
Schemer

A Hierarchical Software Architecture
for Real Time Problem Solving

Sharad Srivastava

A research paper submitted to
The Department of Computer Science

Oregon State University
in partial fulfillment of the requirements

for the degree of
Master of Science

in
Computer Science

September 26, 1988

Acknowledgements

I take this opportunity to thank all the people who made my program
at Oregon State University educative, challenging, enjoyable and possible.

In particular:

Dr. Bruce D'Ambrosia, my major professor, for his guidance,
accessibility and readiness to get involved in details,

Jim Edwards, who has been an indispensable friend, for the long
discussions that helped clarify many confusing concepts and abstractions
of Computer Science,

My dearest wife Ila, who made all the sacrifices.

)

Contents

1. Overview

2. Background
2.1. EMYCIN
2.2. OPS5
2.3 Blackboard Systems
2.4 BB1
2.5 SOAR

3. The need for Schemer
3.1. The need to perform tasks simultaneously
3.2. The need for timely response

3.2.1. Communication
3.2.2. lnterruptability
3.2.3. Opportunistic deliberation

4. Schemer
4.1 Model of Communication

4.1.1. Ca-JNECT
4.1.2. SEND
4.1.3. RECEIVE
4.1.4. PUT
4.1.5. GET
4.1.6. Examples

4.6.1.1. Synchronous Operations
4.6.1.2. Asynchronous Operations

4.2. The Schemer Organization
4.2.1. Blackbox view of KHs

4.2.1.1. Synchronous Ports
4.2.1.2. Asynchronous Ports

4.2.2. Constituent view of a KH
4.2.2.1. Internal structure of a FKH
4.2.2.2 Internal structure of a PKH

4.3. The Schemer Operation
4.3.1. Basic Operation
4.3.2. Independent vs. Supervised Handlers
4.3.3. The Managers

4.3.3.1. Communication Manager (CM)

1

2
2
2
3
4
6

7
7
7
7
8
8

9
9
9
9

1 0
1 0
1 0
1 1
1 1
1 2
14
1 4
1 5
1 5
1 6
1 6
1 7
1 7
1 7
1 8
1 9
1 9

)

4.3.3.2. Task Manager (TM)
4.3.3.3. Schedule Manager (SM)
4.3.3.4. Event Manager (EM)

5 Schemer Implementation
5.1. The Implementation Environment

5.1.1. PCL
5.1.2. Stack Groups
5.1.3. Processes and Multiprocessing

5.2. Structure of Ports
5.2.1. Properties of the class PORT
5.2.1. Properties of the class SYNC
5.2.2. Properties of the class ASYNC

5.3. Structure of Knowledge Handlers (KHs)
5.3.1. Properties of the class GKH
5.3.2. Properties of the class FKH
5.3.3. Properties of the class PKH

5.4. Structure of a Carrier
5.5. Structure of a Message
5.6. How the user specifies his Application

5.6.1. Static and Run time Structures
5.6 .2. Giving Names to Knowledge Handlers
5.6.3. Running multiple copies of a KH
5.6.4. Customizing the KHs

5.7. The Managers
5.7.1. The Communication Manager (CM)
5.7.2. The Task Manager (TM)
5.7.3. The Schedule Manager (SM)
5.7.4. The Event Manager (EM)

5.8. Communication Handle of a PKH

6. Issues for Investigation
6.1. Enhancing the Schedule Manager
6.2. Running Multiple copies of a KH
6.3. Meshing
6.4. Parallel Processing

7. References

1 9
20
20

21
21
21
22
23
24
24
24
24
25
25
25
30
31
32
33
33
35
35
35
36
36
38
39
39
40

41
41
41
41
41

43

1. Overview

This paper describes Schemer, a hierarchical software architecture
for Real Time problem solving. Real time applications must be able to
react to critical events quickly, and be able to explore simultaneous
solutions in response to, or, in anticipation of such events.

Schemer, which is a Blackboard-like architecture, addresses the
aforementioned objectives by

A. Allowing hierarchical and recurs partitioning of problem
solving modules.

B. Allowing interruption and activation at any depth in the hierarchy
while still operating under the umbrella of hierarchical control.

C. Providing a model for direct communication between modules, and

D. Allowing multiple modules to be running simultaneously.

This paper is organized as follows. First, in the Background section,
extant architectures are explored. Then, the Schemer architecture is
described in detail, followed by the discussion of an implementation and
implementation issues for future research.

)

2. Background

Some Artificial Intelligence based Problem Solving architectures
are discussed.

2.1. EMYCIN

EMYCIN (1) is an early example of a backward chaining rule based
architecture. It evolved out of MYCIN and was an attempt to make MYCIN
less medicine specific so that new domains could be tried.

A backward chaining control structure is imposed by EMYCIN.
Control is implicit in the order of clauses on the Left Hand Sides of rules
and on the order of the rules themselves.

2.2. OPS5

OPSS (5), an example of a forward chaining rule based system
evolved as a member of programming languages supporting the Production
systems architecture. A production system is composed of rules called
productions, that reside in a Production memory. These productions
operate on assertions stored in a Working memory. The architecture
operates in a Recognize-Act cycle that iterates through three steps. The
first step, Match, evaluates the Left hand side of productions to determine
which are satisfied given current contents of working memory, and adds
those satisfied along with the instantiations to a Conflict-set. The
second step, Conflict-resolution, selects one production with a satisfied
LHS. The third step, ACT, performs actions specified on the RHS of the
selected productions. Actions may add new productions to Production
memory and more commonly, add, modify or delete working memory
elements.

Control in production systems is the selection of the one production­
instantiation from the conflict set. The domain independent control
heuristics are rigid and prefer recent instantiations and productions with
more specific left hand sides.

User control can be achieved by having control clauses in
antecedents.

2

2.3. BLACKBOARD SYSTEMS

Comparing Blackboard Architectures (10) to rule based systems, the
rules scale up to knowledge sources, the working memory elements of
production systems and the objects of EMYCIN scale up to Blackboard data
structures and most importantly, the implicit control in rule based
systems is replaced by an explicit agenda.

Blackboards offer the following advantages over rule based systems:

a. A larger grain of complex computation. It is difficult to do
computation in a single rule.

b. Solutions that are complex structured objects such as
identification of Koala bear locations, atomic structure of
proteins, a sentence structure or a determination of vehicular
movements.

c. Explicit and flexible control. An agenda allows the separation of
the Match (a determination that a module can execute) from the
select and execute. It allows domain dependent search in
deciding what should execute next. That is, it is possible to
reason about what to do next.

Because Schemer (4, Conceived by Michael Fehling) is Blackboard
based, a somewhat detailed discussion of Blackboard systems follows.

The Blackboard model consists of three major components. The
knowledge sources (KSes), a global database called the blackboard, and a
control component that is not specified.

External sources post events onto the blackboard that maintains the
data state. KSes react to changes on the blackboard, and produce changes
to the blackboard that may trigger other KSes. "Communication and
interaction among the Knowledge sources take place solely through the
Blackboard" (10).

Blackboard architectures produce solutions that are structured
objects (7, 8, 10). Each knowledge source posts a solution element onto
the Blackboard. The Y-axis of the Blackboard is usually split into several

3

layers representing a structured abstraction with the solution being in the
top most layer and sensory inputs from external sources occupying the
bottom most layer. The X-axis usually represents a multidimensional
space.

Thus a Blackboard system that identifies Koala bears in a foliage,
could have the following layers in the structured hierarchy. Koala,
Head/Torso, Limbs, Regions, Lines. Each layer would haves its own,
objects and vocabulary, and knowledge sources would typically trigger on
data patterns in a layer and would post changes in the same layer or a
layer above. The X dimension would be the locations of the sensory input
(lines) and partial and final solutions.

Normally blackboards run in a data-driven fashion, but it is possible
to have goal directed behavior, by posting goals onto the blackboard and
have KS actions trigger KSes in the layer below.

GBB (2), a generic blackboard development system illustrated the
use of Blackboard systems in producing solutions that are structured
objects. GBB concentrated on efficient updating and retrieval of
structured blackboard objects via multidimensional indexing.

All that the control component specified was that 'knowledge
sources respond opportunistically to changes in the blackboard' (pieces of
knowledge are applied either forward or backward at the most 'opportune'
time) (10).

2.4. 881

881 (7, 8) was an implementation of a blackboard architecture with
explicit treatment of control. 881 provided explicit domain and control
blackboards as well as domain and control knowledge sources.

Like the domain blackboard, the control blackboard was split into
layers. The layers, from top to bottom, were:

a. The Problem
b. Strategies
c. Focus
d. Heuristics

4

e. Feasible actions
f. Chosen actions

The control knowledge sources modified objects in these layers and
operated in both data-driven and goal-driven fashion.

Problem solving took place in a three step basic control loop. Each
loop iteration was a deliberate and act cycle (referred to as a solution
interval) and served as the X dimension of the control blackboard.

There were three basic types of control knowledge
corresponding to the three steps of the solution interval.
knowledge sources had no control knowledge of their own,
adapted themselves to the objects on the control blackboard.
solving proceeded as follows.

sources
These

but they
Problem

Step 1. Update the feasible actions layer which is a To-do-set of
pending knowledge source activation records (KSARs). A
KSAR is a knowledge source coupled with the place on the
blackboard where it should be executed.

Step 2. Select which one to execute, based on the objects in the
Focus and Heuristics layer. Only one KSAR is selected in
each solution interval. This could correspond to a control or
a domain knowledge source. This is the 'deliberate' step.

Basically all executable KSARs are rated against how well
they match the current focus.

Step 3. Execute the selected KSAR. This is the 'act' step.

The 881 system entailed high computational costs, making it
impractical for real time applications. Because a lot of time was spent
deciding what to run next, the grain size of each computation had to be
large.

. An alternative to the 'deliberate in each loop' approach of 881 is the
'deliberate when you impasse' approach of SOAR.

5

2.5. SOAR

SOAR (9) is a problem solving architecture in which every task of
attaining a goal is formulated as finding a desired state in a problem
space. A problem space is a space of operators and states.

A subgoal is set up to make any decision for which immediate
knowledge is insufficient. Whenever a subgoal is encountered in solving a
problem, the problem solver begins at some initial state in the new
problem space.

Decision situations that give rise to subgoaling are varied.
Examples are: which of the many applicable operators to use, how to
perform an operator, how to satisfy its preconditions, how to evaluate a
state.

Effective control in SOAR depends on the quality of the search
functions that select problem spaces, states and operators.

6

3. The need for Schemer

3.1. The need to perform tasks simultaneously

Real time applications operate in a world of uncertain and
incomplete information. They must be able to explore simultaneous
solutions, in response to, or in anticipation of critical events so they can
weigh the relative costs and benefits of each solution. They also need to
be able to actively indulge in activities that help them improve their
stored internal model. New and relevant information not only guides
solution development, but is invaluable as feedback during solution
execution. The determination of what is critical and what is relevant is
in itself a complex activity (4).

Neither SOAR nor Blackboard implementations provide support for
simultaneous development of multiple solutions. In BB1, there is only one
schedule, and only one KSAR is executed in a solution interval. There is
only one Focus, which may change. Although the Blackboard Model has the
knowledge sources doing their actions in parallel, there is only one
Blackboard. When pursuing simultaneous solutions, different solutions
and recursively, their sub-solutions may require different Blackboard
dimensions and abstraction layers.

3.2. The need for a timely response

Real time applications must be able to respond quickly.

3.2.1. Communication

"Communication and interaction among the Knowledge sources take
place solely through the Blackboard". In the SOAR OPS implementation,
this is the underlying working memory.

To aid in the timeliness of the response, a communication model is
needed for direct message passing among the knowledge sources. Thus in
addition to event driven activation, the knowledge sources can invoke each
other.

7

)
3.2.2. lnterruptability

In order to enhance interruptability in a resource bounded system,
the application must be able to partition a task into arbitrary grain size
subtasks according to it's needs. In blackboard systems, the blackboard
is global and portions cannot be cleanly encapsulated.

Partitioning aids in timeliness of response in another way .
Computer systems that interact with a dynamic external environment, do
so with incomplete and uncertain information. They make assumptions
that need to be retracted later. Thus they must provide for management of
uncertainty. An ability to partition the underlying truth maintenance
system will reduce it's computational complexity. Related research on
partitioning the ATMS is ongoing.

3.2.3. Opportunistic deliberation

The 881 architecture deliberates in each loop. This entails high
computational costs. The SOAR architecture deliberates only when it
impasses. This may result in poor response to changing conditions.

A real time application should deliberate whenever it is appropriate
to do so.

Schemer, whose features go beyond the Blackboard paradigm,
addresses these issues.

8

4. Schemer

4.1. Model of Communication

The communication model is described first because it's constructs
are subsequently referred to.

The model used is based on the one described by Reid (11).

The basic mechanism of communication is ports. Ports can be
classified in two ways, by type (Synchronous or Asynchronous) and by
direction (Input or Output).

The operations on ports are CREATE, DESTROY, CONNECT,
DISCONNECT, SEND, RECEIVE, GET and PUT. Some of these are briefly
discussed.

4.1.1. CONNECT

Only ports that are compatible (same type and opposite directions)
can be connected. Thus a Synchronous Output Port can be connected to a
Synchronous Input Port, and an Asynchronous Output Port can be connected
to an Asynchronous Input Port.

A port can be connected to multiple compatible ports at the same
time.

4.1.2. SEND

The send operation is used to write a message to a synchronous
output port. A send can be classified in two ways. It can be a tightly
coupled send or a loosely coupled send, and it can be a conjunctive send or
a disjunctive send.

In a tightly coupled send, the sender blocks until the message is read
via a receive operation on one(all) connected input port(s). In a loosely
coupled send, the sender does not block.

In a conjunctive send the message is sent to all connected input
ports. In a disjunctive send, the message is sent to only one connected

9

)

input port.

Synchronously sent messages are never lost or overwritten. They
are always received, and may have to be queued.

4.1.3. RECEIVE

The receive operation is used to read a message from a synchronous
input port. The message is removed after it is read.

The receive operation blocks if there is no message to be read.

4.1.4 PUT

The put operation is used to write a message to an Asynchronous
output port. A put can be classified as 'Retained' or 'Transmitted'.

A put operation with 'Retained' semantics, destroys all messages at
all connected input ports and places the new message at the output port,
overwriting any existing message.

A put operation with 'Transmitted' semantics, puts the new message
in all connected input ports, overwriting any existing message. Any
message stored at the output port is destroyed.

The put operation never blocks. Asynchronously sent messages are
never queued. A message may be destroyed even before it is read.

4.1.5 GET

The get operation is used to read a message from an Asynchronous
input port. A get can be classified as 'Destructive' or 'Non destructive'.

A destructive read destroys a message after reading it. A non
destructive read doesn't.

port.
The get operation first checks for a message is stored at the input
If not, the connected output ports are checked.

The get operation never blocks. The same message may be read many

1 0

times.

4.1.6. Examples

4.6.1.1. Synchronous Operations

SYNC-INP-1

SYNC-OUT-1 Q-INP-1

Q-OUT-1

SYNC-INP-2

Q-INP-2
SYNC-OUT-2

Q-OUT-2 ·
SYNC-INP-3

Q-INP-3

In the above diagram, the larger boxes represent synchronous ports,
each small box represents a queue attached to it's corresponding port, and
a line between two ports indicate that the two ports are connected.

A Conjunctive SEND on SYNC-OUT-1 queues the message in Q-INP-1, Q-INP-
2 and Q-INP-3.

A Conjunctive SEND on SYNC-OUT-2 queues the message in Q-INP-2.

A Disjunctive SEND on SYNC-OUT-1 queues the message in Q-OUT-1.

A Disjunctive SEND on SYNC-OUT-2 queues the message in Q-OUT-2.

A RECEIVE on SYNC-INP-1 looks for a message in Q-INP-1 or in Q-OUT-1.
The order in which the queues are searched is implementation dependent.

A RECEIVE on SYNC-INP-2 looks for a message in Q-INP-2 or in Q-OUT-1 or
in Q-OUT-2. The order in which the queues are searched is implementation

1 1

dependent.

A RECEIVE on SYNC-INP-3 looks for a message in Q-INP-3 or in Q-OUT-1.
The order in which the queues are searched is implementation dependent.

In a RECEIVE, the message just read is removed from the queue from which
it was read.

4.6.1.2. Asynchronous Operations

ASYNC-INP-1

ASYNC-OUT-1 SLOT- INP-1

SLOT-OUT-1

ASYNC-INP-2

SLOT-INP-2
ASYNC-OUT-2

SLOT-OUT-2
ASYNC-INP-3

SLOT-INP-3

In the above diagram, the larger boxes represent asynchronous ports,
each small box represents a slot attached to it's corresponding port, and a
line between two ports indicate that the two ports are connected. A slot
can only hold one message, so putting a message in a slot overwrites any
existing message.

A transmitted PUT on ASYNC-OUT-1 destroys any message in SLOT-OUT-1
and puts the message in SLOT-INP-1, SLOT-INP-2 and SLOT-INP-3.

A transmitted PUT on ASYNC-OUT-2 destroys any message in SLOT-OUT-2
and puts the message in SLOT-INP-2.

A retained PUT on ASYNC-OUT-1 destroys any message in SLOT-INP-1,

12

SLOT-INP-2 and SLOT-INP-3 and puts the message in SLOT-OUT-1.

A retained PUT on ASYNC-OUT-2 destroys any message in SLOT-INP-2 and
puts the message in SLOT-OUT-2.

A GET on ASYNC-INP-1 retrieves a message from SLOT-INP-1 or SLOT-OUT
1. The order in which the slots are searched is implementation dependent.

A GET on ASYNC-INP-2 retrieves a message form SLOT-INP-2 or SLOT-OUT
1 or SLOT-OUT-2. The order in which the slots are searched is
implementation dependent.

A GET on ASYNC-INP-3 retrieves a message from SLOT-INP-3 or SLOT-OUT
1. The order in which the slots are searched is implementation dependent.

If the GET is destructive, the message just read is removed from the slot
from which it was read.

13

4.2. The Schemer Organization

The components of a Schemer system are

1. A set of ports.

2. A top level that controls the system operation. The top level
consists of 4 elements called the Communication Manager (CM),
the Task Manager (TM), the Schedule Manager (SM) and the Event
Manager (EM).

3. A global store called the Knowledge Space (K-SPACE) that houses
objects called Knowledge Handlers (KHs).

4. The KHs on the K-SPACE, which provide a uniform representation
corresponding to both the blackboard objects and the knowledge
sources of the Blackboard model.

Structurally, there are two types of Knowledge Handlers

a. Full Knowledge Handlers (FKHs)
b. Primitive Knowledge Handlers (PKHs)

The KHs are described next, first from the Blackbox view (how they
look from the outside) and then from Constituent view (what are they
made up of).

4.2.1. Blackbox view of KHs

Knowledge Handlers provide a uniform representation for problem
solving data and problem solving knowledge. A KH can represent either or
both.

Regardless of their type (FKH or PKH) or what they represent (data,
knowledge or both), all KHs look the same from the outside. That is, they
present the same interface to their embedding environments. Each KH has
a set of synchronous ports and a set of asynchronous ports.

14

4.2.1.1. Synchronous Ports

Synchronous ports are used for messages that must not be
overwritten or destroyed before they are received. In a tightly coupled
send, the sender blocks till the receiver receives the message. On any
input port, a receiver can only receive the message once.

Synchronous input ports are for messages that come from the
outside world or other KHs. Similarly the Synchronous output ports are
for messages that go to the outside world or other KHs.

Any implementation can specially designate ports for messages
to/from the outside world.

4.2.1.2. Asynchronous Ports

Each KH makes data available to the outside world through numerous
Asynchronous output ports. Data is put on these ports using the 'Retain'
semantics and read via connected input ports using the 'non-destructive'
semantics.

These semantics are appropriate for problem solving data that may
be read multiple times, or be changed many times without being read.

Although the KH is an object, the difference from a strictly object­
oriented view is that any data in these Asynchronous Output Ports is
freely available to any other object that is properly linked. So the owning
KH need not be entered and the requester does not lose control.

The Asynchronous output ports can contain any arbitrary objects.
Examples are a) stimulus frames b) response frames c) preconditions d) a
default priority e) an indication of the resources a typical task done by
the KH takes f) a Schedule to be used by the SM g) a trigger table to be
used by the EM h) a History i) the result of a trial run j) a partial or a
complete plan k) a goal or a subgoal to be achieved and so on and so forth.

Thus a knowledge handler that constructs a plan could be
incrementally building it on one of its Asynchronous output ports.

15

4.2.2. Constituent view of a KH

This section describes the internal structure of Full Knowledge
Handlers (FKHs) and Primitive Knowledge Handlers (PKH).

4.2.2.1. Internal structure of a FKH

Each FKH is itself a Schemer system. It is internally composed of a
set of internal ports, a top level consisting of the four managers (CM, TM,
SM and EM) and a K-SPACE that houses KHs.

Schemer is therefore recursively composed. All KHs on the K-SPACE
are siblings and are 'Embedded in the owning FKH'. ·

The internal components of a FKH are:

a. Synchronous Input Ports

These ports are to receive messages from embedded KHs.

b. Embedded KHs

Since they can house data, the embedded KHs allow the embedding KH
to have a local persistent data state. The asynchronous output ports of
some of these hold special data structures like a schedule of pending
tasks or a history of completed tasks.

The schedule is a prioritized queue of carriers. A carrier
corresponds to the KSAR of 881. It allows an embedded KH to be multiply
scheduled with different arguments. The schedule allows for flexible
control and an interrupt capability.

c. Communication Manager (CM)

The CM manages the port structure of the FKH and the flow of
information between its K-SPACE and the outside world.

d. Task Manager (TM)

The TM runs the tasks on the schedule and performs process

16

management functions.

e. Schedule Manager (SM)

The SM manages and prioritizes the schedule.

f. Event Manager (EM)

The EM monitors the data state changes on the K-space and informs
the SM about potentially runnable handlers. Roughly, the EM, SM and TM
perform the deliberate-act loop of the 881 architecture.

A fixed interruptable algorithm could be implemented as a
degenerate case of a FKH which has no event triggered activity at all, but
an embedded handler representing a fixed schedule of other embedded
handlers.

4.2.2.2. Internal structure of a PKH

As mentioned earlier, Schemer is recursively composed. Primitive
knowledge handlers bottom out this recursion.

A PKH must specify a communication handle which acts as a top­
level to an uninterruptable algorithm. The execution of a PKH cannot be
interrupted.

A PKH can have additional components including those with local
persistent data states.

4.3. The Schemer Operation

4.3.1. Basic Operation

A data change takes place in the K-SPACE either as a result of
external conditions, processing of new inputs by the CM or by the TM's
execution of a KH from the schedule.

The EM notices the data change and determines that the new data
state matches the trigger conditions of some embedded KHs. The EM forms
a carrier and passes it to the SM.

1 7

The SM places the carrier on the Schedule.

The TM responds to the new schedule by running/resuming the "n"
most important tasks. Any previously running task that is not among the
"n" most important is suspended. Suspending a FKH means suspending all
its (recursively downwards) running KHs. Each KH reports to its
embedding TM (recursively upwards) the amount of resources used by it.

Conceptually, the four managers run in parallel. So the distance
from the triggering to the need to change the control state, to changing it
is zero. Any implementation must minimize this distance.

4.3.2. Independent vs. Supervised Handlers

Normally a KH runs under the direct supervision of its embedding TM.
It is possible for a KH to attain an independent status (i.e. not under the
direct control of the embedding TM). However, this independent status
will usually be for a brief period, because the embedding TM reasserts its
control as soon as it can. The outermost FKH is always independent,
because it does not have an embedding TM.

Why have independent handlers ? Consider the following situations.

A KH that is suspended or terminated may receive a critical message
from another KH or from the outside world. The sender of the message
may feel that the message is critical and resume or start the KH. In
either case, the status of the KH becomes independent, until the
embedding TM changes it to supervised.

A KH might get new data that changes the data state of the
embedding KH . in a manner that triggers some other KHs. If the embedding
KH is suspended or terminated, then it has to be resumed or started. The
embedding KH becomes independent.

Thus Schemer allows for interrupts and activation at any depth in
the hierarchy while still operating under the umbrella of hierarchical
control.

18

4.3.3. The Managers

4.3.3.1. Communication Manager (CM)

The CM receives and processes messages that arrive at the input
ports of the KH.

These messages could be control messages for activation,
suspension, resumption and termination. They could be non-control
messages that are processed by the CM or forwarded to the input ports of
other KHs.

The connections between ports of different KHs are either
predefined by the structure of the application, or are new connections that
are established via messages sent over the predefined connections.

It is the job of the CM to manage/authorize new ports and
connections that connect ports internal to the KH to the ports outside.

The CM can connect a handler's ports to external ports. It is these
connections that give global environments.

4.3.3.2. Task Manager (TM)

Takes the "n" available processors and allocates it to the "n" most
important tasks on the schedule. It also brings under its control any KH
that is running with an independent status.

The TM should be able to initiate, suspend, resume and terminate
tasks. That is, it should be able to perform basic process management
functions.

When a task is suspended, it must be done in a (application specific)
way that consistency problems are taken care of.

Because KHs have local persistent data states, the TM must be able
to duplicate a KH, for one might want to suspend a KH and run another
carrier corresponding to the same KH.

19

4.3 .3.3. Schedule Manager (SM)

The schedule at any instant is indicative of potential future actions.

The SM maintains the schedule. Together, the TM and the SM do the
base level of control reasoning in the system. The carriers that make up
the schedule can contain some default scheduling information (like
priorities).

The schedule itself is available like other problem solving data,
which provides an ability to distribute control via certain handlers called
control handlers. These handlers can be triggered by changes to the
schedule, and/or directly manipulate the schedule. Control handlers will
usually be high priority, so that they run first.

4.3.3.4. Event Manager (EM)

The EM watches out for data state changes in the K-SPACE for
patterns that match the trigger conditions of the embedded handlers.

There would be no need for an EM in a system if every embedded KH
could trigger itself.

One of the things in an implementation is to compile away as much
overhead as possible. This amounts to placing each embedded KH's trigger
conditions in a trigger-table, a structure which like the schedule is
available like other problem solving data. The main user of this structure
is the EM of the embedding KH.

20

5. Schemer Implementation

The managers of any FKH could be specialized and encode application
specific control knowledge. The implementation supports such
specialization. The implementation also provides generic managers.
These managers have the ability to receive and process application
specific messages. The evolution of these generic managers can best take
place through experimentation.

5.1. The Implementation Environment

Schemer is implemented in Allegro Common Lisp on a Tektronix
workstation running the UTek operating system. A port to Lucid on a SUN
workstation running SunOS is in progress.

The implementation uses the PCL and the MUL Tl PROCESSING packages.

5.1.1. PCL

PCL provides the programmer interface for object-oriented
programming in the Common Lisp Object System (CLOS).

Using PCL, it is possible to setup a class hierarchy with property
inheritance. PCL provides the ability to specify multiple methods for a
function, each method corresponding to a unique specialization of the
function's parameters. Default accessor functions and functions to create
class instances are also provided.

The following code fragment illustrates the specification of a class
hierarchy of ports and the use of methods.

(defclass PORT ()
((name) (owner) (connected-to :type LIST :initform nil)))

(defclass SYNC-PORT (PORT)
((message -list :type LIST :initform nil)))

(defclass SYNC-INP-PORT (SYNC-PORT) ())
(defclass SYNC-OUT-PORT (SYNC-PORT) ())

21

(defclass ASYNC-PORT (PORT)
\ ((message :initform nil)))

(defclass ASYNC-INP-PORT (ASYNC-PORT) ())
(defclass ASYNC-OUT-PORT (ASYNC-PORT) ())

A uniform interface for sending messages on both types of output
ports can be achieved as follows:

(defmethod SEND-TO-PORT ((port SYNC-OUT-PORT) (msg t)))
(defmethod SEND-TO-PORT ((port ASYNC-OUT-PORT) (msg t)))

A uniform interface for retrieving the owner for all types of ports
could be:

(defmethod RETRIEVE-OWNER ((port PORT)) ...)

5.1.2. Stack Groups

Stack groups are briefly described here because multiprocessing is
implemented on top of stack groups.

"A stack-group represents the state of a Lisp computation. It most
closely corresponds to the notion of a co-routine. The only thing a stack­
group can do (aside from normal Lisp computation) is to resume some
other stack-group, and perhaps be itself resumed later on" (12).

In the following illustrative diagram, the X-axis is time.

Stack Group sg1
Stack Group sg2
Stack Group sg3

--a-- --c--

-----b---- -----d----

a. sg1 is resumed the first time.
b. sg1 resumes sg3 the first time.
c. sg3 resumes sg1.
d. sg1 resumes sg3.
e. sg3 resumes sg2 the first time.

22

----e- - --

5.1.3. Processes and Multiprocessing

"A process corresponds to the usual operating system notion of a
process. The process mechanism provides a convenient programming
interface to stack-groups. Each process has its own stack-group. A
scheduler process is responsible for managing all other processes" (12).

The scheduler process cannot interrupt a process that is executing
code wrapped in a without-scheduling macro. A process can voluntarily
give control to the scheduler process via the process- a II ow-sch e du I e
construct and optionally direct the scheduler to resume a specified
process.

Each process is an object, and has associated with itself among other
things, a list called run-reasons, a list called arrest-reasons and a
property list.

For a process to run, the run-reasons list must not be nil, and the the
arrest- reasons list must be nil. Disabling a process makes both these
lists nil. Enabling a process puts the token :enable in the run-reasons
list for the process.

The managers are implemented as processes. A property called
:action is defined whose value can be one of resume, suspend or kill.

Processes are required to check the value of their : action property
regularly, which is a directive.

23

5.2. Structure of Ports

Ports are PCL objects. The class hierarchy of ports is as follows.

PORT

INPUT OUTPUT INPUT OUTPUT

5.2.1. Properties of the class PORT

a. p-name: Name of the port.

b. p-owner: Owner of the port, which is a KH.

c. p-con n: List of compatible ports, a port is connected to.

5.2.2. Properties of the class SYNC

a. p-msg-lst: List of messages.

5.2.3. Properties of the class ASYNC

b. p-msg: A message.

24

5.3. Structure of Knowledge Handlers (KHs)

Knowledge Handlers are PCL objects. The class hierarchy of KHs is
as follows.

General Knowledge Handler (GKH)

Full Knowledge Handler
(FKH)

5.3.1. Properties of the class GKH

Primitive Knowledge Handler
(PKH)

The class GKH corresponds to the Blackbox view of knowledge
handlers.

a. name (NAME)

Each KH has a name. The name is unique. Construction of the name
is explained later.

b. External field (EXT-FLD)

This field is t if the KH is currently executing in the independent
mode, and n ii, if it is in the supervised mode.

c. Main Input Port (INP-P)

This is a Synchronous Input Port. Each message sent to this port is
read by the Communication Manager in order.

25

d. Interrupt Port (INT-P)

This is a Synchronous input Port. This Port behaves like the Main
Input Port, but is given the top priority among all ports.

It is also possible for the outside world to have direct access to
this port, no matter how deeply the KH is embedded.

e. Direct Input Port (DIR-INP-P)

This is a Synchronous input port and like the INP-P and INT-P ports,
each message sent to this port is read in order. These ports are
connected to the DIR-OUP-P ports of other KHs.

f. List of Direct Output Ports (DIR-OUP-P-LST)

This is a list of Synchronous output ports. A message sent on the
DIR-OUP-P port of a KH is conjunctively sent to all connected DIR
-INP-P ports.

g. List of Output Data Ports (DATA-P-LST)

This is a list of Asynchronous output Ports. These ports can contain
arbitrarily complex objects.

h. List of Input Data Ports (INP-DATA-P-LIST)

These are Asynchronous Input Ports that are connected to the Output
Data Ports of other KHs.

i. Trigger Port (TRIG)

This port •is implemented as a slot. It contains the trigger
conditions of the KH, in the form of a predicate that returns true,
when conditions are ripe for the KH to be triggered.

The predicate takes as arguments Data Ports of the KH and of sibling
KH's.

26

j . Response Port (RESP)

This port is implemented as a slot. It contains an indication of what
the KH will do/achieve. It is useful for scheduling purposes.

k. Priority Port (PRIOR)

This port is implemented as a slot. It containes a priority and is
useful for scheduling purposes.

I. Grain Port

This port is implemented as a slot. It gives a rough estimation of
the time the KH takes to execute. It is used for both process
management and scheduling purposes.

m.lnitial Flag (init-fl)

This flag when t, causes the SM of the embedding KH to put this KH
on the schedule on start up.

n. Control Knowledge Handler Flag (ckh-fl)

This flag when t indicates that this KH may modify the schedule.

5.3.2. Properties of the class FKH

a. Communication Manager code (cm)

This slot contains the communication manager code.

b. Communication Manager Process (cm-proc)

This slot contains the process corresponding to the executing CM.

c. Task Manager code (tm)

This slot contains the task manager code.

27

d. Task Manager Process (tm-proc)

This slot contains the process corresponding to the executing TM.

e. Schedule Manager code (cm)

This slot contains the schedule manager code.

f. Schedule Manager Process (sm-proc)

This slot contains the process corresponding to the executing SM.

g. Event Manager code (em)

This slot contains the event manager code.

h. Event Manager Process (em-proc)

This slot contains the process corresponding to the executing EM.

i. Internal Input Port for the CM (cm-p)

This Synchronous Input Port is for messages from the embedded KHs
to the CM.

j . Internal Input Port for the TM (tm-p)

This Synchronous Input Port is for messages from the embedded KHs
to the TM.

k. Internal Input Port for the SM (sm-p)

This Synchronous Input Port is for messages from the embedded KHs
to the SM.

I. Internal Input Port for the EM (em-p)

This Synchronous Input Port is for messages from the embedded
KHs to the EM.

28

m. Special port for the SM (SM-EM-P)

This special Synchronous Input Port is read by the SM. It is meant
for messages from the EM.

n. Special port for the EM (EM-TRIG-P)

This special Synchronous Input Port is read by the EM. It is used for
messages that the EM uses to index into a trigger-table .

o. Schedule

The schedule which is a list of carriers is implemented as a slot.

p. Schedule Flag (sched-fl)

This flag when t indicates that the schedule has been initialized.

q. Schedule Lock (sched-lock)

A lock that can only be held by one process at a time.

r. Trigger Hash (trig-hash)

The Trigger Table which is built from the information in the trigger
ports of embedded KHs.

Asynchronous output data ports of embedded KHs hash into this
table to retrieve a list of KHs they can potentially trigger.

s. Quiesce Flag (quiesce)

When a KH terminates, all the manager processes terminate. This
results in the associated stack-groups being destroyed. When this
flag is t, instead of terminating the stack-groups, the processes are
disabled and marked as quiescing.

The advantage is that new processes need not be created for the next
execution of the KH. Only the processes need be enabled.

29

t. List of embedded KHs (kh-lst)

u. Hash table of embedded KHs (kh-hash)

v. List of embedded KHs whose init-fl is t

w. List of embedded KHs whose ckh-fl is t

5.3.2. Properties of the class PKH

a. Communication Manager code (cm)

This slot contains the communication handle which acts as a top
level to an uninterruptable algorithm.

b. Any other properties.

30

5.4. Structure of a Carrier

A carrier which is a defstruct object has the following structure:

priority:

kh:

The Task Manager uses this priority to sort the schedule.

Contains the ID of the Knowledge Handler that will be or is being
executed.

proc:
Contains the process object associated with the CM of the KH.

alloc:
Contains an indication of the number of execution units the
handler should take to run to completion. Could also contain
symbolic values like : quick, : no-hurry etc.

slice:
Contains the execution units after which the TM may give the
processor to some other carrier.

The value of this slot is transferred to the :slice property of the
CM-PROC and is used for time slicing among carriers.

new-slice:
Indicates whether the slice slot contains a new value.

suspend:
Indicates whether the KH is to be suspended. Carriers whose
KHers are executing will be suspended if this field is t. Carriers
whose KHers are not executing will not be started if this field is
t.

This is a primitive mechanism for run-time dependencies among
Handlers. (A must execute before B etc. etc.).

ph-fl:
t if the KH is a primitive kh. nil otherwise.

31

arg:
A list whose contents will be put into the INP-P port of the KH
before it is started. Currently not used.

ind-fl:
The independent status of the carrier. It is t if the associated
carrier was invoked by a process other than the Task Manager of
the embedding KH. It becomes nil when the Task manager of the
embedding KH takes control.

Meant to support direct invocation from the outside.

5.5. Structure of a Message

Messages that arrive at the non-special input ports of a FKH have
the following structure:

path-remaining:
The CM uses this field to determine the next KH to forward this
message to. If nil, the CM executes the message.

path-sofar:
This field contains the path taken by the message so far.

orig-kb:
Contains the originating KH of the message or t (If the message
came from the outside world).

task:
This field contains a function. Executing this message means
executing this function.

args:
This is a list of arguments. The executing KH is consed onto this
list which is applied to the function.

32

)

5.6. How the User specifies his Application

When the user specifies his application, he specifies what is termed
as the static structure. From this, a run time structure is generated,
which can change during run time.

5.6.1. Static and Run time Structures

In the following diagram, each box represents a separate KH. The
label on top of each box, is the user defined class of the KH.

Top

p Q

X X

00
A B

□□

The user can specify the above configuration by the following:

(def-fkh-class TOP (P Q)
(def-fkh-class P (X)
(def-fkh-class Q (X)
(def-fkh-class X (A B)

(def-pkh-class A
(def-pkh-class B

TOP, P, Q and X correspond to FKHs. A and B correspond to PKHs.

33

As a result of executing the def-fkh-class and def-pkh-class forms,
two static structures are generated.

a. A *dag* rooted at TOP

Preorder is: TOP (P (X (A B)) (Q (X (A B))))

b. An extension to the class-subclass hierarchy of KHs as follows.

The run time structure can be created by traversing the *dag* in
preorder, creating the corresponding KH instance at each node, and linking
it to the KH instance that is its parent. The leaves of the *dag* generate
PKHs. The other nodes generate FKHs.

Thus X, A and B are defined only once, but their instances appear
twice in the run time structure. The def-fkh-class and def-pkh-class
macros define PCL classes.

34

5.6.2. Giving Names to Knowledge Handlers

Each knowledge handler has a unique name. The name is dotted pair of
the form (<class> . <int>) where <class> is the user defined class and <int>
is a unique integer for each instance of that class (incremented by one on
every time an instance is created).

Thus if the run-time structure of the above examples were traversed
in a pre-order fashion, the KH names would print out as follows:

(TOP . 1) [(P . 1) [(X . 1) [(A . 1) (8 . 1)]] [(Q . 1) [(X . 2) [(A . 2) (8 . 2)]]]]

This naming convention uniquely identifies each KH, and makes it
possible to send interrupt messages to all instances of a user defined
class of handlers. The structure *slot* indexes instances by the user
defined class.

5.6.3. Running multiple copies of a KH

The way the user specifies his application and the KH naming
convention makes it possible to have multiple copies of a KH embedded in
the same FKH, even though each KH has a local persistent data state.

Although it is not implemented, a handler can be duplicated at run
time by traversing the sub *dag* rooted at the node that represents the
class of the handler to be duplicated. The mechanism is the same that is
used to create the initial run time structure from the static structure.

5.6.4. Customizing the KHs

Both the def-fkh-class and def-pkh-class forms allow the user to
specify initial values for the relevant properties of the GKH class.

The def-fkh-class form allows the user to specify initial values for
the relevant properties of the FKH class.

The def-pkh-class form allows the user to specify the value for the
CM-P property (the Communication Handle). In addition it allows the user
to add new properties and specify their initial values.

35

If the value for any of the CM, TM, SM or EM slots is not specified with
the def-fkh-form, then that slot defaults to the corresponding generic
manager. For any user defined class, any generic manager can be replaced
by an application specific counterpart.

Examples:

(def-fkh-class X (A B C) :CM #'my-cm :PRIOR 9
:TRIG (volt-fluctuatingp (volt history)))

(def-pkh-class A :GRAIN 10 :CM #'my-function)

The trigger table of the embedding KH is constructed from the :TRIG
values.

5.7. The Managers

5.7.1. The Communication Manager (CM)

The communication manager code which is in the CM slot of the FKH
must be executed to start up the FKH. This code runs as a process and the
process object is stored in the CM-PROC slot of the FKH.

The CM-PROC process has the following properties: :action, :refresh,
:quiescing, :used, :slice, :independent and :numproc.

:action, which can be kill, resume or suspend, serves as a directive
for the CM and the TM.

: refresh, when t, indicates that the four managers must execute their
initialization code.

: qui es c in g, when t, means that the four managers have logically
terminated, but physically the associated processes exist in a disabled
state (helps speed up the next initialization).

: used holds the amount of processing units used by the KH since it's
value was last initialized. The values of the grain ports of executed PKHs
propagate up the run time structure and contribute to this value.

36

: s Ii c e holds the amount of processing-slice given by the TM of the
embedding KH. If :used exceeds :slice, :used is initialized and the KH is
suspended (and recursively so are all the executing KHs on the schedule)
until the TM of the embedding KH, resumes it with another slice.

: ind e pendent, when t, indicates that the KH is running in an
independent state (as opposed to supervised state), and,

:numproc, which is an integer, holds the number of processes the TM
can execute simultaneously.

As part of it's initialization the CM creates the TM, SM and the EM
processes. It then passes direct control to the TM via the process-allow­
schedule construct.

When resumed again, the CM goes into it's basic loop (as do the other
managers) disabling itself at the end of each loop if it has nothing to do in
the next iteration. The basic loop operation is as follows:

If the KH is dormant (the schedule and all the synchronous input ports
are empty), the CM kills all the managers · (including itself). If the quiesce
flag of the FKH is t, the kill is logical and the four managers start
quiescing. Otherwise, the associated stack-groups are destroyed.

The values of : used and : s Ii c e are compared. If : used is greater than
:slice, then :action is set to suspend.

The CM then looks at is it's :action property. If the action is kill (or
suspend) it kills (or disables) the SM and the EM and passes direct control
to the TM.

If the : action is resume, it first enables the other managers and then
processes all the messages in it's INT-P port and a maximum of one
message from each of it's other synchronous input ports.

Each message has a path-remaining component. If it is null, the CM
executes the actual message. Otherwise the message is forwarded to the
next KH in the path. Another component, path-so far, contains the path
traced by the message so far.

37

The to s k component of the message is application specific (see the
section 5.5. 'Structure of a Message'). Examples of generic tasks are:
Connect a port, Install a KH).

5.7.2. The Task Manager (TM)

The task manager code is in the TM slot of the FKH. This code runs as
a process and the process object is stored in the TM-PROC slot of the FKH.

As part of its initialization the TM passes direct control to the SM
via the process-allow-schedule construct.

When resumed again, the TM goes into it's basic loop, disabling itself
at the end of each loop if it has nothing to do in the next iteration. The
basic loop operation is as follows:

The TM goes through all the carriers on the schedule, transferring to
the : used quantity from the corresponding KHs to the : used property of
it's associated CM-PROC.

The TM then looks at : o ct ion property of CM-PROC. If the action is
k i 11 (or s us pen ct), it passes this directive to the CMs of all the running
embedded KHs (excepting those running with an independent status) before
killing (or disabling) the CM and itself.

The Task Manager then goes through the first : nu mp ro c carriers on
the schedule (excluding those that have : suspend = t), essentially
running or resuming them and suspending all the carriers after the first
:numproc.

If any carrier in the first : nu mp ro c entries has used up its time slice
(i.e. the : used property of the associated CM is greater than the : s Ii c e
property), then the associated KH is suspended. If all of the first
: nu mp ro c carriers have used up their time slices, then each is given a
fresh slice and resumed. Thus the processing resource allocation among
concurrently running KHs is distributed in the ratio of their :slices.

Any resumed KH that had an independent status becomes supervised
(:independent is set to nil). A KH gains independent status when started
by someone other than it's embedding TM.

38

The TM then executes messages in it's TM-P input port.

5.7.3. The Schedule Manager (SM)

The schedule manager code is in the SM slot of the FKH. This code
runs as a process and the process object is stored in the SM-PROC slot of
the FKH.

As part of it's initialization the SM initializes the schedule and
creates carriers for the embedded KHs whose init-fl is t. It then passes
direct control to the EM via the process-allow-schedule construct.

When resumed again, the SM goes into it's basic loop, passing direct
control to the TM at the end of each loop. The basic operation is as
follows:

The SM reads the special SM-EM-P input port for any KHs that have
been triggered as a result of changes in the K-SPACE. Information in this
port comes from the EM. The SM then forms carriers and places them on
the schedule. Most of the information that is put in the carrier comes
from the asynchronous output ports of the KH.

The SM then executes messages in its SM-P input port.

5.7.4. The Event Manager (EM)

The event manager code is in the EM slot of the FKH. This code runs as
a process and the process object is stored in the EM-PROC slot of the FKH.

The EM performs some initialization and relinquishes control.

When resumed again, the EM goes into it's basic loop, passing direct
control to the SM at the end of each loop. Hence the distance from EM to
SM to TM is reduced as much as possible. The basic operation is as
follows:

The EM reads the special em-trig-p input port for the asynchronous
data ports of any embedded KHs. Whenever any KH writes to an
asynchronous output port, and that port has an index in the trigger table, a

39

pointer to the port gets queued as a message in the em-trig-p port.

The EM then indexes trig-hash using each asynchronous port and
retrieves all the associated KHs. These KHs have the asynchronous port as
one of the arguments to their trigger predicate. The trigger predicates of
all the retrieved KHs are then executed by the EM and the ones that return
nil are discarded.

Each of the triggered KHs are next used to index into trig-hash again.
These retrieve the control handlers.

All the retrieved handlers are passed to the SM via the SM-EM-P
special port.

The EM then executes messages in it's EM-P port.

5.8. Communication Handle of a PKH

The CM of a PKH is the top level to an uninterruptable algorithm. The
TM of the embedding KH executes a PKH by funcalling it's CM. The value of
the grain slot of the PKH is added to the : used property of the CM-PROC of
the embedding system.

40

6. Issues for Investigation.

6.1. Enhancing the Schedule Manager

The generic managers are extremely simple. They have the ability to
receive application specific messages and execute them.

Although control is distributed via control knowledge handlers,
control handlers themselves have to be put on the schedule first.

Efficiency could be gained by having the ability to send messages to
the SM that can permanently change it's generic behavior (Use a different
sort predicate to sort the Schedule !)

6.2. Running Multiple copies of a KH

Since KHs can have a local persistent data state, they are not
reentrant. The implementation does provides a mechanism to recursively
duplicate a FKH, but it does not allow the copying of any local data at all.

PCL provides an ability to specify that the storage for a slot
(property) not be located in each instance of the class but in the class
object itself, making it possible to share data amongst all instances of
the class.

6.3. Meshing

A KH is meshed (3, 6) if it is embedded in more than one FKH.
Meshing gives a facility to specify global data, and can facilitate better
performance (3). However the meshed KH may force the serialization of
two concurrent FKHs (6).

Meshing is straight forward to implement when the meshed KH is a
PKH with no local persistent data state.

6.4. Parallel Processing

The Schemer architecture is a natural for a parallel processing. The
communication model provides the mechanism where the flow of data is
separated from the flow of control (6). The data messages are queued in

41

)
the synchronous input ports while the control tokens are the value of the
:action property (kill, resume, suspend).

42

.)
7. References

1. Buchanan, B.G. and Shortliffe, E.H., Rule-Based Expert Systems: The
Mycin Experiments of the Stanford Heuristic Programming Project
(Addison-Wesley, Reading, MA, 1984).

2. Corkill, Daniel D., Gallagher, Kevin Q., and Murray, Kelly E., GBB : A
Generic Blackboard Development System., Proceeding AAAl-86 (1008-
1014) 1986.

3. Erman, L.D., Lark, J.S., and Hayes-Roth, F., ABE: An Environment for
Engineering Intelligent Systems, Teknowledge, Inc., Report No. TTR­
ISE-87-106, Nov., 1987.

4. Fehling Michael R., and Breese, John S., A Computational Model for
Decision-Theoritic[sic] Control of Problem Solving under Uncertainty.,
Technical Memorandum No. 837-88-5 APR 1988.

5. Forgy, C.L., OPS5 user's manual, Computer Science Department,
Carnegie-Mellon University, Pittsburg, PA, 1981.

6. Forrest, Stephanie., and Lark, Jay S., Parallel and Distributed
Processing in ABE, Teknowledge Inc., Report No. TTR-ISE-88-101,
Jan., 1988.

7. Hayes-Roth, Barbara., 881: An architecture for blackboard systems
that control, explain, and learn about their own behavior, Heuristic
Programming Project, Report No. 84-16, December, 1984.

8. Hayes-Roth, Barbara., Garvey Alan., Johnson, M. Vaughan Jr., and
Hewett M., A Layered Environment for Reasoning about Action,
Knowledge Systems Laboratory, Report No. KSL 86-38, August 1986.

9. Laird J.E et al., SOAR: Architecture for General Intelligence, Artificial
Intelligence 33 (1987).

1 O. Nii, H. Penny., Blackboard Systems: The Blackboard Model of Problem
Solving and the Evolution of Blackboard Architectures, Al Magazine,
Summer 1986.

43

11. Reid, Loretta G., Control and Communication in Programmed Systems,
Computer Science Department, Carnegie-Mellon University, Pittsburg,
PA, 1980.

12. Tek Common Lisp User Manual, December 1987

44

