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1. Overview 

This paper describes Schemer, a hierarchical software architecture 
for Real Time problem solving. Real time applications must be able to 
react to critical events quickly, and be able to explore simultaneous 
solutions in response to, or, in anticipation of such events. 

Schemer, which is a Blackboard-like architecture, addresses the 
aforementioned objectives by 

A. Allowing hierarchical and recurs partitioning of problem 
solving modules. 

B. Allowing interruption and activation at any depth in the hierarchy 
while still operating under the umbrella of hierarchical control. 

C. Providing a model for direct communication between modules, and 

D. Allowing multiple modules to be running simultaneously. 

This paper is organized as follows. First, in the Background section, 
extant architectures are explored. Then, the Schemer architecture is 
described in detail, followed by the discussion of an implementation and 
implementation issues for future research. 
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2. Background 

Some Artificial Intelligence based Problem Solving architectures 
are discussed. 

2.1. EMYCIN 

EMYCIN (1) is an early example of a backward chaining rule based 
architecture. It evolved out of MYCIN and was an attempt to make MYCIN 
less medicine specific so that new domains could be tried. 

A backward chaining control structure is imposed by EMYCIN. 
Control is implicit in the order of clauses on the Left Hand Sides of rules 
and on the order of the rules themselves. 

2.2. OPS5 

OPSS (5), an example of a forward chaining rule based system 
evolved as a member of programming languages supporting the Production 
systems architecture. A production system is composed of rules called 
productions, that reside in a Production memory. These productions 
operate on assertions stored in a Working memory. The architecture 
operates in a Recognize-Act cycle that iterates through three steps. The 
first step, Match, evaluates the Left hand side of productions to determine 
which are satisfied given current contents of working memory, and adds 
those satisfied along with the instantiations to a Conflict-set. The 
second step, Conflict-resolution, selects one production with a satisfied 
LHS. The third step, ACT, performs actions specified on the RHS of the 
selected productions. Actions may add new productions to Production 
memory and more commonly, add, modify or delete working memory 
elements. 

Control in production systems is the selection of the one production­
instantiation from the conflict set. The domain independent control 
heuristics are rigid and prefer recent instantiations and productions with 
more specific left hand sides. 

User control can be achieved by having control clauses in 
antecedents. 
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2.3. BLACKBOARD SYSTEMS 

Comparing Blackboard Architectures (10) to rule based systems, the 
rules scale up to knowledge sources, the working memory elements of 
production systems and the objects of EMYCIN scale up to Blackboard data 
structures and most importantly, the implicit control in rule based 
systems is replaced by an explicit agenda. 

Blackboards offer the following advantages over rule based systems: 

a. A larger grain of complex computation. It is difficult to do 
computation in a single rule. 

b. Solutions that are complex structured objects such as 
identification of Koala bear locations, atomic structure of 
proteins, a sentence structure or a determination of vehicular 
movements. 

c. Explicit and flexible control. An agenda allows the separation of 
the Match (a determination that a module can execute) from the 
select and execute. It allows domain dependent search in 
deciding what should execute next. That is, it is possible to 
reason about what to do next. 

Because Schemer (4, Conceived by Michael Fehling) is Blackboard 
based, a somewhat detailed discussion of Blackboard systems follows. 

The Blackboard model consists of three major components. The 
knowledge sources (KSes), a global database called the blackboard, and a 
control component that is not specified. 

External sources post events onto the blackboard that maintains the 
data state. KSes react to changes on the blackboard, and produce changes 
to the blackboard that may trigger other KSes. "Communication and 
interaction among the Knowledge sources take place solely through the 
Blackboard" (10). 

Blackboard architectures produce solutions that are structured 
objects (7, 8, 10). Each knowledge source posts a solution element onto 
the Blackboard. The Y-axis of the Blackboard is usually split into several 
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layers representing a structured abstraction with the solution being in the 
top most layer and sensory inputs from external sources occupying the 
bottom most layer. The X-axis usually represents a multidimensional 
space. 

Thus a Blackboard system that identifies Koala bears in a foliage, 
could have the following layers in the structured hierarchy. Koala, 
Head/Torso, Limbs, Regions, Lines. Each layer would haves its own, 
objects and vocabulary, and knowledge sources would typically trigger on 
data patterns in a layer and would post changes in the same layer or a 
layer above. The X dimension would be the locations of the sensory input 
(lines) and partial and final solutions. 

Normally blackboards run in a data-driven fashion, but it is possible 
to have goal directed behavior, by posting goals onto the blackboard and 
have KS actions trigger KSes in the layer below. 

GBB (2), a generic blackboard development system illustrated the 
use of Blackboard systems in producing solutions that are structured 
objects. GBB concentrated on efficient updating and retrieval of 
structured blackboard objects via multidimensional indexing. 

All that the control component specified was that 'knowledge 
sources respond opportunistically to changes in the blackboard' (pieces of 
knowledge are applied either forward or backward at the most 'opportune' 
time) (10). 

2.4. 881 

881 (7, 8) was an implementation of a blackboard architecture with 
explicit treatment of control. 881 provided explicit domain and control 
blackboards as well as domain and control knowledge sources. 

Like the domain blackboard, the control blackboard was split into 
layers. The layers, from top to bottom, were: 

a. The Problem 
b. Strategies 
c. Focus 
d. Heuristics 
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e. Feasible actions 
f. Chosen actions 

The control knowledge sources modified objects in these layers and 
operated in both data-driven and goal-driven fashion. 

Problem solving took place in a three step basic control loop. Each 
loop iteration was a deliberate and act cycle (referred to as a solution 
interval) and served as the X dimension of the control blackboard. 

There were three basic types of control knowledge 
corresponding to the three steps of the solution interval. 
knowledge sources had no control knowledge of their own, 
adapted themselves to the objects on the control blackboard. 
solving proceeded as follows. 

sources 
These 

but they 
Problem 

Step 1. Update the feasible actions layer which is a To-do-set of 
pending knowledge source activation records (KSARs). A 
KSAR is a knowledge source coupled with the place on the 
blackboard where it should be executed. 

Step 2. Select which one to execute, based on the objects in the 
Focus and Heuristics layer. Only one KSAR is selected in 
each solution interval. This could correspond to a control or 
a domain knowledge source. This is the 'deliberate' step. 

Basically all executable KSARs are rated against how well 
they match the current focus. 

Step 3. Execute the selected KSAR. This is the 'act' step. 

The 881 system entailed high computational costs, making it 
impractical for real time applications. Because a lot of time was spent 
deciding what to run next, the grain size of each computation had to be 
large. 

. An alternative to the 'deliberate in each loop' approach of 881 is the 
'deliberate when you impasse' approach of SOAR. 
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2.5. SOAR 

SOAR (9) is a problem solving architecture in which every task of 
attaining a goal is formulated as finding a desired state in a problem 
space. A problem space is a space of operators and states. 

A subgoal is set up to make any decision for which immediate 
knowledge is insufficient. Whenever a subgoal is encountered in solving a 
problem, the problem solver begins at some initial state in the new 
problem space. 

Decision situations that give rise to subgoaling are varied. 
Examples are: which of the many applicable operators to use, how to 
perform an operator, how to satisfy its preconditions, how to evaluate a 
state. 

Effective control in SOAR depends on the quality of the search 
functions that select problem spaces, states and operators. 
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3. The need for Schemer 

3.1. The need to perform tasks simultaneously 

Real time applications operate in a world of uncertain and 
incomplete information. They must be able to explore simultaneous 
solutions, in response to, or in anticipation of critical events so they can 
weigh the relative costs and benefits of each solution. They also need to 
be able to actively indulge in activities that help them improve their 
stored internal model. New and relevant information not only guides 
solution development, but is invaluable as feedback during solution 
execution. The determination of what is critical and what is relevant is 
in itself a complex activity (4). 

Neither SOAR nor Blackboard implementations provide support for 
simultaneous development of multiple solutions. In BB1, there is only one 
schedule, and only one KSAR is executed in a solution interval. There is 
only one Focus, which may change. Although the Blackboard Model has the 
knowledge sources doing their actions in parallel, there is only one 
Blackboard. When pursuing simultaneous solutions, different solutions 
and recursively, their sub-solutions may require different Blackboard 
dimensions and abstraction layers. 

3.2. The need for a timely response 

Real time applications must be able to respond quickly. 

3.2.1. Communication 

"Communication and interaction among the Knowledge sources take 
place solely through the Blackboard". In the SOAR OPS implementation, 
this is the underlying working memory. 

To aid in the timeliness of the response, a communication model is 
needed for direct message passing among the knowledge sources. Thus in 
addition to event driven activation, the knowledge sources can invoke each 
other. 
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3.2.2. lnterruptability 

In order to enhance interruptability in a resource bounded system, 
the application must be able to partition a task into arbitrary grain size 
subtasks according to it's needs. In blackboard systems, the blackboard 
is global and portions cannot be cleanly encapsulated. 

Partitioning aids in timeliness of response in another way . 
Computer systems that interact with a dynamic external environment, do 
so with incomplete and uncertain information. They make assumptions 
that need to be retracted later. Thus they must provide for management of 
uncertainty. An ability to partition the underlying truth maintenance 
system will reduce it's computational complexity. Related research on 
partitioning the ATMS is ongoing. 

3.2.3. Opportunistic deliberation 

The 881 architecture deliberates in each loop. This entails high 
computational costs. The SOAR architecture deliberates only when it 
impasses. This may result in poor response to changing conditions. 

A real time application should deliberate whenever it is appropriate 
to do so. 

Schemer, whose features go beyond the Blackboard paradigm, 
addresses these issues. 
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4. Schemer 

4.1. Model of Communication 

The communication model is described first because it's constructs 
are subsequently referred to. 

The model used is based on the one described by Reid (11 ). 

The basic mechanism of communication is ports. Ports can be 
classified in two ways, by type (Synchronous or Asynchronous) and by 
direction (Input or Output). 

The operations on ports are CREATE, DESTROY, CONNECT, 
DISCONNECT, SEND, RECEIVE, GET and PUT. Some of these are briefly 
discussed. 

4.1.1. CONNECT 

Only ports that are compatible (same type and opposite directions) 
can be connected. Thus a Synchronous Output Port can be connected to a 
Synchronous Input Port, and an Asynchronous Output Port can be connected 
to an Asynchronous Input Port. 

A port can be connected to multiple compatible ports at the same 
time. 

4.1.2. SEND 

The send operation is used to write a message to a synchronous 
output port. A send can be classified in two ways. It can be a tightly 
coupled send or a loosely coupled send, and it can be a conjunctive send or 
a disjunctive send. 

In a tightly coupled send, the sender blocks until the message is read 
via a receive operation on one(all) connected input port(s). In a loosely 
coupled send, the sender does not block. 

In a conjunctive send the message is sent to all connected input 
ports. In a disjunctive send, the message is sent to only one connected 
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input port. 

Synchronously sent messages are never lost or overwritten. They 
are always received, and may have to be queued. 

4.1.3. RECEIVE 

The receive operation is used to read a message from a synchronous 
input port. The message is removed after it is read. 

The receive operation blocks if there is no message to be read. 

4.1.4 PUT 

The put operation is used to write a message to an Asynchronous 
output port. A put can be classified as 'Retained' or 'Transmitted'. 

A put operation with 'Retained' semantics, destroys all messages at 
all connected input ports and places the new message at the output port, 
overwriting any existing message. 

A put operation with 'Transmitted' semantics, puts the new message 
in all connected input ports, overwriting any existing message. Any 
message stored at the output port is destroyed. 

The put operation never blocks. Asynchronously sent messages are 
never queued. A message may be destroyed even before it is read. 

4.1.5 GET 

The get operation is used to read a message from an Asynchronous 
input port. A get can be classified as 'Destructive' or 'Non destructive'. 

A destructive read destroys a message after reading it. A non 
destructive read doesn't. 

port. 
The get operation first checks for a message is stored at the input 
If not, the connected output ports are checked. 

The get operation never blocks. The same message may be read many 
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times. 

4.1.6. Examples 

4.6.1.1. Synchronous Operations 

SYNC-INP-1 

SYNC-OUT-1 Q-INP-1 

Q-OUT-1 

SYNC-INP-2 

Q-INP-2 
SYNC-OUT-2 

Q-OUT-2 · 
SYNC-INP-3 

Q-INP-3 

In the above diagram, the larger boxes represent synchronous ports, 
each small box represents a queue attached to it's corresponding port, and 
a line between two ports indicate that the two ports are connected. 

A Conjunctive SEND on SYNC-OUT-1 queues the message in Q-INP-1, Q-INP-
2 and Q-INP-3. 

A Conjunctive SEND on SYNC-OUT-2 queues the message in Q-INP-2. 

A Disjunctive SEND on SYNC-OUT-1 queues the message in Q-OUT-1. 

A Disjunctive SEND on SYNC-OUT-2 queues the message in Q-OUT-2. 

A RECEIVE on SYNC-INP-1 looks for a message in Q-INP-1 or in Q-OUT-1. 
The order in which the queues are searched is implementation dependent. 

A RECEIVE on SYNC-INP-2 looks for a message in Q-INP-2 or in Q-OUT-1 or 
in Q-OUT-2. The order in which the queues are searched is implementation 
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dependent. 

A RECEIVE on SYNC-INP-3 looks for a message in Q-INP-3 or in Q-OUT-1. 
The order in which the queues are searched is implementation dependent. 

In a RECEIVE, the message just read is removed from the queue from which 
it was read. 

4.6.1.2. Asynchronous Operations 

ASYNC-INP-1 

ASYNC-OUT-1 SLOT- INP-1 

SLOT-OUT-1 

ASYNC-INP-2 

SLOT-INP-2 
ASYNC-OUT-2 

SLOT-OUT-2 
ASYNC-INP-3 

SLOT-INP-3 

In the above diagram, the larger boxes represent asynchronous ports, 
each small box represents a slot attached to it's corresponding port, and a 
line between two ports indicate that the two ports are connected. A slot 
can only hold one message, so putting a message in a slot overwrites any 
existing message. 

A transmitted PUT on ASYNC-OUT-1 destroys any message in SLOT-OUT-1 
and puts the message in SLOT-INP-1, SLOT-INP-2 and SLOT-INP-3. 

A transmitted PUT on ASYNC-OUT-2 destroys any message in SLOT-OUT-2 
and puts the message in SLOT-INP-2. 

A retained PUT on ASYNC-OUT-1 destroys any message in SLOT-INP-1, 
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SLOT-INP-2 and SLOT-INP-3 and puts the message in SLOT-OUT-1. 

A retained PUT on ASYNC-OUT-2 destroys any message in SLOT-INP-2 and 
puts the message in SLOT-OUT-2. 

A GET on ASYNC-INP-1 retrieves a message from SLOT-INP-1 or SLOT-OUT 
1. The order in which the slots are searched is implementation dependent. 

A GET on ASYNC-INP-2 retrieves a message form SLOT-INP-2 or SLOT-OUT 
1 or SLOT-OUT-2. The order in which the slots are searched is 
implementation dependent. 

A GET on ASYNC-INP-3 retrieves a message from SLOT-INP-3 or SLOT-OUT 
1. The order in which the slots are searched is implementation dependent. 

If the GET is destructive, the message just read is removed from the slot 
from which it was read. 
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4.2. The Schemer Organization 

The components of a Schemer system are 

1. A set of ports. 

2. A top level that controls the system operation. The top level 
consists of 4 elements called the Communication Manager (CM), 
the Task Manager (TM), the Schedule Manager (SM) and the Event 
Manager (EM). 

3. A global store called the Knowledge Space (K-SPACE) that houses 
objects called Knowledge Handlers (KHs). 

4. The KHs on the K-SPACE, which provide a uniform representation 
corresponding to both the blackboard objects and the knowledge 
sources of the Blackboard model. 

Structurally, there are two types of Knowledge Handlers 

a. Full Knowledge Handlers (FKHs) 
b. Primitive Knowledge Handlers (PKHs) 

The KHs are described next, first from the Blackbox view (how they 
look from the outside) and then from Constituent view (what are they 
made up of). 

4.2.1. Blackbox view of KHs 

Knowledge Handlers provide a uniform representation for problem 
solving data and problem solving knowledge. A KH can represent either or 
both. 

Regardless of their type (FKH or PKH) or what they represent (data, 
knowledge or both), all KHs look the same from the outside. That is, they 
present the same interface to their embedding environments. Each KH has 
a set of synchronous ports and a set of asynchronous ports. 
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4.2.1.1. Synchronous Ports 

Synchronous ports are used for messages that must not be 
overwritten or destroyed before they are received. In a tightly coupled 
send, the sender blocks till the receiver receives the message. On any 
input port, a receiver can only receive the message once. 

Synchronous input ports are for messages that come from the 
outside world or other KHs. Similarly the Synchronous output ports are 
for messages that go to the outside world or other KHs. 

Any implementation can specially designate ports for messages 
to/from the outside world. 

4.2.1.2. Asynchronous Ports 

Each KH makes data available to the outside world through numerous 
Asynchronous output ports. Data is put on these ports using the 'Retain' 
semantics and read via connected input ports using the 'non-destructive' 
semantics. 

These semantics are appropriate for problem solving data that may 
be read multiple times, or be changed many times without being read. 

Although the KH is an object, the difference from a strictly object­
oriented view is that any data in these Asynchronous Output Ports is 
freely available to any other object that is properly linked. So the owning 
KH need not be entered and the requester does not lose control. 

The Asynchronous output ports can contain any arbitrary objects. 
Examples are a) stimulus frames b) response frames c) preconditions d) a 
default priority e) an indication of the resources a typical task done by 
the KH takes f) a Schedule to be used by the SM g) a trigger table to be 
used by the EM h) a History i) the result of a trial run j) a partial or a 
complete plan k) a goal or a subgoal to be achieved and so on and so forth. 

Thus a knowledge handler that constructs a plan could be 
incrementally building it on one of its Asynchronous output ports. 
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4.2.2. Constituent view of a KH 

This section describes the internal structure of Full Knowledge 
Handlers (FKHs) and Primitive Knowledge Handlers (PKH). 

4.2.2.1. Internal structure of a FKH 

Each FKH is itself a Schemer system. It is internally composed of a 
set of internal ports, a top level consisting of the four managers (CM, TM, 
SM and EM) and a K-SPACE that houses KHs. 

Schemer is therefore recursively composed. All KHs on the K-SPACE 
are siblings and are 'Embedded in the owning FKH'. · 

The internal components of a FKH are: 

a. Synchronous Input Ports 

These ports are to receive messages from embedded KHs. 

b. Embedded KHs 

Since they can house data, the embedded KHs allow the embedding KH 
to have a local persistent data state. The asynchronous output ports of 
some of these hold special data structures like a schedule of pending 
tasks or a history of completed tasks. 

The schedule is a prioritized queue of carriers. A carrier 
corresponds to the KSAR of 881. It allows an embedded KH to be multiply 
scheduled with different arguments. The schedule allows for flexible 
control and an interrupt capability. 

c. Communication Manager (CM) 

The CM manages the port structure of the FKH and the flow of 
information between its K-SPACE and the outside world. 

d. Task Manager (TM) 

The TM runs the tasks on the schedule and performs process 
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management functions. 

e. Schedule Manager (SM) 

The SM manages and prioritizes the schedule. 

f. Event Manager (EM) 

The EM monitors the data state changes on the K-space and informs 
the SM about potentially runnable handlers. Roughly, the EM, SM and TM 
perform the deliberate-act loop of the 881 architecture. 

A fixed interruptable algorithm could be implemented as a 
degenerate case of a FKH which has no event triggered activity at all, but 
an embedded handler representing a fixed schedule of other embedded 
handlers. 

4.2.2.2. Internal structure of a PKH 

As mentioned earlier, Schemer is recursively composed. Primitive 
knowledge handlers bottom out this recursion. 

A PKH must specify a communication handle which acts as a top­
level to an uninterruptable algorithm. The execution of a PKH cannot be 
interrupted. 

A PKH can have additional components including those with local 
persistent data states. 

4.3. The Schemer Operation 

4.3.1. Basic Operation 

A data change takes place in the K-SPACE either as a result of 
external conditions, processing of new inputs by the CM or by the TM's 
execution of a KH from the schedule. 

The EM notices the data change and determines that the new data 
state matches the trigger conditions of some embedded KHs. The EM forms 
a carrier and passes it to the SM. 
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The SM places the carrier on the Schedule. 

The TM responds to the new schedule by running/resuming the "n" 
most important tasks. Any previously running task that is not among the 
"n" most important is suspended. Suspending a FKH means suspending all 
its (recursively downwards) running KHs. Each KH reports to its 
embedding TM (recursively upwards) the amount of resources used by it. 

Conceptually, the four managers run in parallel. So the distance 
from the triggering to the need to change the control state, to changing it 
is zero. Any implementation must minimize this distance. 

4.3.2. Independent vs. Supervised Handlers 

Normally a KH runs under the direct supervision of its embedding TM. 
It is possible for a KH to attain an independent status (i.e. not under the 
direct control of the embedding TM). However, this independent status 
will usually be for a brief period, because the embedding TM reasserts its 
control as soon as it can. The outermost FKH is always independent, 
because it does not have an embedding TM. 

Why have independent handlers ? Consider the following situations. 

A KH that is suspended or terminated may receive a critical message 
from another KH or from the outside world. The sender of the message 
may feel that the message is critical and resume or start the KH. In 
either case, the status of the KH becomes independent, until the 
embedding TM changes it to supervised. 

A KH might get new data that changes the data state of the 
embedding KH . in a manner that triggers some other KHs. If the embedding 
KH is suspended or terminated, then it has to be resumed or started. The 
embedding KH becomes independent. 

Thus Schemer allows for interrupts and activation at any depth in 
the hierarchy while still operating under the umbrella of hierarchical 
control. 
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4.3.3. The Managers 

4.3.3.1. Communication Manager (CM) 

The CM receives and processes messages that arrive at the input 
ports of the KH. 

These messages could be control messages for activation, 
suspension, resumption and termination. They could be non-control 
messages that are processed by the CM or forwarded to the input ports of 
other KHs. 

The connections between ports of different KHs are either 
predefined by the structure of the application, or are new connections that 
are established via messages sent over the predefined connections. 

It is the job of the CM to manage/authorize new ports and 
connections that connect ports internal to the KH to the ports outside. 

The CM can connect a handler's ports to external ports. It is these 
connections that give global environments. 

4.3.3.2. Task Manager (TM) 

Takes the "n" available processors and allocates it to the "n" most 
important tasks on the schedule. It also brings under its control any KH 
that is running with an independent status. 

The TM should be able to initiate, suspend, resume and terminate 
tasks. That is, it should be able to perform basic process management 
functions. 

When a task is suspended, it must be done in a (application specific) 
way that consistency problems are taken care of. 

Because KHs have local persistent data states, the TM must be able 
to duplicate a KH, for one might want to suspend a KH and run another 
carrier corresponding to the same KH. 
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4.3 .3.3. Schedule Manager (SM) 

The schedule at any instant is indicative of potential future actions. 

The SM maintains the schedule. Together, the TM and the SM do the 
base level of control reasoning in the system. The carriers that make up 
the schedule can contain some default scheduling information (like 
priorities). 

The schedule itself is available like other problem solving data, 
which provides an ability to distribute control via certain handlers called 
control handlers. These handlers can be triggered by changes to the 
schedule, and/or directly manipulate the schedule. Control handlers will 
usually be high priority, so that they run first. 

4.3.3.4. Event Manager (EM) 

The EM watches out for data state changes in the K-SPACE for 
patterns that match the trigger conditions of the embedded handlers. 

There would be no need for an EM in a system if every embedded KH 
could trigger itself. 

One of the things in an implementation is to compile away as much 
overhead as possible. This amounts to placing each embedded KH's trigger 
conditions in a trigger-table, a structure which like the schedule is 
available like other problem solving data. The main user of this structure 
is the EM of the embedding KH. 
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5. Schemer Implementation 

The managers of any FKH could be specialized and encode application 
specific control knowledge. The implementation supports such 
specialization. The implementation also provides generic managers. 
These managers have the ability to receive and process application 
specific messages. The evolution of these generic managers can best take 
place through experimentation. 

5.1. The Implementation Environment 

Schemer is implemented in Allegro Common Lisp on a Tektronix 
workstation running the UTek operating system. A port to Lucid on a SUN 
workstation running SunOS is in progress. 

The implementation uses the PCL and the MUL Tl PROCESSING packages. 

5.1.1. PCL 

PCL provides the programmer interface for object-oriented 
programming in the Common Lisp Object System (CLOS). 

Using PCL, it is possible to setup a class hierarchy with property 
inheritance. PCL provides the ability to specify multiple methods for a 
function, each method corresponding to a unique specialization of the 
function's parameters. Default accessor functions and functions to create 
class instances are also provided. 

The following code fragment illustrates the specification of a class 
hierarchy of ports and the use of methods. 

(defclass PORT () 
((name) (owner) (connected-to :type LIST :initform nil))) 

(defclass SYNC-PORT (PORT) 
((message -list :type LIST :initform nil))) 

(defclass SYNC-INP-PORT (SYNC-PORT) ()) 
(defclass SYNC-OUT-PORT (SYNC-PORT) ()) 
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(defclass ASYNC-PORT (PORT) 
\ ((message :initform nil))) 

(defclass ASYNC-INP-PORT (ASYNC-PORT) ()) 
(defclass ASYNC-OUT-PORT (ASYNC-PORT) ()) 

A uniform interface for sending messages on both types of output 
ports can be achieved as follows: 

(defmethod SEND-TO-PORT ((port SYNC-OUT-PORT) (msg t)) .......................... ) 
(defmethod SEND-TO-PORT ((port ASYNC-OUT-PORT) (msg t)) ....................... ) 

A uniform interface for retrieving the owner for all types of ports 
could be: 

(defmethod RETRIEVE-OWNER ((port PORT)) ........................................................... ) 

5.1.2. Stack Groups 

Stack groups are briefly described here because multiprocessing is 
implemented on top of stack groups. 

"A stack-group represents the state of a Lisp computation. It most 
closely corresponds to the notion of a co-routine. The only thing a stack­
group can do (aside from normal Lisp computation) is to resume some 
other stack-group, and perhaps be itself resumed later on" (12). 

In the following illustrative diagram, the X-axis is time. 

Stack Group sg1 
Stack Group sg2 
Stack Group sg3 

--a-- --c--

-----b---- -----d----

a. sg1 is resumed the first time. 
b. sg1 resumes sg3 the first time. 
c. sg3 resumes sg1. 
d. sg1 resumes sg3. 
e. sg3 resumes sg2 the first time. 
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5.1.3. Processes and Multiprocessing 

"A process corresponds to the usual operating system notion of a 
process. The process mechanism provides a convenient programming 
interface to stack-groups. Each process has its own stack-group. A 
scheduler process is responsible for managing all other processes" (12). 

The scheduler process cannot interrupt a process that is executing 
code wrapped in a without-scheduling macro. A process can voluntarily 
give control to the scheduler process via the process- a II ow-sch e du I e 
construct and optionally direct the scheduler to resume a specified 
process. 

Each process is an object, and has associated with itself among other 
things, a list called run-reasons, a list called arrest-reasons and a 
property list. 

For a process to run, the run-reasons list must not be nil, and the the 
arrest- reasons list must be nil. Disabling a process makes both these 
lists nil. Enabling a process puts the token :enable in the run-reasons 
list for the process. 

The managers are implemented as processes. A property called 
:action is defined whose value can be one of resume, suspend or kill. 

Processes are required to check the value of their : action property 
regularly, which is a directive. 
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5.2. Structure of Ports 

Ports are PCL objects. The class hierarchy of ports is as follows. 

PORT 

INPUT OUTPUT INPUT OUTPUT 

5.2.1. Properties of the class PORT 

a. p-name: Name of the port. 

b. p-owner: Owner of the port, which is a KH. 

c. p-con n: List of compatible ports, a port is connected to. 

5.2.2. Properties of the class SYNC 

a. p-msg-lst: List of messages. 

5.2.3. Properties of the class ASYNC 

b. p-msg: A message. 
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5.3. Structure of Knowledge Handlers (KHs) 

Knowledge Handlers are PCL objects. The class hierarchy of KHs is 
as follows. 

General Knowledge Handler (GKH) 

Full Knowledge Handler 
(FKH) 

5.3.1. Properties of the class GKH 

Primitive Knowledge Handler 
(PKH) 

The class GKH corresponds to the Blackbox view of knowledge 
handlers. 

a. name (NAME) 

Each KH has a name. The name is unique. Construction of the name 
is explained later. 

b. External field (EXT-FLD) 

This field is t if the KH is currently executing in the independent 
mode, and n ii, if it is in the supervised mode. 

c. Main Input Port (INP-P) 

This is a Synchronous Input Port. Each message sent to this port is 
read by the Communication Manager in order. 
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d. Interrupt Port (INT-P) 

This is a Synchronous input Port. This Port behaves like the Main 
Input Port, but is given the top priority among all ports. 

It is also possible for the outside world to have direct access to 
this port, no matter how deeply the KH is embedded. 

e. Direct Input Port (DIR-INP-P) 

This is a Synchronous input port and like the INP-P and INT-P ports, 
each message sent to this port is read in order. These ports are 
connected to the DIR-OUP-P ports of other KHs. 

f. List of Direct Output Ports (DIR-OUP-P-LST) 

This is a list of Synchronous output ports. A message sent on the 
DIR-OUP-P port of a KH is conjunctively sent to all connected DIR 
-INP-P ports. 

g. List of Output Data Ports (DATA-P-LST) 

This is a list of Asynchronous output Ports. These ports can contain 
arbitrarily complex objects. 

h. List of Input Data Ports (INP-DATA-P-LIST) 

These are Asynchronous Input Ports that are connected to the Output 
Data Ports of other KHs. 

i. Trigger Port (TRIG) 

This port •is implemented as a slot. It contains the trigger 
conditions of the KH, in the form of a predicate that returns true, 
when conditions are ripe for the KH to be triggered. 

The predicate takes as arguments Data Ports of the KH and of sibling 
KH's. 
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j . Response Port (RESP) 

This port is implemented as a slot. It contains an indication of what 
the KH will do/achieve. It is useful for scheduling purposes. 

k. Priority Port (PRIOR) 

This port is implemented as a slot. It containes a priority and is 
useful for scheduling purposes. 

I. Grain Port 

This port is implemented as a slot. It gives a rough estimation of 
the time the KH takes to execute. It is used for both process 
management and scheduling purposes. 

m.lnitial Flag (init-fl) 

This flag when t, causes the SM of the embedding KH to put this KH 
on the schedule on start up. 

n. Control Knowledge Handler Flag (ckh-fl) 

This flag when t indicates that this KH may modify the schedule. 

5.3.2. Properties of the class FKH 

a. Communication Manager code (cm) 

This slot contains the communication manager code. 

b. Communication Manager Process (cm-proc) 

This slot contains the process corresponding to the executing CM. 

c. Task Manager code (tm) 

This slot contains the task manager code. 
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d. Task Manager Process (tm-proc) 

This slot contains the process corresponding to the executing TM. 

e. Schedule Manager code (cm) 

This slot contains the schedule manager code. 

f. Schedule Manager Process (sm-proc) 

This slot contains the process corresponding to the executing SM. 

g. Event Manager code (em) 

This slot contains the event manager code. 

h. Event Manager Process (em-proc) 

This slot contains the process corresponding to the executing EM. 

i. Internal Input Port for the CM (cm-p) 

This Synchronous Input Port is for messages from the embedded KHs 
to the CM. 

j . Internal Input Port for the TM (tm-p) 

This Synchronous Input Port is for messages from the embedded KHs 
to the TM. 

k. Internal Input Port for the SM (sm-p) 

This Synchronous Input Port is for messages from the embedded KHs 
to the SM. 

I. Internal Input Port for the EM (em-p) 

This Synchronous Input Port is for messages from the embedded 
KHs to the EM. 
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m. Special port for the SM (SM-EM-P) 

This special Synchronous Input Port is read by the SM. It is meant 
for messages from the EM. 

n. Special port for the EM (EM-TRIG-P) 

This special Synchronous Input Port is read by the EM. It is used for 
messages that the EM uses to index into a trigger-table . 

o. Schedule 

The schedule which is a list of carriers is implemented as a slot. 

p. Schedule Flag (sched-fl) 

This flag when t indicates that the schedule has been initialized. 

q. Schedule Lock (sched-lock) 

A lock that can only be held by one process at a time. 

r. Trigger Hash (trig-hash) 

The Trigger Table which is built from the information in the trigger 
ports of embedded KHs. 

Asynchronous output data ports of embedded KHs hash into this 
table to retrieve a list of KHs they can potentially trigger. 

s. Quiesce Flag (quiesce) 

When a KH terminates, all the manager processes terminate. This 
results in the associated stack-groups being destroyed. When this 
flag is t, instead of terminating the stack-groups, the processes are 
disabled and marked as quiescing. 

The advantage is that new processes need not be created for the next 
execution of the KH. Only the processes need be enabled. 
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t. List of embedded KHs (kh-lst) 

u. Hash table of embedded KHs (kh-hash) 

v. List of embedded KHs whose init-fl is t 

w. List of embedded KHs whose ckh-fl is t 

5.3.2. Properties of the class PKH 

a. Communication Manager code (cm) 

This slot contains the communication handle which acts as a top 
level to an uninterruptable algorithm. 

b. Any other properties. 
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5.4. Structure of a Carrier 

A carrier which is a defstruct object has the following structure: 

priority: 

kh: 

The Task Manager uses this priority to sort the schedule. 

Contains the ID of the Knowledge Handler that will be or is being 
executed. 

proc: 
Contains the process object associated with the CM of the KH. 

alloc: 
Contains an indication of the number of execution units the 
handler should take to run to completion. Could also contain 
symbolic values like : quick, : no-hurry etc. 

slice: 
Contains the execution units after which the TM may give the 
processor to some other carrier. 

The value of this slot is transferred to the :slice property of the 
CM-PROC and is used for time slicing among carriers. 

new-slice: 
Indicates whether the slice slot contains a new value. 

suspend: 
Indicates whether the KH is to be suspended. Carriers whose 
KHers are executing will be suspended if this field is t. Carriers 
whose KHers are not executing will not be started if this field is 
t. 

This is a primitive mechanism for run-time dependencies among 
Handlers. (A must execute before B etc. etc.). 

ph-fl: 
t if the KH is a primitive kh. nil otherwise. 
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arg: 
A list whose contents will be put into the INP-P port of the KH 
before it is started. Currently not used. 

ind-fl: 
The independent status of the carrier. It is t if the associated 
carrier was invoked by a process other than the Task Manager of 
the embedding KH. It becomes nil when the Task manager of the 
embedding KH takes control. 

Meant to support direct invocation from the outside. 

5.5. Structure of a Message 

Messages that arrive at the non-special input ports of a FKH have 
the following structure: 

path-remaining: 
The CM uses this field to determine the next KH to forward this 
message to. If nil, the CM executes the message. 

path-sofar: 
This field contains the path taken by the message so far. 

orig-kb: 
Contains the originating KH of the message or t (If the message 
came from the outside world). 

task: 
This field contains a function. Executing this message means 
executing this function. 

args: 
This is a list of arguments. The executing KH is consed onto this 
list which is applied to the function. 
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5.6. How the User specifies his Application 

When the user specifies his application, he specifies what is termed 
as the static structure. From this, a run time structure is generated, 
which can change during run time. 

5.6.1. Static and Run time Structures 

In the following diagram, each box represents a separate KH. The 
label on top of each box, is the user defined class of the KH. 

Top 

p Q 

X X 

00 
A B 

□□ 

The user can specify the above configuration by the following: 

(def-fkh-class TOP (P Q) .......... . 
(def-fkh-class P (X) .............. . 
(def-fkh-class Q (X) ............. . . 
(def-fkh-class X (A B) ...... . .. . .. . 

(def-pkh-class A .. .. ............. . 
(def-pkh-class B ............... . . . 

TOP, P, Q and X correspond to FKHs. A and B correspond to PKHs. 
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As a result of executing the def-fkh-class and def-pkh-class forms, 
two static structures are generated. 

a. A *dag* rooted at TOP 

Preorder is: TOP (P (X (A B)) (Q (X (A B)))) 

b. An extension to the class-subclass hierarchy of KHs as follows. 

The run time structure can be created by traversing the *dag* in 
preorder, creating the corresponding KH instance at each node, and linking 
it to the KH instance that is its parent. The leaves of the *dag* generate 
PKHs. The other nodes generate FKHs. 

Thus X, A and B are defined only once, but their instances appear 
twice in the run time structure. The def-fkh-class and def-pkh-class 
macros define PCL classes. 
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5.6.2. Giving Names to Knowledge Handlers 

Each knowledge handler has a unique name. The name is dotted pair of 
the form (<class> . <int>) where <class> is the user defined class and <int> 
is a unique integer for each instance of that class (incremented by one on 
every time an instance is created). 

Thus if the run-time structure of the above examples were traversed 
in a pre-order fashion, the KH names would print out as follows: 

(TOP . 1) [(P . 1) [(X . 1) [(A . 1) (8 . 1)]] [(Q . 1) [(X . 2) [(A . 2) (8 . 2)]]]] 

This naming convention uniquely identifies each KH, and makes it 
possible to send interrupt messages to all instances of a user defined 
class of handlers. The structure *slot* indexes instances by the user 
defined class. 

5.6.3. Running multiple copies of a KH 

The way the user specifies his application and the KH naming 
convention makes it possible to have multiple copies of a KH embedded in 
the same FKH, even though each KH has a local persistent data state. 

Although it is not implemented, a handler can be duplicated at run 
time by traversing the sub *dag* rooted at the node that represents the 
class of the handler to be duplicated. The mechanism is the same that is 
used to create the initial run time structure from the static structure. 

5.6.4. Customizing the KHs 

Both the def-fkh-class and def-pkh-class forms allow the user to 
specify initial values for the relevant properties of the GKH class. 

The def-fkh-class form allows the user to specify initial values for 
the relevant properties of the FKH class. 

The def-pkh-class form allows the user to specify the value for the 
CM-P property (the Communication Handle). In addition it allows the user 
to add new properties and specify their initial values. 
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If the value for any of the CM, TM, SM or EM slots is not specified with 
the def-fkh-form, then that slot defaults to the corresponding generic 
manager. For any user defined class, any generic manager can be replaced 
by an application specific counterpart. 

Examples: 

(def-fkh-class X (A B C) :CM #'my-cm :PRIOR 9 
:TRIG (volt-fluctuatingp (volt history))) 

(def-pkh-class A :GRAIN 10 :CM #'my-function) 

The trigger table of the embedding KH is constructed from the :TRIG 
values. 

5.7. The Managers 

5.7.1. The Communication Manager (CM) 

The communication manager code which is in the CM slot of the FKH 
must be executed to start up the FKH. This code runs as a process and the 
process object is stored in the CM-PROC slot of the FKH. 

The CM-PROC process has the following properties: :action, :refresh, 
:quiescing, :used, :slice, :independent and :numproc. 

:action, which can be kill, resume or suspend, serves as a directive 
for the CM and the TM. 

: refresh, when t, indicates that the four managers must execute their 
initialization code. 

: qui es c in g, when t, means that the four managers have logically 
terminated, but physically the associated processes exist in a disabled 
state (helps speed up the next initialization). 

: used holds the amount of processing units used by the KH since it's 
value was last initialized. The values of the grain ports of executed PKHs 
propagate up the run time structure and contribute to this value. 
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: s Ii c e holds the amount of processing-slice given by the TM of the 
embedding KH. If :used exceeds :slice, :used is initialized and the KH is 
suspended (and recursively so are all the executing KHs on the schedule) 
until the TM of the embedding KH, resumes it with another slice. 

: ind e pendent, when t, indicates that the KH is running in an 
independent state (as opposed to supervised state), and, 

:numproc, which is an integer, holds the number of processes the TM 
can execute simultaneously. 

As part of it's initialization the CM creates the TM, SM and the EM 
processes. It then passes direct control to the TM via the process-allow­
schedule construct. 

When resumed again, the CM goes into it's basic loop (as do the other 
managers) disabling itself at the end of each loop if it has nothing to do in 
the next iteration. The basic loop operation is as follows: 

If the KH is dormant (the schedule and all the synchronous input ports 
are empty), the CM kills all the managers · (including itself). If the quiesce 
flag of the FKH is t, the kill is logical and the four managers start 
quiescing. Otherwise, the associated stack-groups are destroyed. 

The values of : used and : s Ii c e are compared. If : used is greater than 
:slice, then :action is set to suspend. 

The CM then looks at is it's :action property. If the action is kill (or 
suspend) it kills (or disables) the SM and the EM and passes direct control 
to the TM. 

If the : action is resume, it first enables the other managers and then 
processes all the messages in it's INT-P port and a maximum of one 
message from each of it's other synchronous input ports. 

Each message has a path-remaining component. If it is null, the CM 
executes the actual message. Otherwise the message is forwarded to the 
next KH in the path. Another component, path-so far, contains the path 
traced by the message so far. 
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The to s k component of the message is application specific (see the 
section 5.5. 'Structure of a Message'). Examples of generic tasks are: 
Connect a port, Install a KH). 

5.7.2. The Task Manager (TM) 

The task manager code is in the TM slot of the FKH. This code runs as 
a process and the process object is stored in the TM-PROC slot of the FKH. 

As part of its initialization the TM passes direct control to the SM 
via the process-allow-schedule construct. 

When resumed again, the TM goes into it's basic loop, disabling itself 
at the end of each loop if it has nothing to do in the next iteration. The 
basic loop operation is as follows: 

The TM goes through all the carriers on the schedule, transferring to 
the : used quantity from the corresponding KHs to the : used property of 
it's associated CM-PROC. 

The TM then looks at : o ct ion property of CM-PROC. If the action is 
k i 11 (or s us pen ct), it passes this directive to the CMs of all the running 
embedded KHs (excepting those running with an independent status) before 
killing (or disabling) the CM and itself. 

The Task Manager then goes through the first : nu mp ro c carriers on 
the schedule (excluding those that have : suspend = t), essentially 
running or resuming them and suspending all the carriers after the first 
:numproc. 

If any carrier in the first : nu mp ro c entries has used up its time slice 
(i.e. the : used property of the associated CM is greater than the : s Ii c e 
property), then the associated KH is suspended. If all of the first 
: nu mp ro c carriers have used up their time slices, then each is given a 
fresh slice and resumed. Thus the processing resource allocation among 
concurrently running KHs is distributed in the ratio of their :slices. 

Any resumed KH that had an independent status becomes supervised 
(:independent is set to nil). A KH gains independent status when started 
by someone other than it's embedding TM. 
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The TM then executes messages in it's TM-P input port. 

5.7.3. The Schedule Manager (SM) 

The schedule manager code is in the SM slot of the FKH. This code 
runs as a process and the process object is stored in the SM-PROC slot of 
the FKH. 

As part of it's initialization the SM initializes the schedule and 
creates carriers for the embedded KHs whose init-fl is t. It then passes 
direct control to the EM via the process-allow-schedule construct. 

When resumed again, the SM goes into it's basic loop, passing direct 
control to the TM at the end of each loop. The basic operation is as 
follows: 

The SM reads the special SM-EM-P input port for any KHs that have 
been triggered as a result of changes in the K-SPACE. Information in this 
port comes from the EM. The SM then forms carriers and places them on 
the schedule. Most of the information that is put in the carrier comes 
from the asynchronous output ports of the KH. 

The SM then executes messages in its SM-P input port. 

5.7.4. The Event Manager (EM) 

The event manager code is in the EM slot of the FKH. This code runs as 
a process and the process object is stored in the EM-PROC slot of the FKH. 

The EM performs some initialization and relinquishes control. 

When resumed again, the EM goes into it's basic loop, passing direct 
control to the SM at the end of each loop. Hence the distance from EM to 
SM to TM is reduced as much as possible. The basic operation is as 
follows: 

The EM reads the special em-trig-p input port for the asynchronous 
data ports of any embedded KHs. Whenever any KH writes to an 
asynchronous output port, and that port has an index in the trigger table, a 
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pointer to the port gets queued as a message in the em-trig-p port. 

The EM then indexes trig-hash using each asynchronous port and 
retrieves all the associated KHs. These KHs have the asynchronous port as 
one of the arguments to their trigger predicate. The trigger predicates of 
all the retrieved KHs are then executed by the EM and the ones that return 
nil are discarded. 

Each of the triggered KHs are next used to index into trig-hash again. 
These retrieve the control handlers. 

All the retrieved handlers are passed to the SM via the SM-EM-P 
special port. 

The EM then executes messages in it's EM-P port. 

5.8. Communication Handle of a PKH 

The CM of a PKH is the top level to an uninterruptable algorithm. The 
TM of the embedding KH executes a PKH by funcalling it's CM. The value of 
the grain slot of the PKH is added to the : used property of the CM-PROC of 
the embedding system. 
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6. Issues for Investigation. 

6.1. Enhancing the Schedule Manager 

The generic managers are extremely simple. They have the ability to 
receive application specific messages and execute them. 

Although control is distributed via control knowledge handlers, 
control handlers themselves have to be put on the schedule first. 

Efficiency could be gained by having the ability to send messages to 
the SM that can permanently change it's generic behavior (Use a different 
sort predicate to sort the Schedule !) 

6.2. Running Multiple copies of a KH 

Since KHs can have a local persistent data state, they are not 
reentrant. The implementation does provides a mechanism to recursively 
duplicate a FKH, but it does not allow the copying of any local data at all. 

PCL provides an ability to specify that the storage for a slot 
(property) not be located in each instance of the class but in the class 
object itself, making it possible to share data amongst all instances of 
the class. 

6.3. Meshing 

A KH is meshed (3, 6) if it is embedded in more than one FKH. 
Meshing gives a facility to specify global data, and can facilitate better 
performance (3). However the meshed KH may force the serialization of 
two concurrent FKHs (6). 

Meshing is straight forward to implement when the meshed KH is a 
PKH with no local persistent data state. 

6.4. Parallel Processing 

The Schemer architecture is a natural for a parallel processing. The 
communication model provides the mechanism where the flow of data is 
separated from the flow of control (6). The data messages are queued in 
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the synchronous input ports while the control tokens are the value of the 
:action property (kill, resume, suspend). 
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