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1. INTRODUCTION 

Considerable progress has been made in Computer-Aided Design (CAD) techniques to assist 

Mechanical Engineers in the detail design stages and adaptive redesign tasks. Currently, CAD tools 

support the designer in system layouts, sizing of components, drafting, analytical calculations, 

generating NC machining data and even motion or energy simulations. However, the more critical 

tasks of conceptual and early layout design have not been facilitated by these computer tools. The 

primary reason for this is the lack of understanding of the mechanical design process and what actually 

goes on in the designers' mind in these stages. 

An empirical approach to studying the mental processes of designers, using protocol analysis, 

was recently undertaken by Ullman, Stauffer, and Dietterich [l-4]. The work described in this paper 

attempts to translate some results of that study of mechanical engineering designers to a more formal 

and detailed level by building a computational model of the design process. The main contribution of 

the present work is a control structure for the design model proposed by the protocol study. 

A computational model of Design, even at an incomplete level, can take us closer to an 

understanding of the Design Process. For the construction of such a model, it is required to formalize 

the knowledge involved, the processes, and their interconnections. Like any expert system knowledge 

base, the pieces of domain knowledge (separate from the control knowledge) used in design have to be 

identified. The difficulties in building such a model can help to bring forth the deficiencies in the 

protocol analysis method and suggest improvements. The model can serve as a basis for testing 

representation techniques for the design knowledge and assessing their adequacy. Similarly, 

appropriate software architectures needed for incorporating the control strategy of the design process 

can be studied or developed. The control structure of design, used for the computer model can be 

refined with further empirical studies. It could be used as a basis to verify and represent future protocol 

analyses and other design methodology studies. 

Once a competent theory of design methodology is developed, computer algorithms and other 

tools can be formulated to support the routine parts of conceptual design. There could be better 

integration of CAD systems and design knowledge. CAD systems could be made more productive by 

understanding the intentions of the designer, detecting errors, suggesting alternatives, and answering 

design queries. Progress made towards such a formal model may also have potential applications in 

other fields of Engineering. 

Section 1.1 of this paper describes part of an earlier work by Larry Stauffer which provides data 

for the work in this paper. Section 1.2 presents a section of a design protocol and an analysis of it in 

terms of the earlier work. Section 2.1 describes SOAR, the architecture used for the computer model 

and an example problem is represented in SOAR in section 2.2. Sections 2.3 and 2.4 describe some 

special features of SOAR, and the reasons for choosing SOAR are enumerated in section 2.5. 
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Section 3 describes the computer model proposed by this paper, starting with a description in section 

3.1 of the design phases recognized by the model. Section 3.2 explains the representation scheme 

used.Sections 3.3, 3.4, and 3.5 talk about the task, episode, and operator structure respectively. The 

section concludes with a presentation of an analysis in terms of the SOAR model. An analysis of the 

protocol session in section 1.2 in terms of the SOAR model is given in section 3.6. Section 4 presents 

a discussion starting with the requirements for a computer model in section 4.1. Section 4.2 compares 

the present model with the earlier one, and section 4.3 mentions some problems encountered during 

the implementation. Lastly, section 4.4 lists some future directions for research. 

1.1 The model developed by Stauffer -

Stauffer [4] describes a protocol analysis study in which a mechanical engineer is given the task 

of designing an object and is required to think aloud as much as possible during the design. The 

verbalizations and the motions of the designer were recorded on videotape, and this was later 

transcribed into readable text. The protocols were then analyzed using the videotapes and text, with the 

goal of capturing the overall flow of the design and identifying the various processes involved. One of 

the two design problems that were used for protocol study, called the 'flipper-dipper', will be referred 

to in this paper. The 'flipper-dipper' problem statement is briefly described as follows -

) Design a mechanism that will accept a 1 O" X 1 O" X .063" aluminum plate from a worker, lower 

one side so that it just touches the surface of a chemical bath (to receive a chemical film), lift the plate 

off the bath surface,flip it over, lower and coat the other side, and present it to the worker for 

removal. Only three of these mechanisms need to be built. 

As a result of analysis of the protocols of five engineers, a problem space model of the 

Mechanical Design Process was developed. The rest of this section describes this model, called the 

Task/Episode Accumulation Model (TEA model). The model assumes a design environment (Figure 1) 

based on a theory oflnformation Processing Psychology proposed by Newell and Simon [5]. 

All information concerning the design session including the design states are stored in either the 

short term memory (STM), long term memory (L TM) or the external long term memory (EL TM). 

Information brought in to the STM from the other two locations is acted upon by a set of operators, 

in a sequence determined by a controller. Thus while the STM, with its limited memory, has only 

information required for immediate deliberation, the L TM and EL TM have a repertoire of know ledge 

that the designer does not need urgently but can access by some retrieval scheme if needed. 

In this framework, design is viewed as a search in a problem space. A problem space can be 

considered as a set of given or created design states and the primitive operators applicable to these 

..J states. One problem space may differ from another by its state representation or the type of operators 

used. For instance, sketching could be viewed as being done in one problem space and model-building 
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Figure 1 The Design Environment 

could be in another. 

Design states contain design elements representing information about the evolving design. 

These can be broadly categorized into proposals, constraints and strategies. 

Proposals are suggestions or ideas that may or may not be accepted for achieving a goal. A proposal 

can be a mechanism or component being designed, or a feature of the device . For example, a proposal 

might be to use a cam and roller mechanism. 

Constraints are design specifications that restrict the options for the remaining parts of a design . Three 

types of constraints may be present 

- Given constraints are ones that the designer starts out with. These constraints can also be added later 

externally. 

- Introduced constraints are posted by the designer as a result of a proposal, based on past experience. 

- Derived constraints result from the design itself and can be relaxed or altered when they conflict with 

other constraints. For instance, selecting a component might introduce restrictions on geometry, 

configuration, or function on the rest of the design. 

Strategies are meta-plans that represent sequences of actions to be taken to solve a problem . A designer 

might want to create a strategy or choose between strategies before proceeding with a portion of the 

design. 

Design operators are primitive information processes that modify the design state by 

proposing new designs, evaluating proposed designs, deciding to accept or reject proposed designs . 

In the TEA model these operators occur at the bottom of a hierarchy of design processes , as shown in 
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design process -- protocol 

/l 
task 1 task 2 task k 

episode 1 episode 2 episode m 

operator_! 
-------.1►~ operator__? 

-------..,j►lllo.. operator n 

Figure 2 Processes of Design Performance 

figure 2. A discussion of the processes mentioned in the figure follows, in a bottom -up order. 

The TEA model contains ten operators that are classified under three types : Generation, 

Evaluation, and Decision. 

Generation operators help to propose new design elements. There are two operators used for 

generation . 

The Select operator brings information from LTM or ELTM to the STM for consideration. 

The Create operator brings new information into STM from an obscure source, presumably as a result 

of steps that are not verbalized to generate information from L TM. 

Evaluation operators relate or compare information (typically a proposal and a set of constraints) 

from a design state in order to make a decision. There are three such operators. 

The Simulate operator reduces the arguments to be used in a comparison to the same level of 

abstraction and representation. This operator may involve 'hand waving', paper models, or 

mathematical simulations. 

The Calculate operator is used to logically project or infer new information from the information at 

hand, such as adding two numbers. 

The Compare operator compares 

a) design proposal to a set of constraints to find if the proposal satisfies the constraints. 

b) two constraints to check for conflict 

) c) two strategies to determine which one is better 

Decide operators determine the fate of newly generated information after the evaluations are 

4 



done. Five operators come under this category. 

The Accept operator includes a design proposal, constraint, or strategy under consideration as a part 

of the design state if the evaluation was satisfactory. It may be revoked and rejected later, however. 

The Reject operator is invoked if the evaluation results were not satisfactory. 

The Suspend operator is used to terminate the present problem without coming to a definite 

conclusion, mainly due to lack of sufficient knowledge. 

Using the result of the evaluation, the Refine operator develops the new information to a more detailed 

level of abstraction. 

Using the result of the evaluation, some aspects of the new information are altered, at the same level of 

abstraction, by the Patch operator. 

The ten primitive operators discussed above are applied in particular sequences called 

episodes, which are focussed on primitive goals. The nature of these primitive goals changes 

according to the level of abstraction the designer is working in. For example, in the initial stages an 

episode might be 'to determine the power source for operation' and later it may be 'to fix the width of a 

component'. 

TEA Model proposes six different kinds of episodes -

Assimilation - to gather information, usually constraints, from the ELTM or LTM into the design 

state. 

) Specify - to develop a proposal, constraint, or strategy to a less abstract level. This episode plays a 

major role in the protocols. 

Planning - to develop strategies to solve the problems in the Design Process. 

Documentation - to record information textually or graphically in the ELTM. 

Repair - to alter previously specified information in the event of a conflict between constraints or 

between a constraint and a proposal. 

Verify - to reperform an episode to confirm whether its results are still acceptable. 

Within an episode, the sequence of operators to be applied is determined by a set of heuristic rules. 

Also, an episode may be temporarily interrupted by a sub-episode to resolve an impasse. 

The episodes, focussed on primitive goals, usually appear in groups that represent tasks, 

which can generally be described as goals of larger scope. When the designer selects a new episode to 

work on, it is generally related to the previous one by being concerned with the same task. A task, for 

example, may be 'to develop the conceptual mechanism of an operation' or to 'design a gripper for the 

plate'. 

There are four major types of tasks in the TEA model. 

Conceptual Design - to assimilate the given constraints and specify forms (at least to an abstract level) 

that satisfy the main functional constraints that are given. 

Layout Design - to specify the conceptualized forms to decreasing levels of abstraction (assemblies and 
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individual parts). 

Detail Design - to completely refine, dimension and document the design. Generally, this type of task 

starts when the Designer begins making scale drawings rather than sketches. 

Catalog Selection - to select some part or assembly from a catalog. The designer gathers new 

information and specifies or documents some components using the catalog. Thus the operators 

employed by the designer are grouped to form a hierarchical set of processes. 

1.2 A sample protocol section and its analysis 

The following (Figure 3) is an excerpt from the protocol of a flipper-dipper design at an early 

stage in the design. 

s: I was originally thinking of may be a hand operation of some sort, er, er, like a lever operated 

thing where the operator provides the mechanical ... thing for it and I'm not quite sure wheth er 

the ... at 720 per day, that 's kind of borderline, whether or not the operator can do it. If I can 

stay away from a mecha ... mechanized thing, motor driven or something like that it will 

probably be, the machine will be less expensive .. er, and it will be easier to construct , 

er ... the ... the ... rate at which the ... One question that I asked earlier was the toughness of the 

film, and that has to do with the rate at which the plate can be applied to the film; if its real 

critical that it will need, it will need the machine to be fairly consistent in its speed, as it brings 

it. if it was not real critical then a person could hand operate it and even though the speed varied 

a little bit it wouldn't really affect the quality of the plate, so I would be ... maybe experimenting 

with this, to try this, and see if a person had the ... ability ... with some 

training ... to ... er ... install the film manually . 

E: Right now it's how its done. Its manually installed, manually the plates are put down. 

s: Uhum ... 

E : ... plate contact all the way ... 

s: Uhum ... Ok. You're trying to get away from that, for, for the fatigue ... 

E : Right... 

S: ... for the operator. Ok. So that, you, you're steering towards a ... a ... mechana ... a machine to do 

it. Ok. Aaah ... the idea just came across my mind to use, kind of ferris-wheel affair which 

would be ... reasonable to fabricate ... and ... but ... er ... my experience with this kind of thing is 

that it-in ... installing the film means you dip one edge in first, carry it across, like you would a 

microtome , picking up a ... a ... microtome film or something like that, so ... that would mean the 

ferris-wheel would have to articulate as it came around, to follow the surface. That could be 

done with a cam ... and a roller, fairly simply because you could change the cam profile fairly 

easily 

Figure 3. A section from the protocol of Subject 5 doing the flipper dipper design. 
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Under the TEA model this section is treated as a task with the aim of generating a concept for the 

flipper-dipper machine. The breakdown of the above section of protocol within this model is presented 

below (Figure 4). 

Specific Design Task - Conceptual design of a Ferris Wheel type mechanism 

Episodes: 

EPISODE 1 assimilate - methods for powering mechanism 

create [proposal 1 : hand operated mechanism] 

patch [proposal changed to proposal 2: operated mechanism with a lever] 

select [constraint 1 : must process 720 plates a day] 

compare[proposal 2 to constraint 1 l 

suspend [(borderline if the operator can do it)] 

create (proposal 3 : motor operated mechanism] 

select [constraint 2: minimize costs] 

select [constraint 3: keep design simple to manufacture] 

compare [proposal 3 to constraint 2,3,l 

suspend [no decision] 

EPISODE 2 assimilate - constraints pertaining to power problem 

create [proposal 4: speed of film application] 

create [constraint 4 : film cannot break during application] 

calculate [strategy 1 : experiment if a person can apply film per constraint 4] 

suspend [strategy 1 l 

create [constraint 5: reduce worker fatigue] 

accept [constraint 5] 

EPISODE 3 specify - Ferris-wheel type mechanism 

select [proposal 3] 

compare [proposal 3 to constraint 5] 

refine [proposal 3 => proposal 5: Ferris-wheel type mechanism] 

select [constraint 3] 

create [constraint 6: mechanism should be easy to drivel 

create [constraint 7: mechanism should be easy to speed control] 

compare [proposal 5 to constraint 6,7] 

accept [proposa 1 5] 
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select [constr aint 8: plat e must ent er with one edge leading] 

calc ulat e [constra int 9: plat e must art iculat e on wat er surf ace] 

accept [constr aint 9] 

creat e [proposal 6: cam and roll er] 

accept [proposal 6] 

( inf err ed operat or ) 

Figure 4. Analysis of the protocol section in Figure 3 in the 1EA model framework. 

Nineteen sections were selected from the different stages of five design protocols , and were 

analyzed and represented in terms of such primitive processes . Since a computer program was not the 

main objective during this analysis, many implementational details were not addressed in the 1EA 

model. For instance, it does not include a scheme for the representation of the various design elements 

proposed and the pertinent constraints. A mechanism for the creation of tasks and the selection of a 

particular task from the tasks created is not present. Similarly , no scheme exists for the creation of 

episodes and the selection of a particular episode and the type of episode from the episodes created. In 

terms of implementation, it is not clear how the different types of episodes are distinct from each other. 

The kind of protocol analysis given in Figure 4 indicates what actions the designers have undertaken, 

but it does not give an idea of why the designer might have chosen a particular process or constraint. 

The most important goal of the present work is to refine or patch the 1EA model in order to implement 

it, and thus get a little more specific about the control of reasoning and the form of required domain 

knowledge . 
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2. The underlying architecture used for the computational model 

To provide a basis for building our computer model, an existing software architecture called 

SOAR, a general purpose problem solver developed by Laird, Rosenbloom, and Newell [7] was 

employed. 

2.1 Description of SOAR 

Problem solving in SOAR occurs as a result of the action of search control functions coded in 

the processing structure on information in the memory structure. The memory consists of objects 

(which are simply symbols like state22 or goal6), their augmentations, and a current context.The 

current context has four slots for the different types of objects involved in a search, namely goal, 

problem space, state, and operator. The object in the goal slot of the current context is the current 

goal ; the object in the problem space slot of the current context is the current problem space; and so 

on. When a slot in the context is considered for instantiation with an object-symbol, the slots to its left 

in the list should already be instantiated (filled with an object-symbol and not 'undecided') . Thus, a 

problem space is set up in response to a goal, a state functions only as a part of a problem space, and 

an operator is to be applied at a state. When an object in a slot is replaced, all current objects to its 

D 

desired state operator functional form 

I ~ constraint constraint 

\ \ 
04 05 06 07 08 09 

I 
concerns 

\ 
010 

Figure 5. Memory structure of SOAR 
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right become undefined. Simply put, problem solving in SOAR involves instantiating these slots till an 

end condition (solution) is recognized. 

The objects in these slots can be augmented with additional information. An augmentation 

consists of a set of objects in a labeled slot and each of the objects can be further augmented 

recursively. It can be thought of as a list of attribute-value pairs, where the labeled slots are the 

attributes and the objects are the values. The semantics of an object are derived from its set of 

augmentations, which may change over time, and their number is not limited by a fixed data structure. 

An example of a memory structure is given in Figure 5. The symbols beginning with the letter 

'o' represent objects and the symbols in the boxes represent objects of the current context; ol is the 

current goal; o2 is the current problem space; o3 is the current state, and the slot for the current 

operator is yet undefined. In Figure 5, the goal object ol is augmented with an attribute called 'desired 

state' and value o4; the problem space object o2 is augmented with three operators (o5, 06, and o7); 

state object o3 is augmented with 'functional-constraint' and 'form-constraint' attributes; the 

'functional-constraint' object 08 is further augmented with an attribute named 'concerns' and the value 

olO. 

Search-control knowledge is brought to bear in SOAR by an Elaboration-Decision cycle. In 

the elaboration phase, which always precedes the decision phase, existing objects are augmented with 

new objects, some of which maybe 'preferences' that contain information needed in the decision 

phase. Preferences are special objects with augmentations that provide information about an object that 

is a candidate for a slot. For example, an object will be considered for a slot only if there is a 

preference object with an 'acceptable' value for it and the object cannot contend for a slot if there is a 

preference object with a 'reject' value for it. Preferences also define a partial ordering of the objects 

competing for the slots in the current context. For example, there may be preferences with an 

'acceptable' value for two operators to fill a slot. In this case, one operator will have an edge over the 

other if there is an additional preference object which indicates that that operator is 'better' than the 

other. In the decision phase, objects in the current context are replaced or new objects are introduced 

by using the knowledge accumulated during the elaboration phase. The decision procedure converts 

the preferences into votes and takes an action that depends on a tally of the votes for different objects. 

Task-specific knowledge is brought to bear by application of operators of the current problem 

space when they are selected. This involves elaboration within the current goal if the operator is 

directly applicable. If there exists no knowledge exists of how to apply the operator, a subgoal is 

created to apply the operator, and the operators of the subgoal are then applied. As a result, preferences 

are created for a new object that represents the new state in the current goal and problem space. Other 

augmentations are also made that fill in the sub-structure of the new state object. 

The version of SOAR used for the computer model is implemented as a forward chaining 

.J production system (similar to OPS5) and is written in Common Lisp. A production system consists of 

a collection of productions (rules) of the form -



) 

) 

If CJ and C2 and ... and Cn then A 

where Ci are the conditions that inspect the current object context and other memory elements and A 

is the action to be taken if the conditions are met. The action may be either to add an augmentation, 

interact with external environment or to cast a vote to replace an object in the current context. All 

productions whose conditions are satisfied fire concurrently during the elaboration phase, and the 

votes of all the decision productions whose conditions are met are considered during the decision 

phase. 

2.2 Example problem in SOAR 

Suppose we have to encode the problem of sorting four numbers as a form of search in a 

problem space in SOAR. The problem is represented by a set of four numbered movable tiles, and one 

instance of it is depicted in Figure 6. There is only one operator in this set-up. This operator can 

transpose any two tiles that are adjacent to each other. The states of the problem space are 

configurations of the four numbered tiles. 

ln1t1al State 

F1nal State 

1113141 21 .. .. .. .. .. .. .. .. .. .. ~·· 

Figure 6. Sample problem in SOAR 
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Encoding the task in SOAR -

To select a goal and to establish the appropriate problem space and the initial state for the given task the 

following elaboration productions (EP) are needed. 

EP 1 - If the current goal is 'To-Sort' 

then make an acceptable-preference for 'Sorting' as the current problem space. 

EP2 - If the current goal is 'To-Sort' 

then augment the goal with a desired state that contains the desired positions of tiles in cells (in 

sorted order). 

EP3 - If the current goal is 'To-Sort' and the current problem space is 'Sorting' and there is no current 

state 

then create an acceptable-preference for a new state, and augment it with the initial positions of 

tiles in cells. 

EP4 - If the current problem space is 'Sorting' 

then augment the current problem space with the operator(s) of 'Sorting' problem space. 

EP5 - If the current problem space is 'Sorting' and there exists an operator of that problem space that 

can transpose two cells in the current state 

then make an acceptable-preference for that operator at the operator slot. 

) To detect whether the goal has been achieved, 

EP6 - If the current problem space is Sorting and the current state matches the desired state of the 

current goal in each cell 

then make a reject-preference for the current goal at the goal slot. 

To select and apply an operator, 

EP7 - If the current problem space is Sorting and an operator is selected to act on the current state 

then create an acceptable-preference for a newly created state. 

EP8 - If the current problem space is Sorting and there is an acceptable-preference for a new state 

then copy from the current state each cell that is unchanged by the current operator. It should be 

noted here that is the approach SOAR takes to solve the frame problem- the problem of 

describing what properties persist and what properties change as actions are performed, in a 

computationally rational manner. 

EP9 - If the current problem space is Sorting and there is an acceptable-preference for a new state 

then that state is augmented with values of the cells from the current state that are changed by the 

current operator (switched values of cells). 

Additional elaboration productions may be needed to improve the search performance. For example, a 

production could prevent applying the reverse of an operator that was just applied, or evaluate new 

states with respect to the goal state. 

These productions, along with the task-independent decision productions that translate preferences to 
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changes in the current context, are all that is necessary to encode this problem in SOAR. 

2.3 Universal Weak Method 

One underlying theme of SOAR is that the behavior of a problem-solver should vary with the 

amount of knowledge available for a particular task. Different weak methods should arise from the use 

of different task knowledge, not from the explicit selection of a method. The Universal Weak Method 

is an organizational framework that produces an appropriate solution method given only knowledge of 

the structure of the problem [6]. If there is very little or no task-specific knowledge, the Universal 

Weak Method suggests a default behavior which usually involves exhaustive search. When more 

task-specific knowledge is available to the system, the search becomes more directed and assumes the 

characteristics of a stronger method. This may involve moving from very weak methods such as 

Generate-and-Test to Generate-and-Improve, or Means-End-Analysis. These methods have been 

identified in the protocol analysis of mechanical engineer designers [7]. 

2.4 Difficulties and Subgoaling 

During problem solving in SOAR, there may be situations where the replacement of a current 

object is not possible. Such situations are called difficulties, and there are three kinds of these : 

) 1. No-Change: There is no change in the current context during the decision phase 

2. Tie : There is a tie between competing objects for a slot. 

3. All-vetoed: None of the objects have a positive vote to occupy a slot. 

When a difficulty is detected in the decision phase, the current context is pushed onto a stack. A new 

context is created to act as the current context, with its goal slot filled with a new object representing 

the subgoal to resolve the difficulty. All the necessary information to diagnose and solve the subgoal in 

the new context is passed down from the super-context and attached to the new goal. In the present 

implementation of SOAR, the problem spaces that are needed by the subgoal must already exist in the 

system. Any production that is sensitive to the new problem space or goal contributes augmentations 

that, along with the universal weak method, lead to solving the problem. For example, if there is a tie 

between two operators in the current context (with both of them having acceptable preferences for the 

operator slot) a subgoal is spawned by the architecture to resolve this tie. A problem space called 

'selection' is selected for the goal of this new context. For this, default productions need to be supplied 

to the architecture and by changing these, one can change the way SOAR resolves the tie. A new state 

is then selected to which the two operators are augmented. The purpose of this subgoal is to apply each 

of the operators to create new states and use productions that evaluate the new states in comparison to 

the final state. It differentiates between the operators by creating a new preference indicating one is 

better than the other . The subgoal is then terminated and problem solving resumes in the original 

context. 
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2.5 Reasons for choosing SOAR 

The justifications for selecting SOAR as the basic architecture for the computer model are 

outlined below. 

- SOAR views problem-solving as a heuristic search in a set of problem spaces, involving transition 

from one state to another by applying operators until the desired state is reached. These assumptions 

were also fundamental to the analysis of the protocol sessions. 

- When SOAR faces a difficulty due to a 'tie' between objects to be selected or a 'no-change ' situation 

after the selection of an object, it goes into a subgoal to resolve this impasse, resulting in nested 

contexts. If the problem-solving cannot progress in a subgoal it returns to the original goal where an 

alternate subgoal is then created. The subgoaling behavior is also observed in human designers who 

temporarily suspend a task, in order to solve some difficulty, and later return to it. SOAR's capability 

to handle a number of such subgoals also makes it appropriate for problems that have a hierarchical 

solution structure and fits very well into the episode scheme of the TEA model. 

- A strong feature of the SOAR system is that it uses direct knowledge when available, and in the 

absence of such information resorts to weaker methods to solve a problem. This is essential for any 

model where all the knowledge for a solution may not be directly available and a default strategy 

should be ready at hand. Also, expert performance can be demonstrated by the model just by adding 

additional knowledge resulting in by-pass of several steps which are otherwise needed. 

- Lastly, SOAR has a built-in learning mechanism that creates generalized "chunks" of the productions 

used to solve a subgoal. The performance of a novice can be modeled by using only the primitive 

operators and going through a fine grained series of inference steps. When such steps are done in a 

subgoal, the system can learn them by storing the series of inferences as a chunk of knowledge and 

applying the chunk later when it sees the same or generally the same situation. Thus the computer 

model could be very naive on its first run and with proper representations may be somewhat of an 

expert when it performs and learns on subsequent runs. This learning feature of SOAR has not been 

explored in this work, but it is an important point for future research. 
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3 Description of the SOAR Model 

This section describes the SOAR model, developed in this research. The model is partly 

implemented for two sections of protocols from different problems and stages of design. 

3.1 Major problem spaces in the SOAR model 

A complete SOAR model would need to work in at least three major problem spaces, namely 

Review-specifications, Design, and Check-completeness. This can be looked upon as three different 

phases of design each probably requiring a different set of operators and state description to make 

progress in problem solving. The TEA model and the sections of protocol analyzed in figure 4 deal 

only with the Design phase, which is the predominant phase, but a computer model requires the other 

two phases for the purposes of initializing and wrapping up the design. In this paper, however, focus 

will be on the Design problem space and how it is implemented. 

The Review-specifications phase involves gathering and organizing information about the 

design problem and elaborating constraints or deriving new ones, generally with the aim of 

'understanding' the problem at hand. Given an explicit set of constraints (i.e., the functional 

specifications of the problem), the system derives new constraints or massages the given constraints 

using domain knowledge into more direct and applicable ones. For example, if it is given that only 

three of the machines are to be manufactured, then a constraint can be derived from this that no 

speciality manufacturing tools should be employed. During this phase all the functions that are to be 

done by the machine are read in and the performance pattern (the sequence of functions) of the artifact 

is determined. As the result of this phase, all the given constraints and the top level nodes of the 

Function tree are enumerated. This phase can be compared in some ways to the 'assimilate' episode of 

the TEA model, but note that the constraints gathered are for the overall problem instead of any one 

task in particular, and the main aim of the actions in this phase is to organize the functions to be 

performed. This phase is not always very explicit in the protocols, but would be needed in a computer 

model in order to set the stage for the Design phase to begin. 

The Design phase first uses the information gathered in the previous phase along with domain 

knowledge to develop a concept - an abstract form that meets the functional specifications. As a result, 

the already existing top level nodes of the Function tree are elaborated into lower level nodes and top 

level nodes are contributed to the Form tree. Also during this phase, a number of design tasks are put 

on a task-agenda to be worked on, which in turn generates more tasks. At the completion of this 

phase, both of the trees will be fully expanded, all the relevant constraints will be posted, and there 

will be no more tasks on the task-agenda. Most of the actual design process occurs in this phase. All of 

_) the four different types of tasks proposed in the TEA model are performed, and each of these is broken 

down into episodes and the episodes into operators to perform the design. 
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During the Check-completeness phase, the design structure (Form tree and Function tree) is 

examined for possible violations. If these violations cannot be patched up, more tasks are put on the 

task-agenda , and the design phase resumes. This phase is also not always explicit in the protocols , but 

there appears to be a need for such a phase to be present in a computer model. This phase can be 

compared to the 'verify' episode of the TEA model. 

3.2 Representation scheme 

The SOAR model uses a representation scheme for a design artifact in which there are two 

hierarchical structures, the 'Form tree' and the 'Function tree', with the more abstract descriptions at 

the higher levels and the most detailed ( or dimensioned) ones at the leaf nodes. Different structures 

were thus used for storing the information relating to form and function, mainly for efficiency. 

Figure 7 gives an example of this scheme used for representing the state after the conceptual design 

stage of the flipper-dipper problem for a designer subject. In the figure , the Function tree (with oval 

nodes) has the main function that is expected of the artifact as its root node. The nodes directly under 

this node represent a breakdown of this main function into some functions that need to be performed 

for achieving it. This structure could be used in suggesting new forms and to check if the designed 

artifact can perform all the required functions. The Form tree (with rectangular nodes) is set up in a 

similar manner , with the device that is being designed placed at the root node. The nodes under the 

root node are the components that the device is designed to be made up of, and this may only be 

abstract descriptions to begin with. The aim of the design process is to reduce the level of abstraction 

of each of these components to an extent that the artifact can be manufactured from the description. The 

nodes of the Form tree help in maintaining the task-agenda and in verifying that all the forms proposed 

are reduced to the desired level of abstraction. Nodes of the Form tree are connected to different nodes 

of the Function tree according to the functions that they are supposed to perform. In either tree, the 

nodes have links to all relevant constraints (in round-edged rectangles) . At any stage of design, this 

structure may be only partially formed. It could be used to derive new tasks, check for consistency, 

completeness and correctness (constraint violations) . 

In the SOAR system the Formtree in figure 7, for example, would be represented as -

( Stat e S4 ' Form tr ee FM 1 ) 

(Formtr ee FMl ' Name Machi ne ' Node MNl MN2 MN3 MN4 MNS MN6 'Constr ai nt Conl 

Con2) 

(Node MNl ' Name Frame) 

(Node MN2 ' Name Power- sys t em) 

(Node MN3 ' Name Mount ) 

(Node MN4 ' Name Gr ippe r ) 

(Node MNS 'Name Chair ) 

(Node MN6 ' Name Wheel) 
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_) Figure 7. Artifact Representation 
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(Constraint Con 1 "Name Hold-three-plates ) 

(Constraint Con2 "Name Mount-on-given - area) 

This can be depicted graphically as in figure 8 below. 
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Figure 8 Graphical depiction of SOAR representation 

This representation structure can also be viewed in the form of frames, as given below. 

S4 

isa STATE 

node MNl 

node MN2 

node MN3 

node MN4 

node MNS 

node MN6 

constraint Conl 

constraint Con2 

MN2 -
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isa NODE 

name Mount 

Thus each object can be looked upon as a frame with different attributes. 

3.3 Tasks in the SOAR model 

The SOAR implementation of the protocol section deals with the Design phase. It starts out with 

a top-level goal named 'solve-design' which has the 'design' problem space available for it. In this 

problem space, first the initial state is selected and given the appropriate augmentations. The initial state 

in the model has all the features that were present when the whole design process began, represented in 

the Form tree and the Function tree. This includes the specifications the designer was presented in the 

form of different constraints. A constraint is represented by attaching it to the particular form or 

function it is concerned with. For example, 

State S4 AFunctiontree FNl 

Functiontree FNl AName Coating-film AConstraint Conl 

AConstraint Conl AName Complete-in-40-secs 

Note that the symbol starting with a'"' is treated as an attribute (slot). Thus, 'Name' is an attribute of 

) the object Conl, its value (filler) is 'Complete-in-40-secs'. 

J 

At this stage, the system is at at the top level of the hierachy of processes shown earlier in 

figure 2. It should be noted, with respect to figure 2, that for performing processes at each lower level, 

the SOAR system will spawn subgoals. Thus, when it reaches the operator level, there would be a 

nested structure involving four goals as shown below. 

Goal Gl 

Problem-space P2 

State 53 

Operator 04 

(Design) 

Goal GS 

Problem-space P6 (Task) 

State 57 

Operator 08 

Goal G9 

Prob 1 em-space P 1 O 

State 51 1 

Operator o 12 

Goal G13 

(Episode) 
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Probl em-sp ace P 14 (Operation) 

Stat e s 15 

Operat or o 1 6 

Also note that in the present implementation all the processes (task, episode, and operator) in figure 2 

are treated as SOAR operators, and if there is a dificulty in performing these, the system may create a 

subgoal. 

Since the subject has already made some progress in the design before reaching the start of the 

protocol section selected for modeling, the initial state in the model has some constraints that are 

introduced by the subject during the earlier design stage. Also, all the tasks that were planned before 

the start of the section are represented in the initial state in the task-agenda. Each item in the 

task-agenda has a set of attributes that help in controlling the flow of design and in maintaining 

consistency and completeness. 

The attributes are -

- name : the name of the task (for example, detail design component A) 

- form: the form(s) the task deals with 

- function: the function(s) the task is concerned with 

- priority : the priority class of the task 

) These functions and forms correspond to the functions and forms of the artifact description. 

) 

New tasks are created during a proposal of a form or a function. When the form or function is 

proposed and accepted, it is represented in the artifact description along with its relations to other 

forms and functions. When the tasks are introduced, they are given a priority number from Oto 5 

according to their importance, with class 5 as the most important. This classification depends on the 

nature of the tasks -

* Violating - If a new proposal violates a constraint that 

- was imposed by a task done before and no alternative to this new proposal is found, or 

- is attached to a task yet to be done 

then the task gets priority number 5. 

* Inflexible - If the task has too many constraints and they cannot be relaxed, it comes under the 

priority class 4. 

* Interacting - If a task deals with a function that interacts with the worker or a stationary object 

then that task is given a priority class 3. 

* Costly - If the task deals with a function or component that has importance related to cost, then 

itemize it in class 2. 

* Flexible - If the task has constraints that are relaxable or there are not too many constraints, 

then it comes under class 1. 

* Completed- When a task is finished, it is put in class 0 (least priority). 
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The priority number of a task may change as the design progresses. A task at a particular level is 

undertaken only when all the tasks at the level above it are finished. A task may belong to more than 

one priority level, but the highest priority applies during the selection of tasks. It was decided to use 

such a priority scheme instead of using the built-in 'preference' scheme of SOAR, since the preference 

scheme is not suitable for a frame-work where the priority keeps changing. Since the preference 

structure is not part of the state or any of the slots in a context, the old preference settings cannot be 

retracted while new preferences are added. 

3.4 Episodes in the SOAR model 

After the selection of the initial state, an operator that represents a task is selected by the 'design' 

problem space, according to its priority class. If the task is very simple (the system has the knowledge 

for its execution), then SOAR does the operation and creates a new state as a result. If the task is 

complex, as is often the case, SOAR generates a subgoal to deal with the task and it will return to the 

original goal with the changed state (if there is one) after finishing the subgoal. A problem space called 

'task' is selected in the subgoal and the state from the supergoal is selected. In the episode problem 

space, depending on the task in hand, new episodes are suggested and are arranged in an order of 

importance using the preference scheme of SOAR. 

3.5 Operators in the SOAR model 

If the execution of the episode is straight-forward, the operator representing the episode changes 

the state and a different episode, the next highly preferred one, is focussed on. If no knowledge of 

how to directly achieve the goal of the episode exists, then SOAR creates a subgoal that deals with the 

execution of all the necessary steps. The problem space of this subgoal called 'episode' has a 

sequential set of operators that are called to perform the goal of this episode. These operators work on 

the superstate of the subgoal they are in. 

The operators called in the 'operation' problem space are described in their order of execution as 

follows -

Create proposals operator -

This operator draws upon the long term memory to suggest a proposal that leads to reaching the 

goal of the episode. This proposal is then added as an attribute in the state and is considered for 

evaluations and decision in the succeeding operations before it is accepted or rejected. 

Along with the posting of proposals, two other types of objects may also added to the state. 

1. New constraints that are introduced as a result of the new proposal. 

_) 2. New tasks on the task-agenda. 

For example, given the constraints that the value of X be between 1.5 and 2.5 and that the value 
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of X be taken as a round number, the value of Xis proposed to be 2.0. 

Suppose the current goal was called 'Find-mode-of-operation', the current problem space is 

'episode', the symbol for the current state is S3, and the operator is 'Create-proposals'. If there is no 

sufficient knowledge in the LTM to execute this operator directly, SOAR experiences a 'no-change' 

difficulty. Subsequently, a subgoal called 'Operator-subgoal' is created to gather the necessary 

constraints and other information present in the state. A special problem space called 'operation' is 

selected for this subgoal and the state S3 is brought in. In this context, an operator called 

'Gather-constraints' is called upon, which creates a new state (NS3) that contains the features of 

the state S3 and all the constraints relevant to the current episode that are collected. The 

'Create-proposals' operator is then applied to the new state (NS3) to generate a proposal. The SOAR 

run for this sequence would look like the following -

Goal G 1 : Find-mode-of-operation 

Problem-space P2: Episode 

State S3 

Operator 04 : Create-proposals 

==> Goal GS : Operator-subgoal < Operator no-change) 

Problem-space P6: Operation 

State S3 

Operator 07: Gather-constraints 

State NS3 

Operator 04: create-proposals 

State S8 

If more than one proposal is suggested by the Create-proposals operator, the resultant states 

(say, S8a and S8b) will compete with each other. This represents a 'tie' difficulty in SOAR, and an 

appropriate subgoal (09), called 'Operator-subgoal', is generated to resolve the situation. In this 

subgoal, a problem space (PlO) called 'Selection' is created. A new state (S 11) is then generated for 

this subgoal which has an evaluation slot (E12 and E13) for each of the competing states (S8a and 

S8b). As soon as the evaluation slots in this state is filled with some values (numeric or symbolic) that 

convey the superiority of one state the other, 'Operator-subgoal' is terminated and a 'preference' is 

made for the winning state. To help fill the evaluation slots (El2 and E13) operators named 

'Evaluate-object' (014 and 015) are invoked in the 'Selection' problem space, for evaluating each of 

the competing states (S8a and S8b). Let us follow the execution of an 'Evaluate-object' operator 

J (014). This operator usually cannot be executed directly, therefore a subgoal (016), called 

'Operator-subgoal', is generated. 
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In the subgoal (G16), a special problem space (P15) called 'Comparison' is selected. One of the 

competing states (say, S8a) is brought in, and an operator called 'Evaluate' (018) is selected. This 

operator uses any knowledge available to evaluate the current state (S8a) and fills the evaluation slot 

(say, E12) of the state in the 'Selection' problem space with a value. 

The subgoal (G16) is then terminated, 'Evaluate-object' operator (014) is rejected, and the other 

'Evaluate-object' operator (015), for evaluating the other state (S8b) is then executed in similar 

manner. The SOAR trace of the execution of the above events is given below. 

Goal G 1 : Find-mode-of-operation 

Problem-space P2: Episode 

state 53 

Operator 04 : Create-proposals 

==> Goal G9 : Operator-subgoal (State tie) 

Problem-space P 1 o : Selection 

State s 11 

Operator o 14: Evaluate-object (S8a) 

(contains E 12 and E 13} 

==> Goal G 16 : Operator-subgoal (Operator no-change) 

Problem-space P 15: Comparison 

State ssa 

State S8a 

Operator O 18 : Evaluate 

Operator o 15 : Evaluate-object (S8b) 

==> Goal G 19 : Operator-subgoal (Operator no-change) 

Problem-space P 15: Comparison 

State S8b 

Operator 020 : Evaluate 

This illustrates how the subgoaling scheme of SOAR is utilized for some of the 

problem-solving involved in the protocol section. 

Evaluate Proposals operator -

In this step the proposal is evaluated using domain knowledge. If no knowledge exists to 

directly evaluate the proposal, and if more information needs to be collected then a subgoal is set up 

similar to the one for 'Create Proposals' operator, and an operator called 'Gather-factors'is executed in 

this subgoal. The 'Gather-factors' operator collects all the necessary aspects to be considered for the 

evaluation of the proposal, and puts them as a special attribute of the state. It attaches a 'weight ' to 

_) each of these factors, establishing the relative importance of each evaluation factor in the decision about 

the proposal. The Evaluate Proposals' operator is executed after all the factors are gathered. 
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During the execution of the 'Evaluate Proposals' operator each factor contributes a value (called 

'evalue'). This is the product of the goodness-value, that is, how good the proposal is according to 

this factor ( on a scale of -1 to 1 ), and the 'weight' of that factor. The proposal thus gets a set of such 

values attached to it at the end of this operation. For example, 

1. If a machine component is involved and 

the component has been known to be made before and 

Fabrication is a factor under consideration then 

evalue = 0.8 * 'cweight'Fabrication 

2. If a drive is involved and 

control is automatic and 

Safety-if-interrupted is a factor under consideration then 

evalue = -0.2 * 'cweight'safety-if-interrupted 

All those factors that did not contribute an 'evalue' (due to lack of knowledge to evaluate) and the ones 

that contributed a negative value are stored in the state in a separate attribute called 'consider-factors'. 

These factors will be considered for a patch-up of the proposal. 

After all the possible 'evalue's are calculated, the system generates a subgoal that selects a 

problem space called 'patch' and the state of its supergoal. In the 'patch' problem space, an operator is 

called for each of the factors in the 'consider-factors' attribute of the state. For a factor that has 

contributed negatively, a patch of the proposal is made if possible using the knowledge available. If a 

patch is performed, the 'Evaluate proposal' operator is called within this subgoal and the proposal is 

reevaluated with the patch. For the factors that did not result in any 'evalue', additional information is 

asked for from outside that will help in evaluating the proposal with respect to that factor. Also 

performed are refinements of the proposals, in order to raise its 'evalue'. After all the possible patches 

are done, the subgoal is terminated and SOAR returns to the 'episode' problem space. 

Decide operator -

Based on the 'evalue's of a proposal as a result of evaluations done in the previous operation, a 

decision is made (based on a trivial calculation at present) to either accept or reject : 

- accept the proposal and create a new state with the changes proposed along with the constraints and 

agenda items. If more than one satisfactory proposal exists, then the one with highest evaluation score 

is selected. 

- reject the proposal and return to the state that existed before considering this proposal. The proposal 

will not exist in the system anymore. 

In either case the episode subgoal is terminated and the system returns to the 'task' problem 

space to shift its focus of attention on other episodes. If no more episodes that belong to the present 

task exist, the system terminates the subgoal for episodes and returns to the 'task' problem space and 
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continues to work on a different task. 

3.6 Protocol analysis in the SOAR model 

The model is implemented for two protocol sections in the Design problem space. One of them 

deals with the conceptual design of the 'flipper-dipper' machine. A part of this section was presented 

in Figure 3 in Section 1. This section presents the analysis of that part in terms of the SOAR model. 

The terms used in the presentation of the analysis are explained first -

CP - Create Proposals 

GPC - Gather Proposal Constraints 

EP - Evaluate Proposals 

GEF - Gather Evaluation Factors 

DP - Decide Proposals 

{ } - comments 

Please note that the evaluation results such as good, fairly good, are represented in the computer 

program as numbers. Also, operations that were introduced for this model, but not explicitly 

verbalized by the subject are denoted as 'assumed' in their comments section. 

The following is the analysis of the part of a protocol session that was given in Figure 3. 

The state at the beginning of this section is represented as 

(St at eS4 ' For mtr ee MS ' Functr ee N6 'Task- agenda T7 ) 

(Formtr ee MS ' Name Machine) 

(Functr eeN6 ' NameCo at ing-f i lm 'Objec t Plat e 'Node Cll C12C 13 ·co nstr aint sC 14C 15) 

(Constr aint s c 11 'Name Keep- wa t er- clea n ·concern s D 16 D 17) 

(Constraint s c 11 'Name Complet e-in- 40- secs) 

(Tas k- agenda T7 ' Name Conceptu al - design 'Pri orit y 1) 

(Node c 11 'Name Loading) 

(Node c 12 'Name Dipping ' Descri pt ion Both- sides 'Node D 16 D 17 D 18) 

(Node D16 ' Name Dippii ng 'Desc r ip t ion One- side 'Node D19 D20D2 1) 

(Node D 19 'Name Lowerin g) 

(Node D20 ' Name Li ftin g 'Obj ect Fi lm 'Desc r ipt ion From- wa t er- surf ace) 

(Node D2 1 ' Name Mov ing ' Descri pti on Away- fr om- wa t er- surf ace) 

(Node D 17 'Name St opping ·s ubjec t Wor ker ' Descr ipt ion Let- v isual - ins pectio n 

Let-f i lm- i njec t ion Let -Sp readi ng Let-E vaporat ion) 

(Node D 18 ' Name Fli pping) 
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Task - Conceptual design of flipper dipper 

Ep 1 sode 1 - determine mode of operation 

CP - Hand operated machine (proposal 1} 

Power operated machine (proposal 2} 

( A tie between two states occurs. This is resolved by the evaluation of these states in the 

·compare' problem-space) 

EP -

GEF - (factor 1) - Volume of 720 plates per day 

(factor 2) - cost 

(factor 3) - ease to construct 

(factor 4) - constistency of speed 

EP - (factor 1) - proposal 1 not good 

proposal 2 very good 

(factor 2) - proposal 1 good 

proposal 2 not very good 

(factor 3) - proposal 1 good 

proposal 2 not very good 

(factor 4) - proposal 1 cannot evaluate 

(since hand operation is involved} 

(since power operation is involved} 

(since power operation is involved} 

(since hand operation and power operation are 

being compared} 

(subgoal to find whether constistency of speed is important to hand operation the subject gathers 

this from the experimenter} 

proposal 1 good 

proposal 2 good 

DP - Accept (proposal 2) 

Ep 1 sode 2 - Create abstract form 

CP -

( the information about the mode of operation is 

added to the the top node of the Function tree } 

GPC - loading (plate), dipping (plate), unloading (plate) (the main functional specifications} 

CP - Ferris wheel mechanism (proposal 3) 

EP -

GEF - (factor 1) - ease to construct 
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(have Gripper, Chair, Frame, Power system, 

so on. These w i 11 be added through the 'Node · 

attribute to the Form tree in the state when 

this proposal is accepted} 
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(factor 2) - ease to drive 

(factor 3) - dipping function ... 

EP - (factor 1) - good 

(factor 2) - good 

(factor 3) - not good 

PATCH -

use cam and ro 11 er 

(to be performed like a microtome) 

(articulation needed) 

(subgoal for patching) 

The protocol section and its implementation in SOAR goes further with various evaluations of 

proposal 3 and ultimately accepting it into the state at the end of Episode 2. This concludes the 

discussion of the representation scheme, control structure, and the primitive operators used in the 

computational model. 

.. 
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4. Discussion 

The scheme of processes mentioned above was implemented with the objective of meeting some basic 

requirements of a computer model. 

4.1 Criteria for computer models 

A computer model should be general enough to accommodate both the systematic and the 

opportunistic modes of design. SOAR accommodates exploration of all the alternatives present and 

can search through the space of solutions until an evaluation can be made for each alternative. An 

opportunistic component is attached to the present model by delaying the exploration of alternatives to 

a proposal (posting it as a task of low priority) until the present one is found to be totally unacceptable. 

The model uses a systematic layering of tasks according to their importance and uses this to decide 

which task to work on. However, within a layer, the task selected is related to the previous task in 

terms of the form, function, or constraints it deals with. At the beginning of a task, episodes are 

created depending on the task being worked on. While working on the episodes, new episodes are 

created on an ad-hoc basis depending on the importance of a proposal to the stage of design. For 

example, during the task of the conceptual design of the flipper-dipper mentioned above, a proposal 

was made to include a drive. Immediately an episode is created to elaborate the drive mechanism since 

it has bearing on the conceptual design of the machine . 

Within an episode, the model goes through all the major primitive operators (create, evaluate, 

decide) systematically, but uses other operations such as refining and patching when needed. 

A computer model should be able to encompass the design strategies of different designers and 

several design problems, so it can be used in the attempt to explain a design process and thus 

understand more about it. Additional features can then be added to the model to make it more robust or 

specialized. This would be more of a continuous effort of trial and error with empirical and analytical 

methods rather than building the right model at one attempt. This feature of the model is demonstrated 

to some extent by using the model for representing two protocol sessions taken from two different 

designers working on two different problems. Appendix 1 presents the second protocol session and its 

and analysis on terms of the SOAR model. 

A computational model also should be as elementary as possible so that it can model a naive 

designer and also be able to take jumps of inference to emulate experts. The computer model discussed 

above can behave in either of these ways depending on the knowledge available. 

4.2 Comparison with the TEA model 

J The TEA model provides a good basis for building a computational model of design. The 

computer model proposed in this paper, however, differs from the TEA model proposed earlier in 
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many subtle ways, which are discussed below. 

The four different tasks proposed in the TEA model are put under one phase of design in the 

present model, mainly because the distinction between these phases (conceptual, layout and detail 

design phases) are quite abstract and ill-defined. Under the Design phase, the model deals with these 

phases differently by taking advantage of the representation structure used. For example, if a function 

exists in the structure that has no form attached to it, a task (conceptual design) would have been 

created to deal with this. Similarly, if a form node is not elaborated to the level of dimensions, another 

task (detailed design) would be present to deal with this. 

The distinction between types of episode is not made in the present model as it was done in the 

TEA model. A description of how the different kinds of episodes used in the TEA model are depicted 

in terms of the computer model is given here. 

Assimilation - There is no separate episode for this purpose but this is inherent in the design of the 

model. All episodes have primitive operators to gather the relevant constraints for a proposal, for its 

refinement, or for its evaluation. 

Repair - Although the current implementation does not demonstrate this, when a constraint violation is 

noticed and a local patch-up is not possible, the mechanism of SOAR allows backing up to the point 

where there was no violation and proposing a new alternative. Again, there is no special episode for 

this purpose, and it is implicit in the architecture used. 

Specification - All episodes can be considered to be basically of this type. Within this episode different 

problem spaces may be used for different ways of specifying information. 

Documentation - When documentation is done for problem solving, it is handled by a special problem 

space within a normal episode. 

Plan - Much of the actions in this episode are selection of strategies and can be handled by having 

default productions in SOAR that allow consideration of a different problem space to attack a design 

problem. However, planning in a truer sense should be done by having a problem space for creating 

these problem spaces themselves. Such a feature is not existent in SOAR and is being explored by its 

developers. 

Verification - Local verifications (within a task) are done by the evaluate operator within an episode. 

Reperforming of tasks to check global consistency on the arrival of additional information is handled in 

the Completeness-check phase and so is treated as a task by itself. The present implementation does 

not however, demonstrate this action. 

The operators proposed in TEA model are also used in a different form in the computer model. 

The ten operators described earlier in the paper and their relation to the present model are described. 

Create - This operator is equivalent to the Create proposal operator. 

Select - The selection of old information is done by the Gather operators. 

J Calculate, Simulate - There are no explicit operators to do these operations. 

Compare - Most of the functions of this operator, like checking a proposal with constraints, is done by 

29 



the Evaluate operator. 

Accept and Reject - No separate operators for these are present, but these occur as a result of the 

Evaluate operator. 

Suspend - When a proposal is rejected mainly due to lack of evaluation knowledge, a task is put on the 

agenda to work on it later. 

Patch - This is done in a special problem space within the function of the Evaluate operator 

Refine - This operation is performed within the function of the Evaluate operator. 

In terms of a computational model, the TEA model was incomplete in many ways -

It did not include a model of control. The SOAR model exhibits control by 

1. subgoaling on impasse, which models all forms of sub goaling 

2. a stereotypic operator sequence within an episode, which models the gethering of constraints and 

their use 

3. a task priority structure, which determines which task will be worked on next 

4. evaluation mechanism, which makes the decision making process precise 

It did not give any specific details of the representation of the design state and design 

constraints. The SOAR model refines the representation of state to include functiontree, the formtree, 

and the various attributes of forms and functions. 

) It did not give any specific details of the representation of design knowledge. The SOAR model 

used SOAR (elaboration) productions to represent design knowledge. 

4.3 Some problems encountered 

The SOAR architecture provided convenient mechanisms for implementing some aspects of the 

TEA model including a) subgoaling via impasses and b) the use of "unimplemented" operators to cause 

subgoals and thus dictate the stereotypic structure of episode. SOAR productions provided an 

acceptable representation of design knowledge. 

The SOAR architecture did not provide built-in mechanisms for handling some aspects of the 

model. However, these aspects, like the task priority system and the evaluation scoring system, were 

fairly easy to represent. The SOAR system is not very well developed for interaction with the outside 

world. External LISP functions can take from and return to an attribute only numerical values and not 

symbols. Objects once introduced in SOAR cannot be retracted by the action of a production (the 

garbage collector does it after a decision cycle if the object has been rejected by the decision). As a 

result of this at each small change of state, all the unchanged features of the state have to be copied 

over. Also, due to this, the hierarchical representation structures have to kept fairly flat for efficiency 

purposes. In the present implementation this is not much of a problem, but a better scheme is required 

J for modeling the entire design process. 

A major problem in building the computational model was the incompleteness of the protocols. 
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One has to make several assumptions of how the designer may have arrived at some decisions, and 

this may sometimes have serious implications in building a correct model for design. The designers do 

not verbalize the justifications for most of the 'jumps' in reasoning, many of which they probably do 

not know themselves. One very glaring and obvious conclusion of this work is that protocol analysis 

should be treated, especially for the purposes of building a computational model, merely as an 

exploratory tool. If one were to use protocol study for building a model, the protocols should be taken 

with the idea of getting the control knowledge of the designer. More emphasis should be given on why 

the designers performed a certain action rather than just what the designers do. This is a particularly 

difficult task since the designers may go into phases of introspection which may adversely affect the 

process of protocol data gathering. This could be done to some extent by replaying the videotape after 

each brief session and asking of the designers the rationalizations for their actions. 

4.4 Future directions 

The model proposed in this paper could be implemented completely by representing a larger 

portion of the protocol, one where the selection of tasks, repair, and other features that could not be 

demonstrated here will be encountered. The model should be verified by representing sections of 

protocol from various stages of design and involving different design problems. 

An important feature of SOAR, the learning mechanism, could be studied and exploited in terms 

) of the design process. Once a reasonably solid computer model is built, comparison studies of experts 

and novices along with the model could prove to be interesting. 

_) 

A special problem space for creating or selecting problem spaces could be a way to introduce the 

automated planning element into the model. Work being done in this area should be studied and 

exploited. 

If the reasons for a proposal can also be included in the nodes of the representation structure 

built in this model, it can be used as a record of execution and can be extended to provide an 

explanation or report of design. 
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Appendix 1 

This appendix presents a section of the protocol and its analysis in terms of the SOAR model for 

the 'battery contacts' design problem. The battery contacts design problem can be briefly described as -

Design a plastic envelope (dimensions provided) and the electrical contacts to accept the three batteries 

to power the time clock in a new computer. The batteries ( detailed dimensions provided) must be 

connected in series and to an adjacent printed circuit board. The external dimensions of the envelope 

are provided as are needed contact pressures. The volume is 50,000 units/month for three years and 

the assembly will use a robot. 

The following is the excerpt from the protocol ('*'s stand for pauses) -

So for dimensions of those new contacts , starting with the two that look -- it'd probably be better if 

they were angled, there's more space that way, without hitt ing the supports which* would be somewhere 

near there * with a wire to connect those. The diameter of that would need to be -- the top part of the 

diameter of the battery is .228 which is the smallest part, so it would have to be smaller than that 

diameter. And,** pick a number from .228, smaller than that, say, look at .2 diameter and that would 

give you forty thousandths clearance all around. That's probably not important, but we are going for a 

number.* The distance from the center there to th ere will have to be the diameter of the battery plus a 

little clearance, to have enough room to solder the wire on.* or again, you could just* connect those 

metal to metal and just have it all one part.*** This should be a different height than the rest of the 

material if this is gonna be the contact. So it could be all made of one part, instead of soldering it. Okay, 

say if we made that all one part, and connect that across there and this nickel plate* the tw o circles and 

the increased height that you'd need. And the same part we are going to use on the bottom and top envelope 

09. And that part will look like -- let's see, without the nickel platin g*** would look similar to this and 

the dimensi on from there to there* is given 2.5 to there* plus or minus four thousandths. The dimension 

from ther e to ther e, the maximum would be half the diameter of the battery plus .047 which is .228, plus 

.047 or .245. * The distance, no we probably want' to set distances.* That radius, .02, half of that is the 

diameter, which is .01 O radius. So if we made this whole part the same thickness,* .020, and th is nickel 

plate, just those two areas, and the rest of th e material would be made out of, say copper alloy, which is a 

good elect rical conductor.* A beryllium copper is commonly used for springs, but you don't really need a 

spring force on these so it's not really a question, if you j ust use copper for its conduct ing properties. one 

thing I'd have to check is if we can nickel plate to a copper alloy, that I can use. So, the thickness of thi s, if 

you look at it from the side, would be pretty narrow . We don't have much room, anyway. We have 025 and 

22 1 /2 for the thickness of the plastic, plus the contact. So if you made that *** I have that 020 thickness 

there for the wall, probably have to be smaller than that, considering we'll need to make* that would leave 
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that 025 left for the contacts. But this was made out of a thin sheet of copper. I'll have to check sizes to 

see what kind of stock sizes, so I'll guess that that would come between 

E : What sizes are you thinking of? 

s: It would have to be around .oos thousandths . I don't know if that's a standard size or not. 

E: Take it as if it were of a standard size . 

The progress of design fromthe start of the protocol section given above to its end is presented in 

the next page in terms of the SOAR model and the TEA model. 

The abbreviations used are -

CP - Create Proposals 

GPC - Gather Proposals Constraints 

EP - Evaluate Proposals 

GEF - Gather Evaluation Factors 

DP- Decide Proposals 

The state at the beginning of this section of the protocol is represented in the SOAR model as 

(State S4 "Formtree MS "Functiontree N6 "Task-agenda T6 ·Available A 1) 

(Formtree MS "Name Battery-contact "Node MN 1 MN2 ·co nstraint Con0) 

(Node MN 1 "Name Contact "Node CN 1 CN2 CN3 ·constraint Con 1 Con2) 

(Node CN 1 "Name Left-contact ·constraint Con3) 

(Constraint ·co n3 "Name Ends-on-battery&pcb) 

(Node CN2 "Name Middle-contact ·co nstraint Con4) 

(Constraint ·con4 "Name Ends-on-adjacent-batteries) 

(Node CN3 "Name Right-contact ·co nstraint Cons) 

(Constraint ·co ns·Name Ends-on-battery&pcb) 

(Constraint ·co n 1 · interfaces MN2) 

(Constraint ·con2 ·Name shortest-length-possible) 

(Node MN2 "Name Envelope "Node EN 1 EN2) 

(Node EN 1 "Name Upper-half) 

(Node EN 1 "Name Lower-half) 

(Constraint cono "Name prevent - short-out) 

(Functiontree N6 "Node NN 1 NN2 NN3) 

(Node NN 1 "Name Covering) 

(Node NN2 "Name Holding) 

(Node NN3 "Name Electric -conn ection ) 

(Available A 1 "Name Battery "Node BN 1) 

(Node BN 1 ·s urface-diameter 0.02) 
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SOAR model 
(indentations indicate creation of subgoal) 

Task - Dimensions of middle contact 

Episode 1 - Shape of middle contact 

CP - (need to gather the relevant constraints) 
GPC (the constraints that deal with the middle contact are gathered) 

- one end on one battery and the other end on the other 
battery 

- take shortest distance between the two batteries 
CP - contact shape is horizontal. 

EP 
GEF - interference with position of side wall of the envelope 

EP - bad 

( create a new problem space to do a repair on the proposal) 

PATCH 

- sides of contact angled back 

DP -accept 

(Add the information proposed to the new state - that is, the shape of 
contact involves a curve around the side of the wall) 

Episode 2 - Diameter of contact surface 

CP-

GPC-prevent short-out 

- diameter of contact surface should be less than 
diameter of battery surface 

TEA model 

Task - Dimensions of middle contact 

Episode 1 - Documentation - Overall shape of middle contact 

select [proposal I : sides of contact are horizontal] 

draw (proposal!) 

select [constraint! : relative location of support wall interferes] 

simulate [proposal! to constraint!] 

compare [proposal! to constraint!] 

Episode 2 - Repair - angle of contact's sides 

patch [proposal!=> proposal2: sides of contact are angled back] 

accept [proposal2] 

Episode 3 - Specification - Diameter of contact surface 

select [proposal3 : diameter of contacting surfaces in drawing] 

draw (reference for dimension) 

Episode 4 - Assimilation - limitations on diameter 

select [proposal4 : diameter of battery is .28] 

..J 



- diameter of battery surface is 0.28 

- get a round number 

CP - diameter is 0.20 inches 

EP-

GEF- clearance must be 0.040 

EP-good 

DP-accept 

(Add the information proposed to the new state - that is, the diameter of 
contact surface is 0.02 inches) 

Episode 3 - Size of Contact 

CP - Length of the contacts is diameter of battery plus clearance for 
soldering wire 

- Solder wire to contact 

EP -
GEF - minimize number of parts {assumed} 

EP- bad 

PATCH 
- Have the two contacts and wire as one metal piece 
- use same part on top and bottom 

EP-

GEF - height of contact surface greater than rest of contact 

create [constraint2: contact canot short-out]! 

calculate [constraint3 : diameter of contacting surface must be< .28] 

accept [constraint3] 

select [constraint4: round off number to a "nice" number]! 

create [constraint5: clearance between contact diameter and battery diameter 
must be 0.040] 

compare [proposal3 to constraint3 - 5] 

refine [proposal3 =>proposals: diameter is 0.2 inches] 

accept [proposal5] 

draw [proposal5] 

Episode 5 - Specification - length of side 

select [proposal6 : length of side in drawing] 
draw (reference for dimension) 
select [proposal? : diameter of battery] 
draw (proposal?) 
create [ constraint6: need clearance for soldering wire] 
simulate [proposal6 to proposal? subject to constraint6] 
suspend [make contact out of one piece] 

Episode 6 - Specification - contact out of one piece 

select [constraint? : minimize number of parts]! 
select [ proposal2] 
compare [proposal2 to constraint6,7] 
patch [proposal2 => proposal8: contact is made from one piece] 
accept [proposal8] 

Episode 7 - Verification - Contact out of one piece 

create [constraint8 : height of contacting surface must be greater 



EP - good 
DP - accept 

Episode 4 - Dimension between contact points 

CP-
GPC - distance between batteries is 0.530 +/-0.004 

- contacting points should contact centers of batteries 
CP - distance between contact points is 0.53 +/- 0.004 

EP -
GEF -

DP -accept 

Episode 5 - Height of contact 

CP-

GPC - diameter of battery is 0.228 
- clearance from battery to back wall of envelope is 0.017 
- height of battery should be less than 0.228 + 0.017 

CP - height of contact is less than 0.245 
EP -

GEF -
DP -accept 

Episode 6 - Width of contact 

CP-
GPC- diameter of battery is 0.2 

- width of contact can be same as diameter of battery 
CP - width of contact is 0.2 

EP -
GEF -

DP -accept 

than rest of contact] 
compare [proposal8 to constraint8] 
accept [proposal8] 
draw (proposal8) 

Episode 8 - Specification - Dimension between contact points 

select [proposal9 : distance between contact points in drawing] 
select [proposallO: center distance between batteries is .530 +/- .004] 
calculate [constraint12: contacting points should centers of batteries] 
compare [proposal9 to proposallO subject to constraint12] 
refine [proposal9 => proposall 1 : distance between contact points is 

.530 +/- .004] 
accept [proposalll] 

Episode 10 - Specification - Height of contact 

select [proposal12 : height of contact in drawing] 
draw (reference lines) 

Episode 11 - Assimilation - constraints needed for height 
create [proposal13 : half diameter of battery is 0.228] 
select [proposal14: clearance from battery to back wall of 

envelope is 0.017] 
calculate [constraint13 : height can be less than proposal13 

plus proposal14] 
accept [constraint13] 
compare [proposal12 to constraint13] 

refine [proposal12 => proposallS: height of contact is .245] 
accept [proposal15] 
draw (proposallS) 

Episode 13 - Specification - Width of contact 

select [proposalS] 
draw (proposal3) 
select [proposal 17 : width of contact in drawing] 
create [constraintlS: diameter and width can be same size]! 
compare [proposal17 to proposals subject to constraint15] 
refine [proposall 7 => proposal18 : width of contact is .020] 
accept [proposal18] 



Episode 7 - Materials for contact 

CP-
GPC-good conductance 

CP - proposal 1 - contact made of nickel and rest of the material 
from copper alloy 

- proposal 2 - material used could be beryllium copper 

COMPARE-

GEF (factor 1 ) - spring force not needed 
(factor 2) - adherence (can nickel adhere to copper) 

EP - (factor 1) - proposal 1 good 
- proposal 2 bad 
- (factor 2) - suspend { not enough information, so 

create a task to check this later) 
DP - accept proposal 1 

Episode 8 - Thickness of contact 

CP-

GPC - thickness of envelope plus contact is 0.0225 
- thickness of envelope is 0.02 
- thickness of contact less than or around 0.0025 
- take a standard size 

CP - thickness of contact is 0.005 

DP -accept 

Episode 14 - Specification - Materials for contact 

select [proposal5] 
select [proposal19 : proposal5 is made of nickel] 
select [proposal20 : material of contact except for plated surface 

is unknown] 
select [constraint16: conductance of contacts must be good] 
create [ constraintl 7 : copper is a good conductor] 
compare [proposal20 to constraintl 7] 
refine [proposal20 => proposal21 : material of contact except for 

plated surfaceis copper] 
create [proposal22 : material of contact is beryllium copper] 
create [constraint18: beryllium copper is commonly used for springs] 
calculate [constraint19: contact does not need spring force] 
reject [proposal22] 
create [constraint20 : plating must adhere to contact material] 
calculate [strategy2 : check later if nickel will adhere to copper] 
accept [strategy2] 
accept [propoasal21] 

Episode 15 - Specification - thickness of contact 

select [proposal23 : thickness of contact in drawing] 
draw (proposal23) 
select [constraint21 : not much space available for contact] 

Episode 16 - Assimilation - Information on available space 
select [proposa124 : thickness of envelope & contact is .0225] 

select [proposal25 : thickness of the envelope is .020] 
calculate [constraint22 : thickness of contact must be< .0025] 

accept[constraint22] 
create [constraint23 : use only standard-size materials] 
create [constraint24 : a standard size is 0.005] 
compare [proposal23 to constraint22 - 24] 
refine [proposal23 => proposal26 : contact thickness is .005] 

accept [proposal26] 
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The state at the end of this section of the protocol is represented in the SOAR model as 

(State S4 "Formtree MS "Functiontree N6 "Task-a genda T6 'Available A 1) 

MC3 

(Form tree MS "Name Battery-contact "Node MN 1 MN2 "Constraint ConO) 
(Node MN 1 ' Name Contact 'Node CN 1 CN2 CN3 'Dimensions ON 1 DN2 DN3 DN4 

' Material MT 1 MT2 'Constraint Con 1 Con2) 
(Node CN 1 'Name Left-contact 'Constrai nt Con3) 

(Constraint 'Con3 'Name Ends-on-battery&pcb) 
(Node CN2 'Name Middl e-con tact 'Shape SN21 'Constrai nt Con4 'Node MC 1 MC2 

' Dimenso ns DNS) 
(Dimensions DNS ' Distance-b etween-pts 0.53 +/- 0.004) 
(Node MC 1 ' Name Left-piece ) 
(Node MC2 'Name Wire 'Descrip tion Soldered ' Interfaces MC 1 MC2) 
(Node MC3 'Name Right-piece ) 
(Constraint 'Con4 ' Name Ends-on-adjac ent-batteri es) 
(Shape SN21 'Name Sides-are-angled-back) 

(Node CN3 'Name Right-contact 'Constraint Cons) 
(Constraint Cons 'Name Ends-on-battery &pcb) 

<Dimensions ON 1 ' Length-of-contact-surface 0.02) 
<Dimensions DN2 ' height-of-contact 0.245) 
(Dimensions DN3 'width-of-contact 0.2) 
<Dimensions DN4 'Thickness-of-contact 0.005) 
(Material MTl 'Name Nickel) 
(Material MT2 'Name Copper-alloy) 
(Constraint ' Con 1 ' Interfaces MN2) 
(Constraint Ton2 ' Name shortest-length-possible) 

(Node MN2 'Name Envelope 'Node EN 1 EN2) 
(Node EN 1 'Name Upper-half) 
(Node EN 1 'Name Lower-half) 

(Constraint Cono 'Name prevent-short-out) 
(Functiontree N6 'Node NN 1 NN2 NN3) 

(Node NN 1 'Name Covering) 
(Node NN2 'Name Holding) 
(Node NN3 'Name Electri c-connection) 

(Avai 1 ab 1 e A 1 ' Name Battery 'Node BN 1 ) 
(Node BN 1 'Surface-diameter 0.02in) 


