINTER old_header; 

DEBUG(("i nsert_tuple : insert i ng tuple %s\n", convert_tuple_to_string(Ttuple))); 

bucket = hash(Ttuple->tuple_key); 
old_header = tuple_space[bucket]; 
tuple_space[bucket] = Ttuple; 
tuple_space[bucket]->next = old_header; 
I* create the backward link for easy deletion *I 
rn: old_header) 

old_header->prev = tuple_space[bucket]; 

TSPOINTER match_tuple( TSPOINTER tuple) 

return value: pointer to the matched tuple in tuple space 

Try to find a match of the template tuple in the tuple space 
If match occurs, return a pointer to the matched tuple 
else return a NULL pointer 

TSPOINTER 
match_tuple(tuple) 
TSPOINTER tuple; 
( 

int match= FALSE, i; 
TSPOINTER tmp_ts; 
TDPOINTER tuple_data, tmp_data; 
char bufIBUFLEN]; 
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/* 
* 
* 
* 
* 
* 
* 
*I 

DEBUG(("match_tuple: tuple %s\n", convert_tuple_to_string(tuple))); 

tmp_ts = tuple_space[hash(tuple->tuple_key)]; 
while( tmp_ts ) { 

) 

I* see if key matches *I 
if( (strcmp(tuple->tuple_key, tmp_ts->tuple_key) == 0) && 

I* number of components same? *I 
(tuple->tuple_comps == tmp_ts->tuple_comps)) 
match = TRUE; 
tuple_data = tuple->tuple_data; 
tmp_data = tmp_ts->tuple_data; 
for(i=O; i<tuple->tuple_comps; i++) { 

) 

if((tuple_data->type == tmp_data->type) && 
(tuple_data->data == tmp_data->data)) 
match = TRUE; 

else if(tuple_data->type == 
tmp_data->type+TYPEOFFSET) 

match = TRUE; 
else { 

) 

match= FALSE; 
break; 

tuple_data = tuple_data->next; 
tmp_data = tmp_data->next; 

if(match == TRUE) 
return( tmp_ts ); 

tmp_ts = tmp_ts->next; 

I* if you are here, then no match has occured *I 
return(TSNULL); 

TSPOINTER parse_tuple( char *tuple) 

return value: pointer to tuple space structure 

parse the tuple and return a pointer to a structure of type 
TupleSpace 

TSPOINTER 
parse_tuple(tuple) 
char *tuple; 
{ 

char *tmp_str; 
inti, type; 
char *tuple_key; 
char tmptuple[TUPLELEN]; 
TSPOINTER store_in; 
TDPOINTER tmp; 

DEBUG(("Parse tuple: parsing %s\n", tuple)); 
tmptuple[0] = NULL; 
I* make a copy so that strtok doesn't screw up the input string *I 
strcpy( tmptuple, tuple); 
store_in = (TSPOINTER) calloc(l, sizeof(TUPLESPACE)); 
if( store_in == TSNULL) { 

) 

syslog(LOG_ERR, "listener: insufficient memory"); 
exit(8); 

tuple_key = strtok(tmptuple, BLANKSTRING); 
strcpy(store_in->tuple_key, tuple_key); 
store_in->tuple_comps = atoi(strtok(NULL, BLANKSTRING)); 
store_in->tuple_data = (TDPOINTER) calloc(l, sizeof(TUPLEDATA)); 
if\store_in->tuple_data == TDNULL) { 

) 

syslog(LOG_ERR, "listener: insufficient memory"); 
exit(9); 

tmp = store_in->tuple_data; 
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I* 

* 
* 

for(i = 0; i < store_in->tuple_comps; i++) { 

} 

I* first get the size from type of data *I 
type = tmp->type = atoi(strtok(NULL,BLANKSTRING)); 
if( type == INT I I type == CHARPTR 
I I type == INTPTR I I type == FLOATPTR I I type == DOUBLEPTR) 

tmp->data = atoi(strtok(NULL, BLANKSTRING)); 
else ifl'.tmp->type == CHAR) { 

} 

tmp_str = strtok(NULL, BLANKSTRING); 
tmp->data = tmp_str[0]; 

else ifl'.tmp->type == FLOAT) 
tmp->data = atol(strtok(NULL, BLANKSTRING)); 

else ifl'.tmp->type == DOUBLE) 
tmp->data = atoti:strtok(NULL, BLANKSTRING)); 

tmp->next = (TDPOINTER) calloc(l, sizeof(TUPLEDATA)); 
if(tmp->next == TDNULL) ( 

syslog(LOG_ERR, "listener: insufficient memory"); 
exit(lO); 

tmp = tmp->next; 

return( store_in ); 

void process_queue( void) 

* return value: nothing 

* 
* 
* 
* 
*/ 

process the queue of pending requests and see if we can match 
any of the templates with the available tuples in local Tuple 
Space 

void 
process_queue() 
{ 

TQPOINTER head_q, prev_q, remove_q; 
TSPOINTER Mtuple; 
struct sockaddr_in tmp_from; 

DEBUG(("processing queue \n")); 
head_q = tuple_queue; 
prev_q = tuple_queue; 
tmp_from = from; 

while(tuple_queue) 
from = tuple_queue->from; 
if(Mtuple = match_tuple(tuple_queue->tuple)) { 

} 

I* send the matched tuple to the requesting process *I 
send_matched_tuple(Mtuple); 
I* send a dequeue message to the other listeners so that 
* they can remove the template from the queue of 
* waiting templates 
*I 

if'(tuple_queue->dequeue == TRUE) 
send_dequeue_msg(Mtuple ); 

if'(tuple_queue->operation == IN I I 
tuple_queue->site == REMOTE) 
remove_tuple(Mtuple); 

remove_q = tuple_queue; 
prev_q->next = tuple_queue->next; 
tuple_queue = tuple_queue->next; 
if'( head_q == remove_q ) 

head_q = tuple_queue; 
free(remove_q); 

else { 
prev_q = tuple_queue; 
tuple_queue = tuple_queue->next; 
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I* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
*I 

from = tmp_from; 
tuple_queue = head_q; 

process_request( char *buffer, char *tuple) 

return value: type of request - an integer 

Buffer is the string received on the socket by the listener. 
This function analyses the buffer, determines the type of request, 
and stores the request string (which is a tuple) in the string 
tuple. It returns the type of request in request. 

A typical tuple would appear as 
in TEST 2 0 2345678 1 10 

'"'"" key 

process_request( buffer, tuple) 
char *buffer; /* input with identifying request *I 
char *tuple; /* output without the identification *I 
( 

I* 
* 
* 

char tmp[TUPLELEN]; 
char *token; 
int request; 

strcpy( tmp, buffer); 
DEBUG(("process_request: %s\n", buffer)); 
token = strtok(buffer,BLANKSTRING); 
if(strcmp(token, INSTRING) == 0) 

) 

strcpy( tuple, strtok(NULL, "\n") ); 
request = IN; 

else if(strcmp(token, OUTSTRING) == 0) 
strcpy( tuple, strtok(NULL, "\n") ); 
request = OUT; 

) 
else if(strcmp(token, RDSTRING) == 0) 

strcpy( tuple, strtok(NULL, "\n") ); 
request = RD; 

) 
else if (strcmp(token, RQSTSTRING) == 0) 

strcpy( tuple, strtok(NULL, "\n") ); 
request = RQST; 

) 
else if(strcmp(token, DEQUEUESTRING) == 0) 

strcpy( tuple, strtok(NULL, "\n") ); 
request = DEQUEUE; 

else ( /* this came from other listener *I 
strcpy(tuple, tmp); 
request = OUT; 

) 
return( request ); 

void queue_tuple(int what, int site, TSPOINTER tuple) 

* return value: nothing 

* 
* 
* 
* 
* 
*I 

void 

store the unmatched tuple templates in a queue for future matching 
what is the operation (in, rd, eval, etc) that was requested and 
tuple is the pointer to the template. The site information is stored 
in the queue so that some site specific processing can be done later. 

queue_tuple(what, site, tuple) 
int what; 
int site; 
TSPOINTER tuple; 
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I* 

TQPOINTER tmp_queue, tmp; 

DEBUG(("queue tup le: queueing tupl e %s\n", convert_tuple_to_string(tuple))); 
tmp_queue = tuple_queue; 
tmp = tuple_queue; 

while(tuple_queue) { 
tmp = tuple_queue; 
tuple_queue = tuple_queue->next; 

tuple_queue = tmp; 
tmp = (TQPOINTER) calloc (1, sizeof(TUPLEQUEUE)); 
if'\tmp == TQNULL) { 

syslog(LOG_ERR, "listener: insufficient memory" ); 
exit(ll); 

} 
tmp->next = TQNULL; 
tmp->operation = what; 
tmp->site = site; 
if\site == REMOTE) 

tmp->dequeue = TRUE; 
else 

tmp->dequeue = FALSE; 
tmp->from = from; 
tmp->tuple = tuple; 

it'\tuple_queue) 
tuple_queue->next = tmp; 

else 
tuple_queue = tmp; 

if\tmp_queue) 
tuple_queue = tmp_queue; 

I* type of tuple in/out/eval *I 
I* local or remote request *I 
I* should a dequeue broadcast be sent *I 

I* where did the request come from *I 
I* note that this tuple that we 
* point to here needs to be freed 
* when the match occurs later 
*I 

* void remove_tuple( TSPOINTER tuple) 

* 
* 
* 

return value: nothing 

* remove the tuple from tuple space - this is done when a match occurs 
* as a result of an "in" request 

void 
remove_tuple( tuple) 
TSPOINTER tuple; 
{ 

inti; 
TSPOINTER tmp; 
TDPOINTER tmp_data, data; 

DEBUG(("remove_tuple: removing tuple o/os \n ", convert_tuple_to_string(tuple))); 

if(tuple == tuple_space) { 
tmp = tuple; 
if(tuple_space->next) 

tuple_space->next->prev = TSNULL; 
tuple_space = tuple_space->next; 

} 
else { 

tmp = tuple; 
tuple->prev->next = tuple->next; 
if(tuple->next) 

tuple->next->prev = tuple->prev; 
} 
data= tuple->tuple_data; 
for(i=0; i<tuple ->tuple_comps; i++) 

tmp_data = data->next; 
free(tmp); 
data= tmp_data; 

{ 
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} 
*I 

void 

} 
free(tmp); 

remove_tuple( tuple ) 
TSPOINTER tuple; 
( 

void 

inti; 
int bucket; 
TSPOINTER tmp; 
TDPOINTER tmp_data, data; 

DEBUG(("remove tuple: r emoving tuple %s\n", convert_tuple_to_string(tuple))); 
bucket= hash(tup!e->tuple_key); 
ifl:tuple == tuple_space[bucket]) 

} 

tmp = tuple; 
if(tuple _space[bucket]->next) 

tuple_space[bucket]->next->prev = TSNULL; 
tuple_space[bucket] = tuple_space[bucket]->next; 

else ( 
tmp = tuple; 
tuple_space[bucket]->prev->next = tuple_space[bucket]->next; 
if(tuple_space[bucket]->next) 

} 
free(tuple); 

tuple_space[bucket]->next ->prev = tuple_space[bucket]->prev; 

request_tuple(what , tuple) 
int what; 
char *tuple; 
( 
I* 
* 
* 
* 
*I 

void 

This function broadca sts a request for the given tuple using 
the socket sock. The request is directed at servers on the nam ed 
port on all machine s in the local INET network. 

static char data[TUPLELEN] ; 

DEBUG(("r equest _t uple : request %s\n", tuple)); 

data[0] = NULL ; 
strcat(data, RQSTSTRING); 
strcat(data, BLANKSTRING); 
strcat( data, operation_string[ what]); 
strcat(data, BLANKSTRING); 
strcat(data, tuple); 
send_broadcast_msg( data); 

send_broadcast_msg( data ) 
char *data; 
( 

struct sockaddr_in sin; 
struct sockaddr dst; 
int off= 0, on = 1; 
int n; 
int data_len = strlen(data) + 1; 
inti= 0; 
struct hostent *host, *gethostent(), sethostent(); 
char hostname[64]; 

#if def SO _BROADCAST 
struct ifreq *ifr; 

I* Set socket for broadcast mode *I 
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if( (setsockopt( sock,SOL_SOCKET,SO_BROADCAST,&on,sizeof(on) )) < 0) ( 

perror(" se t socket optio n for br oadcast "); 
exit(l); 

I* Initialize broadcast address and bind socket to it *I 
sin .sin_family = AF _INET; 
sin.sin_port = port; 
sin.sin_addr.s_addr = htonl(INADDR_ANY) ; 
bind( sock, (struct sockaddr *) &sin, sizeof(sin) ); 

for ( n = get_ifc(sock), ifr = ifc.ifc_req; n > O; --n, ++ifr ) ( 

I* Only deal with AF _!NET networks *I 
if ( ifr->ifr_addr.sa_family != AF _INET) continue; 

I* Use the current address by default *I 
bzero( (char *) &dst, sizeof(dst) ); 
bcopy( (char *)&ifr->ifr_addr, (char *)&dst, sizeof(ifr->ifr_addr) ); 

I* Get the fiags *I 
if ( ioctl( sock, SIOCGIFFLAGS, (char*) ifr ) < 0 ) { 

perror( "get ifr flag s"); 
exit(l); 

I* Skip unusable cases *I 
if( !(ifr->ifr_flags & IFF_UP) 11 /* lfnot up, OR *I 

(ifr->ifr_flags & IFF _LOOPBACK) I I /* if loopback, OR *I 
!(ifr->ifr_flags & (IFF _BROADCAST I IFF _POINTOPOINT))) 

continue; 

I* Now, determine the address to send to *I 
if ( ifr->ifr_flags & IFF _POINTOPOINT) ( 

} 

if( ioctl( sock, SIOCGIFDSTADDR , (char *) ifr) < 0) { 
perror(" ge t ifr destination address ") ; 
exit(l); 

} 
bcopy( (char*) &ifr->ifr_dstaddr , 

(char *) &dst, 
sizeof(ifr->ifr_dstaddr) ); 

if ( ifr->ifr_flags & IFF _BROADCAST) { 
if ( ioctl( sock, SIOCGIFBRDADDR, (char *) ifr ) < 0 ) ( 

perror(" get ifr broadcast address "); 
exit(l); 

} 
bcopy( (char*) &ifr->ifr_broadaddr, 

(char *) &dst, 
sizeof(ifr->ifr_broadaddr) ); 

I* ... make sure that the port number is OK *I 
if ( dst .sa_family == AF _INET ) ( 

struct sockaddr_in *sa_in = (struct sockaddr_in *) &dst; 
sa_in->sin_port = port; 
DEBUG(( "Reque st address = %s (%d) \n ", 

inet_ntoa(sa _in->sin_addr), ntohs(port) )); 

I* ... and send the request *I 
DEBUG((" Send to %d [%2d] %s\n",sock ,data_len,show_data(data,data_len))); 
if ( sendto( sock , data, data_len, 0, 

(struct sockaddr *) &dst, sizeof(dst) ) < 0 ) { 
perror( "sendto " ); 
exit(l); 

I* Reset socket option to normal operation *I 
if( (setsockopt( sock ,SOL_SOCKET,SO_BROADCAST ,&off,sizeof(ofl) )) < 0) { 

perror(" reset socket option for no broadcast" ); 
exit(l); 
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#else !defined(SO_BROADCAST) 
/* Simulate broadcast if you ain't got it *I 
gethostname(hostname, 64); 
while ( (i++ < 30) && (host = gethostent()) != NULL ) { 

I* Only deal with AF _INET networks *I 

} 

if ( host->h_addrtype != AF _INET I I 
*host->h_addr == 127 /* LOOPBACK */ I I (strcmp(host->h_name, hostname) == 0)) { 

GUB(("Host %s has addre ss famil y %d & fir st %d\n ", 
host->h_name, host->h_addrtype, 
(unsigned char) *host->h_addr )); 

continue; 

I* Start building the address from scratch *I 
bzero( (char*) &dst, sizeof(dst) ); 

struct sockaddr_in *sa_in = (struct sockaddr_in *) &dst ; 

I* Copy the host address into the destination address *I 
bcopy( (char *) host->h_addr, 

(char *) &(sa_in->sin_addr), 
host->h_length ); 

I* ... mak e sure that the port number is OK *I 
sa_in->sin_family = host->h_addrtype; 
sa_in->sin_port = port; 

I* ... and send the request *I 
I* 
GUB(( "Send request to %sat %s %d\n", host->h_name, 

inet_ntoa(*(stru ct in_addr *)host->h_addr), ntohs(port) )); 
GUB((" Send [%2d] %s\n",data_len ,show_data(data,data_len))) ; 
*I 
if( sendto( sock, data, strlen(data), 0, 

(struct sockaddr *) &dst, sizeof(dst)) < 0 ) { 
perror( "sendto " ); 
ex:it(12); 

#endif SO_BROADCAST 
} 

I* 

* 
*I 

void 

send the dequeue msg to all the listeners 

send_dequeue_msg( Ttuple ) 
TSPOINTER Ttuple ; 
{ 

char *buf · 
char fub[TUPLELEN]; 

I* discovered a bug, if a deque_message is sent while the communication is 
between two servers, then there is confusion and a proper match doesn 't 
happen. had to disable this by returning from this routine without doing 
anything . Now things work fine. Need to investigate this though 
*I 

I* an effort to fix a bug - ram - 07 / 17 / 90 *I 
return; 

buf = convert_tuple_to_string(Ttuple); 
DEBUG((" send deque ue msg : (%s) \n ", but)); 
strcpy(fub, DEQUEUESTRING) ; 
strcat(fub, BLANKSTRING); 
strcat(fub, but); 
free(buf); 
send_broadcast_msg(fub); 



listener.c (page 13) Monday 28-Jan-91 8:21pm 

I* 
* send the matched tuple from the local tuple space to the requesting 
* process at the socket from 
*I 

void 
send_matched_tuple( Ttuple ) 
TSPOINTER Ttuple; 
{ 

char *buf; 

buf = convert_tuple_to_string(Ttuple); 
DEBUG(("send_rnatched_tuple: (%s) \n", buO); 

rn:sendto(sock, buf, BUFLEN, 0, &from, fromsize) < 0) 
syslog(LOG_ERR, "listener: sending packet: %rn"); 

free(buO; 

show_data() 
{ 
I* dummy function 
*I 
) 


