
SIMUBASE
Using Data Base Capabilities to Implement

Interface Free Modules for Building
a Simulation Management Environment

By

Abdenacer Moussaoui

A RESEARCH PAPER
submitted to

Oregon State University

in partial fullfillment of
the requirements for the

degree of

Master o~ Science

1989

)

ACKNOWLEDGEMENTS

I wish to give thanks to Dr. Ted G. Lewis for his guidance during the writing of this re­
search.

I also wish to thank Toshi Minoura and Tim Budd for their interest.

Special regards to my brother Abdennour who helped me in numerous occasions, and
to my brother Mohamed for his support.

To all the others which I have not included here I would like to say: THANK YOU!

I dedicate this thesis to my mother and father.

)

Table of Contents SIMUBASE

Table of Contents

Abstract

Introduction

Background/History

Objective·
Illustration

Approaches
Approach 1
Approach 2
Approach 3

Prospective Approach

Design and Specification
Standard Module Description
Version Selection Procedure
·simulation Selection Procedure
Reporting Procedure
Summary
Applying this Design Strategy to Our Example

SIMUBASE: Current Implementation
-- Previous Use of Data Base Concepts in Simulation

Physical Storage
Simulation Data
Standard Module Description
Simulation Scripts and Reporting
Version Selection

How Does Our Example Work Under the Current Implementation ?
Features of the Current System
Limitations of the Current System
About the Language of Implementation and its Effectiveness
Host Language Inadequacy

_ Considerat .ion when Selecting a Host Language
Suited for Such a Prototype Development

Ubrary routines, Interpreted .vs. Compiled code environment
Self-interpretation and Partial Compilation

SIMUBASE Overview
Fundamental Concepts

What is a SIMUBASE module?
What is a script?

_ What is a project?
. SIMUBASE Module and Script Manager

1

2

3

4
6

11
11
13
15

17

20
20
22
23
24
24
24

31
31
32
32
32
33
34
37
38
38
38
39

39
40
40

41
41
41
41
41
41

Creating a Module or Script 42
SIMUBASE Documentor 42
Multiple Projects 42
Who can use SIMUBASE 42

SIMUBASE Menus 44
Main Menu 44
Module/Script Manager 45
Project Constants Manager 45

.. Viewing the Run-time database 45
Sorting The Modules Database 45
Help Menu 46
Reporting and System Documentation 46

Project Modules Report 46
Project Scripts Report 46
Project Constants Report 47

Exit/She II to DOS 48

A Guided Tour 49
SIMUBASE Demo Project 49
Running The Simulation Demo 49
Creating a Module 50
Summary 51

Where to Go From Here 52
)

Conclusion 53

Bibliography 54

Appendix A 60
STATS.DOC 60
TREE.DOC 61
DATADICT.DOC 62
FILE LIST.DOC 64
PRCSUMRY.DOC 65

APPENDIX B 70
TOP.PRG 70
DOHELP.PRG 72
DOREPORT.PRG 73
MENU1.PRG 74
MENUHELP.PRG 74
MENUREPO.PRG 75
RUN_BAT.PRG 76
RUN_MOD.PRG 76
MEDITOR.PRG 77
MODIDATE.PRG 77

J

Table of Contents

CODEFILE.PRG
GETPROJ.PRG
OPENPROJ.PRG
PACK.PRG
SETE.PRG
SORTMOD.PRG
ADDITEM.PRG
ZAPITEM.PRG
MM.PRG
MM_APPE.PRG
MM_EDIT.PRG
MM_OPEN.PRG
MM_PROC.PRG

APPENDIXC
COS.PRG
SIN.PRG
ATAN.PRG
ADDFIELD.PRG
ZAPFIELD.PRG
ADDSPATH.PRG
SETPCONS.PRG
SELECTWA.PRG
INFORM.PRG

. YESNO.PRG
PRINTBEG.PRG
PRINTEND.PRG

Appendix D
System Requirements
Installation

SIMUBASE

78
78
79
80
81
81
82
82
83
84
86
88
89

100
100
101
101
102
104
105
105
106
106
107
107
108

110
110
111

iii

iii

J

Abstract SIMUBASE 1

1 Abstract

AN ABSTRACT OF THE RESEARCH PAPER OF

Abdenacer Moussaoui for the degree of Master of Science in Computer Science
presented in April 1989

Title: SIMUBASE, Using Data Base Capabilities to Implement Interface Free
Modules for Building, a Simulation Management Environment

Abstract approved:

Ted G. Lewis

This is an attempt to deal with interface problems of interacting modules in a large
simulation system.

In simulation, scientists require routine substitution of modules for comparison of al­
ternative models. · These changes have propagating side affects and from a
programmer's point of view are essentially system redesigns .

This paper presents comparisons of several approaches attempting to resolve the
above p_roblem. Proposed here is an accessible design. T_he features of a Data Base
Management System (DBMS) are used to implement a prototype (SI MU BASE) show­
ing the feasibility of this approach. SI MU BASE is a simulation environment for manag­
ing simulation modules.

j Index terms I
• Modular Programming, Plugable Module, Reusable, Data-Item, Automatic

Making, Standard Module Description, Version Selection Procedure, Module
Master Name, Module Version Name, Simulation Scripts.

M.A. Copyright 4/13/89 1

2 SIMUBASE Introduction

2 Introduction

Simulation generally deals with experimentation, which e>ften is done through repeti­
tive trials of different variations of a m.od~I. The process is to test various ap­

prc:>aches to obtain a simulation model that is close to the real world. The experimenter's
steps usually can be summarized as follows:

• 1- Create Simulation Program Code

• 2- Run simulation

• 3- Save Output Data

• 4- Analyze Data, Comparison of the outputs of two or more models

• 5- Modify Program or Approach

• 6- Repeat again at step 2

When programming these various approaches of a simulation it becomes a tedious
process of generating multiple programs. These programs are generally the same, ex­
cept for parts of the programs which accommodate the variations in the approaches.
It is very often the case that a program code is repetitively modified and re-compiled to
meet the needs of the experimenter(s). Many of these variations have unpredictable
or predictably unpleasant side-effects [Beladi-1979]

My goal in _this research is to create an environment that is most suitable for creat­
ing computer simulation models and to proficiently experiment with variations of these
models witho_ut havfng to worry about re-coding or re-compiling, and to keep the ex­
perimentation organized and well documented.

2 M.A. Copyright 4/13/89

_J

)

Background/History SIMUBASE 3

3 · Background/History

U nfortunatel~, part of what initiated this resea~ch is a po~I of ill~defined modules writ­
.. ten mostly m the FORTRAN and BASIC programming languages dealing with

agricultural simulation models. (See side bar) · ·

These modules have been developed
over the years by v_arious researchers with
basic knowledge about programming, and

· very limited concepts. about good program~
ming techniques. It is often the case that
these modules are . nothing but an amal­
gamated program code with unclear parts
and very .limited reusability. lh computer
science terms, we cail such programming
practices un-struct1.,Jred, non-n,odular and
non-reusable programming methodologies.

Because of the availability of this huge
library of modules (despite their current

. state) the researchers question whether the
following goals can be achieved:

• Can a researcher with limited
programming knowledge, be able to

· pick a number of modules from this
pool, and mir·aculously combine and
run them, to experiment with the
specific case he is working on?

• Can the researcher substitute any ·
given version of a module with a
different one in order to compare
different test runs?

Even if this pool of modules were to be
written in a singl~ unified programming Ian-

. guage, the goals above are far from being
accompl!shed effectively even with todays
state-of-the-art programming techniques as
is shown in further sections of this paper.

M.A. Copyright 4/13/89

About PLANTEMP Simulations ...

3

4 SIMUBASE Objective

4 Objective

It we>uld be advantageous to design a large library capable of holding well defined
:_ modules th?t are easily manageable such t~at a non-programmer can efficiently use
it_ witflout having fo code, compile, or do other tedious chores that even professional
programmers have to struggle with. ·

The reader should keep in mind that a suitable simulation development system will
accommodate two kinds ofusers. On one hand there will be users who develop, debug,
and test simulation m9dules. On the other ha~d the sy~tem is specifically aimed at the
non-programmer scientist who wishes to use the system purely for experimentation.
Such users will be using subsets of modules developed by other more experienced
users and/or system managers.

In attempting to narrow down the technical challenges from what has been expressed
above by the researchers we re-phrase the goals as:

• Provide the ability to easily plug in and plug out different implementations of a
simulation sub-part; being able to work with multiple versions of module(s).

• Eliminate or minimize the impact of routine changes on the whole system.

• Combine a set of modules to create simulation systems. Form variations by
altering the set and its configuration much like a child does with LEGO 1 pieces.

• Th~ development environment system in mind should be as friendly as possible
for noyices and experts alike.

• Use a simple yet powerful programming language which can even be used by a
· novice computer user.

• No need to re-compile simulation models.

• More complex simulation models can be created by combining simpler existing
models.

• Simulation model development should be rapid and straight forward.

• This type of environment will encourage researchers to experiment and share
· their~reativity with others d!J~ to the elimination of rigid specifications
(language, data~storage, modules communication, etc ...).

(1) LEGO pieces have fixed standard interfaces.

4 M.A. Copyright 4/13/89

Objective SIMUBASE 5

M.A. Copyright 4/13/89 5

6 SIMUBASE Objective

4-1 Illustration

In showing ho~ the concept of plugable modules is useful, let's take the example of
a mod~le that computes the daily average temperature; The output of this module is
the average temperature which is to drive a simulation model, such as a plant growth.

Let's imagine a scientist ~anting to experiment with this simulation model. The ex­
perimenter would like to test two different' simulation runs. Each run uses a different
variation/version of the daily aye rage ·temperature module which I refer to in this paper
as the TAVE module.

In simulation run one, the implementation of average is defined as follows: the module
receives the daily minimum and maximum temperatures (referred to as TMIN and
TMAX respectively) and computes the daily average temperature. The interface to

TA VE module Version 1

TMIN

TAVE

TMAX ----

Interlace to TAVE module version 1 --- Figure 1

such a module may be represented as in figure 1, or in Pascal as the function

FUNCTION TAVE(
TMIN,
TMAX : REAL) : REAL ;

BEGIN

END;
{implementation code}

6 M.A. Copyright 4/13/89

)

Objective SIMUBASE 7

In the second simulation run the experimenter would like to substitute a different ver­
sion of the TAVE module. The implementation of this second version of TAVE receives

TAVE module Version 2

TDAWN

TNOON TAVE

TSUNSET

Interface to TAVE module version 2 --- Figure 2

three collected daily temperatures to compute an equivalent result, but using the inter­
face depicted in figure 2, or in Pascal as

FUNCTION TAVE(
TDAWN,
TNOON,
TSUNSET:REAL):REAL;

BEGIN

END;
{implementation code}

The change of arguments to this module alters its interface. A change in the inter­
face of a certain module, implies the modification of any part of the system that makes
reference to this process. Imagine a large p'rogram where this function may be called

· repeatedly from numerous pla~es. This would imply modifying every single call to
TAVE when we substitute .one version for anotnerthat has a different interface. Most
of the ti me changing the calls to TA VE is ;not enough, because the code manager needs

· to undertake other tasks such as adding new declarations as well as the removal of oid

M.A. Copyright 4/13/89 7

8 SIMUBASE Objective

ones. This is indeed a drawback that even the modular2 programming concept and
practice fails to resolve.

A tedious and error prone process of changing code can be easily imagined from the
simple Pascal example show"r1 comparatively below. In this instance, the modeler sub-

Version 1 of the Pascal simulation code of
DEM01

PROGRAM DEMOl-1(INPUT, OUTPUT) ;
CONST
LAST DAY= 20;

TYPE
ARRAY T = ARRAY[l .• LAST_DAY) OF

REAL;

VAR
NEW_STOCK,
INTEREST,
STOCK: ARRAY T;
DAY: INTEGER;

FUNCTION INTERESTl(
DAY : INTEGER) : REAL ;
BEGIN
INTERESTl := SQRT(DAY) ;
END;

BEGIN
STOCK[l) := 1000 ;

FOR DAY:= 1 TO LAST DAY-1 DO
BEGIN
INTEREST[DAY] :• INTERESTl(DAY) ;
NEW_STOCK[DAY) := STOCK[DAY) + INTER-

EST[DAY) ;
STOCK[DAY+l) := NEW_STOCK[DAY) ;
END;

w1UTELN ('DAY' : 10, 'STOCK': 10,
'INTEREST' :10, 'NEW STOCK':10) ;

FOR DAY:= 1 TO LAST DAY-1 DO
BEGIN
WRITELN(DAY:10, STOCK[DAY):10:2, IN­

TEREST[DAY) :10:2, NEW_STOCK(DAY):10:2
l ;

END;
END

Version 2 of the Pascal simulation code of DEM01

PROGRAM DEMOl-2(INPUT, OUTPUT) ;
CONST
LAST_DAY s 20;

TYPE
ARRAY_T = ARRAY[l .. LAST DAY) OF REAL;

VAR
NEW_STOCK,
INTEREST,
STOCK: ARRAY T;
DAY: INTEGER;

FUNCTION INTEREST2(
DAY : INTEGER ;
STOCK : REAL) : REAL ;
BEGIN
INTEREST2 :• SIN(DAY) * SQRT(STOCK) ;
END ;

BEGIN
STOCK[l) := 1000 ;

FOR DAY:= 1 TO LAST DAY-1 DO
BEGIN
INTEREST [DAY] : • INTEREST2 (DAY,

STOCK[DAY]) ;
NEW_STOCK[DAY) := STOCK(DAY) + INTER-

EST(DAY) ;
STOCK(DAY+l) := NEW_STOCK(DAY) ;
END;

WRITELN('DAY':10, 'STOCK':10,
'INTEREST' :10, 'NEW STOCK' :10) ;

FOR DAY:= 1 TO LAST DAY-1 DO
BEGIN
WRITELN(DAY:10, STOCK[DAY):10:2, INTER­

EST(DAY):10:2, NEW_STOCK[DAY):10:2) ;
END;
END

(2) A programming design strategy in which one of the goals is to minimize global impact on a system due to a
small change in a part of the system.

8 M.A. Copyright 4/13/89

)

)

Objective SIMUBASE 9

stitutes one interest function with another to create a new simulation run. The high­
lighted code shows what is being rnpdified from ohe run to another. Not only will the

. _ modeler haye to write two extensive versions of very similar programs, but considerable
effort in coding wiU be required if the modeler desires to save data to a file (both in
declaring the needed data types and variables for storage and coding the 1/0 logic). .

"A remarkable amount of effort is spent hand coding the logic for moving structured
data between memory and 1/0 devices. Many applications involve parsing input data,
processing it, and then reconstituting the data on the output stream. This 1/0 code is
often more time consuming tq. develop and t~st than the processing logic, and it must
be continually adjusted as data structures evotve during devehpment." [Cox-1984]

In an average simulation composed of several thousand lines of code, the magnitude
of change is enormous. The existence of different interfaces is not caused by er­
roneous design nor insufficient definition of requirements, but is intended as a feature
of the system. I am not 'concerned with minimizing the effects of introducing a sub­
stitute mo9ule due to a ·normal software evolution, as discussed in most of the litera­
ture, [Beladi-1981 J, [Lehman-1978], [Cox-1984), [Kerson& Vaishnavi-1986),
[Pressman-1982). More precisely, the intention: is to provide the ability to create
delibe.rately new configurations by selecting some desired sets of modules. Change
in simulation systems is inevitable, so we do not wish to limit it or bound it, but manage
it efficiently_.

"The unending sequence of modification that software systems undergo is thus not
necessarily or primarily due to the short sightlessness or lack of planning. It is intrin­
sic to the very being of the system. Therefore, the need for change must be taken into
account at all stages of specification, design and development. Changeability is, in the
long fun, as crucial a factor in the total cost-effectiveness of a program as are attributes
such as its resource usage, speed or freedom from faults." [Lehman-1978].

I summary I
The function/modul,e TAVE can be easily ponceived as a low level building block in

a large system. If this system is to allow substitution of different versions of this process
fortesting and evaluation it means it must resolve connectivity and complexity issues
in the system. ..

The mechanism of intermodule communication -global data and parameter passing­
. tiave far-reaching effects on software module configuration and hence system integra­

tion, [Pizzarello-1984).

My primary focus is attempting to provide a mechanism for changeability regarding
specifically interface specification. If this is indeed possible, plug able modules will be
achieved.

M.A. Copyright 4/13/89 9

10 SIMUBASE Approaches

5 Approaches

·tn this section I ~ill pre.se~t some pifferent program~ing t~chni~ues and strategies for
a modular design. Discussed are the trade-offs v1s-a-v1s the impact caused by the

change in the interface of the two implementations of the TAVE module described in
the previous section.

5-1 Approach 1

In programming languages like PASCAL, C, or FORTRAN, data and control is
passed from one module to another through interface parameters. Modules are struc­
tured and no global data is used except through parameter lists. See figure 3

STORAGE

·oFD for Approach 1 --- Figure 3

Notice in this strategy the high level of module intercommunication. Hence the
problem with this approach is that whenever a change is made to the system a chain
reaction takes piace which triggers the need for other.parts of the system to be changed
as well .. This rippling effect is caused by the variables passing between modules and
the strong typing of the structured programming languages.

10 M.A. Copyright 4/13/89

)

Approaches SIMUBASE 11

The maintainable-object method (M-Qbject) [Lewis-1986] attempts to limit the
propagatipn of changes by restricting the interfaces among moduies. But a simple
change in interface can cause widespread changes in· other modules. For example,
suppose an addit_ional parameter is ac;jded to a method that is called from a thousand
places in an application program. Not only must we change the interface definition, but
we must locate and modify all references to this interface. The location of such places
may not be readily accessible/available nor do we want to constantly modify such
refer~ri9es. Writing well structured code does not necessarily guarantee modular code
nor does modular code imply reusability of ·code.

I Consequences I
+ Well defined interfaces

- All other modules referencing the modified module will have to be modified.

- Re-compilation of all or part of the system due to data structures and interfaces
changes.

- A high level of coupling3•

(3) Cqupling is a measure of interconnection among modules in a software structure. Coupling depends on the
lnterface e:omplexlty between modules, the point at which entry or reference is made to a module, and
which data pass across the interface.[Pressman-1982)

M.A. Copyright 4/13/89 11

12 SIMUBASE Approaches

5-2 Approach 2

The second Approach is similar to the first approach, but with the following restric­
tion: All module interfaces are parameterless. Thus, module communication can be
achieved through files, and more precisely, structured-files4. See figure 4

In this approach modules access files to acquire input. After they process the data,
output is generated by modifying the accessed files or creating new ones.

{!1l:!Jl1!1illl 1!!l:!:t
·.•,•,:•::;:;::::,❖ •'

STORAGE

DFD for Approach 2 --- Figure 4

(4) Structured files offer a great deal more accessibility and performance while ASCII files don't because of the
usual s_equential access imposed on their structure.

12 M.A. Copyright 4/13/89

)

)

Approaches SIMUBASE

I Consequences I
+ Minimize the ripple-effect, because references ~o modules do not have to be

modified. Since the module interfaces are parameterless there is no need to
modify the declarations and references to these modules.

- All modules have to know at all times of any alteration ·to structures

- Re-compile all or part of the system due to the change in the data structures
and file formats.

- Slow execution of the model due to file manipulations.

M.A. Copyright 4/13/89

13

13

14 SIMUBASE Approaches

5-3 Approach 3

The third approach is to use an access module to handle all access to data that is
public (gl<;>bal). Develop a library of routines (functions/procedures) in the access
module to provide access and manipulation of each data held by the access module.
For each global data, routines in the access module are used by other modules to either
retrieve, store, or update data. See figure 5

Access Module

~=~~~
··=•:::~::::::::~::::::::::.:-··

''Z~i!ilfD.!Q~•: .__=/?·_sT_oR_AG_E

STORAGE

STORAGE

DFD for Approach 3 --- Figure 5

Each module introducing. new (public) data to the system must provide the access
routines which are added to the access module, so that other modules can manipulate
the data.

"If several programs share the same data, then it is even more important that data
be associated with its own access code, otherwise each program using these data must

· contain the access code individually. Thus, if the implementation of the data structure
changes, this must be reflected in each program - a certainly error prone process."
[Beladi-1985)

14 M.A. Copyright 4/13/89

)

)

Approaches SIMUBASE 15

In summary the simulation system is composed of:

• A structured shared data store consisting of one or more data structures.

• A large access module composed of access routines to the shared data. These
routines are the principal accesses to interface with a given module.

• A set of modules that contain the code of the access routines.

I Consequences I
- The access module needs to be re-compiled almost every time a new module is

added or replaces a previous one.

- Access procedures should 1,1se a consistent naming convention which tends to
lead to errors. This affects all exported items (access routines, shared data
types, etc ...)

- When a module i~ removed the corresponding data structures and access
routines now unused, need to be removed.

- Although reduced to a great extent there still exist a high level of
intercommunication (i.e. module coupling). Notice for example, the TAVE
module is still explicitly calling the TMIN and TMAX modules.

+ The rippling effect of modification propagation is minimized because knowledge
is now restricted to access routines.

+ In this approach the module serves to localize the access routines so
modification and re-compilation is reduced.

M.A. Copyright 4/13/89 15

16 SIMUBASE Prospective Approach

6 Prospective Approach

Approach 3 suggest~ centralizing the global data and then providing access routines
around the qata. I opted to extend this idea by further abstracting the shared data.

This can be achieved by storing the shared data in a common area and restricting the
knowledge· of the ·underlying structure. and data management to a single manager.
Modules create, retrieve a.nd store their needed data to and from the data storage
through an intelligent data manager. the data creation, passing, and update, happens
through a simple data retrieval language. See figure 6 .

STORAGE

l STORAGE

DFD for Prospective Approach --- Figure 6

We further add the restriction that a module never calls another one in the system
{i.e. no module di.rect inter-communication). hi other words modules do not call one
anot~er directly so that no interface dependency may result, in fact an explicit module
interface need not exist at all.

"A good methodology should provide an *implicit* record of the internal connections
. in a program [module inter-connection] and avoid explicit interface rigid specification
which causes a high level of coupling". [Lehman&Beladi-1985].

16 M.A. Copyright 4/13/89

)

)

Prospective Approach SIMUBASE 17

If a module needs data which is provided by another module, it needs only to request
it from the data manager which in turn resolves which module is responsible for the
creation aric:f/or update of the requested data. The manager will call the needed
rriodule(s) including all dependent modules and then upon return passes the data to

· the mpduie making the request. In c~se the data has been already computed by some
previous activation, the data manager should detect this situation and possibly shortcut
a chaih of module activations simply by furnishing the stored data.

I Consequences I
+ _Modules have only knowledge of how to reference global data. That is a

module developer need only to be aware of the existing module logical names
to reference them.

+ A process does not need not to know where and how the data it needs is stored.

+ Coding a process becomes fairly easy and reflects mostly the process
algorithm . Almost all language intricacies such as parameter matching, and file
handling are removed.

+ A scientist in practice would not have to modify someone else's implementation
modul~ in order to use it.

+ A scientist need only to run the process desired and all the needed
sub-processes will be invoked on a need basis.

This last point is very significant; it relieves the user from keeping track of the de­
pendency relationship between modules. Later discussion will show how the system

. can automatically derive dependency relations among modules without having them
being explicitly specified.

M.A. Copyright 4/13/89 17

)

Design and Specification SIMUBASE 20

7 Design and Specification·

. ·In this ~ection 1. present ho~ a suitable_si~~lation manage~ent environment might be
conceived to support the ideas described m the prospective approach.

Every shared data (i.e. global) in the system is treated as a data-item. A data-item
is any item referred to by more than one module. Once a data-item is created any
process can request it.

. In our previous example the modules names TAVE, TMIN and TMAX also become
data-items in this new strategy. Hence, since every modu.le in the current scope of this
paper will introduce one and only one data-item, the words data-item and module will
be used inter-changeably in the following sections.

7-1 Standard Module Description

Since in this new strategy all structural knowledge of modules is restricted to the
module manager we need ·a Standard Module Description. A module description is
the means by which any given module gets defined ·in the system. Hence, modules
can be imroduced in the system by providing the system manager with a set of module
attributes that describe most of the characteristics of any given module. Of course this
set of attribute~ can be augmented when more information about a given module is
needed. Therefore, every data-item in the system may have the following attributes
attached to it as the standard module description:

• a Module Master Name
is the name referred to throughout the system and which should be unique. In
other words this is the module logical name.

• a Module Version Name
is a module version-specific name. This can be thought of as the name of a
specific version of the module responsible for the data-item.

• description
Textual description of what the data item represents.

• type specification
this should include things such as type, size, decimal places, units, etc ...

• Implementation reference
This may include things such as: Model/Algorithm reference, Who is the author?
How he can be reached? etc ...

M.A. Copyright 4/13/89 20

21 SIMUBASE Design and Specification

• Implementation description
This description can provide inform~tion on the method used in the
implementation of the algorithm, source references, etc ...

• creation date
when was this data-item last introduced in this system.

• modification date & time
when wa.s this data-item last computed. This particular information is critical to
the correct making/sequencing of the modules.

• creator process code
i~ the actual source algorithm that updates the data-item. The modules use a
.simple yet powerful language to interface with a database manager in order to
add, retrieve, update, or delete data.

Coding a module description can be achieved through an entry form such as the one
seen in figure 7.

Module Master Name Module Version Name Creation Date

:::m11s::::::::::::::::::::::::::1]:=::1]:]]:]:]::::::]:::]]]]]]]]:]1 i::m11sg::::::::::::::::::]::::::::::::::]::::::::r::1 :::::1::~~~m§:::::::::::::1:::::::::::::::::::::::::::::::::1

Description Modified Date/Time

::::1~11x::~x~r~Q1::m~1e~~!Hr~::::::::::::::=:::::::::=:::::::::::::::=:::::]:=::::::::::::::::::::::::::1]:::::=::::::::::::::]::::::::::f:[:::::::::::::::::::::1:::::::::=:::::::::::1 ::::91g1~~:!tt:::g~~~::::::::::::i

Implementation Description/Reference Specifications

Sa!llple Module Description Screen Form --- Figure 7

21 M.A. Copyright 4/13/89

)

_)

Design and Specification SIMUBASE 22

7-2 Version Selection Procedure

Since one of my objectives is to allow the existence of more than one version of any
given module, r must specify for every data-i~em (i.e. module master name) which ver­
sion is to_ be us~d. H~nce the system includes a Versic>n Selection Procedure in
which every data-item is assigned an existing version of ttie module responsible for it.
In a typical session the u~er is presented with a list of all data-items present in the library
of modules and the versions available for each module master name. He selects by
toggling flag·s to indicate Which master name(s) is to be bound to which version (of

· course the system insures a unique _binding). Any given configuration can be saved in
· Version Configuration Flies which can then be re-loaded.

This procedure can be either textual or implemented as a graphical user interface
such as the one seen in figure 8

TMAX Maximum Temperature ~ ~ TMAX_1

□ TMAX_COLLECTED

TMIN Minimum Temperature

~
TMIN_1

TMIN_COLLECTED

TMIN_2

23%
TAVE Daily Average Temperature

~
TAVE_COLLECTED

TAVE_MIN_MAX

□ TAVE_3TEMPS

PSR Potential Solar Radiation ~ii------i~ PSR_CAMPBELL

Sample Version Seiection Procedure --- Figure 8

M.A. Copyright 4/13/89 22

23 SIMUBASE Design and Specification

7-3 Simulation Selection Procedure

So far the module description t~mplate provides ample ir:iformation on any given
-moctule and using the version selection procedure, the system is now aware of which
specificversionsareto beused. Howeverthe reader may question howthese modules
tie together and what describes the running order and interaction, and indeed the sys­
tem definitely n438ds some knowledge about which set of modules are to be run. This
is why ·an activation mechanism is needed. Therefore the system also provides a
Simulation Selection Procedure in which the user selects which modules he wishes

. to indL:Jde in· a given simulation, see figure 9. The user can generate different test runs
by toggling different simulation configurations and saving each one of them in separate
Simulation Script Files using this procedure. A script is the mechanism by which
some desired modules are invoked in some order to activate a simulation run.

□ TMIN

0 TMAX

~ TAVE

□ PSR

□ SR

□ PET

(MORE ...)

Minimum Temperature

Maximum Temperature

Daily Average Temperature

Potential Solar Radiation

Solar Radiation

Potential Evapo-Tranpiration

(MORE ...)

Sample Simulation Selection Procedure --- Figure 9

DL,iring the simulation selection procedure, the user is required to select only the top
module or set of top modules·that are disjoint. The system will figure out all of the de­
pendent modules. This can be achieved by using the knowledge of the last update
date and looking into the algorithm source code for identifiers that reference module
master names. We will s·ee 'how this derivation is achieved when we apply this design
strategy to our example.

23 M.A. Copyright 4/13/89

)

) .

Design and Specification SIMUBASE 24

7-4 Reporting Procedure

Finally when a simulation configuration is .a~ivated the system should provide some
differerit means of viewing and reporting the results of the simulation runs. This can
be done iri tabular form, graphical data plots, or visual animated graphical icons, [Stel­
la-1987). This reporting ·feature can be similar to the simulation selection procedure in
thatthe user picks .the moduie master names to re-port on. However since the user has
already ~elected a simulation configuration, the system restricts the list of modules
presented to the user, to the ones he has picked during the simulation selection pro­
cedure.

Besi(:les the built-in reporting capabilities the system should allow the simulation data
to be exported to other systems for mo·re sophisticated analysis.

7-5 Summary

The user introduces new modules to the system by defining their module descrip­
tions through a standard entry form. Using the version selection procedure the users
selects which specific version of certain modules he wlsties the system to specifically
use. The u.ser builds a simulation run using the simulation selection procedure to select
·a set of top modules. Finally the user requests reports on desired data in the simula­
tion.

7-6 Applying this Design Strategy to Our Example

Now let us consider applying this targeted design to the experiment mentioned in the
introduction.

As was mentioned earlier, the names TMIN, TMAX and TAVE also become data­
items in this new approach and will have respective description forms defined in the
system.

Let's assume that TMIN and TMAX data-items are already defined in the system. In
order for our scientist to try the first simulation run of his experiment he would have to
provide a process to retrieve the TMlN and TMAX data-items and compute a new data­
iteni TAVE. Hence the first version of TAVE will need to have the following simplified
form description associated with it in the system:

M.A. Copyright 4/13/89 24

25

• module-master-name:
• module-version-name:
• description:
• field-type:
• field-length:
• field-decimals:
• implementation-description:
• implementation-reference:
• creation:
• modification:
• implementation-code:

SIMUBASE

TAVE
TAVE_min_max

Design and Specification

daily average ,emperature
numeric
10
3
min max method
Campbell model
11/15/87
3/20/88 - 12:03
TAVE= (TMIN + TMAX) / 2

If this module description has not already been defined the user would have to enter
it into the system otherwise the user need only to pick this module during the simula­
tion selection procedure.

Respectively the form description for version 2 of the module TAVE used in the
second run would be:

• module-master-name:
• module-version-name
• description:
• field-type:
• field-length:
• field-decimals:
• implementation-description:
• implementation-reference:
• creation:
• modification:
• implementation-code:

25

TAVE
T AVE_3TEMPS
daily average temperature
numeric
10
3
3 collected temperatures
unknown
12/15/87
3/20/88 - 12:34
TAVE= (TDAWN + TNOON + TSUNSET) / 3

M.A. Copyright 4/13/89

)

)

Design and Specification SIMUBASE 26

Now that we have a convenient way of defining our modules we need to use the
. mechanism described as the simulation selection procedure to link them in some
desired ma:hner. So in ord.er to run the simulation we need to select some desired
modules. In our case the top module is the module TAVE. Thus selecting the TAVE
moduie using the selection procedure, may look like figure 1 o

(MORE ...)

□ TMIN Minimum Temperature

□ TMAX Maximum Temperature

~ TAVE Daily Average Temperature

□ PSR Potential Solar Radiation

□ SR Solar Radiation

□ PET Potential Evapo-Tranpiration

(MORE ...)

Selecting TAVE module for a simulation run --- Figure 10

This simulation selection procedure is an equivalent form of writing a script such as:

DO TAVE
REPORT ON TAVE

which also happens to include a simple reporting command. The first line of the script
tells the system to invoke the module that computes the daily average t_emperature.

Assuming the user has already used the version selection procedure and the relevant
current binding of data-items to specific versions here expressed in textual form is:

TAVE is-assigned-to TAVE_MIN_MAX
TMIN is-assigned-to TMIN_ 1
TMAX is-assigned-to TMAX_ 1

M.A. Copyright 4/13/89 26

27 SIMUBASE Design and SpecHication

Then as we have seen from the module description of TAVE version
TAVE_MIN~MAX (and more specifically from t~e alge>rithm) thatit refers to TMIN and
TMAX data-items. Thus, thi§ particular TAVE module depends not only on the exist­
ence of these data-items, but also on ·the correct values of the data associated with
them. The system can derive this dependency relation which is not explicitly given.

This translates _into: the module TAVE_MIN_MAX depends on the TMIN_1 and
TMAX_ 1. The system uses this knowledge along with the modification dates as­
sociated with every data-:item to decid_e if the data-items values are up to date or need
to be re-computed. Hence, these data-items (TMIN and TMAX) need to be made prior
to the TA VE data-item.

Therefore, the actual internal executed script is like the one seen in figure 11: Where
the single line DO TAVE causes the activation of the physical modules TMIN_1,
TMAX_ 1, and then TAVE_MIN_MAX in this order .

.... ·········,.... gg i~~x~1 •·························
,/ / / / g~~~!!~~~,AA-

,.__ ____ __.__ _ __,

DO TAVE
REPORT ON TAVE

...._ ______ _, •·······························

..... •······················
... •··

Internally derived script

User generated simulation script

Internal execution for simulation run 1 --- Figure 11

Note that this process by which the system derives a dependence relation between
modules is very useful. This automatic-making qauses the simulation configuration file,
or script defined iri the simulation selection procedure to be reusable. This is true,

· since it only refers to the module master names and not to specific versions of the
modules.

27 M.A. Copyright 4/13/89

Design and Specification SIMUBASE 28

Now to execute the second simulation run, the user does not need to re-select a dif­
. ferent simulation configuration since he is interested only in using a different version of
the TAVE module. However, he must ensure the proper binding of data-items to
specific modules . . This can be done by selecting diff~rent versions using the version
selection procedure, or by loadin=g a previously stored version binding (i.e. version con­
figuration file). Hence, the second simulation run will require the following necessary
bindings:

TAVE is-assigned-to TAVE_3TEMPS
TDAWN is-assigned-to TDAWN_3
TNOON is-assigned-to TNOON_ 1
TSUNSET is-assigned-to TSUNSET_2

Then according to the dependency relation derived by the system the actual inter­
nally executed script is seen in figure 12. Notice that this time the module TAVE causes . . .

the activation of four completely different modules.

gg~~~,f ---·
DC?,.Jstl"NSET _2

: DO TAVE_3TEMPS
---------, DISPLAYTAVE "'

DO TAVE
REPORT ON TAVE

Internally derived script

User generated simulation script

Internal execution for simulation run 2--- Figure 12

Finally, considerthe simulation script in figure 13. Although the TAVE module is still
assumed assigned to the TAVE_3TEMPS m9dule, both of TMIN_1 and TMAX_1 are
still activated. This is due to the fact that the EVAP module in this case assigned to
EVAP1 depends on these two modules, and hence they are also included in part of the
derived internal simulation script.

M.A. Copyright 4/13/89 28

29 SIMUBASE Design and SpecHication

DISPLAY TAVE, EVAP

Internally derived saipt

User generated simulation script

Internal script when EVAP is added --- Figure 13

7-7 Module Dependence Relation Resolution

Before the system can exec1Jte a simulation run, the user must define to the system
whiCh versions are ~o be used, by setting the binding between the module's master­
name and the desired corresponding module version-name, using the version selec­
tion procedure. This can be done also by loadi111g a version configuration file. As the
system sequentially executes, the simulation script, it encounters a reference to a
module rnaster name, · and by using the currently defined bindings, it accesses the
specific version source algorithm. If the source code makes reference to other modules'
master names this pro~ess is repeated. These references eventually end, and the sys­
tem activates the module's algorithms recursively.

I Summary I
Using the user generated script, the system generates the internal scripts, using a

simplified algorithm such as: ·

29 M.A. Copyright 4/13/89

)

Design and Specification SIMUBASE

1- For each Master name encountered in the script
. a- replace it by its current module version name

2- For each nio.dule version name
a- a~c~ss its implementation code
b- insert ,all references to master names prior to the module version

name into the script
Repeat the process until all references to master names are resolved.

30

If efficiency is an issue, some of the dependency resolution can he derived incremen­
taly as modules are introduced into the system, instead of being exclusively derived at
run-time.

7-8 Iterative and Branching Examples

The examples discusse9 in the previous section invoke each module once in a se­
quential fashion. This implies that each module will compute all of its output and then

· return control to ttie script to activate the successive module .

Our design also supports simulation where each m<>dule can only compute the cur­
rent instance of its output with respect to the simulation execution. In other words
module depend on each other and have to wait for each other computations. The script
facility adapts to this situation by providing a looping mechanism by which each module
is invoked in a particular order. Each module will compute its current output and must
return control to the script.

For example consider the simulation script for the daily activities of a banking ac­
count shown below:

DO WHILE NOT END-OF-SIMULATION
DO DAY
DO STARTING-BALANCE
po COMPUTE-WITHDRAWALS
DO COMPUTE-DEPOSITS
'DO COMPUTE-CHARGES
DO COMPUTE-INTEREST
DO ENDING-BALANCE

END-WHILE

Clearly, to compute the daily starting balance we need to compute the ending balance
ofthe previous day. To compute the ending balance we need to compute the current

M.A. Copyright 4/13/89 30

31 SIMUBASE Design and Specification

day activities such as interest which in turn depends on the current balance. In this
situation we say there is a mutual aependency between modules, and hence modules
cannot be assumed to compute all of their values through a single activation. Instead
the simulation must iterate through the modules.

Another module which cannot run independently of the other modules because it
relies on the current state of the account is the COMPUTE-CHARGES module. If our
model for simulating service charges is:

• charge five dollars monthly,

• charge ten dollars if balance drops below a minimum of fifty dollars

• charge nothing otherwise

its implementation which requires conditional computation may look like the follow­
ing:

REPLACE CHARGES WITH 0
IF BALANCE 50

REPLACE CHARGES WITH CHARGES+ 10
IF DAY-OF-MONTH= 1

REPLACE CHARGES WITH CHARGES + 5

Note: service charges are absolute values.

I Summary I
Looping and conditional execution are both powerful constructs in computer

programming and our design permits their usage either at the script level, or the module
level or both.

31 M.A. Copyright 4/13/89

)

_)

SIMUBASE: Current Implementation SIMUBASE 31

8 SIMUBASE: Current Implementation

-o· ur prosp~ctive appr_oa7~ has pointed out the use of a common area for storing the
_ shared data _and providing a data manager around it. This suggests the use of
dat_abases and a DataBase Management System (DBMS). Hence, we have attempted

_ to 1mpremeht part of the above
design strategy using an avail- DataBase Capabilities & Simulation

able database management sys­
tem and tailoring it to our needs.
We· have considered two popular
relational DBMS systems on the
PC, namely DBASE-111 and Fox­
Base+. These DBMS ~re very
compatible. Jn fact FoxBase is a
super set of the Dbase-111 Ian- ·
guage and thus provides more
built-in functions and features. -

8-1 Previous Use of · · ·
_ Data Base Concepts in

Simulation ·

The idea of using database in
simulatio _n is not a new o·ne.
[Standridge&Pritsker-1982J A
paper which discusses SOL, a
· Simulation Data Language,
which provides modelers · with
data management techniques
needed to handle simulation-re­
lated data: · See ·also side bar.
Nonethelefss, . most of the litera­
ture talks about simulation lan­
guages, and no one seems to
mention the need of a simulation
management environment; an
environment with modular­
programming that allows
plugable modules. This is what

- SIMUBASE is all about.

M.A. Copyright 4/13/1989 31

32

8-2

8-2-1

SIMUBASE

Physical Storage

Simulation Data

SIMUBASE: Current Implementation

In earlier reference to the prospective approach, the need for a common data storage
was cited. In order to s~ore the data generated by SIMUBASE, every data-item has
been implemented as a field in a database (runtime database). This will permit the
computation and storage of data generated during a simulation run.

8-2-2 Standard Module Description

As was pointed out in earlier sections, the textual standard module descriptions may
fake one of many layouts when implemented ·as scre_en forms. Hence, to allow a fast
and_ a convenient module definition in this implementation of SIMUBASE, I have chosen
the layout seen in figure 14. Since the form does not accommodate enough space for
the module algorithm source code, there will be an aqcessible editor window associated
with every module definition. See figure 15

Besidesdefining a module to the system, introducing a new module in the system
translates usuall{into introducing a new data-item and subsequently in this implemen­
tation, a: new r~cord into the module database. In SIMUBASE the user may add a new

Module/Script Name Code File File Type Creation Date

::,m~¥§/:::::::=:::::::::1:::::::::1t1:::1:]:]::[::1 ::::::::::::::::t:::::~::]:1::]::::1 :::11:z;g::::::1:::::::::::::,::::]:::::: :::1 ::::~ti!::::::::::::::::::::::::::1 ::::lg(Q!~~~:]@l!]l!lj

Short Description Last Modification Date

::::g1\1x:~x~r~Q~::mi:mP~t~~i!t~::::=::::::::::::::::::::::::[:::::1::]]:]:::::::::::::::::=:::::]::][::::::1 ::/~§lg~m~:::::~::::::::::::]::::::,:~:~:::]:::::::::::::::::::::::::l

Author Last Modification Time

::::mges~r::::::::::::::::::::::::1[:]:[:::1 ::::1:1:;llnE::::':::::f :::::::::::::::::::::::f::I,::::::j]

Long Description Specifications

Decimals

- SIMUBASE Standard Description Form for TAVE--- Figure 14

32 M.A. Copyright 4/13/1989

)

)

SIMUBASE: Current Implementation SIMUBASE 33

module using the module manager options. This is done by filing an empty form
description for the desired module.

Edit: H:\DB\CAMPBELL\TAVEl .PRG Ins

CURSOR <-- --> t UP DOWN t DELETE
Char: < > I Field: v A f Char: Del
Word: Home End# Page: PgUp PgDn f Word: AT
Line: A< A> I Find: AKF I Line: Ay
Reformat: AJ<B t Refind: AKL t

** Code file: TAVEl
** Description: Daily Average Temperature Min-Max
** Author: Abdenacer
** Created on: 12/18/88 -- 11:10:32

REPLACE ALL TAVE WITH (TMIN + TMAX) / 2

RETURN 0

t Insert Mode: Ins t
t Insert line: AN #
t Save: AW Abort:Esc#
t Readfile: AKR t
I Writefile: AKW #

~
Header created
automatically from the
Standard Module Description

SIMUBASE Editor Window--- Figure-15

I summary I
The actual steps taken by the current implementation of SIMUBASE, are shown in

figure 1 s; and clearly reveals the current database design. After a standard module
description form has been _fllled, SIMUBASE stores this form in the module database
(modules.dbf), which stores all of the module descriptive attributes except the algorithm
source codes. The algorithm source cod~s are stored in separate files named after the
module versions' specific name; for example (tave1 .prg) . . From then on, SIMUBASE
adds a new field t9 t~e run-time database (runtime.dbf}. This field's name is nothing

. bufthe module master name or logical name. This implies that for every set of module
versions there ~ill be a single field namely the common master name associated with

· these modules in the runtime database.

8-2-3 Simulation Scripts and Reporting

Once enough modules are defined in the system, one may wish to write a script
module to combine arid run the desired modules. Script modules will usually end by
using reporting commands oh the desired data-items.

M.A. Copyright 4/13/1989 33

34 SIMUBASE SIMUBASE: Current Implementation

For simplicity, in SIMUBASE _we have chosen to implement scripts in the same
fashion as modules. -Their inform~tion is defined using the same description format,
and the scripts contents are generated with the same editor and stored in similar pro­
cedure files; for example (script1 .prg).

Although in SIMUBASE, scripts s.hare a lot of the characteristics of modules such as
a ma$ter name, version specific name, and others; SIMUBASE handles them quite dif­
ferently in that unlike modules they do not reference data directly, but activate other

34

MODULE CODE EDITOR

TAVE
?

?

?

runtime.dbf

MODU E DESCRIPTION FORM

TAVE IL::!..::J):)n::::rn tc::::::nt:JJ

MODULE CO0EFILE
NAME

TAVE TAVE1.PRG

MODULE ALGORITHM
SOURCE CODE

I TAVE1.PRGI

CREATlm
DATE

3/24/86

User defines
a module

FIELD
TYPE

NUMERIC

\ MODULE DATABASE

module.dbf

SIMUBASE internal mechanism --- Figure-16

M.A. Copyright 4/13/1989

)

SIMUBASE: Current Implementation SIMUBASE 35

modules or scripts. Morec)Ver, they do not _have data directly associated with them in
the runtime database. The actual process of defining a script is shown in figure 17

8-2-4 Version Selection

Because of the host language inadequacy as we will see in a later section, this cur­
rent implementation of SIMUBASE does not derive any module dependence relations.

SIMULATION SCRIPT DESCRIPTION
DEM o1,,,,,~:;,-,,,-:;:";,-,,::,·:,,,,,,,,,,,,.:::J t:r:::::~,,,,,,,,,,,,,,;,,,J SCRIPT EDITOR

1~¥ 455'
/

SCRIPT CODEFILE CREATIO
NAME DATE

CHKBAL 4/4/87

DEMO 3/24/86

DEMO 5/23/86

STOCK 12/4/88

AUTHOR

John, S.

Mark, T.

Mark, T.

Gabriel, P.

SCRliP~DATABA~1 \

module.dbf

PROCEDURE FILES

ICHKBAL.PRG I DEM01.PRq

I ??????. PRG I r=-=-:-:-=-:-=-::c-:::,, . . I DEM02 .PRq

I STOCK1 .PR9

Simulation Script Storage Management --- Figure 17

M.A. Copyright 4/13/1989 35

36 SIMUBASE SIM UBASE: Current Implementation

Since there is no provision for the automatic-making described earlier in the design
strategy, the simulation scripts h~ve to re-ference the module versions' specific names.
For this reason also, there is no need for a version selection procedure . Although this
feature of the system has not been implemented, it does not diminish the power of the
current environment.

Because there is no provision for automatic-making of simulation scripts the user has
to hand craft them. Hence, simulation scripts are similar to the automatic, internally
derived scripts, discussed earlier in the design.

Nevertheless, even as it stands now, the current system establishes a possible solu­
tion to the problems described in this paper.

8-3 How Opes _Our Example Work Under
· the Current Implementation ?

The module definition in SIMUBASE is similar to the one described in the design
strategy, except for the algorithm source code construct. In this implementation, for in­
stance, the algorithm/formula:

TAVE= {TMIN + TMAX) / 2

is coded using DBase language constructs such as:

REPLACE TAVE WITH (TMIN + TMAX) / 2

Since this language is very English-like, the user should not encounter any difficul­
ties using it.

Thus,. the data-items needed for running our experiment, using the daily average
temperature TAVE_MIN_MAX method, wili be represented in SIMUBASE as shown in
figure 18 ·

The script for TAVE_MIN_MAX will appear as:

DOTMIN1
DOTMAX1
DO TAVE1
DISPLAY ALL TMIN, TMAX, TAVE

36 M.A. Copyright 4/13/1989

)

)

SIMUBASE: Current Implementation SIMUBASE 37

The output from the simulation run will have the following tabular structure of fields
in the system .

.. . · TMIN TMAX TAVE

.............. 40' 50 45

.............. 50 60 55

.............. 55 65 60

Although the fields shown are ordered in a particular fashion; it is not essential. In
fact their relative order as well as their existence is entirely governed by the database

MODULE CODEFILE
NAME

T¥AX TMAX3.PRG

TAVE TAVE1.PRG

TMIN TMIN2.PRG

MODULE DESCRIPTION

CREATION
DATE

4/4/87

.3/24/86

5/23/86

....

NUMERIC

NUMERIC

NUMERIC

TAVE I TAVE2.PRG I 12/4/88 , I NUMERIC I

MODULE DATABASE /

r ~
\

PROCEDURE FILES

module.dbl

I TAVE1.PRGI I TMAX3.PRG I

I ??????.PRG I I TMIN2.PRG I

I TAVE2.PRGI

MODULE CODE EDITOR
I

I

TMIN TAVE TMAX

RUNTIME DATABASE /
runtime.dbl

Modules Storage Management --- Figure 18

M.A. Copyright 4/13/1989

I
I

37

38 SIMUBASE SIMUBASE: Current Implementation

manager. The field names shown here are the master names for the data-items in­
volved in this particular simulation run.

8-4 Features of the Current System

· • integrated environement with built-in editor, extensive on-line help, debugging
· facilities, and automatic system documentation.

• save output to file for lc1ter analysis with statistical packages. This also allows
the comparison of the outputs of two or more models.

• running a single module without a script, allows debugging of the module before
including it in a actual simulation script.

• generation of reports concerning information about the models defined in the
system, such as module and script attributes, etc ...

• automatic header generation for the code file, using the information recorded
from the standard module description.

8-5 Limitations of the Current System

. By no mean is the current prototype near the targeted design. Although it clearly
demonstrates mOdule interface Independence, there is still a large gap between it and
the intended system. One of the important aspects that is currently absent, is the in­
telligent behavior in the system such as:

• Ability to derive dependency relations among the different modules

• Automatic running of subordinate modules. Currently the scripts have to be
explicit and manually crafted.

• Detection of attempts to use nonexistent modules, and provision of various
alternatives.

Other limitations are:

• slow execution especially as the number of modules increase due to file
manipulation which can be imp-roved by better management of the runtime
database.

• ability to handle complex data.

38 M.A. Copyright 4/13/1989

)

)

SIMUBASE: Current Implementation SIMUBASE·

8-6 About the Language of Implementation
and its Effectiveness

39

In_ the current implementation of SIMUBASE, module source codes as well as the
simulation scripts are the standard clauses available in the Dbase language . In fact, it
is interesting to note that not only module algorithms and simulation scripts are written
in Dbase, but this simulation environment prototype (SIMUBASE) itself, has been
developed, using the same language.

The fact that data items have been stored as fields in the database, and that DBase
clauses can reference these fields independently of their physical storage, has helped
implement this version of SIMUBASE. This ability has been exploited to modify data­
. item with the REPLACE clause and report on data-items with the LIST and DISPLAY
· clauses. Referto the dBase manual or the on-line help in SIMUBASE for a thorough
description of these clauses.

8-7 Host language Inadequacy

The following sections will discuss the obstacles encountered during the develop­
ment of the targeted design .

. I would like to emphasize that neither the current simulation prototype system nor
the development environment used to implement it, are flawless . The researcher would
like to point out that he has und~rgone h9n-orthodox programming practices to achieve
the current prototype. For example the intrinsic command/procedure to add a field to
an existing database structure is not available. Dbase programmers usually create
databases manually and then develop Dbase c·ode to manage the data stored in them .
Consequently, i had to implement complicated code to add and delete fields used in
conjunction with managing data-items.

Activating a procedure file at ·n.Jn-time was another battle. The Dbase DO <proce­
dure-file> command expects a literal, and not a variable. However, the trick around
thiswas to force the project modules to be written 'as parameterless User Defined Func­
tion which has· ca.used the appeara·nce of the terminating clause RETURN o in their im­
plementation code. By using a dummy variable named EXECUTE and assigning to it

· the _a user defined function throL1gh the use of _Dbase macro substitution, I was able to
activate the project modules and simulation scripts stored as Dbase procedure files.
(refer to the source code run_mod.prg and run_bat.prg for more detail) .

Foxbase does not provide any mean to process a file containing a module implemen­
tation code. This lack of text file processing in the Dbase language made it difficult to

M.A. Copyright 4/13/1989 39

40 SIMUBASE SIMUBASE: Current Implementation

attempt implementing, the module dependency resolution and hence the implementa­
tion of the algorithm to derive internal scripts from generic reusable scripts has been
left for future consideration.

Nevertheless, even as it stands now, the current system establishes a viable solu­
tion to all the problems described in this paper.

For more detail about common problems in simulation languages refer to [Miller&Mor­
gan-1976].

8-8 Consideration when Selecting a Host Language
Suited for Such a Prototype Development

In the following sections I will attempt to highlight the key features that make a suitable
development environmenffor such a system, as well as the ones that contribute to a
friendly simulation development environment.

8-8-1 Library routines, Interpreted .vs. Compiled code environment

Many DBMS systems are now popular on Personal Computers. However, because
of their availability, our options have been narrowed to Dbase-lU and FoxBase+. We
are curr~ntly using FoxBase because some of our simulation processes require
trigonometric functions. Although none o_fthe DBMS provide an immediate support for
them, FoxBase however allows User-Defined-Function. As the name dictates, the user
can implement functions to complemenVextend the intrinsic ones. Thus, in order to
support the Simulation sample we happen to work with, I implemented in grief, an ap­
proximation of some trigonometri_c functions [Rektorys-1969]. Of course there exist
third party vendors who supply libraries written in conventional languages such as C
~hat can be linked to the DBMS lang.uage. However, this would have implied compil­
ing code, a penalty that the developer opted not to pay during the development course.

8-8-2 Self-Interpretation and Partial Compilation

In rriany instances, programmers face the problem of having to build a small inter­
preter part of an application. This implies re-inventing the wheel each time our.applica­
tion includes some language interpretation . . It is useful to have a programming
language which can · interpret itself or a supset of its constructs. Through the tricks
described · above, I was able to activate user created procedure file and allow their
modification at run-time.

40 M.A. Copyright 4/13/1989

)

SIMUBASE: Current Implementation SIMUBASE 41

It's understood that eventually we would like to compile certain portions of the code
while maintaining others as source. In other words, we wo.uld like to compile the ap­
plication code and keep the application user code in source form to be modified and
interpreted at run-time.

M.A. Copyright 4/13/1989 41

SIMUBASE Overview SIMUBASE 41

9 SIMUBASE Overview

S IM~BASE is both a simulation co?e manager and a sophisticated programming
. environment. SI MU BASE was designed to work under FoxBase+ to create a com­

plete program development system; one which allows you to harness the tremendous
power of FoxBase+.

9-1

9-1-1

Fundamental Concepts

What Is a SIMUBASE module?

. A module in SIMUBASE is a collection of descriptive attributes bound to a master
data-item name. Each module is responsible for a single piece 0·1 data and describes
how it is to be computed.

9-1-2 What Is a script?

A script is the mechanism by which some desired modules are invoked in some order
to activate a simulation run. The script facflity aiso· allows reporting on selected data­
items to be viewed on the screen, printed to paper, or committed to a file.

Although in SIMUBASE, scripts share a lot of the characteristics of modules such as
a master name, version specif.ic name, andothers;SIMUBASE handles them quite dif­

. ferently in that unlike modules they do not refere11ce data directly but activate other
modules or scripts. Moreover, they do not have data directly associated with them in
the runtime database.

9-1-3 What is a project?

A project is a set of related modules and scripts that belong to a certain experiment.
T~e grouping of these experimentation modules and scripts into projects will be con­
trolled by the modeter. T~e project featµre Js provided currently for organizational pur­
pose, to keep the exp~rimentation environment relatively small and accessible.

9-2 SIMUBASE Module and Script Manager

The module and script manager allows the introduction of new modules and simula­
tion scripts into the system or modify existing ones.

M.A. Copyright 4/13/1989 41

42 SIMUBASE SIMUBASE Overview

Creating modules is a9hieved by choosing the module management option and fill­
ing module descriptive forms. Defining simulation scripts is done in a similar way.

9-3 SIMUBASE Documenter

SI MU BASE also allows the user to generate extensive reports on the project desired.
$qme of these reports can be included in the final system documentation such as data­
dictionary, rnodule and script reports.

9-4 Multiple Projects

SIMUBASE environment can handle more than one project. This will allow the
module developer to organize module databases by related subjects or experiments.
This will also aliow the modules user to easily locate the modules they are interested
in ·for a particular experimentation.

When a new project is created SIMUBASE creates a separate sub-directory for it.
This directory will be used to store all of the projects specific files. These files include
the run-time data~ase, the modute descriptions database, modules algorithm code files,
scripts files and the project constants database.

9-5 Who Can Use SIMUBASE?

Fundamental knowledge of personal computer operation including DOS and file
structures are the only prerequisites.

This type of environment will encourage re$earchers to experiment and share their
creativity with others due to the elimination of rigid specifications (language, data­
storage, modules communication, etc ...)

42 M.A. Copy rig ht 4/13/1989

)

SIMUBASE Menus SIMUBASE 43

10 SIMUBASE Menus

The menu system provides a handy way to invoke frequently used command with
minimum keystrokes. If you want to exit the menus without invoking any option,

press the ESC key.

00000000=---=00000000
0000 MA IN MENU 0000
00
I

I
I
I
I

I
I
I
I
I

I
I
I
00
0000

M- Module/Script Manager •••

E- Quick-Edit Modules or Scripts code

0-open a project

H-system help •.•

s- Run a Simulation Script (batch of modules)
D- Run a module (for debugging)

P- Peek at the data-items runtime database
C- Modify user/system constants
7- Sort modules database
R- Report generator ..•
0- to quit

Z-zap deleted modules

X- shell to DOS

00
I
I
I
I
I
I

I

I
I
I
I
I

I
00

0000
00000000=---=00000000
Enter your option

SIMUBASE MAIN MENU --- Figure 1

Some menu options have three dots(...) beside them. These options contain other
options. If you select a menu ·option with tree dots, a whole new menu (a sub-menu)
joins the one you're working with. You can select various options from the sub-menu.

10-1 Main Menu

The main menu includes many options, see figure 19. Most of these options will be
described in the following sections.

M.A. Copyright 4/13/1989 43

44 SIMUBASE SIMUBASE Menus

10-2 Selecting a project

SIMUBASE allows the user to organize modules and scripts intro projects, this op­
tion i~ u_sually used to select and open a project. After a project has been opened it
becomes the current project and all other options in the menu relate to this project until
a different project is selected.

10-3 Module/Script Manager

This is were you define a data-item to the system, by giving the data-item master
namti, the data-item code file name,_ ang the data item type specification. This may in­
clude type, field width, and decimal places. This option will _also allow the user to enter
a short description of the data-item, ?Swell a full description regarding the implemen­
tation, reference, etc... (Refer to the Standard Module Description for more detail)

This option features full screen editing with searching and browsing abilities. It also
allows the user to mark modules for later deletion.

10-4 Running a Simulation Script

This option allows the user to select among the script available in the current opened
project and activate it.

10-5 Project Constants Manager

This system also incorporates the ability to introduce global constants that may be
_referenced throughout the system by any module. The project constants manager is
al~o able to include a description of the constant being added to system. It enables
the user to edit its value, or its· description, or delete the constant at any given time.

44 M.A. Copyright 4/13/1989

_)

SIM UBASE Menus SIMUBASE 45

10-6 Viewing the Run-time database

SlMUBASE allows the. user at any time to peek at the run-time database. In fact,
. this 'database is were SIMUBASE keeps the values generated by a module, when it
was last run. Viewing such a database is somewhat similar to examining a core dump
or register values in ~mothe~ programming language environment. Being able to peek

. at this data allows the module developer to quickly trace the values a particular module
is producing, as well as those produced by other modules he may have activated.

*** Alphabetic Index**

<ALIAS> l<HISTORY>l<OPERATORl<PATH> t<SCOPE> I? I@ IABS()
ACCEPT !ALIAS() !APPEND IASC() IAT() !AVERAGE IBOF() !BROWSE
CALL !CANCEL !CHANGE ICHR() !CLEAR !CLOSE ICMONTH() ICOL()
CONTINUE !COPY !COUNT !CREATE !DATE() IDAY() IDBF() !DELETE
DELETED() IDIMENSIONIDIR IDISKSPACEIDISPLAY IDO IDOW() IDTOC()
EDIT I EJECT I EOF () I ERASE I ERROR () I EXIT I EXP () I FCOUNT ()
FIELD() I FILE() I FIND I FKLABEL () I FKMAX () I FLOCK() I FLUSH I FOUND()
GATHER I GETENV () I GO I HELP I IF I I IF () I INDEX I INKEY ()
INPUT I INSERT I INT () I ISALPHA () I ISCOLOR () I I SLOWER () I I SUPPER () I JOIN
KEYBOARD !LABEL ILEFT() ILEN() !LIST !LOAD !LOCATE !LOG()
LOOP !LOWER() ILTRIM() ILUPDATE() !MACROS-& IMAX() IMENU !MESSAGE()
MIN () I MOD () I MODIFY I MONTH () I MULTIUSER I NDX () I NOTE I ON
OS() IPACK IPARAMETERIPCOL() !PRIVATE IPROCEDUREIPROW() !PUBLIC
QUIT IREAD fREADKEY() !RECALL IRECCOUNT IRECNO() IRECSIZE() IREINDEX
RELEASE !RENAME !REPLACE IREPLICATEIREPORT !RESTORE !RESUME !RETRY
RETURN !RIGHT() !ROUND() IROW() IRTRIM() IRUN/! !SAVE !SCATTER
SCROLL ISEEK !SELECT !SELECT() ISET !SKIP ISOUNDEX !SORT
SPACE() I SQRT() I STORE I STR () I STUFF() I SUBS TR() I SUM I SUSPEND
SYS() I TEXT I TIME() I TOTAL I TRANSFORM I TRIM() I TYPE I TYPE()

Aphabetic Index for the dBase commands --- Figure 2

10-7 Help Menu

SI MU BASE provides an extensive assistance help on all the commands available in
the language . . The help menu is subdivided into logical categories to facilitate the task
of locafing the desired help 'topic more accurately. An alphabetized index for all
FoxBASE+ commands is also accessible. See figure 20

M.A. Copyright 4/13/1989 45

46

PAGE NO.
03/22/89
LISTING

SIMUBASE

1 CAMPBELL MODULE(s)

Master Name Version Short Description Author

DA DA
DAY DAY
DAY DAYl
DAY DAYl0
DAY DAY30
DEC DECl
EP EP
ETP ETP
FI FI
Interception
LAI LAI
NETSRAD NETSRAD
PE PE
PEVAP PEVAP
PRAD PRADl
PSR PSRl
RADIATION
PT PT
PTRANS PTRANS
transpiration

PAGE NO.
03/22/89
LISTING

1

DAY Abdenacer
ALL YEAR Abdenacer
1 TO 50 STEP 1 Abdenacer
EVERY 10 DAYS Abdenacer
EVERY 30 DAYS Abdenacer
DECLINATION Abdenacer
PARTITION PET INTO PE Abdenacer
EVAPO TRANSPIRATION Abdenacer
Fractional Abdenacer

Leaf Area Index Abdenacer
Net Solar Radiation Abdenacer
PE? Abdenacer
Potential evaporation Abdenacer
Potential radiation Abdenacer
POTENTIAL SOLAR Abdenacer

PARTITION PET INTO PT Abdenacer
Potential Abdenacer

Project Module Report --- Figure 3

CAMPBELL SIMULATION SCRIPT(s)

Master Name Version Short Description · Author

CAMBBELL CBELL2 script for campbell Abdenacer
version2
CAMPBELL CAMPBELL script for campbell Abdenacer
versionl
PAGE37 PAGE37 PLANTEMP PROGRESS Abdenacer
REPORT

- PAGE38 PAGE38 PLANTEMP PROGRESS Abdenacer
REPORT
PAGE40 PAGE40 PLANTEMP PROGRESS Abdenacer
REPORT
PAGE40 1 PAGE40 1 1 TO 50 STEP 1 Abdenacer
TAVE STAVEl DEMO TAVE WITH 2 Abdenacer
TEMPERATURES
TAVE STAVE2 demo tavg with 3 Abdenacer
tem_peratures

SIMUBASE Menus

Created Modified

12/28/88 03/19/89
12/27/88 03/21/89
12/25/88 03/22/89
12/26/88 03/21/89
12/24/88 03/22/89
12/10/88 03/22/89
01/08/89 03/22/89
12/29/88 03/21/89
12/11/88 03/22/89

12/12/88 03/22/89
12/13/88 03/22/89
01/07/89 03/22/89
12/14/88 03/22/89
12/15/88 03/22/89
01/03/89 03/21/89

01/09/89 03/22/89
12/16/88 03/22/89

Created Modified

01/01/89 03/19/89

12/31/88 03/19/89

12/05/88 03/22/89

12/06/88 03/22/89

12/07/88 03/22/89

12/08/88 03/22/89
01/06/89 03/22/89

12/09/88 03/22/89

Project Simulation Scripts Report --- Figure 4

46 M.A. Copyright 4/13/1989

SIMUBASE Menus SIMUBASE 47

10-8 Sorting The Modules Database

At any time the user may choose to organize the listing of n:iodules in the order to
satisfy his needs. · Since the number of modules may grow quite large at any time, this
option facilitates locating a r'noc:Jule within any given project.

10-9 Reporting and System Documentation

SIMUBASE also allows the user to generate extensive reports on the system and
the project desired. Some of these reports can be included in the final system documen­
tation, such as data-dictionary, and module reports.

10-9-1 Project Modules Report

This report includes the modules currently defined in the project. The report can
provide a great deal of help to a new user so that he becomes familiar with what is cur­
rently defined in the system. See figure 21

10-9-2 Project Scripts Report

. This report includes the scripts currently defined in the project, which will include the
script names, description, date of creation, and date of modification. See figure 22

PAGE NO.
03/22/89

1

PROJECT CONSTANTS REPORT

Constant Name Constant Value

PI 3.14159256400
LAT 0.84
Kl 1.35000000000
K2 -0.35000000000
K3 0.67000000000
K4 0.44000000000
ALBEDO 0.22000000000
PLDA 119
EMDA 130
MTDA 180
FC 0.25
RDMAX 2
KC 0.4

CAMPBELL

Full Description

Latitude

Surface Albedo
Planting date
Emergence date
Maturity date
Field Capacity
Maximum rooting depth - meters
ave daily canopy transm coeff.

Project Constants Report --- Figure-5

M.A. Copyright 4/13/1989 47

48 SIMUBASE SIMUBASE Menus

10-9-3 Project Constants Report

This report includes the constants declared in the current project. Included are such
things as constant name, value, description, etc ... A sample report is shown in figure
23

10-10 Exit/Shell to DOS

This option permits you to use all DOS commands without interrupting your work in
SIMUBASE. Currently SIMUBASE does not support DOS commands. No problem -
just choose this menu option and you ~re in DOS, while everything in SI MU BASE stays

· . in memory. When you're done with DOS, just type EXIT and you're back in SIMUBASE
again, with everything as you left it.

48 M.A. Copyright 4/13/1989

)

_)

A Guided Tour SIMUBASE 49

11 A Guided Tour

SIMUBASE lets you control the creation, the managing and the execution of your
modules. SIMUBASE is a highly-interactive environment that encourages rear­

ranging and experimentation.

When using SIMUBASE you don't have to page through heavy reference manuals
each time you decide to lookup a command in the language; on-line help is provided
for your convenience. Simubase also includes a built-in editor to provide a complete
integrated environment.

11-1 SIMUBASE Demo Project

The attached disk contains some demo SI MU BASE projects which include complete
sets of modules that you can experiment with .

• DEM01 . Stock Simulation

• DEM02 . Check-Book Simulation

• CAMPBELL . Winter Wheat Dry Matter Simulation

I Using a simulation demo project I
To access a demo project, you start by opening the demo project and selecting the

[open project] option from the menu. You ·may then select one of the several scripts to
activate a simulation run.

11-2 Running The Simulation Demo

Project DEM01 is a small set of modules and simulation scripts that simulates the
behavior of a financial stock. The two scripts ava)lable in the project will demonstrate
the ability to substitute one model/computation of the INTEREST module for another,
with little effort from the user.

In project DEM01 there are already two simulation scripts, and you will be able to
create more. For now let us experiment with the one already provided.

M.A. Copyright 4/13/1989 49

50 SIMUBASE A Guided Tour

To activate a script use the [run simulation script] option from the main menu. The
system will then present a list with the available scripts. Using the cursor-keys, posi­
tibrJ the highlight-bar over the scriptnamed S~MU1, and press the CTRL-ENDto choose
it. The system will now open this script and start activating the modules. As each
module executes, the system will monitor this activity on the screen. Eventually the
~ctivation of modules terminates, ~nd the script executes some reporting command on
selected data-items. If these reports exceed the screen size the display will pause and
allow the user to step through the report, viewing the data at his/her own pace.

Activating the second script is done in a similar way, except that this time you high­
light the script named SIMU2 and press the CTRL-END to activate it.

You have now completed running these scripts. You may not yet appreciate the
power of SIMUBASE, but to provide a similar demo in Pascal for example, you would
have to write a fair amount of code (refer to the two examples given in the objective).

Sending the report in SIMUBASE to the printer is just as simple as adding the TO
PRINT words at the end of the Dbase reporting clause. A more sophisticated option
for re-direction of output to selectable devices (screen, printer, and files) can be
achieved by inserted the commands DO PRINTBEG and DO PRINTEND respective­
ly before and after the reporting command.

11-3 Creating a Module

Now if you would like to experiment with your own version of the interest module,
you can define it as follows:

First choose the [module/script manager] option from the main menu. Next, use the
. append command by pressing the letter A. You will then be presented with a blank

module description form. Proceed by entering the master name, INTEREST, and the
version name INT3. For the file code field enter FUN (if you were defining a script type

· BAT). Enter a short description for your version and modify the type specification if
necessary; or accept the defa~lts, proyided other fields can be left blank and updated
at a latertime. ExJt from the append option by pressing the letter F to exit from the ap­
pend mode. To enter your own formula for INTEREST, use the M option, and enter
something like:

REPLACE INTEREST WITH MOD(DAY, 30)

or use your own formula. Exit from the editor with CTRL-END.

50 M.A. Copyright 4/13/1989

)

A Guided Tour SIMUBASE 51

To try out your implementation modify the second script SIMU2 by replacing the line
PO INT2 with D.O INT3 and then ·active the script as described earlier from the main
menLJ. You could have created a whole riew script, however, modifying an existing one
is a much quicker process.

11-4 Summary

This guided tour ends here, however your experimentation does not. You have now . .

acquired necessary knowledge on how to activate simulation scripts, create your own
module and test it. You must now r_eview your steps and experiment with the other fea­
tures of this system using the other projects available.

M.A. Copyright 4/13/1989 51

Where to Go From Here SIMUBASE 52

12 Where to Go From Here

In order to render S!MUBASE environment thoroughly suitable for the vast array of
simulation applications, the following features need to be considered in future work.

• Import and export modules between project and different sites.

• Mo_dule dependency relation resolution and automatic making of scripts.

• Currently SIMUBASE does not provide direct support and knowledge of units of
measurements, therefore it would be nice if automatic support of units existed. ·

• Detection of reference to undefined modules.

• Investigate whether template driven code generator can be used in conjunction
with the current implemen'tation for automatic code generation.

• If the implementation language .allows it, the programming language on-line
help, as well as other help screens wili be available from within the module
editor window .

• Graphical representation of simulation generated data.

• Symbolic representation of dataflow during a simulation modeling such as
[Stella -1987].

M.A. Copyright 4/13/1989 52

53 SIMUBASE Conclusion

13 Conclusion

The prototype that was implemented in part of this research, creates a simple and
yet powerful language and ~imulation development environment, which can be used
by even novice· computer users. SI MU BASE clearly establishes the ability to easily in­
terchange different versions of module(s} without having to modify other modules or
re-compile them. Simulation modei development can be rapid and straight forward.

SI MU BASE allows the creation of more complex simulation models by incremental­
ly combining simpler existing models. · SIMUBASE is a dynamic environment that ade­
quately suits simulation research which continuously evolves.

Existing simulators can be easily ported to SI MU BASE, because only the pure com­
putational process of those simulators need to be transferred. This reduces transition
time and cost factors that often hinders the migration to newer and more suitable tech­
nologies.

END

53 M.A. Copyright 4/13/1989

)

Bibliography SIMUBASE

14 · Bibliography

Software Engineering, Reusable Software, Object-Oriented programming,
Prototyping.

54

[Beladi-1981] "Modifiability of Large Software Systems", Proc 14th IBM Comp Soc
Symp Tokyo, Jan 8-13, Oct 1981, or (Program Evolution: Processes of Software
Charige, Ch 17), Academic Press.

[Lehman-1978]"Laws of Program Evolution - Rules and Tools for Programming
Management", Proc lnfotech Stat~ of the Art Conf, 'Why Software Projects Fail', Apr
1978, pp 11/1-11/25. (Ch 1, 14, 17, 19) or (Program Evolution: Processes of Software
Change, Ch 12), Academic Press.

[PizzareHo-1984], "Development and Maintenance of Large Software Systems",
Lifetime Learning Publications, Belmont, California.

[Lewis-1986], "Software Design For Ease of Maintenance and Reuse", Computer
Science, Oregon State University.

[Rickman-1987), "Progress Report for CO2Wheat: Plantemp", Columbia Plateau
Conservation Research Center, Pendleton, OR 97801.

[Cox-1984], "Message/Object Programming: An Evolutionary Change in Program­
ming Technology", IEEE Software, Vol. 1 No. 1, Jan. 1984, pp. 50-61.

[Snodgrass-1983], "An Object-Oriented Command Language", IEEE Trans. Soft.
Eng. Vol. SE-9, No. 1, Jan. 1983

[Cox-1983], "The Object-Oriented Precompiler- Programming Smalltalk-BO Methods
in C languages", ACM Sig plan Notices, Vol. 18, No. 1, Jan. 1983, pp. 15-22.

[Korson&Vaishnavi-1986], "An Empirical Study of the Effects of Modularity on
Program Modifiability", (Empirical Studies of Programmers, First Workshop on Empiri­
cal Studies of Programmers, June 5-6, 1986), Ablex Publishing Corporation.

[Pressman-1982] "Software Engineering, A practioner's Approach", McGraw-Hill
Book Company.

[McCabe-1976], "A Software Complexity Measure," IEEE Transactions on Software
Engineering, vol. 2, Dec 1976, pp. 308-320.

[Halstead-1977], "Elements of Software Science", North Holland, 1977.

M.A. Copyright 4/13/1989 54

55 SIMUBASE Bibliography

Simulation Languages and Data Base Capabilities

[Standridge&Pritsker-1982], "Using Pata Base Capabilities In Simulation", (Progress
In Modelling and Simulation 1982, The Swiss federal Institute of Technology, Zurich),
Academic Press.

[Babad&Schrae-1978], "A New Look at Process Oriented Simulation Languages",
Graduate School of Business, University of Chicago.

[Duket&Worman-1976], "An .Example to Illustrate the LJse of SPSS for the Analysis
of a SAINT Model'i, Report to the Aerospace Medical Division, Air Force Systems Com­
mand, Wright-Patterson Air Force Base, Ohio, by Pritsker & Associates, Inc., West
Lafayette, Indiana, July 1976.

(Joseph&Robert-1977], "Utility of Data-Base Man~gement to Analyze the Output
from Complex Simulations", Proceedings, 1977 Winter Simulation Conference,
December, 1977.

[Markowitz-1977), "An Entity, Attribute, Set and Event View of Data Base Systems.
IBM Research Report RC6811 (#29158), Yortown Heights, New York, October 1977.

[Miller&Morgan-1976], "Simulation Language Features in 1976: Existing and
Needed", Proceedings, 1976 Winter Simulation Conference, December 1976.

[Nof&Wilson-1976), "INDECS: General Conveyorized Facilities Description and
Simulation", Proceedings, 1976 Winter Simulation Conference, December 1976.

[Pritsker&Kiviat-1969], "Simulation with GASP II", Englewood Cliffs, J.J. Prentice­
Hall, Inc., 1969.

[Pritsker-1974), "The GASP IV Simulation Language", New York, John Wiley and
Sons, Inc., 1974.

Inter-process communication mechanisms, Modular Programming

[Stankovic-1982], "Software communication mechanisms: Procedure calls versus
Messages", Computer Vol 14,4,p19-25

[Staunstrup-1982], "Message Passing Communication Versus Procedure Call Com­
munication", SP&E Vol 12,3,p222-234.

55 M.A. Copyright 4/13/1989

)

)

_)

Bibliography SIMUBASE 56

[Welsh&Bustard-1979], "Pascal-Plus-Another Language for modular multiprogram­
ming", SP&E Vol 9, 11,p947,957. (The paper introduces Pascal-plus, a language build­
ing on Pascal that uses monitors for communicatiOn between processes).

(Wirth-1977], "Modula", SP&E Vol 7,1,p3-84. (The papers introducing the language
Modula, describing its implementation and illustrating its usage in practical program­
ming)

Simulation Environments, Miscellaneous

· [Stella-1987], "Stella for Business", High Performance Systems, Inc. 1987

I .SI MU BASE Source Code Implementations I
(Rektorys-1969], "Survey of Applicable Mathematics", M. I.T. Press Cambridge, Mas­

sachussetts.

[Miriam&Liskin-1987],"Advanced Dbase Ill PLUS Programming and Techniques",
Osborne McGraw-Hill.

[FoxView.], "FoxBASE+ Screen Painter & Application Generator - User Guide", Fox
Software, Inc., May 1988.

[FoxDoc], "FoxBASE+ Documentation System-User Guide", Fox Software, Inc., May
1988

M.A. Copyright 4/13/1989 ·56

)

57 SIMUBASE Bibliography

Index Listing

~
Automatic-Making 27

@]
Changeability 10
Coupling 12,16

@]
Data-item 20

~
Automatic-Making 35
Module Master Name 20
Module Version Name 20

)
~

Plugable Module 6,10,31)

~
Re usability 3,12
Reusable 27

@]
Sirnulation Selection Procedure 23
Standard Module Description 20,38

~
Version Configuration Files 22
Version Selection Procedure 22

57 M.A. Copyright 4/13/1989

SIMUBASE

Appendix A

STATS.DOC

System: SIMUBASE: Data Base Based Simulation
Author: Mr. Abdenacer Moussaoui
03/19/89 19:15:36
System Summary

This system has:
1628 lines of code

31 program files
1 procedure files

17 procedures and functions
5 databases
1 index files
2 report forms
0 format files
0 label forms
0 memory variable files

300 cross-referenced tokens

See the tree diagram for programs, procedures, functions and format files

Index Report Label Memory
Databases Files Forms Forms Files

&PROJECTD.PCON &PROJECTD.MODULFl.FRM
PROJECTS.DEF
&PROJECTD.MODU
&PROJECTD.RUNT
DBM.DBF

CONST.FRM

FoxDoc created the following documentation files:
H:\DB\OUT\STATS.DOC
H:\DB\OUT\TREE.DOC
H:\DB\OUT\FILELIST.DOC
H:\DB\OUT\DATADICT.DOC
H:\DB\OUT\FRMSUMRY.DOC
H:\DB\OUT\ERROR.DOC
Action diagram files
UPDATE.BAT to update program source files in H:\DB
BACKDBF.BAT to backup databases, indexes and memory files
BACKPRG.BAT to backup program files, report forms and format files
PRINTDOC.BAT to print documentation files

M.A. Copyright 3/22/89

60

60

SIMUBASE

TREE.DOC

System: SIMUBASE: Data Base Based Simulation
Author: Mr. Abdenacer Moussaoui
03 / 19/89 19:15:33
Tree Diagram

TOP. PRG
+- ---SETE.PRG
+----ADDSPATH.PRG
+----SETPCONST.PRG
+----GETPROJ.PRG
I +----SELECTWA.PRG
I +----INFORM.PRG
+----OPENPROJ.PRG
+----MENUl.PRG
+----MM.PRG
I +----MM OPEN.PRG
I I +----MM AREA (procedure in MM_PROC . PRG)
I +----MM EDIT.PRG
I +----MM FORM (procedure in MM_PROC . PRG)
I +----SAYREC (procedure in MM PROC.PRG)
I I +----STATLINE (procedur~in MM_PROC.PRG)
I I +--- - MM SAYS (procedure in MM PROC.PRG)
I +--- - GETKEY (procedure in MM_PROC . PRG)
I +----MM APPE.PRG
I I +----MM FORM (procedure in MM_PROC . PRG)
I I +----MM SAYS (procedure in MM PROC. PRG)
I I +----MM STOR (procedure in MM PROC. PRG)
I I +----STATLINE (procedure in MM_PROC.PRG)
I I +----SAYLINE (procedure in MM_PROC.PRG)
I I +----MM_KEYS (procedure in MM_PROC.PRG)
I I +----YESNO.PRG
I I +----MM GETS (procedure in MM_PROC.PRG)
I I +----GETKEY (procedure in MM PROC. PRG)
I I +----MM_REPL (procedure in MM_PROC.PRG)
I I +----CODEFILE.PRG
I I +----YESNO.PRG
I +----MEDITOR . PRG
I I +----MODIDATE.PRG
I +-- -- MODIDATE. PRG
I +- -- -MM SEEK (procedure in MM_PROC . PRG)
I +---- SAYLINE (procedure in MM PROC.PRG)
I +- --- SAYEOF (procedure in MM PROC . PRG)
I +-- - -MM STOR (procedure in MM_PROC.PRG)
I +----MM KEYS (procedure in MM PROC.PRG)
I +----MM GETS (procedure in MM PROC.PRG)
I +----MM_REPL (procedure in MM_PROC . PRG)
I +----ZAPITEM.PRG
I I +----ZAPFIELD.PRG
I +----ADDITEM.PRG
I I +----ADDFIELD.PRG
I +----DOGOTO (procedure in MM_PROC.PRG)
I I +----GETKEY (procedure in MM PROC. PRG)
I I +----GOTOREC (procedure in~ PROC.PRG)
I +----STATLINE (procedure in MM_PROC.PRG)
+----MEDITOR . PRG
I +----MODIDATE.PRG
+----ADDITEM . PRG
I +-- - - ADDFIELD.PRG
+- --- RUN MOD.PRG
+----RUN BAT. PRG
+----SELECTWA.PRG
+----SORTMOD.PRG
+----PACK.PRG
I +----YESNO.PRG
I +----ZAPITEM.PRG
I +----ZAPFIELD . PRG

M.A. Copyright 3/22/89

61

)

61

SIMUBASE

+----DOREPORT . PRG
I I Fl .FRM (report form)
I I CONST.FRM (report form)
I +----MENUREPO.PRG
I +----PRINTBEG.PRG
I +-- - -PRINTEND.PRG
I +----SELECTWA . PRG
+----DOHELP.PRG

+----MENUHELP.PRG

DAT ADICT.DOC

System : SIMUBASE: Data Base Based Simulation
Author: Mr. Abdenacer Moussaoui
03 / 19 / 89 19:15:29
Database Structure Summary

5 databases in the system
&PROJECTD.PCONST
PROJECTS.DEF
&PROJECTD.MODULES
&PROJECTD.RUNTIME
DBM. DEF

&PROJECTD.PCONST is a macro unknown to FoxDoc

FoxDoc did not f i nd any associated index files

This database appears to be associated with report form(s):
CONST.FRM

U~ed by: TOP.PRG
DOREPORT.PRG

Structure for database
Number of data records

Last updated

PROJECTS.DEF
3

03/19/89 at 18:38
Field Field name Type Width Dec Start End

1 PROJNAME Character 15
2 DIRECTORY Character 20
3 MEMO Character 30

** Total ** 66

FoxDoc did not find any associated inde x files

FoxDoc did not find any associated report forms

Used by: GETPROJ.PRG

&PROJECTD.MODULES is a macro unknown to FoxDoc
Alias: DBM

1
16
36

This database appears to be associated with index file(s) :
: &PROJECTD.MODULEl.IDX (index key not found)

This database appears to be associated with report form(s) :
Fl .FRM

Used by: OPENPROJ.PRG

M.A. Copyright 3/22/89

15
35
65

62

62

SIMUBASE

&PROJECTD.RUNTIME is a macro unknown to FoxDoc

FoxDoc did not find any associated index files

FoxDoc did not find any associated report forms

Used by: OPENPROJ.PRG

Structure for database DBM.DEF
Number of data records 39

Last updated 03/19/89 at 12:57
Field Field name Type Width Dec

1 FLDNAME Character 10
2 FLDTYPE Character 1
3 FLDLEN Numeric 2
4 FLDDEC Numeric 2
5 FUNCNAME Character 8
6 CODE Character 3
7 METHOD Character 32
8 Dl Character 40
9 D2 Character 40

10 D3 Character 40
11 AUTHOR Character 25

** Total ** 204

FoxDoc did not find any associated index files

FoxDoc did not find any associated report forms

Used by: SORTMOD.PRG

System: SIMUBASE: Data Base Based Simulation
Author: Mr. Abdenacer Moussaoui
03/19/89 19:15:30
Data Dictionary

Start
1

11
12
14
16
24
27
59
99

139
179

Field Name Type Len Dec Database
AUTHOR C 25 0 DBM.DEF
CODE C 3 0 DBM.DEF
Dl C 40 0 DBM. DEF
D2 C 40 0 DBM.DEF
D3 C 40 0 DBM.DEF
DIRECTORY C 20 0 PROJECTS . DEF
FLDDEC N 2 0 DBM.DEF
FLDLEN N 2 0 DBM. DEF
FLDNAME C 10 0 DBM. DEF
FLDTYPE C 1 0 DBM. DEF
FUNCNAME C 8 0 DBM.DEF
MEMO C 30 0 PROJECTS.DEF
METHOD C 32 0 DBM.DEF
PROJNAME C 15 0 PROJECTS.DEF

M.A. Copyright 3/22/89

63

End
10
11
13
15
23
26
58
98

138
178
203

)

63

)

SIMUBASE

FILELIST.DOC

System: SIMUBASE: Data Base Based Simulation
Author: Mr. Abdenacer Moussaoui
03/19/89 19:15:36
File List

Programs and procedures:
ADDF IELD. PRG
ADDITEM.PRG
ADDSPATH.PRG
CODEFILE.PRG
DOCONT
DOGOTO
DOHELP.PRG
DOLOCATE
DOREPORT.PRG
GETKEY
GETPROJ .PRG
GOTOREC
INFORM.PRG
MEDITOR.PRG
MENUl.PRG
MENUHELP.PRG
MENUREPO.PRG
MM.PRG
MM APPE.PRG
MM AREA
MM EDIT.PRG
MM FORM
MM GETS
MM KEYS
MM OPEN.PRG
MM REPL
MM SAYS
MM SEEK
MM STOR
MODIDATE.PRG
OPENPROJ.PRG
PACK.PRG
PRINTBEG .PRG
PRINTEND.PRG
RUN BAT.PRG
RUN MOD.PRG
SAYEOF
SAYLINE
SAYREC
SELECTWA.PRG
SETE.PRG
SETPCONST.PRG
SORTMOD.PRG
STATLINE
TOP.PRG
YESNO.PRG
ZAPFIELD. PRG
ZAPITEM.PRG

Procedure files:
MM PROC.PRG

Databases:
&PROJECTD.MODULES
&PROJECTD.PCONST
&PROJECTD.RUNTIME
DBM.DEF
PROJECTS.DEF

Index files:

(procedure in MM_PROC.PRG)
(procedure in MM_PROC.PRG)

(procedure in MM_PROC . PRG)

(procedure in MM_PROC . PRG)

(procedure in MM_PROC.PRG)

(procedure in MM_PROC.PRG)

(procedure in MM PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM_PROC.PRG)

(procedure in MM PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM PROC.PRG)

(procedure in MM_PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM PROC. PRG)

(procedure in MM_PROC.PRG)

M.A. Copyright 3/22/89

64

64

&PROJECTD.MODULEl.IDX

Report forms:
CONST.FRM
Fl.FRM

SIMUBASE

PRCSUMRY.DOC

Syste m: SIMUBASE: Data Base Based Simulation
Author : Mr. Abdenacer Moussaoui
03/19/89 19:15:32
Procedure and Function Summary

1 files containing procedure in the system
MM PROC.PRG

MM PROC.PRG -- Last updated: 03/19/89 at 18:27

Contains: SAYREC
Called by: DOCONT
Called by : MM EDIT.PRG

Calls : STATLINE
Calls : MM SAYS

Contains : GETKEY
Called by: DOGOTO
Called by: DOCONT
Called by: MM EDIT.PRG
Called by: MM APPE.PRG

Contains: STATLINE
Called by: SAYREC
Called by: MM EDIT.PRG
Called by: MM APPE.PRG

Contains: SAYEOF
Called by: DOLOCATE
Called by: DOCONT
Called by: MM_EDIT.PRG

Contains: SAYLINE
Called by: DOLOCATE
Called by: DOCONT
Called by: MM EDIT.PRG
Called by : MM_APPE.PRG

Contains : GOTOREC
Called by: DOGOTO

Contains: DOGOTO
Called by: MM EDIT.PRG

Calls: GETKEY
Calls: GOTOREC

Contains: DOLOCATE
Calls: SAYLINE
Calls: SAYEOF
Calls: DOCONT

Contains: DOCONT
Called by: DOLOCATE

Calls: SAYREC
Calls: SAYLINE
Calls: GETKEY
Calls : SAYEOF

Contains : MM AREA
Called by: MM_OPEN.PRG

Contains: MM SEEK
Called by: MM_EDIT.PRG

Contains: MM KEYS
Called by: MM EDIT.PRG
Called by: MM APPE.PRG

Contains: MM FORM
Called by"':MM_EDIT.PRG

M.A. Copyright 3/22/89

(procedure i n MM_PROC . PRG)

(procedure in MM_PROC . PRG)
(procedure in MM_PROC.PRG)

(procedure in MM_PROC.PRG)
(procedure in MM_PROC.PRG)

(procedure in MM PROC.PRG)

(procedure in MM_PROC.PRG)
(procedure in MM_PROC.PRG)

(procedure in MM_PROC . PRG)
(procedure in MM_PROC . PRG)

(procedure in MM PROC.PRG)

(procedure in MM PROC.PRG)
(procedure in MM_PROC . PRG)

(procedure in MM PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM_PROC.PRG)

(procedure in MM PROC.PRG)
(procedure in MM-PROC.PRG)
(procedure in MM-PROC.PRG)
(procedure in MM-PROC . PRG)
(procedure in MM=PROC. PRG)

65

)

-

65

SIMUBASE 66

Called by: MM APPE.PRG

) Contains: MM SAYS
Called by: SAYREC (procedure in MM PROC.PRG)
Called by: MM APPE.PRG

Contains: MM GETS
Called by: MM EDIT.PRG
Called by: MM APPE . PRG

Contains: MM STOR
Called by:MM_EDIT . PRG
Called by: MM APPE.PRG

Contains: MM REPL
Called by: MM EDIT . PRG
Called by: MM APPE.PRG

-

)

M.A. Copyright 3/22/89 66

APPENDIX B SIMUBASE

APPENDIX 8

TOP.PRG

*:***
*:
*:
*:

Program: TOP.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 17:09
*:
*: Calls: SETE.PRG
*: ADD SPATH. PRG
*: SETPCONST.PRG
*: GETPROJ.PRG
*: OPENPROJ . PRG
*: MENUl. PRG
*: MM.PRG
*: MEDITOR. PRG
*: ADDITEM.PRG
*: RUN MOD.PRG
*: RUN BAT.PRG
*: SELECTWA.PRG
*: SORTMOD.PRG
*: PACK.PRG
*: DOREPORT.PRG
*: DOHELP.PRG
*:
*: Uses: &PROJECTD.PCONST
*:
*:
*:***

Documented: 03/19/89 at 19:14 FoxDoc version 1.0

*
* Created on
* Updated on

23:16:11
20:39:28

1/30/1988 by Abdenacer
1/31/1988

* Updated on
* Updated on
* Updated on

*

DO SETE

INITSPATH = CRTSPATH()

CRTPATH = CRTDRIVE() + CRTDIR()
DO ADDSPATH WITH CRTPATH

DO SETPCONST WITH 'SYSCONST'

PROJECTD = I I

DO GETPROJ
DO SETPCONST WITH PROJECTD+'PCONST'
DO OPENPROJ
* DO OPENDB

+=DO WHILE .T.
I OPTION='?'

M.A. Copyright 2/9/1989

&& init system constants

&& init PROJECT constants
&& open project databases

&& open system databases

70

70

)

APPENDIX B SIMUBASE

DO MENUl WITH OPTION

+=DO CASE
+=CASE OPTION='l' && quick module manager
\ SELECT DBM
I BROWSE LOCK 1
I SELECT RUNTIME
I
+=CASE OPTION='M' && module manager
I DO MM
I
+=CASE OPTION='E' && edit a module
I && DO LOCATE E
I +=DO WHILE .T.
I I SELECT DBM && ALLOW PICKING
I I BROWSE FIELDS FLDNAME, METHOD, FUNCNAME, CODE
I I +-IF ESCAPED()
I v===== ==EXIT
I I +-ENDIF
\ I DO MEDITOR WITH PROJECTD + FUNCNAME
\ +=ENDDO
I CLEAR PROGRAM && have to be explicit at run-time
I
I
+=CASE OPTION='D'

SELECT DBM
SET FILTER TO CODE 'BAT'
KEYBOARD CHR(S) + CHR(24)

&& run a module
&& ALLOW PICKING

BROWSE FIELDS FLDNAME, METHOD, FUNCNAME, CODE
SET FILTER TO

+-IF ESCAPED()
"--------- -LOOP
I +-ENDIF
I +=DO CASE
I +=CASE CODE= 'FUN' .OR. CODE 'KEY'
I I DO ADDITEM
I I OLDSPATH = CRTSPATH()
I \ DO ADDSPATH WITH PROJECTD
I I DO RUN MOD
I I SET PATH TO &OLDSPATH
I I
I +=OTHERWISE
I I ? CHR(7) + 'UNKNOW CODE:' + CODE
I I WAIT
I +=END CASE

+=CASE OPTION='S' && run a batch of modules
I SELECT DBM
I GO TOP
I SET FILTER TO CODE= 'BAT'

I
I
I
I
I
I
I
I

I BROWSE FIELDS FLDNAME, FUNCNAME, METHOD, CODE
I SET FILTER TO
I +-IF ESCAPED()

"------- ---LOOP
+-ENDIF

OLDSPATH = CRTSPATH()
DO ADDSPATH WITH PROJECTD
DO RUN_BAT
SET PATH TO &OLDSPATH

+=CASE OPTION='C' && modify constants
I DO SELECTWA
\ USE &PROJECTD.PCONST
\ GO TOP
\ BROWSE
\ USE
\ DO SETPCONST WITH PROJECTD+'PCONST'
I
+=CASE OPTION='?' && sort modules
\ DO SORTMOD
I
+=CASE OPTION='P' && peek at runtime database

M.A. Copyright 2/9/1989

71

71

APPENDIX B

SELECT RUNTIME
GO TOP
BROWSE
&&

+=CASE
I DO
I

zap deleted modules
OPTION='Z'
PACK

+=CASE OPTION='R'
I DO DOREPORT
I ** open project
+=CASE OPTION='O'
I DO GETPROJ
I +-IF ESCAPED()

"----------LOOP
I I +-ENDIF

SIMUBASE

I I DO SETPCONST WITH PROJECTD+'PCONST'
I I DO OPENPROJ

&& re-init project constant

I I
I +=CASE OPTION='H'
I I DO DOHELP
I I
I +=CASE OPTION='0'
I SET PATH TO &INITSPATH
v=======EXIT
I I
I +=OTHERWISE
"=======LOOP
I +=ENDCASE
I
+=ENDDO

*: EOF: TOP.ACT

DOHELP.PRG

*:***
*:
*:
*:

Program: DOHELP. PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988 , Mr. Abdenacer Moussaoui
*: Last modified : 03/19/89 17 : 54
*:
*: Called by: TOP.PRG
*:
*:
*:
*:

Calls: MENUHELP.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

** DOHELP.PRG
** Created on 03/19/89 Time:10:44:10
** Updated on
**

+=DO WHILE .T.
OPTION = '?'
DO MENUHELP WITH OPTION

+=DO CASE
+=CASE OPTION 'H'
I HELP
I
+=CASE OPTION 'E'
I HELP LIST
+=CASE OPTION= 'F'
I HELP DISP
+=CASE OPTION= 'M'
I HELP COPY
+=CASE OPTION = 'N'
I HELP APPEND

M.A. Copyright 2/9/1989

72

)

72

)

APPENDIX B SIMUBASE

+=CASE OPTION '0'
v=======EXIT
I +=ENDCASE
I
+=ENDDO

*: EOF: DOHELP.ACT

DOREPORT.PRG

*:***
*:
*:
*:

Program: DOREPORT.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 17:33
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:

Called by:

Calls:

Uses:

Report Forms:

Documented:

TOP.PRG

MENUREPO.PRG
PRINTBEG.PRG
PRINTEND.PRG
SELECTWA.PRG

&PROJECTD.PCONST

Fl.FRM
CONST.FRM

03/19/89 at 19:15 FoxDoc version 1.0
*:***

** doreport.PRG
** Created on 03/19/89 Time:17:00:15
** Updated on
**

OPTION = '?'

+=DO WHILE .T.
DO MENUREPO WITH OPTION

+=DO CASE
+=CASE OPTION= 'M'
I SELECT DBM
I DO PRINTBEG
I REPORT FORM Fl FOR CODE 'BAT ' HEADING 'MODULE(s) '
I DO PRINTEND
I
+=CASE OPTION= 'S'
I SELECT DBM
I DO PRINTBEG
I REPORT FORM Fl FOR CODE 'BAT' HEADING 'SIMULATION SCRIPT(s)'
I DO PRINTEND
I
+=CASE OPTION= 'C'
I DO SELECTWA
I USE &PROJECTD.PCONST
I DO PRINTBEG
I REPORT FORM CONST
I DO PRINTEND
I USE
I
+=CASE OPTION

v=======EXIT
I +=ENDCASE
I

, 0'

M.A. Copyright 2/9/1989

73

73

APPENDIX B SIMUBASE

+=ENDDO

*: EOF: DOREPORT.ACT

MENU1.PRG

*:***
*:
*:
*:

Program: MENUl.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:46
*:
*: Called by: TOP.PRG
*:
*: Documented: 03/19/89 at 19:14 FoxDoc version 1.0
*:***

* Created on 23:55:30 1/30/1988 by Abdenacer
* Updated on
* Updated on
* Updated on
* MAIN MENU
PARAMETER OPTION

CLEAR
Text

M A I N M E N U

M- Module Manager O-open a project

E- Edit Modules or Scripts code H-system help

s- Run a Simulation Script (batch of modules)
D- Run a module (for debugging)

P- Peek at the data-items runtime database
C- Modify user/system constants
7- Sort modules database Z-zap deleted modules
R- Report generator
0- to quit

Enter your option
ENDTEXT

@@ ROW(), COL()+2 GET OPTION PICTURE'! '
READ

*: EOF: MENUl.ACT

MENUHELP.PRG

&& RANGE 0,9

*:***
*:
*:
* :

Program: MENUHELP.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 17:53
*:
*: Called by: DOHELP.PRG

M.A. Copyright 2/9/1989

74

)

74

)

APPENDIX B

*:
*: Documented: 03/19 /89 at 19:15

SIMUBASE

FoxDoc version 1 . 0
*:***

Text

** MENUHELP.PRG
** Created on 03/19/89 Time :1 0 :4 5:22
** Updated on
**
PARAMETER OPTION

CLEAR

H E L P M E N U
Date function

1- DTOC
2- CTOD
3- DOW
4- MONTH
5- DATE()
6- TIME()

Database update
A- REPLACE

B-
C-

Reporting commands
E- LIST

Export/Import
M- COPY TO
N- APPEND FROM

H- ALPHABETIC INDEX
0- EXIT

ENDTEXT

F - DISPLAY

Enter your option

@@ ROW(), COL()+2 GET OPTION PICTURE'! '
READ

*: EOF: MENUHELP.ACT

MENUREPO.PRG

*:***
*:
*:
*:

Program: MENUREPO.PRG

*: System : SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 17 : 19
*:
*: Called by: DOREPORT.PRG
* :
*: Documented: 03 / 19/89 at 19:15 FoxDoc version 1 . 0
*:***

Text

** MENUREPO.PRG
** Created on 03/19/89 Time:17:16:21
** Updated on
**

PARAMETER OPTION

CLEAR

R E P O R T

M- Modules listing

ME N U

M.A. Copyright 2/9/1989

75

75

I.

APPENDIX B

STORE METHOD TO MMETHOD
STORE AUTHOR TO MAUTHOR
STORE D1 TO MDl
STORE D2 TO MD2
STORE D3 TO MD3
STORE FLDTYPE TO MFLDTYPE
STORE FLDLEN TO MFLDLEN
STORE FLDDEC TO MFLDDEC
RETURN

PROCEDURE MM REPL
* ---Using MODULES.DEF

+-IF .NOT. EOF()
I * ---Replace only if there
I REPLACE;
I FLDNAME
I FUNCNAME
I CODE
I METHOD
I AUTHOR
I Dl
I D2
I REPLACE;
I D3
I FLDTYPE
I FLDLEN
I FLDDEC
+-ENDIF

RETURN

WITH MFLDNAME,;
WITH MFUNCNAME, ;
WITH MCODE,;
WITH MMETHOD,;
WITH MAUTHOR,;
WITH MDl,;
WITH MD2

WITH MD3,;
WITH MFLDTYPE,;
WITH MFLDLEN,;
WITH MFLDDEC

* EOF: MM PROC.PRG
*: EOF: MM PROC.ACT

M.A. Copyright 2/9/1989

SIMUBASE 94

is an available record.

)

_)

94

)

APPENDIX B SIMUBASE 93

'KEY')

@@ 0, 0 SAY "Record:"
@@ 0,72 SAY DATE()
SET COLOR TO &PROMPTATR
@@ PROMPTROW-1,0 SAY PROMPTBAR

*
SET COLOR TO R/N
@@ 1,0,21,79 BOX""
@@ 2, 3 SAY "Module/Script Master Name"
@@ 2,30 SAY "Code File"
@@ 2,45 SAY "Code Type"
@@ 2,57 SAY "Creation Date
@@ 5,57 SAY "Modification Date
@@ 8,57 SAY "Modification Time"
@@ 6, 3 SAY "Short Description"
@@ 9, 3 SAY "Author
@@ 12,48 SAY "Type Specifications"
@@ 13,47,19,77 BOX""
@@ 14, 5 SAY "Full description"
@@ 15, 2 SAY "Dl 11

@@ 16, 2 SAY "D2"
@@ 17, 2 SAY "D3 11

@@ 14,52 SAY "Field Type"
@@ 16,51 SAY "Field Width"
@@ 18,49 SAY "Field Decimal"
RETURN

PROCEDURE MM SAYS
* ---Using MODULES.DEF
SET COLOR TO ,N/W

II

@@ 3, 3 GET FLDNAME PICTURE"@!"
@@ 3,30 GET FUNCNAME PICTURE"@!"
@@ 3,45 GET CODE PICTURE"@!"
SET COLOR TO N/W
@@ 3,57 SAY CREA_DATE
@@ 6,57 SAY MODI DATE
@@ 9,57 SAY MODI_TIME
@@ 7, 3 GET METHOD
@@ 10, 3 GET AUTHOR
@@ 15, 5 GET Dl
@@ 16, 5 GET D2
@@ 17, 5 GET D3
@@ 14,63 GET FLDTYPE
@@ 16,63 GET FLDLEN PICTURE "99"
@@ 18,63 GET FLDDEC PICTURE "99"
CLEAR GETS
RETURN -

PROCEDURE MM GETS
* ---Using MODULES.DEF
SET COLOR TO ,N/W
@@ 3,45 GET MCODE PICTURE "@@!" VALID(MCODE = 'FUN' . OR. CODE

@@ 7, 3 GET MMETHOD VALID(LEN(TRIM(MMETHOD))0)
@@ 10, 3 GET MAUTHOR
@@ 15, 5 GET MDl
@@ 16, 5 GET MD2
@@ 17, 5 GET MD3
@@ 14,63 GET MFLDTYPE
@@ 16,63 GET MFLDLEN PICTURE "99" RANGE 1,15

'BAT ' . OR. CODE

@@ 18,63 GET MFLDDEC PICTURE "99" RANGE 0,10 VALID(MFLDDEC MFLDLEN)
READ
RETURN

PROCEDURE MM STOR
* ---Using MODULES.DEF
* ---Initialize memvars with field contents.
STORE FLDNAME TO MFLDNAME
STORE FUNCNAME TO MFUNCNAME
STORE CODE TO MCODE

M.A. Copyright 2/9/1989 93

APPENDIX B SIMUBASE

+=DO
I

WHILE CHOICE = "Y" .AND .. NOT. EOF ()
OLDRECNUM = RECNO()

I
I
I
I
I
I

DO SAYREC
DO SAYLINE WITH ROW+l,"Continue? (y/n)"
DO GETKEY WITH CHOICE,"YN"+RETURNKEY
@ ROW+l,O CLEAR

+-IF CHOICE= "Y"
I CONTINUE

I +- ENDIF
+=ENDDO
+-IF EOF ()
I DO SAYEOF WITH ROW,OLDRECNUM
+-ENDIF

RETURN

PROCEDURE MM AREA
SELECT &DBFAREA
DBFNAME "MODULES.DEF"
DBFTEMP "MODULES$. DBF"
NDXNAMl "MODULESl.IDX"
NDXKEYl "FLDNAME+FUNCNAME"
NDXORDER = "l"
LASTREC = RECCOUNT()
RETURN

PROCEDURE MM SEEK
PARAMETER ROW
PRIVATE EXPR

+-IF NDXORDER = "0"

+-ENDIF
SET COLOR TO &PROMPTATR
@@ ROW,O CLEAR

+=DO CASE
+=CASE NDXORDER = "l"

MFLDNAME = SPACE(lO)
MFUNCNAME = SPACE(B)
@ ROW, 0 SAY "Enter Fldname" GET MFLDNAME PICTURE"@!"
@ ROW+l,0 SAY" Funcname" GET MFUNCNAME PICTURE"@!"
READ
EXPR = TRIM(MFLDNAME+MFUNCNAME)

+- IF"" EXPR
SEEK EXPR

+- ENDIF
+=ENDCASE

RETURN

PROCEDURE MM KEYS
PARAMETER EXPR,ISBLANK,ISUNIQUE
EXPR = ""
ISBLANK = .F.
ISUNIQUE = .F.
SET COLOR TO ,N/W
@@ 3, 3 GET MFLDNAME PICTURE"@!" VALID(LEN(TRIM(MFLDNAME))O)
@@ 3,30 GET MFUNCNAME PICTURE"@!" VALID(LEN(TRIM(MFUNCNAME))O)
READ
I SBLANK = ('"' = TRIM (MFLDNAME))
ISBLANK = ISBLANK . AND. ("" = TRIM (MFUNCNAME))
EXPR = MFLDNAME+MFUNCNAME
ISUNIQUE = . T .
RETURN

PROCEDURE MM FORM
SET COLOR TO &SCREENATR
CLEAR
SET COLOR TO &STATUSATR
@@ 0, 0 SAY SPACE(BO)

M.A. Copyright 2/9/1989

92

92

)

I .

APPENDIX B

PROCEDURE SAYLINE
PARAMETER ROW,STRG
SET COLOR TO &PROMPTATR
@@ ROW,0 CLEAR
@@ ROW,0 SAY STRG
RETURN

PROCEDURE GOTOREC
PARAMETER ROW,RECNUM,LASTRECNUM
RECNUM = 0
SET COLOR TO &PROMPTATR
@@ ROW,0 CLEAR
@@ ROW+l,17 SAY"{ 1 to "

SIMUBASE

@@ ROW+l,24 SAY SUBSTR{ STR{ LASTRECNUM + 1000000 , 7) , 2) + ") + {Return)"
@@ ROW,0 SAY "Enter RECORD number" GET RECNUM;
PICTURE "@Z 9999999" RANGE 0,LASTRECNUM
READ
@@ ROW,0 CLEAR

+-IF RECNUM 0
I GOTO RECNUM
+-ENDIF

RETURN

PROCEDURE DOGOTO
PARAMETER ROW,RECNUM,LASTRECNUM
RECNUM = 0
SET COLOR TO &PROMPTATR
@@ ROW,0 CLEAR
@@ ROW, 0 SAY "GOTO: {T)op {B)otto m {R)ecord# {Return) "
DO GETKEY WITH CHOICE,"TBR"+RETURNKEY
@@ ROW,0 CLEAR

+=DO CASE
+=CASE CHOICE= RETURNKEY

+=CASE CHOICE= "T"
I GOTO TOP
I RECNUM = RECNO()
+=CASE CHOICE= "B"
I GOTO BOTTOM
I RECNUM = RECNO()
+=CASE CHOICE= "R"
I DO GOTOREC WITH ROW,RECNUM,LASTRECNUM
+=END CASE

RETURN

PROCEDURE DOLOCATE
PARAMETER ROW,EXPR
PRIVATE OLDRECNUM
OLDRECNUM = RECNO()
DO SAYLINE WITH ROW,"Locating .. , "
LOCATE FOR &EXPR

+-IF EOF ()
I DO SAYEOF WITH ROW,OLDRECNUM
+-ELSE
I @ ROW,0 CLEAR
I @ ROW,0 SAY "LOCATE FOR" GET EXPR
I CLEAR GETS
I DO DOCONT WITH ROW
+-ENDIF

RETURN

PROCEDURE DOCONT
PARAMETER ROW
PRIVATE OLDRECNUM
CHOICE= "Y"

M.A. Copyright 2/9/1989

91

91

APPENDIX B SIMUBASE

* Version.: FoxBASE+, revision 2.10
* Notes . . . : PROCEDURE file for MODULES.DEF

*

PROCEDURE SAYREC
* ---"SayRec" is used by the EDIT program and PROCEDURE DoCONT.

*
DO STATLINE WITH RECNO(),DELETED()
DO MM SAYS

*
* ---If you are calling "SayRec" from more than one
* ---application, you may wish to replace the above
* ---line with a DO CASE structure, as follows:

*
*
*
*
*
*
*
*
*

* ---"appnum" is the application ID number.
DO CASE
CASE appnum = 1

DO APl SAYS
CASE appnum = 2

DO AP2 SAYS
ENDCASE

RETURN

PROCEDURE GETKEY
PARAMETER CHOICE,KEYCHARS
PRIVATE KEYCODE
CHOICE= "*"

+=DO WHILE .NOT. (CHOICE$ KEYCHARS)
I KEYCODE = INKEY()
I +-IF KEYCODE 0
I I CHOICE ·= UPPER (CHR (KEYCODE))
I +-ENDIF
I * ---A keyfilter can be implemented here, as follows :

I *
I *
I *
I *
I *
I *
+=ENDDO

RETURN

* ---FROM: {Fl} Aleftarrow Arightarrow
* ---INTO: "H" leftarrow rightarrow
fromkeys CHR(28) + CHR(26) + CHR(2)
intokeys "H" + CHR(l9) + CHR(4)
choice= SUBSTR("*"+intokeys,AT(choice,fromkeys) + 1,1)

PROCEDURE STATLINE
PARAMETER RECNUM,ISDELETED
SET COLOR TO &STATUSATR
@@ 0, 8 SAY SUBSTR(STR(RECNUM + 1000000,7),2)

+-IF ISDELETED
I @ 0,50 SAY "*DELETED*"
+-ELSE
I @ 0,50 SAY"
+-ENDIF

RETURN

PROCEDURE SAYEOF
PARAMETER ROW,OLDRECNUM
SET COLOR TO &PROMPTATR
@@ ROW,0 CLEAR

+-IF EOF ()
I @ ROW,0 SAY "END-OF-FILE encountered"
+-ELSE
I @ ROW,O SAY "BEGINNING-OF-FILE encountered"
+-ENDIF

WAIT
@@ ROW,O CLEAR

+-IF OLDRECNUM 0
I GOTO OLDRECNUM
+-ENDIF

RETURN

M.A. Copyright 2/9/1989

90

)

90

I}

APPENDIX B SIMUBASE

*:***
* Program.: MM OPEN.PRG
* Author .. : Mr. Abdenacer Moussaoui
* Date : 11/28/88
* Notice .. : Copyright (c) 1988, MTS
* Version.: FoxBASE+, revision 2.10
* Notes ... : OPEN program for MODULES.DEF

*
* ---INKEY() constant values.
PGDN = CHR(3)
PGUP = CHR (18)
RETURNKEY CHR(l3)
DELRECORD = CHR(7)

*
* ---SET COLOR TO values.
SCREENATR "R+/N,N/W"
STATUSATR "GU/N,N/W"
WINDOWATR 11 R+/N,N/W 11

PROMPTATR "GR+/ N,N/W 11

HILITEATR "N/W11

*
* ---Initialize global variables.
STORE OTO LASTREC,OLDRECNUM,RECNUM,MENUCHOICE
STORE 11 11 TO CHOICE,EXPR
PROMPTROW 23
PROMPTBAR = REPLICATE(CHR(196),80)

*

* ---Initialize database variables for current workarea .
DO MM AREA

*
RETURN
* EOF: MM OPEN.PRG
*: EOF: MM OPEN.ACT

) MM PROC.PRG

*:***
*:
* : Procedure file: MM PROC.PRG
* :
*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:27
*:
*: Procs & Fncts: SAYREC
*: GETKEY
*: STATLINE
*: SAYEOF
*: SAYLINE
*: GOTOREC
*: DOGOTO
*: DOLOCATE
*: DOCONT
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:

MM AREA
MM SEEK
MM KEYS
MM FORM
MM SAYS
MM GETS
MM STOR
MM REPL

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

* Program.: MM PROC.PRG
* Author .. : Mr. Abdenacer Moussaoui
* Date : 03/19/89
* Notice .. : Copyright (c) 1989, MTS

M.A. Copyright 2/9/1989

89

89

APPENDIX B SIMUBASE

OLDRECNUM
SKIP

+-IF EOF ()

RECNO()

I DO SAYEOF WITH ROW,OLDRECNUM
+-ELSE
I DO SAYREC
+-ENDIF

+=CASE EDITCHOICE = "P"
I * ---Previous record.
I OLDRECNUM = RECNO()
I SKIP -1
I +-IF BOF ()
I I DO SAYEOF WITH ROW,OLDRECNUM
I +-ELSE
I I DO SAYREC
I +-ENDIF
I
+=CASE EDITCHOICE = "E"
I * ---Edit the record.
I ISEDITED = .T.
I DO MM STOR
I DO SAYLINE WITH ROW,"Press {Ctrl-W} to Exit"
I * ---If you don't want the user to edit the
I * - - -key fields, then delete the following line .
I DO MM_KEYS WITH EXPR,ISBLANK,ISUNIQUE
I DO MM GETS
I DO MM REPL
I
I DO ZAPITEM
I DO ADDITEM
I SELECT DBM
I
+=CASE EDITCHOICE = "G"
I * ---Goto a record.
I DO DOGOTO WITH ROW,RECNUM,LASTREC
I +-IF RECNUM 0
I I DO SAYREC
I +-ENDIF
+=CASE EDITCHOICE = DELRECORD
I * ---Delete the record.
I ISEDITED = .T.
I +-IF DELETED()
I I RECALL
I +-ELSE
I I DELETE
I +-ENDIF
I DO STATLINE WITH RECNO(),DELETED()
+=ENDCASE

+=ENDDO
RETURN
* EOF: MM EDIT.PRG
*: EOF: MM EDIT.ACT

MM OPEN.PRG

*:***
*:
*:
*:

Program: MM OPEN.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
* : Last modified: 03/19/89 15:07
*:
*: Called by: MM.PRG
*:
*:
*:
* :

Calls: MM AREA

Documented: 03/19/89 at 19:15

M.A. Copyright 2/9/1989

(procedure in MM_PROC.PRG)

FoxDoc version 1.0

88

)

)

88

J

)

APPENDIX B SIMUBASE

*: MM GETS (procedure in MM PROC .PRG)
*: MM REPL (procedure in MM PROC.PRG)
*: ZAPITEM.PRG
*: ADDITEM.PRG
*: DOGOTO (procedure in MM _PROC.PRG)
*: STATLINE (procedure in MM PROC.PRG) -
*:
*: Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

* Program . : MM EDIT.PRG
* Author . . : Mr. Abdenacer Moussaoui
* Date : 11/28/88
* Notice . . : Copyright (c) 1988, MTS
* Version.: FoxBASE+, revision 2.10
* Notes . . . : EDIT program for MODULES.DEF

*
PARAMETER ISEDITED
PRIVATE ROW,LASTPAGE,EDITCHOICE ,N DXCHOICE
PRIVATE ISBLANK,ISUNIQUE
ROW= PROMPTROW
EXPR = ""
STORE .F . TO ISEDITED,ISBLANK,ISUNIQUE
DO MM FORM
DO SAYREC
EDITCHOICE = "*"
NDXCHOICE = "*"
* ---Loop until {Return) is pressed .
* ---The following loop is really a "REPEAT/UNTIL

+=DO WHILE . T .
I SET COLOR TO &PROMPTATR
I +-IF .NOT. (EDITCHOICE $ "NP"+DELRECORD)
I I @ ROW,0 CLEAR
I +-ENDIF
I @ ROW+l, 12 SAY "{N)ext-record {P)rev-record {M)odule code 0,.

=Exit"
@ ROW,0 SAY "EDIT/VIEW: {E)dit {F)ind {G)oto {A)ppend
DO GETKEY WITH EDITCHOICE,"EFGLNPMA0"+DELRECORD+RETURNKEY

+=DO CASE
I
+=CASE .NOT. (EDITCHOICE $ "AH") . AND. (LASTREC = 0)

{M)odify source"

I @ 17, 0 SAY "EMPTY DATABASE: Only Append and Help are available ."
I WAIT
I
+=CASE EDITCHOICE 'A'
I DO MM APPE
I DO MM FORM
I DO SAYREC
I
+=CASE EDITCHOICE = 'M'
I DO MEDITOR WITH PROJECTD+FUNCNAME
I DO MODIDATE
I DO MM FORM
I DO SAYREC
I
I
+=CASE EDITCHOICE RETURNKEY . OR. EDITCHOICE

v=======EXIT
I I
I +=CASE EDITCHOICE = "F"
I I * ---Find a record.
I I OLDRECNUM = RECNO ()
I I DO MM SEEK WITH ROW
I I +-IF EOF()
I I I DO SAYLINE WITH ROW,"No find."
I I I WAIT
I I I GOTO OLDRECNUM
I I +-ELSE
I I I DO SAYREC
I I +-ENDIF
I I
I +=CASE EDITCHOICE = "N"
I I * -- -Next record.

M.A. Copyright 2/9/1989

, 0 '

87

87

APPENDIX 8 SIMUBASE

"APPEND:
:add-another {C}arry-add {E}dit {F}inished

DO GETKEY WITH CHOICE,"CEFM"+DELRECORD+RETURNKEY
+=DO CASE
+=CASE CHOICE= DELRECORD
I * ---Toggle IsDeleted flag.
I ISDELETED = .NOT. ISDELETED
I DO STATLINE WITH LASTREC+RECNUMOFS,ISDELETED
I
+=CASE CHOICE= "E"
I * ---Re-edit the record .
I ISDELETED = .F.
I
+=CASE CHOICE$ "CF"+RETURNKEY
I * ---Finished, Add-another, or Carry-add .
I ISCARRY = (CHOICE= "C")
I +-IF ISDELETED
I I * ---Reset offset so as not to increment.
I I RECNUMOFS = RECNUMOFS - 1
I +-ELSE
I I * ---Save the memvar values .
I I APPEND BLANK
I I DO MM REPL
I I REPLACE CREA DATE WITH DATE ()
I I DO CODEFILE
I +-ENDIF
+=ENDCASE

* ---Condition to exit inner loop.
+-IF CHOICE$ "CEF"+RETURNKEY

v=======EXIT
I +-ENDIF
+=ENDDO

* ---Condition to exit outer loop .
+-IF CHOICE= "F"

v=======EXIT
I +-ENDIF
+=ENDDO

LASTREC = LASTREC + RECNUMOFS
* GOTO TOP
RETURN
* EOF: MM APPE . PRG
*: EOF: MM APPE.ACT

MM EDIT.PRG

*:***
*:
*:
*:

Program: MM EDIT.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui "
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 19:13
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:
*:

Called by:

Calls:

MM.PRG

MM FORM
SAYREC
GETKEY
MM APPE.PRG
MEDITOR.PRG
MODIDATE .PRG
MM SEEK
SAYLINE
SAYEOF
MM STOR
MM KEYS

M.A. Copyright 2/9/1989

(procedure
(procedure
(procedure

(procedure
(procedure
(procedure
(procedure
(procedure

in MM_PROC.PRG)
in MM PROC.PRG)
in MM PROC.PRG)

in MM _PROC.PRG)
in MM PROC.PRG) -
in MM PROC.PRG)
in MM PROC.PRG) -
in MM PROC.PRG) -

86

)

86

)

APPENDIX B

* ---Add another record .
RECNUMOFS = RECNUMOFS + l

+-IF .NOT. ISCARRY

SIMUBASE

I
I
I
I

* ---Initialize memory variables with blanks.
GOTO BOTTOM

+-IF .NOT. EOF ()
I SKIP

I +-ENDIF
I DO MM SAYS

DO MM STOR
GOTO BOTTOM

I
I
I
I
I
I

* ---Initialize fields/memvars .
STORE "N" TO MFLDTYPE
STORE B TO MFLDLEN
STORE 2 TO MFLDDEC

+-ENDIF
ISCARRY = .F.

+-ENDIF

DO STATLINE WITH LASTREC+RECNUMOFS,ISDELETED
@ 0,50 SAY "*BLANK*
* ---Check for duplicate record .

+=DO WHILE .T.
I DO SAYLINE WITH ROW, "Press {Ctrl-W} to Exit"
I * ---Enter key field values.
I DO MM_KEYS WITH EXPR,ISBLANK,ISUNIQUE
I +-IF ISBLANK . OR .. NOT. ISUNIQUE
v=======EXIT
I +-ENDIF
I * ---Check for duplicate key in master file .
I SEEK EXPR
I +-IF EOF ()
I I * ---No duplicate key found, so leave .

v=======EXIT
+-ELSE
I * ---Found a duplicate record in the file.
I SET COLOR TO &STATUSATR
I @ 0,50 SAY "*DELETED*"
I DO SAYLINE WITH ROW,;
I "DUPLICATE KEY encountered . Record cannot be appended . "
I ANS = 'Y'
I DO YESNO WITH ANS, 'Blank it?'
I +-IF ANS= 'Y'
I I MFLDNAME = SPACE(B)
I I MFUNCNAME = SP ACE (B)
I +-ENDIF
+-ENDIF

+=ENDDO

+-IF ISBLANK
I ISDELETED .T .
+-ELSE
I DO MM GETS
+-ENDIF

DO STATLINE WITH LASTREC+RECNUMOFS,ISDELETED

* ---Loop until Add, Carry, Edit, or Finished is selected .
* ---The following loop is really a "REPEAT/UNTIL

+=DO WHILE .T.
I * ---You can add other prompts and options in this inner loop .
I * ---For example, to add an invoicing routine:
I *
I *
I *
I *
I *
I *

--~~I *
gram name

I I *

(1) Insert "{I}nvoice" in the prompt line below,
(2) Include "I" in the values for GetKey, and
(3) Add a CASE to the DO CASE structure, such as:

CASE choice
DO

"I"

I I DO SAYLINE WITH ROW,;

M.A. Copyright 2/9/1989

85

85

APPENDIX B SIMUBASE

PRIVATE LASTREC,RECNUM,OLDRECNUM,EXPR,ISVALID
STORE .F. TO LASTREC,RECNUM,OLDRECNUM,EXPR,ISVALID
* ---Declare field memory variables.
PRIVATE;
MFLDNAME,MFUNCNAME,MCODE,MMETHOD,MAUTHOR,;
MFLDTYPE,MD1,MD2,MFLDLEN,MD3, ;
MFLDDEC
STORE"" TO;
MFLDNAME,MFUNCNAME,MCODE,MMETHOD,MAUTHOR,;
MFLDTYPE,MD1,MD2,MD3
STORE 0.00 TO;
MFLDLEN,MFLDDEC

*
* ---Initialize Global memory variables and OPEN file(s).
DBFAREA = "l"
DO MM OPEN

*

* ---DO EDIT/VIEW .
ISEDITED = .F.
DO MM EDIT WITH ISEDITED
*: EOF: MM.ACT

MM_APPE.PRG

*:***
*:
*:
*:

Program: MM APPE.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:38
*:
*:
*:
*:
*:
*:
*:
*:
* :
*:
* :
*:
*:
*:
*:
*:

Called by: MM EDIT.PRG

Calls: MM FORM
MM SAYS
MM STOR
STATLINE
SAYLINE
MM KEYS
YESNO.PRG
MM GETS
GETKEY
MM REPL
CODEFILE.PRG

Documented: 03/19/89 at 19:15

(procedure in MM_PROC.PRG)
(procedure in MM_PROC.PRG)
(procedure in MM PROC.PRG)
(procedure in MM-PROC.PRG)
(procedure in MM PROC. PRG)
(procedure in MM PROC. PRG)

(procedure in MM_PROC.PRG)
(procedure in MM PROC. PRG)
(procedure in MM PROC.PRG)

FoxDoc version 1.0
*:***

* Program . : MM APPE.PRG
* Author .. : Mr~Abdenacer Moussaoui
* Date : 11/28/88
* Notice .. : Copyright (c) 1988, MTS
* Version.: FoxBASE+, revision 2.10
* Notes .. • : APPEND program for MODULES.DEF

*
PRIVATE ROW,RECNUM,RECNUMOFS
PRIVATE ISBLANK,ISUNIQUE,ISCARRY,ISDELETED
* - --Initialize local memory variables.
ROW= PROMPTROW
RECNUMOFS = 0
STORE .F. TO ISBLANK,ISUNIQUE,ISCARRY,ISDELETED
EXPR = ""
DO MM FORM
* ---Start by adding one record.
CHOICE= RETURNKEY
* ---The following loop is really a "REPEAT/UNTIL

+=DO WHILE .T.
I +-IF (CHOICE= RETURNKEY) .OR . ISCARRY

M.A. Copyright 2/9/1989

84

)

84

n

)

APPENDIX B SIMUBASE

** Updated on
** delete module master name from runtime database

SELECT DBM

FLD NAME= TRIM(FLDNAME
FLD TYPE= FLDTYPE
FLD LEN FLDLEN
FLD DEC= FLDDEC

FUNC NAME= TRIM(FUNCNAME)

SELECT RUNTIME
DB_NAME = PROJECTD+'RUNTIME'
DO ZAPFIELD WITH DB_NAME, FLD NAME

*: EOF: ZAPITEM.ACT

&& get physical module name

MM.PRG

*:***
*:
*:
*:

Program: MM.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:59
*:
*: Called by: TOP.PRG
*:
*:
*:
*:
*:

Calls: MM OPEN.PRG
MM EDIT.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

* Program.: MM.PRG
* Author .. : Mr. Abdenacer Moussaoui
* Date : 03/19/89
* Notice .. : Copyright (c) 1989, MTS
* Version.: FoxBASE+, revision 2.10
* Notes ... : MAIN program for MODULES.DEF

*
* ---SET environment.
SET TALK OFF
SET STATUS OFF
SET HELP OFF
SET BELL OFF
SET MENUS OFF
SET SAFETY OFF
SET ESCAPE OFF
SET SCOREBOARD OFF

* ---Open PROCEDURE file.
SET PROCEDURE TO MM PROC

* ---Declare Global memory variables.
PRIVATE;
PGDN,PGUP,RETURNKEY,DELRECORD,;
SCREENATR,STATUSATR,WINDOWATR,PROMPTATR,HILITEATR,;
DBFNAME,DBFTEMP,DBFAREA,DBFPAGEMAX,NDXORDER,ISEDITED,;
PROMPTBAR,PROMPTROW,MAINCHOICE,MENUCHOICE,CHOICE
STORE .F. TO;
PGDN,PGUP,RETURNKEY,DELRECORD,;
SCREENATR,STATUSATR,WINDOWATR,PROMPTATR,HILITEATR,;
DBFNAME,DBFTEMP,DBFAREA,DBFPAGEMAX,NDXORDER,ISEDITED,;
PROMPTBAR,PROMPTROW,MAINCHOICE,MENUCHOICE,CHOICE
PRIVATE NDXNAMl,NDXKEYl
STORE .F. TO NDXNAMl,NDXKEYl

M.A. Copyright 2/9/1989

83

83

APPENDIX B SIMUBASE

USE DBM
*: EOF: SORTMOD.ACT

ADDITEM.PRG

*:***
*:
*:
*:

Program: ADDITEM.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:45
*:
*: Called by: TOP.PRG
*:
*:
*:
*:
*:

MM EDIT.PRG

Calls: ADDFIELD.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

*
* Created on 11/15/1988 by Abdenacer
* Updated on
* Updated on
* Updated on
* Updated on
* add module master name to runtime database

*
** try to add item

SELECT DBM

FLD NAME= TRIM(FLDNAME
&& BECAUSE META-DB
FLD TYPE= FLDTYPE
FLD LEN FLDLEN
FLD DEC= FLDDEC

&& FNAME DOES NOT LIKE IT??

FUNC NAME= TRIM(FUNCNAME) && get physical module name

SELECT RUNTIME
DB NAME= PROJECTD+'RUNTIME'
DO ADDFIELD WITH DB NAME, FLD NAME, FLD_TYPE, FLD_LEN, FLD DEC
*: EOF: ADDITEM.ACT- -

ZAPITEM.PRG

*:***
*:
*:
*:

Program: ZAPITEM.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 18:44
*:
*: Called by: PACK.PRG
* : MM EDIT.PRG
*:
*:
*:
*:

Calls: ZAPFIELD.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

** ZAPITEM.PRG
** Created on 03/19/89 Time:16:10:50

M.A. Copyright 2/9/1989

82

)

82

APPENDIX B SIMUBASE

+-IF DELETEIT
I PACK
+-ENDIF

*: EOF: PACK. ACT

SETE.PRG

*:***
*:
*:
*:

Program: SETE . PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr . Abdenacer Moussaoui
*: Last modified: 03/19/89 14:39
*:
*: Called by : TOP.PRG
*:
*: Documented: 03/19/89 at 19:14 FoxDoc version 1.0
*:***

** SETE.PRG
** Created on 03/19/89 Time:14:39 : 04
** Updated on
**

SET TALK OFF
SET ECHO OFF
SET SAFETY OFF
SET STATUS ON
*: EOF: SETE.ACT

SORTMOD.PRG

*:***
*:
*:
* :

Program: SORTMOD.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr . Abdenacer Moussaoui
*: Last modified: 03/18/88 12:22
*:
*: Called by: TOP.PRG
*:
* :
*:
*:

Use s: DBM.DEF

Documented: 03/19/89 at 19:15 FoxDoc version 1 . 0
*:***

*
*
* algo:

*
*
* Created

* Updated

* Updated

* Updated

* Updated

*
SELECT DBM

on
on
on
on
on

0:14:17 1/12/1988 by Abdenacer

01/20/88

? 'Sorting on code then field name ... '
SORT TO DBM.TMP ON CODE, FLDNAME
USE
ERASE DBM.DEF
RENAME DBM.TMP TO DBM.DEF

M.A. Copyright 2/9/1989

81

81

APPENDIX B

* Updated on

*

&& module database
* ---Open database file .
SELECT A

SIMUBASE

+-IF .NOT. FILE(PROJECTD+"MODULES.DBF"
I ? [PROJECD+"MODULES.DBF" not found)
I WAIT

QUIT
+-ENDIF

USE &PROJECTD.MODULES ALIAS DBM

* ---Open INDEX file(s).
+-IF .NOT. FILE(PROJECTD+"MODULEl.IDX"
I ? [Creating index "MODULEl.IDX" ...)
I INDEX ON FLDNAME+FUNCNAME TO &PROJECTD.MODULEl . IDX
+-ENDIF

SET INDEX TO &PROJECTD.MODULEl . IDX

&& actual data-items db
SELECT 2
USE &PROJECTD.RUNTIME
*: EOF: OPENPROJ.ACT

PACK.PRG

*:***
*:
*:
*:

Program: PACK.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr . Abdenacer Moussaoui
*: Last modified: 03/19/89 18:44
*:
*: Called by: TOP.PRG
*:
*:
*:
*:
*:

Calls: YESNO.PRG
ZAPITEM.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1 . 0
*:***

** PACK.PRG
** Created on 03/19/89 Time:16:47:17
** Updated on
**

DELETEIT . F.

SELECT DBM
GO TOP

+=DO WHILE ! EOF()
+-IF DELETED()
I ANS = 'N'
I DO YESNO WITH ANS, 'Delete-' + FLDNAME+ '--' +FUNCNAME
I ?
I +-IF ANS= 'Y'
I I DO ZAPITEM
I I DELETEIT .T. && at least one needs to be deleted
I +- ELSE
I I RECALL
I +-ENDIF
+-ENDI

SELECT DBM
SKIP

+=ENDDO

M.A. Copyright 2/9/1989

80

)

80

APPENDIX B SIMUBASE

*:***
*:
*:
*:

Program: GETPROJ.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 01/16/89 20:59
*:
*: Called by: TOP.PRG
*:
*:
*:
*:
*:
*:
*:

Calls: SELECTWA.PRG
INFORM.PRG

Uses: PROJECTS.DEF

Documented: 03/19/89 at 19:14 FoxDoc version 1 . 0
*:***

** GETPROJ.PRG
** Created on 01/16/89 Time:20:12:01
** Updated on
**
DO SELECTWA
USE PROJECTS
GO TOP
BROWSE
PROJECTD

+-IF ! FILE (
I .AND.
I .AND.

TRIM(DIRECTORY)
PROJECTD +'RUNTIME.DEF'
FILE(PROJECTD + 'MODULES.DEF')
FILE(PROJECTD + 'PCONST.DBF')

DO INFORM WITH 'Creating project'
DD= LEFT(PROJECTD, LEN(PROJECTD)-1)
! MD &DD

I
I
I
I
I
I
I

COPY FILE RUNTIME.DEF TO &PROJECTD.RUNTIME.DBF
COPY FILE MODULES.DEF TO &PROJECTD.MODULES.DBF
COPY FILE PCONST.DBF TO &PROJECTD.PCONST.DBF

+-ENDIF
USE

*: EOF: GETPROJ.ACT

OPENPROJ.PRG

*:***
*:
*:
*:

Program: OPENPROJ.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 15:12
*:
*: Called by: TOP.PRG
*:
*:
*:
*:
*:
*:
*:

Uses: &PROJECTD.MODULES
&PROJECTD.RUNTIME

Indexes: &PROJECTD.MODULEl.IDX

Documented: 03/19/89 at 19:14

Alias: DBM

FoxDoc version 1.0
*:***

* Open project databases.

*
* Created on 9:27:11 11/3/1988 by Abdenacer
* Updated on
* Updated on
* Updated on

M.A. Copyright 2/9/1989

79

79

APPENDIX B

*:
*:

Program: MODIDATE.PRG

SIMUBASE

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr . Abdenacer Moussaoui
*: Last modified: 03/19/89 15 : 20
*:
*: Called by: MEDITOR.PRG
*: MM EDIT.PRG
*:
*: Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

* IF READKEY() = 270
REPLACE MODI DATE WITH DATE()
REPLACE MODI TIME WITH TIME()
MODIFIED = . T.
* ENDIF
*: EOF: MODIDATE.ACT

CODEFILE.PRG

*:***
*:
*:
*:

Program: CODEFILE.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 15:44
*:
*: Called by: MM APPE.PRG
*:
*:
*:
*:

Calls: YESNO.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

*
* create header for module code file

*
MFILE = PROJECTD+TRIM(FUNCNAME)+ ' .PRG'

+-IF
I

FILE (MF ILE)
ANS= 'N'

I
I

DO YESNO WITH ANS,
+-IF .NOT . ANS= 'Y'

+-ENDIF
+-ENDIF

SAVE SCREEN
SET ALTE TO &MFILE
SET ALTE ON

'file already exists, overwrite?'

? [?' J + FUNCNAME + ' ' + METHOD + [')
? [** Author:) + AUTHOR
? [** Created on: J
?? DATE()
? ? ' ' + TIME ()
? [**)
SET ALTE OFF
SET ALTE TO
RESTORE SCREEN
*: EOF: CODEFILE.ACT

M.A. Copyright 2/9/1989

GETPROJ.PRG

78

)

78

)

APPENDIX B SIMUBASE

*:
*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 11:47
*:
*: Called by: TOP.PRG
*:
*: Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

*
* Created on 23:16:11 1/30/1988 by Abdenacer
* Updated on
* Updated on
* Updated on
* Updated on

*
SELECT DBM

FUNC NAME= TRIM(FUNCNAME)
SHORT_DESC = TRIM(METHOD)
** run module
SELECT RUNTIME

&& get physical module name

GO TOP && extra??
? 'executing - ' + FUNC NAME+'--' + SHORT DESC
EXECUTE= &FUNC_NAME() && execute module

*: EOF: RUN MOD.ACT

MEDITOR.PRG

*:***
*:
*:
* :

Program: MEDITOR.PRG

*: System: SIMUBASE: Data Base Based Simulation
* : Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 03/19/89 16:44
*:
*: Called by: TOP.PRG
* : MM EDIT.PRG
*:
*:
* :
*:

Calls: MODIDATE.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

* MODULE EDITOR

PARA FILENAME

SAVE SCREEN

KEYBOARD FILENAME+ CHR(l3)
MODI COMM

DO MODIDATE

RESTORE SCREEN
*: EOF: MEDITOR.ACT

MODIDATE.PRG

*:***
*:

M.A. Copyright 2/9/1989

77

77

APPENDIX B

S- Simulation Scripts listing

C- Project Constant repor

0- EXIT

SIMUBASE

Enter your option
ENDTEXT

@@ ROW(), COL()+2 GET OPTION PICTURE'! '
READ

*: EOF: MENUREPO.ACT

RUN_BAT.PRG

*:***
*:
*:
*:

Program: RUN BAT.PRG

*: System: SIMUBASE: Data Base Based Simulation
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
* : Last modified: 03/19/89 11:48
*:
*:
*:
*:

Called by: TOP.PRG

Documented: 03/19/89 at 19:15 FoxDoc version 1.0
*:***

*
* Created on 14:29 : 11 1/31/1988 by Abdenacer

* Updated on

* Updated on

* Updated on

* Updated on

*
SELECT DBM
FUNC NAME= TRIM(FUNCNAME)
SHORT_DESC = TRIM(METHOD)

SELECT RUNTIME
* GO TOP
* USE RUNTIME && go to top

? 'Batch - ' + FUNC NAME+' ' + SHORT DESC +' is currently running .. Wait . .. '
?

EXECUTE &FUNC _ NAME ()

*: EOF: RUN BAT. ACT

RUN_MOD.PRG

*:***
*:
*: Program: RUN MOD.PRG

M.A. Copyright 2/9/1989

76

)

76

)

SIMUBASE

APPENDIXC

COS.PRG

*:***
*:
*:
* :

Program: COS.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
* : Last modified: 01/31/88 17:54
*:
*: Called by: DUMMYTOP.PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1 .0
*:***

*
*
*
*

An approximation of the cosinus function.

* algo:
*
*
* Created on
* Updated on
* Updated on
* Updated on
* Updated on
*

PARAMETER X

PRIVATE FCT
PRIVATE PWR
PRIVATE SIGN
PRIVATE I

0:39:31 1/12/1988 by Abdenacer

01/20/88

PI2 = 2 * 3.141592564
+=DO WHILE X PI2 && TO AVOID THE FACT GETTING BIG
I X = X - PI2
+=ENDDO

FCT 2
PWR X * X
TMP 1
SI GN = -1
I = 3

+=DO WHILE I 30
I TMP TMP + SIGN * (

I FCT = FCT * I
I PWR = PWR * X

I SIGN= - SIGN
I I = I + 2
+=ENDDO

RETURN TMP
* : EOF: COS.ACT

M.A. Copyright 3/22/89

* (I+ l)

* X

PWR I FCT)

&& CAN SET X*X TO CONSTANT??

100

100

SIMUBASE

SIN.PRG

*:***
*:
*:
*:

Program: SIN.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author : Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 02/01/88 1:18
*:
*: Called by: DUMMYTOP.PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

*
* An approximation of the sinus function.

*
* ATTEMP TO SIN IMPLEMENTATION USING MAC-LAURIN SERIES
* 3 5 7

*
*
*
*
*
*
*

SIN(X) X -

alga:

X

3 !

X
+ ---

5!

X
+ . •• •

7 !

* Created
* Updated
* Updated

on
on
on

0:14:17 1/12/1988 by Abdenacer

01/20/88
* Updated on
* Updated on
*

PARAMETER X

PRIVATE FCT
PRIVATE PWR
PRIVATE SIGN
PRIVATE I

PI2 = 2 * 3.141592654
+=DO WHILE X PI2

X = X - PI2
+=ENDDO

FCT 6
PWR X * X *
TMP 0.0 + X
SIGN= -1.0
I = 4

+=DO WHILE I

X

30
I TMP TMP + SIGN * (PWR
I FCT = FCT * I * (I+ l)

I PWR = PWR * X
I SIGN= - SIGN
I I = I + 2
+=ENDDO

RETURN TMP
*: EOF: SIN.ACT

* X

&& TO AVOID THE FACT GETTING BIG

I FCT)

ATAN.PRG

*:***
* :
*: Program: ATAN.PRG

M.A. Copyright 3/22/89

101

)

101

)

SIMUBASE

*:
*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 01/31/88 17:55
*:
*: Called by: DUMMYTOP.PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

*
*
*
*

An approximation of the ARC-TANGENT function.

* alga:

*
*
* Created on 0:14:17 1/12/1988 by Abdenacer
* Updated on
* Updated on
* Updated on
* Updated on

*
PARAMETER X

PRIVATE FCT
PRIVATE PWR
PRIVATE SIGN

PI2 = 2 * 3.141592564
+=DO WHILE X PI2 && TO AVOID THE FACT GETTING BIG
I X = X - PI2
+=ENDDO

3 FCT
PWR X * X * X
TMP X
SIGN= -1

+=DO WHILE FCT 30
I TMP TMP + SIGN*
I FCT = FCT + 2
I PWR = PWR * X
I SIGN = - SIGN
+=ENDDO

RETURN TMP
*: EOF: ATAN.ACT

* X

(PWR / FCT)

ADDFIELD.PRG

*:***
*:
*:
*:

Program: ADDFIELD.PRG

*: System: ** Personal Library** --Not For Sale- -
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 11 / 09/88 23:06
*:
*: Called by: DUMMYTOP.PRG
*:
*:
*:
*:
*:
*:
*:

Uses: &DB NAME
&TMP FNAME.DBF
&TMP2 FNAME
&ORG FNAME

Documented: 03/19/89 at 19:23

M.A. Copyright 3/22/89

FoxDoc version 1 . 0

102

102

SIMUBASE

*:***
*
*
*
*
*

Given the name of a database and a field *description*
will *add* the field and its data .

* alga:

*
*
*
*
*
*
*
*

- open database in current area
- check if field already exist and do nothing if

copy the structure as data to a tmp database
- add the field description to the meta-db
- create the structure of the original database
- append all matching data from original db
- rename tmp file to the original name

* Created on 1/7/1988 by Abdenacer
* Updated on 2:04:37 1/8/1988
* Updated on
* Updated on
* Updated on

*

it does
ie . meta-db

from this data

PARAMETER DB_NAME, FLD_NAME, FLD_TYPE, FLD_LEN, FLD DEC

PRIVATE OTHER FLDS
PRIVATE CRT FLD
PRIVATE FLD IDX
PRIVATE ORG FNAME
PRIVATE TMP FNAME

USE &DB NAME

FLD IDX = 1
CRT_FLD = FIELD(l)
FLD EXISTS= .F.

&& open db in question

SET EXACT ON && for string comparison

&& search for field
+=DO WHILE LEN(CRT FLD) 0
I +-IF CRT_FLD = FLD_NAME
I I FLD EXISTS= . T.
v=======EXIT
I +-ENDIF
I FLD IDX
I CRT FLD
+=ENDDO

* CLEAR

&& SHOULD WE EXIT LOOP??

FLD IDX + 1
FIELD(FLD IDX

* IF FLD EXISTS
* ? "ALREADY THERE"+ FLD NAME
* ELSE
* ? "ABOUT TO ADD .. " + FLD NAME
* ENDIF

+-IF FLD EXISTS

&& avoid add it
+-ENDIF

TMP2 FNAME = DB NAME+ ".STR" - -
TMP FNAME DB NAME + ".EXT"
ORG FNAME = DB NAME+ ".DBF"

COPY TO &TMP FNAME STRUCTURE EXTENDED

M.A. Copyright 3/22/89

&& MAY BE SHOULD DISPLAY MESSAGE??

&& database with new field
&& meta database
&& HOW ABOUT USING DBF() ??

103

103

)

J

USE &TMP FNAME
APPEND BLANK

SIMUBASE 104

REPLACE FIELD NAME WITH FLD_NAME, FIELD TYPE WITH FLD TYPE, FIELD LEN WITH FLD LEN,
FIELD DEC WITH FLD DEC

CREATE &TMP2 FNAME FROM &TMP FNAME
APPEND FROM &ORG FNAME

&& same structure as orginal db

DELETE FILE &TMP FNAME
DELETE FILE &ORG FNAME
USE
RENAME &TMP2 FNAME TO &ORG FNAME
Use &db name

*: EOF: ADDFIELD.ACT

ZAPFIELD.PRG

*:***
*:
*:
*:

Program: ZAPFIELD.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 01/11/88 22:53
*:
*: Called by: DUMMYTOP.PRG
*:
*:
*:
*:
*:

Uses: &DB NAME
&TMP FNAME.DBF

Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

*
*
* Given the name of a database and a field name
* will remove the field and its data.

* *-a~l_g_o_: ___________________________ _

* - open database in current area
* - build a list of field name except the one to be deleted
* - copy all field and data to a tmp file
* delete old flle
* - rename tmp file to the original name

*
* Created on 1/6/1988 by Abdenacer
* Updated on 0:13:24 1/7/1988

*

PARAMETER DB_NAME, FLD NAME

PRIVATE OTHER FLDS
PRIVATE CRT FLD
PRIVATE FLD IDX
PRIVATE ORG FNAME
PRIVATE TMP FNAME

USE &DB NAME

TMP FNAME
ORG FNAME

FLD IDX = 1

DB NAME+ ".TTT"
DB NAME+ ".DEF"

CRT FLD = FIELD(l)
OTHER FLDS = ""
&& build field names not to be deleted

+=DO WHILE LEN(CRT_FLD) 0
I +-IF CRT FLD FLO NAME

&& HOW ABOUT DEF() ??

I I OTHER FLDS OTHER FLDS + "+ CRT FLD

M.A. Copyright 3/22/89 104

+-ENDIF
FLD IDX
CRT FLD

+=ENDDO

FLD IDX + 1
FIELD(FLO IDX

SIMUBASE

OTHER FLDS = SUBSTR(OTHER_FLDS, 2) && trim first comma

COPY TO &TMP FNAME ALL FIELDS &OTHER FLDS

USE && to delete it should not be in use
DELETE FILE &ORG FNAME
RENAME &TMP FNAME TO &ORG FNAME
USE &DB NAME
*: EOF: ZAPFIELD.ACT

ADDSPATH.PRG

*:***
*:
*:
*:

Program: ADDSPATH.PRG

*: System : ** Personal Library** --Not For Sale--
* : Author: Mr. Abdenacer Moussaoui
* : Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 11/08/88 23:53
*:
*: Called by: DUMMYTOP. PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1 . 0
*:*************************************** ************* *****************

* push a search path onto the current one

PARA NEWSPATH

OLDSPATH = CRTSPATH()
SET PATH TO &NEWSPATH;&OLDSPATH
*: EOF: ADDSPATH.ACT

SETPCONS.PRG

*:** *
*:
*:
*:

Program : SETPCONS. PRG

*: System : ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: La st modified: 11/24/88 15:04
*:
* : Called by: DUMMYTOP.PRG
* :
*:
*:
*:

Uses: &P DB

Documented: 03/19/89 at 19:23 FoxDoc version 1.0
* : ***

* set public constants.
* Start initially on 7/3/88
* Created on 21 : 55:33 11/2/1988
* Updated on

*
* string have to be stored quoted I guess??

PARA P DB

PRIVATE;
M;

M.A. Copyright 3/22/89

105

)

..J

105

)

V;

SELECT 10
USE &P DB

+=DO WHILE .NOT. EOF()

SIMUBASE

I
I
I
I
I
I
I

M = NAME
PUBLIC &M

&& move field to mem variable so we can use macro
&& make it global

+-IF TYPE(SVALUE) = 'U'
I WAIT NAME+'=' + SVALUE +' - Value is UNDEFINED and skiped!'
+-ELSE
I V = SVALUE && move field to mem variable
I &M = &V && evaluate and set mem variable

I +-ENDIF
I SKIP
+=ENDDO

USE
*: EOF: SETPCONS.ACT

SELECTW A.PRG

*:***
*:
*:
*:

Program: SELECTWA.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 11/03/88 10:11
*:
*: Called by: DUMMYTOP.PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1 . 0
*:***

PRIVATE I,WA
I = 0

+=DO
I

WHILE I ..J.!l.
I = I + 1
WA= STR(I) I

I SELECT &WA
I +-IF NULLSTR(ALIAS())

+-ENDIF
+=ENDDO

WAIT 'ERROR, NO EMPTY WORKAREA DEFAULT TO 10'
SELECT 10
*: EOF: SELECTWA.ACT

INFORM.PRG

*:***
*:
*:
*:

Program: INFORM.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 01/16/89 22:25
*:
*: Called by: DUMMYTOP.PRG
*:
*:
*:
*:

Calls: CLEARLIN.PRG

Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

M.A. Copyright 3/22/89

106

106

* INFORM.PRG
* echo message to the user
*
PARA MSG
LIN = ROW()

SIMUBASE

@@ LIN, COL()+l SAY MSG+' Hit return to continue! '
DUMMY = ' '
@@ LIN, COL() GET DUMMY
READ
DO CLEARLIN WITH LIN, LIN

*: EOF: INFORM.ACT

YESNO.PRG

*:***
*:
*:
*:

Program: YESNO.PRG

*: System: ** Personal Library** --Not For Sale- -
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 01/25/89 21:37
*:
*: Called by: DUMMYTOP.PRG
*: EDITOR.PRG
*:
* : Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

* Created on 0:47:03 7/1/1988 by Abdenacer
* Updated on
PARAMETER ANS, MSG

SAVE SCREEN
@@ ROW(), COL() SAY MSG+'? (Yes/No) '
@@ ROW(), COL() SAY ANS PICTURE'!'
* READ
** to be used in err.hand. while a read is intr .
K = INKEY (0)

+-IF K = 89 .OR . K = 121 .OR. K = 13
I ANS 'Y'
+-E LSE
I ANS 'N'
+-ENDIF

RESTORE SCREEN
*: EOF: YESNO.ACT

PRINTBEG.PRG

*:***
*:
* :
*:

Program: PRINTBEG.PRG

* : System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
* : Last modified: 07/19/88 11:23
*:
*: Called by: DUMMYTOP.PRG
* :
*:
*:
*:

Calls: PRINTSET.PRG

Documented: 03/19/89 at 19:23 FoxDoc version 1.0
* : ***

*
* Redirected output to desired device

M.A. Copyright 3/22/89

107

)

107

-)

)

* Created on 23:25:57
* Updated on 7/13/88
* Updated on
* Updated on
* Updated on
*

DO PRINTSET

+=DO CASE
+=CASE DEVICE= 'PRINTER'
I SAVE SCREEN
/ CLEAR

Text

SIMUBASE

6/9/1988

Output is going to be directed to the printer
- Turn printer on
- set top of form

when ready ...
ENDTEXT

I WAIT
I RESTORE SCREEN
I
I * SET DEVICE TO PRINTER
I SET PRINT ON
I
+=CASE DEVICE= 'FILE'
I SET ALTERNATE TO REPORT.TXT
I SET ALTERNATE ON
+=ENDCASE

*: EOF: PRINTBEG.ACT

PRINTEND.PRG

*:***
*:
*:
*:

Program: PRINTEND.PRG

*: System: ** Personal Library** --Not For Sale--
*: Author: Mr. Abdenacer Moussaoui
*: Copyright (c) 1988, Mr. Abdenacer Moussaoui
*: Last modified: 07/19/88 11:26
*:
*: Called by: DUMMYTOP.PRG
*:
*: Documented: 03/19/89 at 19:23 FoxDoc version 1.0
*:***

* Reset output redirection to screen
* Created on 23:23:18 6/9/1988
* Updated on
* Updated on
* Updated on
* Updated on

+=DO CASE
+=CASE DEVICE= 'PRINTER'

* SET DEVICE TO SCREEN
SET PRINT OFF

+=CASE DEVICE= 'FILE'
I SET ALTERNATE OFF
I CLOSE ALTERNATE
I ** ! PRINT
+=ENDCASE

*: EOF: PRINTEND.ACT

M.A. Copyright 3/22/89

108

108

_)

SIMUBASE 110

1 Ap-pendix D

1-1 System Requirements

Here is the hardware required to run SIMUBASE under Foxbase+.

• IBM PC, XT, AT, or 100% compatible. IBM PC compatible are available from a
variety of manufacturers.

• At least 512K of internal memory (RAM). It is advisable to have more memory,
ideally 640K (if not more).

• A monitor. Foxbase will run with just about any monitor, but if you have a color
· monitor you will be able to take advantage of the screen color settings that can
be enhanced by careful use of color.

• A printer, correctly attached to the computer. Although a printer is optional, you
won't get far in SIMUBASE without the ability to put something on paper.

We will assume you have a computer with 640K of memory, one floppy disk drive
(DRIVE A), and a hard-disk.

M.A. Copyright 4/13/89 110

111 SIMUBASE

1-2 Installation

To install the SIMUBASE demo on your hard-disk you must ·perform the following
steps. Assuming you hard~disk drive name is C: and the SI MU BASE demo diskette is
residing on drive A: you must type the following command at the DOS prompt:

C:
CD\
MDSIMUBASE
CDSIMUBASE
XCOPY A:*.* C:\SIMUBASE /S

An alternative to executing these commands is to activate the provided batch file in­
stall.bat by typing INSTALL at the DOS prompt.

At this point you should have completed the installation, to activate SIMUBASE you
type SB <return>

111 M.A. Copyright 4/13/89

j

Table of Contents SIMUBASE

Table of Contents

Abstract

Introduction

Background/History

Objective·
Illustration

Approaches
Approach 1
Approach 2
Approach 3

Prospective Approach

Design and Specification
Standard Module Description
Version Selection Procedure
Simulation Selection Procedure
Reporting Procedure
Summary
Applying this Design Strategy to Our Example

SI MU BASE: Current Implementation
- Previous Use of Data Base Concepts in Simulation
_ Physical Storage

Simulation Data
Standard Module Description

. Simulation Scripts and Reporting
Version Selection

How Does Our Example Work Under the Current Implementation ?
Features of the Current System
Limitations of the Current System
About the Language of Implementation and its Effectiveness
Host Language Inadequacy

_ Considerat,ion when Selecting a Host Language
Suited for Such a Prototype Development

· Library routines, Interpreted .vs. Compiled code environment
Self-interpretation and Partial Compilation

SIMUBASE Overview
Fundamental Concepts

What is a SIMUBASE module?
What is a script?

. _ What is a project?
. SIMUBASE Module and Script Manager

1

2

3

4
6

11
11
13
15

17

20
20
22
23
24
24
24

31
31
32
32
32
33
34
37
38
38
38
39

39
40
40

41
41
41
41
41
41

Creating a Module or Script 42
SIMUBASE Documentor 42
Multiple Projects 42
Who can use SIMUBASE 42

SIMUBASE Menus 44
Main Menu 44
M.odule/Script Manager 45
Project Constants Manager 45

. Viewing the Run-time database 45
Sorting The Modules Database 45
Help Menu 46
Reporting and System Documentation 46

Project Modules Report 46
Project Scripts Report 46
Project Constants Report 47

Exit/Shell to DOS 48

A Guided Tour 49
SIMUBASE Demo Project 49
Running The Simulation Demo 49
Creating a Module 50
Summary 51

Where to Go From Here 52)
Conclusion 53

Bibliography 54

Appendix A 60
STATS.DOC 60
TREE.DOC 61
DATADICT.DOC 62
FILE LIST.DOC 64
PRCSUMRY.DOC 65

APPENDIX B 70
TOP.PRG 70
DOHELP.PRG 72
DOREPORT.PRG 73
MENU1.PRG 74
MENUHELP.PRG 74
MENUREPO.PRG 75
RUN BAT.PRG 76
RUN_MOD.PRG 76
MEDITOR.PRG 77
MODIDATE.PRG 77 :

_)

Table of Contents SIMUBASE iii

,,-)
CODEFILE.PRG 78
GETPROJ.PRG 78
OPENPROJ.PRG 79
PACK.PRG 80
SETE.PRG 81
SORTMOD.PRG 81
ADDITEM.PRG 82
ZAPITEM.PRG 82
MM.PRG 83
MM_APPE.PRG 84
MM EDIT.PRG 86
MM_OPEN.PRG 88
MM_ PROC.PRG 89

APPENDIX C 100
COS.PRG 100
SIN.PRG 101
ATAN.PRG 101
ADDFIELD.PRG 102
ZAPFIELD.PRG 104
ADDSPATH.PRG 105

.. SETPCONS.PRG 105
) SELECTWA.PRG 106

INFORM.PRG 106
YESNO.PRG 107
PRINTBEG.PRG 107
PRINTEND.PRG 108

Appendix D 110
System Requirements 110
Installation 111

iii

	Moussaoui_Abdenacer_1989_A
	Moussaoui_Abdenacer_1989_B

