
)

A Software Implementation
of a

Virtual Network
Simulator

by

Walter F. Domka

Submitted to
Oregon State University

in partial fulfillment of .
the requirements for the

degree of

MASTER OF SCIENCE

June 1982

)

APPROVED:

Michael J. F iling> Assis
Department of Comput Science

In Charge of Major

Date presented: August 1981

)

Abstract

A software system to study network algorithms was implemen-

ted on UNIX. Each part of a network algorithm is written as a

single C program which becomes a virtual node in the network.

During a simulation, all virtualized nodes run as separate pro

cesses on a single PDP 11/40. Inter-node communication is carried

out with procedures local to each node, to send and receive

inter-node messages to and from a message queuing process. Com

munication between nodes is effected by use of virtual links

which are specified in the simulated network's topology. The

links are implemented on inter-process pipes between the message

queuing process and the node processes.

-i-

Table of Contents

I. Background 1

II. Overview 2

A. Specifications 3

B. Utilities 6

c. Compilation 6

D. Simulation Driver 7

E. Message Queuing Process 9

F. Checkup 19

G. Report 20

III. Example 22

) IV. Extensions 26

v. Conclusions 30

VI. References 32

Appendices

A. Loop Node Program A-1

B. Control Node Program B-1

c. Specifications Example C-1

D. Compilation and Simulation Example D-1

E. Report Program Output E-1

F. User Manual F-1

-ii-
\

)

I. Background

Simulation tools which have been developed to study computer

networks fall into two broad categories, software-based simula

tors and testbeds.

The use of software-based simulation tools is generally to

obtain quantified measurement of network performance for response

times, throughput rates and other queuing theory related

analyses. These simulators are developed using general purpose

programming languages and simulation languages such as GASP and

SIMULA. Many of these simulation tools are somewhat limited in

that they are designed to study a single aspect of computer

networks. Examples of this type of simulation tool are the VANS

system [l], which models value-added communication networks, and

the Scientific Control Systems database control system [2] which

models database performance predicated on the number of proces

sors in a database machine.

The second broad category of simulation tools is the test

bed. A testbed is a collection of processors and inter-processor

communication paths designed for easy reconfiguration of the com

munication paths contained within the testbed. A control proces

sor supervises the collection of information from processors

involved in a simulation. Each processor in the testbed performs

its assigned tasks within the network being simulated. Processors

are halted and restarted by the control processor to allow for

data collection. An example of a testbed is the CHIMPNET system

which is described in [3].

-1-

)

The simulator described in this paper is a program which

uses multiple, parallel processes in a single processor machine

to simulate a network. Supporting programs which perform pre

simulation and post-simulation processing are also used. The

simulation tool was implemented in the C programming language on

a PDP 11/40 computer running the UNIX operating system.

II. Overview

A network consists of nodes and links. Nodes may be viewed on a

macro level as separate computer installations, or on a micro

level as tasks within a distributed system. A user may simulate a

network at any virtual level. The user creates a node by writing

a program in the C programming language. Each node program, cal

led node code, is compiled and then runs as a separate process

during a simulation.

Nodes in a network interact by communication of mutually

agreed upon messages via the links which connect nodes. Message

formats and contents are determined solely by the user. Links

are bidirectional, virtual communication channels which are de

void of operating properties, other than maximum message size.

The flexible nature of the links allows modeling of messages at

any level from the physical level to levels governed by higher

protocols such as the X.25 protocol.

-2-

The simulation tool consists of seven components which are

described in the next sections.

Specifications:

The specifications program is used to collect the

specifications for a network to be simulated. A user

enters responses to queries from the program to select

specifications for the network. These specifications

are then saved for use by other components of the simu

lator and for reuse or alteration during subsequent

simulations.

Certain specifications are required: number of

nodes, network topology, node code file names, number

of inter-node messages to be sent and number of data

files in the network. Appendix C contains a demonstra

tion of a typical terminal session in which specifica

tions are entered.

The number of nodes allowed in a network is limi

ted only by the number of processes that may be present

in the UNIX operating system. A few processes are

needed to maintain the operating system, ie., process

scheduling, but all others may be used for node pro-

cesses. A tunable parameter is used to set the number

of nodes allowed in the simulator's current configura-

tion. Forty five nodes are allowed in the present

simulator.

Nodes in a network are identified by numbering

them in the increasing sequence O, 1, 2, ••• , n-1 where

-3-

()

)

n is the total number of nodes. Assignment of numbers

to nodes is arbitrary but after an assignment is made

it may not be changed during preparation for a simula

tion. The node numbering is binding due to the use of

the numbers by the simulator during a simulation.

A network's topology is set during entry of the

specifications for use during a simulation. Topologies

are described in terms of the nodes which are connected

by static links. Since each link is bidirectional, a

link from node x to node y also implies that node y may

transmit messages to node x. Once a topology has been

selected, it is saved as an adjacency matrix which

becomes part of the network specifications. The adja

cency matrix is used by the message queuing process to

determine if transmission of an inter-node message is

valid. Validity is determined by existence of a link

from the transmitting node to the receiving node.

Standard topologies may be used during entry of

the network specifications. These include ring, star

and complete topologies. More general topologies may

be established by specifying individual links or by

altering one of the standard topologies. Altering a

standard topology is accomplished by adding or deleting

links.

The node code file names are used to compile the C

programs which are loaded into node processes.

The number of inter-node messages sent during a

simulation is used to control the duration of a

-4-

)

simulation. Each inter-node message delivered by the

message queuing process is counted until the number of

messages delivered equals the number to be delivered.

This allows the user to choose the number of messages

for the network under study.

If data files are to be loaded into any node's

database then the number of data files is needed. Once

a user indicates that data files are to be used, the

names of all data files, which nodes each is to be used

at, and the file formats must be entered. A file for

mat is a description of the fields in a record from the

file. File formats are used to load the databases.

This additional information is used to load the data

files into the proper nodes' databases.

The maximum number of data files permitted in a

network is equal to the maximum number of nodes. This

convention allows each node to have at least one file

which is unique in the entire network. A capability

such as this permits study of file transfer problems in

database applications.

The specifications are summarized in Table 1.

Table 1 - Specifications

Number of nodes in the network
Topology of the network
Node code file names
Data file names (optional)
Data file usage (optional)
Data file formats (optional)
Number of inter-node messages

-5-

)

)

Utilities:

Utilities are procedures which provide special

functions to be used at a node during a simulation.

Utilities are called from within the node code program

to perform the desired function.

The utilities are included with the node code by

using the C compiler's preprocessor. This relieves the

user of tedious details involving the utilities.

Currently there are three utilities available to

be used: communications utility, random number utility

and a database utility. The communications utility is

always used by every node as it provides the means for

inter-node communication. The random number utility

generates random integer values in the range O -

((2A15) - 1). The database utility is a primitive

database management system which allows loading and

unloading of the data files into a node's database.

After being loaded, a database may be used for tradi

tional database operations; such as retrieves, stores

and updates, by additional calls to the database utili

ty.

Compilation:

During entry of the specifications, a user enters

the name of a file which contains the node code for

each node in the network. The compilation program uses

these file names to compile each node's program into a

core image file. After compilation the core image is

-6-

)

saved by copying it to a reserved file for use by the

simulation driver program.

If an error occurs during compilation of a node's

code, the user is notified and given an opportunity to

obtain a listing of the node code with error messages.

Simulation Driver:

The simulation driver is responsible for creating

and initializing a separate process within the UNIX

operating system for each node and the message queuing

process. After creation and initialization, the simu

lation driver initiates a simulation by broadcasting a

signal to each node process and the mes~age queuing

process.

The simulation driver establishes three inter

process pipes for use by the node processes and the

message queuing process. An inter-process pipe is an

in-memory buffer which may be written to and read from

by any process created by the simulation driver. These

pipes are used by the nodes to communicate with the

message queuing process, transmit inter-node messages

to other nodes (via the message queuing process), and

receive inter-node messages (via the message queuing

process). Buffers are limited to 4096 bytes in size,

which in turn limits the maximum message size. The

buffer size can be adjusted by recompiling the UNIX

kernel's source code with a larger buffer size.

-7-

()

)

Each of the three pipes is used for a separate

function. The first pipe, RIN, is used to send re

quests from nodes to the message queuing process. The

second pipe, MIN, is used to send inter-node messages

from nodes to the message queuing process. The third

pipe, MOUT, is used to send inter-node messages from

the message queuing process to their destination nodes.

The use of pipes maps all links in a simulated network

into one resource.

The organization of the pipes and processes is

diagramed in Figure 1.

Figure 1

RIN pipe
-------------➔

?--------------=="

Node

0

MIN pipe '

Node

1

Node

2

Message

Queuing

Process

Node

3

MOUT pipe

Node

N

Use of additional pipes in the simulator would

have a negative impact on the simulator's performance

due to the added contention in UNIX for use of buffers.

-8-

r)
Only sixteen buffers are available for use by all pro

cesses in UNIX.

After the simulation driver initiates a simula

tion, it waits for the message queuing process to ter

minate, signaling completion of the simulation. When

the simulation driver is notified that a simulation has

completed, it cleans up unneeded temporary files.

Message Queuing Process:

The message queuing process is a separate program

whose core image is loaded into a separate process by

the simulation driver when a simulation is beginning.

During a simulation the message queuing process per

forms four functions ·: 1) queuing of messages which have

been transmitted but have not been .. delivered" to the

receiver node, 2) acting as a monitor to sychronize use

of the three pipes amongst the node processes in order

to carry out the simulation, 3) controlling the dura

tion of a simulation, 4) trapping each inter-node mes

sage and creating a file of these messages for later

analysis. This file of messages is called a network

history file.

When a node is ready to transmit a message the

communication utility at the node sends a request to

transmit a message to the message queuing process via

the RIN pipe. The node is then blocked until the re

quest is processed by the message queuing process.

Thus the RIN pipe serves as a queue of requests for

-9-

)

I

J

action by the message queuing process. When the

transmit request is processed by the message queuing

process it signals the node to begin writing the mes

sage into the MIN pipe. The message queuing process

then reads the message from the MIN pipe and places the

message on a random access file, keeping a pointer to

the position of the message on the file. Lastly, the

pointer to the message is placed on a queue of pointers

to messages destined to the message's receiver node.

Figures 2(a) - 2(d) demonstrate the sequence of events.

Figure~(~)

Request to transmit~ Message MOUT pip e

Queuing - Process

MIN pipe Node -I'
RIN pipe Process

-10-

n Figure !(_!:)

RIN pipe ... Message MOUT pi pe
.,.

Queuing

MIN pipe Process
~

sig?al
~/

Node
~

......
' Process

)

Figure!(~)

RIN pipe
'

Message MOUT pi pe
,

Queuing

rl Message l Process I ,

MIN pipe Node
.J

......
Process

-11-

Figure !(~)

RIN pipe Message +-----1 r------=------....;.;
Message Random

Queuing access

MIN pipe Process MOUT pipe disk file

1---------~ Node

Process

)

Figure!(~)

rl Request for mess .1 Message MOUT pi pe

Queuing ...
.,,,.

Process

MIN pipe Node
~

'
RIN pipe Process

-i2-

Figure 2(f) -- --
Message .- I Message l r-... I .___ 1 .,,.
Queuing

MIN pipe Process MOUT pipe
~ ~

~ .

RIN pipe Node
-->

I......._

Process

)
Figure ~(~)

RIN pipe Message 1 Message 1
I I

.,.
Queuing

..... Process ..

MIN pipe Node MOUT pipe
.,
"' ' Process

-13-

)

Figure ~ (.!!)

RIN pipe Message I Message I
' I I ,.

.... Queuing ,...,.

MIN pipe Process

7
signal

l,
Node MOUT pipe

--Process '

Requests for a message are handled much in the

same manner in that the message at the front of the

requesting node's queue is retrieved from the random

access file and placed in the MOUT pipe. The message

queuing process then signals the requesting node to

begin reading the message out of the MOUT pipe, as

shown in Figures 2(e) - 2(h).

The message queuing process is continually respon-

ding to requests by nodes to use the MIN and MOUT pi

pes. In order to guarantee safe and fair use of the

pipes, the message queuing process allows only one node

to use either the MIN or the MOUT pipe at any given

time. Unsynchronized access to the pipes is prevented

by the message queuing process through use of mutually

exclusive locks and inter-process signals. A lock

allows a single process to read or write on a pipe.

-14-

)

Node processes wait their turn to use the pipes until

receiving a signal from the message queuing process,

after which the node gains exclusive access to the pipe

by locking it.

The mutually exclusive locking of a pipe is accom

plished with a non-standard UNIX system call which was

implemented by Robert Eifrig of the Oregon State

University Computer Science Department. A signal is a

standard UNIX inter-process com.mmunication feature

which allows a process to interrupt another. In the

simulator, the receipient process is awaiting the sig

nal, so the signal becomes an "acknowledged/proceed"

message.

Scenarios for the sequence of operations performed

by a node and the message queuing process during use of

the MIN and MOUT pipes are given below.

MOUT Pipe Scenario

Message Queuing Process

Read request from RIN pipe.
Write message into MOUT pipe.
Signal node to begin
reading the message.

-15-

Node Process
Send request to MQP
via the RIN pipe.
Await signal from MQP
before proceeding
further.

Receive signal from MQP.
Lock MOUT pipe for
reading.
Read message out of MOUT
pipe.
Unlock MOUT pipe.

()

)

j

MIN Pip~ Scenario

Message Queuing Process

Read request from RIN pipe.
Signal node to proceed.

Read message out of MIN pipe.

Node Process
Send request to MQP
via the RIN pipe.
Await signal from MQP
before proceeding
further.

Receive signal from MQP.
Lock MIN pipe for writing.
Write message into
MIN pipe.
Unlock MIN pipe.

Requests for messages are noted by the message

queuing process upon receipt of them. The message

queuing process maintains a logical array which is used

to record the requests. An element of the array

represents a request if it contains a TRUE value, which

is set to FALSE when a message is sent to the node.

When more than one node has requested a message and

messages are enqueued for the nodes, the message

queuing process must act as an arbitrator to decide

which node will be serviced. The algorithm used by the

message queuing process to decide which node to service

is a round-robin in which each node is given its turn.

A pseudo code version of the algorithm is given below.

-16-

)

J

The message queuing process main program:

begin
initialize;
while (messages_to_be sent> messages_sent)

begin

end.

read an incoming request;
if (incoming request is present) then

begin
process incoming request;
service the queued messages;
end

else
service the queued messages;

end

The initialize procedure:

begin
for i = 1 to number of nodes

begin
messages_in_queue [i) = O;
waiting for message [i] = FALSE;
idle [i] = FALSE;
end

token= O;
end;

The process incoming request procedure;

begin
if (message type= transmit) then

begin -
enqueue message on receiver queue;
increment messages in queue [receiver];
idle [receiver] = FALSE;
end

else if (message_type = request) then
begin
waiting_for_message [requestor] = TRUE;
idle [requestor] = FALSE;
end

else if (message type= idle) then

end;

begin
idle [sender] = TRUE;
end

-17-

)

The service the queued messages procedure:

begin
while (idle [token])

begin
advance token to next node;
end

if (messages_in_queue [token] <= 0) then
begin
advance the token to next node;
end

else
begin

end;

dequeue a message for node [token];
send message to node [token];
decrement messages in queue;
waiting_for_message [token] = FALSE;
advance token to next node;
end

The message queuing process algorithm is designed

to be fair. Examination of the algorithm shows that in

the worst case a node would have to wait N 1 turns

before receiving a message. The token, initially given

to node 0, must be at a node before the mode may re-

ceive a message. Since the token is advanced at least

one node each time the service procedure is executed,

all nodes will receive the token. It must be noted

that possession of the token by a node does not guaran

tee that the node will be scheduled to run.

Ideally, the node processes and the mesage queuing

process would alternate in being scheduled to run.

Since there is contention between processes carrying

out the simulation and other user's processes, the

order in which the simulation processes are scheduled

is non-deterministic. Use of signals by the message

-18-

)

queuing process to synchronize interactions between

itself and node processes prevents the scheduling of

processes from affecting the integrity of messages.

The synchronization does increase the time required to

carry out a simulation, but does not necessitate any

modification to the UNIX process scheduling algorithm.

Checkup:

A simulation may require a considerable amount of

elapsed time particularly if there are several users on

the UNIX system while the simulation is running. UNIX

allows programs to be run in the background or com

pletely detached from an active user. Background jobs

permit a user to do other useful work while a simula

tion is in progress, but the user may not log off of

UNIX. Detached jobs allow the user to log off of UNIX

while a simulation runs.

Simulations which are run as background or deta

ched jobs do not give the user any means of determining

the progress of a simulation. The checkup program

allows a user to check on the progress of a simulation.

The checkup program communicates with the message

queuing process to obtain the number of inter-node mes

sages that are yet to be transmitted, which is then

reported to the user. Communication between the mes

sage queuing process and the checkup program is effec

ted by use of a tempor~ry file which is initially

-19-

)

)

created by the message queuing process. The file con

tains the process identification number of the message

queuing process which is read from the file by the

checkup program. The process identification number of

the checkup program is then written onto the file and

then the message queuing process is signaled, using its

process identification number.

The message queuing process contains a signal

catching function which is executed upon receipt of the

signal from the checkup program. This function reads

the checkup process identification from the file and

then rewrites the file with the message queuing

process's identification number and the current number

of inter-node messages left. The checkup program is

signaled. Upon receipt of the signal, the checkup pro

gram reads the information from the file and reports it

to the user.

Report:

At the conclusion of a simulation the network his

tory file contains the inter-node messages which were

transmitted during the simulation. Error messages gen

erated in the message queuing process or in any of the

node processes are also present in the network history

file. Transactions between the node processes and the

message queuing process are stored in the file in the

sequence they occurred.

-20-

)

The report program produces a list of the transac-

tions contained in network history file. Each inter-

node message transmitted from a node to the message

queuing process is noted by the transmitting node's

identification number, the receiver node's identifica

tion number and the number of bytes in the message. A

request for reception of an inter-node message is noted

by the requesting node's identification number. If an

error message is present in the network history file,

it is listed with the node identification number where

the error occurred along with an error number.

Totals of the number of messages transmitted,

requests for messages and errors are accumulated by the

report program. These totals are printed in a summary

at the end of the listing.

Contents of the inter-node messages are not inclu

ded in the report because of the large variety of mes

sage formats that might be used in different simula-

tions. The UNIX operating system has a file dumping

utility which may be used to view the contents of mes

sages contained in the network history file.

Information which is pertinent to a simulation may

also be output by any node onto files. A user may use

this technique to trap information which is not saved

in the network history file.

-21-

III. Example

An example is given in this section to demonstrate how a

simulation is carried out. The problem to be studied is a com

munication loop which is described in [4]. The loop consists of

loop interface processor nodes, called loop nodes, which transmit

data amongst each other on a unidirectional data loop. Use of

the data loop by the loop nodes is controlled by a control pro-

cessor node which is connected to the loop nodes by a unidirec

tional control loop.

The control processor is responsible for maximizing use of

the data loop. This is accomplished by transmission of a message

from the control processor to the loop nodes instructing them

) when they may use the data loop. During the circuit of a control

message around the control loop, each loop node uses a portion

the control message to update its loop interface configuration.

If the loop node wishes to send a message on the next cycle it

then packs this request into the control message before forwar

ding it. Since a loop node must respond to the next control mes

sage, we will assume all data transfers occur within the amount

of time required for one control message cycle.

Pseudo code for the loop node program is given below.

begin
initialize the node;
choose node to send first message to;
while (forever)

begin
wait for control message to arrive;
receive control message;
unpack control message;
case (control message)

begin
"receive data" : prepare loop inteface

-22-

)

to receive data;
I* Not implemented*/

"send data" prepare loop interface
to send data;
I* Not implemented*/

"through data" : prepare loop interface
to allow data to pass
through;
/* Not implemented*/

end case;
if (need to send a message)

begin
pack control message with destination's

node number;
send control message to next node on the loop;
end;

else
begin
pack control message with default (-1)
send control message to next node on the loop;
select next node to send a message to;
end

end while;
end.

When the control message has been processed by all loop

nodes it returns to the control node. Upon its arrival the con

trol message is decoded to determine which loop nodes need to use

the data loop. These requests for the data loop are then exam

ined to determine how to achieve maximum use of the data loop.

After analyzing the requests the control node forms the next

control message and transmits it to the loop nodes. The process

described above is repeated as long as the data loop is in opera-

tion.

Pseudo code for the control node program is given below.

begin
initialize the node;
while (forever)

begin
send control message to the first node on the loop;
wait for return of the control message;
receive the control message;
place requests to use the data loop in a queue;

- 23-

)

end.

search the queue for requests which can proceed;
form the control message;
determine how many concurrent data transfers are

occurring on the data loop and output the number to a
file for later analysis.

end while;

The purpose of the example simulation is to determine the

number of concurrent data transfers that may be in progress as a

function of the number of loop nodes on the data loop. In order

to obtain this performance data one may simulate the data loop

and vary the number of loop nodes during successive simulation

runs.

First one must determine the basic topology of the data loop

to be used in the simulation. Since only the control loop is

needed, the data loop will be excluded from the topology. The

topology of the control loop is shown in Figure 3.

-24-

)

)

Figure 3

Control
~

Node

(N+l)

\/

Loop Loop Loop

Node
....... Node Node - r

0 1 N

One must develop representative algorithms for a loop node
\

and the control node. These algorithms are then coded in the C

programming language and text edited into UNIX files. Node code

for the loop node is given in Appendix A, and for the control

node in Appendix B. Since the number of loop nodes will vary,

the node code must contain a means for easily changing this num-

her during successive runs. This is accomplished by using a

defined constant whose value determines the number of loop nodes,

data structure sizes and buffer sizes. The control node must

save the number of concurrent data transfers as each control mes

sage is sent to the loop nodes. This is done by having the con

trol node program write this information onto a file during a

simulation.

-25-

)

The file created by the control node program would be

analyzed by the user to determine the average number of con

current data transfers. Each record in the file contains the

number of concurrent transfers for the corresponding control mes

sage.

The specifications program is then used to set the specifi-

cations for the simulation. Each successive simulation will

require the specifications to be changed to reflect the addition

of loop nodes to the network. An example showing entry of the

specifications is given in Appendix C.

The compilation program is then used to compile the node

code programs. After completing the compilations, the simulation

is ready to run. Appendix D contains an example of a terminal

session in which the compilation program and the simulator are

executed. Appendix E shows the output from the report program,

for the example simulation.

IV. Extensions:

A simulation may be thought of as a sequence of events,

Each event is caused by receipt and processing of an inter-node

message or by some node's self-initiation. Effects of an event

are then manifested in subsequent inter-node messages or some

intra-node action by the receipient of a message. During the

execution of the sequence of events the simulator is not capable

of measuring elapsed time, Since the ability to measure time is

crucial to obtain meaningful results about certain aspects of a

-26-

) ,

)

simulation, this section describes how the present network simu

lator might be enabled to measure time by modification of the

UNIX kernel.

The modifications are explained by first describing how UNIX

currently performs the tasks which are pertinent to measurement

of elapsed time. The modifications are then outlined.

UNIX is an interrupt-driven operating system. This implies

that all operations performed by the UNIX kernel are initiated by

some form of interrupt. UNIX uses the entire hierarchy of inter

rupts which are supported by the PDP/11 computer. For a complete

description of the interrupts the reader is referred to [5].

Interrupts are used in UNIX to implement system calls from a

running process to the UNIX kernel. System calls are requests by

a process to ·the kernel to perform some privileged operation eg.,

data transfers from an external device to main memory, process

spawning, suspension of an executing process. At the time a run

ning process executes a system call its current state is saved

and control passes to an interrupt vector within the UNIX kernel.

The interrupt vector contains the memory address within the

kernel's address space where the system call handler function

resides. Control passes to the address obtained from the inter

rupt vector and then the actual operation to be performed by the

system call is performed by executing the system call handler

code. After completion of the system call, the state of the pro

cess which initiated the system call is restored and the process

is restarted.

During execution of a system call, the process which ini

tiated the system call is suspended and so it is not "aware" of

-27-

)

J

being suspended from execution. At completion of the system

call, control returns to the initiating process in the form of a

return as from any subprogram. Time which elapses while a system

call is executed by the kernel is overhead which cannot be

separated from the total amount of time which a node process

runs.

There are two possible modifications which would enable an

accounting of each node process's execution time to be main

tained. Both modifications require addition of an accumulator

variable to the process entry for each process in the UNIX pro

cess table. This accumulator would be initialized at zero at the

start of a simulation, As each node process is scheduled to exe

cute, the current system time would be saved and when the process

is suspended the accumulator for the node process would be upda

ted to reflect the amount of time accrued,

The first possible modification to the UNIX kernel which

would prevent system call overhead time from being accumulated

would be to rewrite the system calls which are used by the

network simulator. Each system call handling function would con

tain code to update the node process's accumulator. A modifica

tion as outlined above would be feasible because only nine system

calls (read, write, seek, sleep, lock, open, close, signal, kill)

are used in the simulator.

The second possible modification would conserve memory usage

within the kernel. In this scenario a single, new system call is

used within the simulator. When executed, the new system call

handling function updates the accumulator and then calls the sys

tem call handling function which performs the desired operation.

-28-

)

A parameter passed to the new system call would be used to select

the desired system call.

The accumulator maintained for each node may be regarded as

a local clock. Timestamps may be implemented by obtaining the

accumulator's value prior to and after some event that occurs in

a simulation. The accumulator's value would be retrieved from

the kernel by a system call.

The last major modification which must be made to the UNIX

kernel involves the scheduler. Each node in a simulated network

exists as a UNIX process during a simulation. As processes, the

nodes are scheduled to run by the UNIX scheduler. The scheduler

uses the priorities of all processes present in the system to

decide which process to run next, whenever process swapping oc-

curs. The priority of a process is initially set by UNIX and

then increased until the process is selected by the scheduler to

run. After running until some event; such as a system call, 1/0

request or a clock interrupt, the process's priority is adjusted

to reflect the CPU usage it has accumulated, thus decreasing the

process priority.

The UNIX operating system allows a process to adjust its

priority via a system call. This adjustment causes the UNIX

scheduler to run the process more often. Unfortunately, the sys

tem call does not provide a means for scheduling one process in

relation to other processes involved in a simulation.

Since the order of execution of node processes during a

simulation is nondeterministic, the amount of time which one node

process executes may vary considerably from other node processes.

In an ideal simulation environment there would be no variance in

-29-

)

the amount of time that each node process executes. The variance

amongst the execution times of the node processes may be negated

by modification of the UNIX scheduling algorithm..

The modified scheduling algorithm would use the execution

time accumulators, which are maintained for each node process, to

choose the node process which has the smallest accumulator value

when scheduling the next process to execute. In a scheme such as

this the largest variance between the execution times of all node

processes would be one time slice. Duration of a simulation

could then be controlled with the time accumulated by any node

process. The time slice could be adjusted by changing a constant

in the UNIX kernel source code. Any value used for the constant

must be large enough to prevent UNIX from thrashing.

V. Conclusions

The simulation tool provides the following benefits to a

user:

- Networks may be modeled at any level.

- Communication protocols need not be used, but may

be implemented if needed.

- Utilities provide special functions which may be

used easily.

- Network specifications are easily selected. They may

be reused or changed for a later simulation.

-30-

)

Preparation for a simulation is performed

by the compilation program.

- Simulations may be executed in the background or as detached

jobs, freeing the user for other tasks. Progress of

a simulation maybe determined in this situation by

using the checkup program.

The impact of a simulation upon the operating system is

determined by the network size. Swapping of node processes out

of main memory will occur more frequently as more nodes are

present in a simulated network. The message queuing process is

also susceptible to swapping, but to a lesser degree as its sys

tem priority is higher than any node process's priority.

Other than network size, the simulator does not have any

properties which adversely affect the operating system. Exten-

sive network topologies do not affect any operating system

resource more than small topologies. This is prevented by using

the same inter-process pipes for transfer of the inter-node mes

sages.

-31-

)

VI. References

1. Schneider, G.M., "VANS--A Resource-Sharing Computer

Network Design Tool", Computer Networks and Simulation,

Schoemaker, S., (Ed.), North Holland, New York, 1978,

pp 227-248.

2. Davison, B., "Using a Simulation Model in the Design

3.

of a Computer Network", Computer Networks and Simulation,

Schoemaker, S., (Ed.), North Holland, New York, 1978,

pp 169-185.

Kain, R. Y., Franta, W.R., Jelatis, G.D., "CHIMPNET:

A Network Testbed", Computer Networks,

Vol. 3, No. 6, North Holland, New York, 1979,

pp 447-457.

4. Jafari, H., Lewis, T. G., Spragins, J. D.,

"Simulation of a Class of Ring-Structured Networks",

IEEE Trans. on Computers, Vol. C-29, No. 5,

May 1980, pp 385-392.

5. Digital Equipment Company, PDP-.!.!.. Processor Handbook,

Digital Equipment Company, Maynard, Mass., 1975,

pp 2-7 to 2-11.

-32-

)

)

Appendix A -- Loop Node Program

The node code for the loop nodes is given in this section.

Line numbers are only for reference purposes.

1
2
3
4
5
6
7
8
9

10
J.1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

define NUMN0DES 6
define TRUE 1
define FALSE 0
include "cm.gvar"

char buffer [NUMNODES * 2]; /* Buffer for control message*/
int nodeid; /* Node's id number*/
int t [2]; /* Current time - used to set rn utility*/
int needtosend; /* Is another data transfer needed*/
int control; /* Control value from controller node:

0 = data is to go through the node.
1 = begin receiving data.
2 = begin transmitting data.*/

int sendto; /* Node to which the next data transfer
is directed*/

int forever; /* Used to loop on*/

main () {

inti;

nodeinit(); /* Initialize node*/
nodeid = ln(); /* Get node id*/
time(t); -/* Initialize rn utility with

the current time*/
srand(t[2]);
needtosend = rn(0,l); /* Set to True or False*/
sendto = rn(0,(NUMN0DES-1)); /* Decide which node

to send data to*/
forever= TRUE;
while (forever) {

if (i = receive()) {

}

/* Receive and process a control message*/
control= ctoi(&buffer[nodeid * 2]);
switch (control) {

}

case 0 throughtraffic();
break;

case 1 indata();
break;

case 2 outdata();
break;

default : printf("Bad message.\n");

if (needtosend) {
/* If a data transfer is needed, pack node

id of receiver into the control message
and send the control message to the next
node on the control loop. */

itoc(sendto, &buffer[nodeid * 2]);
send();

A-1

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

)
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Appendix A -- Loop Node Program

}
else {

I* No data transfer is needed, so pack
-1 into control message and send it.*/

itoc(-1, &buffer[nodeid * 2]);
send();
/* Reset sendto and needtosend for next

time.*/
needtosend = rn(O,l);
sendto = rn(O,(NUMNODES - l));
}

}
}

/* Include the communications and random number
utilities into the node code.*/

ti include
II include

I*

.. " cm.c
"rn.c"

* Function Receive
*I

receive() {

inti;

if ((i = cm(l,O,buffer,O)) <= 0) {
printf("Node %d -- receive error.\n",

nodeid);
return(FALSE);
}

return(TRUE);
}

I*
* Function Send
*I

send () {

int nextnode;

nextnode = nodeid + l;
cm(2, nextnode, buffer, (NUMNODES*2));
}

/* The throughtraffic, indata and outdata
functions are stubs in the loop node code
program because data transfers on the
data loop, per se, are not part of this
simulation. */

I*
* Function Throughtraffic

A-2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

) 134
135
136
137
138
139

Appendix A -- Loop Node Program

*I

throughtraffic () {

/* Throughtraffic would configure the data loop
interface for transfer of data through the
node's interface. The node would neither
receive nor send data.*/

}

I*
* Function Indata
*I

indata () {

/* Indata would configure the data loop
interface to receive data at the node.*/

}

I*
* Function Outdata
*I

outdata () {

/* Outdata would configure the data loop interface
to transmit data from the node*/

}

A-3

)

)

Appendix B -- Control Node Program

The node code for the controller node is given in this sec

tion. Line numbers are only for reference purposes.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

II define TRUE 1
define FALSE 0
define NUMNODES 6

II include "cm.gvar"

char buffer [NUMNODES * 2]; /* Control message buffer*/
int queue [NUMNODES * 2) [3]; /* Queue of requests to use

the data loop.
queue[i] [O]=sender
queue[i][l]=receiver
queue[i][2]=link to next

queue node*/
int fd; /* File descriptor for output file*/
int free; /* Next free queue node*/
int front, back; /* Front and back of queue*/
int inuse [NUMNODES] [NUMNODES]; /* Matrix of links in use.

rows=nodes
columns=links */

int busy [NUMNODES]; /* Busy nodes*/
int links [NUMNODES); /* Busy links*/
int inqueue [NUMNODES]; /* Nodes which have Tequests in queue*/

main () {

int forever, i;

/* Initialize control node for the simulation*/
nodeinit();
initialize();
/* Loop forever, processing control messages*/
forever= TRUE;
while (forever) {

}

/* Send a control message*/
if (i = .sendpacket()) {

/* Wait on return of control message*/
if (i = receivepacket()) {

/* Place requests in queue*/
enqueue();
/* Determine which nodes may use the

data loop*/
maxuse();
}

/* Form next control message*/
formessage();
}

}

II include "cm. c"

B-1

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

) 78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107

Appendix B -- Control Node Program

I*
* Function Initialize
*I

initialize () {

inti, j;

I*

/*Setup queue as a singly linked list*/
for (i = O; i (((NUMNODES * 2) - 2); ++i)

queue [i] [2] = i + l;
queue [(NUMNODES * 2) - l] [2] = -1;
/* Set all data structures to FALSE because no

data transfers are in progress*/
for (i = O; i (NUMNODES; ++i) {

for (j = O; j < NUMNODES; ++j)
inuse [i] [j] = FALSE;

busy [i] = FALSE;
links [i] = FALSE;
inqueue [i] = FALSE;
}

/* Initialize queue pointers*/
free= O;
front= -1;
back= -1;
/* Open output file for number of busy nodes*/
fd = creat("control.out", 0600);
/* Fa.rm first control message * /
formessage();
}

* Function Sendpacket
*I

sendpacket () {

inti;

/* Send control message to node O */
if ((i = cm(2, 0, buffer, (NUMNODES * 2))) !=

(NUMNODES * 2)) {
printf("Transmit error at controller.\n");
return(FALSE);
}

return(TRUE);
}

I*
* Function Receivepacket
*I

receiv~packet () {

inti;

B-2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

)
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

I*

Appendix B -- Control Node Program

/* Receive control message from last node on loop*/
if ((i = cm(l, 0, buffer, 0)) <= 0) {

printf("Receive error at controller.\n");
return(FALSE);
}

return(TRUE);
}

* Function Freelist
*I

freelist () {

inti;

/* Return pointer to next free element in the queue*/
i = free;
free= queue [free] [2];
return(i);
}

I*
* Function Enqueue
*I

enqueue() {

int i, j, k;

/* For each node on the loop*/
for (i = 0; i (NUMN0DES; ++i) {

/* Unpack node's request*/
j = ctoi(&buffer[i*2]);
/* If request is ok place it in the queue*/
if ((j >= 0) && (j != i) && (! inqueue[i])) {

k = freelist();
queue [k] [0] = i;
queue [k] [1] = j;
queue [k] [2] = -1;
queue [back] [2] = k;
back= k;
/* Clear the node's data structures,

it is idle*/
for (j = 0; j < NUMN0DES; ++j)

inuse [i] [j] = FALSE;
busy [i] = FALSE;
inqueue [i] = TRUE;
}

}
/* Update the links array to show which links are in use*/
for (j = 0; j (NUMN0DES; ++j) {

links [j] = FALSE;
for (i = 0; i (NUMN0DES; ++i)

links (j] = links [j] 11 in use [i] [j] ;
}

B-3

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Appendix B -- Control Node Program

}

I*
* Function Maxuse
*I

maxuse () {

int qp, i, ok, j;

I*

qp = front;
while (qp > -1) {

ok = TRUE;
j ~ queue [qp] [O];
/* Check linki to see if they are in use by other nodes*/
while ((j != ((queue [qp] [l] + 1) % NUMNODES)) && ok) {

if (links [j])
ok = FALSE;

j = (j + 1) % NUMNODES;
}

if (ok) {
/* Links are free, reserve them*/
j = queue [qp] [O];
while (j ! = ((queue [qp] [1] + 1) % NUMNODES)) {

links [j] = TRUE;
inuse [queue [qp] [O]] [j] = TRUE;
}

/* Node is busy, take ±ts request off
of the queue * /

busy [queue [qp) [OJ] = TRUE;
inqueue [queue (qp) [O]] = FALSE;
release();
qp = front;
}

else
/* No more requests can be honored, due to

the use of the data loop, wait until next
time*/

qp = -1;

/* Count busy nodes and output the number to the file
for later analysis*/

i = O;
for (j = O; j < NUMNODES; ++j)

i = i + busy [j];
write(fd, &i, 2);
}

* Function Release
*I

release() {

inti;

B-4

)

Appendix B -- Control Node Program

220 /* Release queue element at the front of the queue and
221 place it back on the freelist */
222 i = front;
.223 front= queue [i] [2];
224 queue [i] [2] = free;
225 free= i;
226 }
227
228 /*
229 * Function Formessage
230 *I
231
232 formessage () {
233
234 ~nt i, j, end;
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

/* Initially set all nodes to "through" traffic*/
for (i = O; i < NUMNODES; ++i)

itoc(O, &buffer[i*2J);
/* For each busy node, find the end of its

transmission path*/
for (i = O; i < NUMNODES; ++i) {

}

if (busy [i]) {
j = (i + 1) % NUMNODES;
end= (i - 1) % NUMNODES;
while (j != i) {

if (inuse [i] [j])
j = (j + 1) % NUMNODES;

else {

}

end= (j - 1) % NUMNODES;
j = i;
}

/* Set control message fields to notify
transmitting and receiving nodes*/

itoc(2, &buffer[i*2]);
-itoc(l, &buffer[end*2]);
T

}

B-5

)

Appendix C -- Specifications Example

This section shows how a user would use the specifications

program to select the necessary specifications for a simulation.

The specifications correspond to the simulation which would use

the node code in Appendices A and B. Responses to queries from

the program are underlined for clarity.

% specs
Welcome to the Network Simulator.

This program is the initial step in using the
network simulation package on the PDP 11.

You may set up and/or use a network
simulation specification file by entering one
of these modes:

new
old
change

new

A network may contain 2 - 45 nodes.
How many nodes are needed in your network?

7

There will be 7 nodes in the network.
They will be numbered O - 6.

Please enter the topology specifications.
The topologies which are available are:

complete
ring
star
general

What is the topology of your network?

The topology will be a ring network of 7 nodes.

This is the adjacency matrix which represents
the topology of your network.

To

C-1

Appendix C -- Specifications Example

From
0
1
2
3
4
5
6

0123456
0100001
1010000
0101000
0010100
0001010
0000101
1000010

The adjacency matrix has been translated
into a more readable form.

The links in your network are:

From To
0 1, 6,
1 o, 2,
2 1, 3,
3 2, 4,
4 3, 5,
5 4, 6,
6 o, 5,

The topology specifications have been completed,
Are you satisfied with the current
specifications? Enter "yes" or "no".

Please enter the node code specifications.

Please use a carriage return on a new line to
terminate input of the node code specifications,

The node code file for each node is:

At node o, loop.c
At node 1, loop,c
At node 2, loop,c
At node 3, loop.c
At node 4, loop.c
At node 5, loop,c
At node 6, control,c

The node code specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or "no",

Please enter the data file names of all files
needed in your network. You may enter

C-2

)

Appendix C -- Specifications Example

up to 45 data file names, if more are
entered they will be ignored.

Please use a carriage return on a new line to
terminate input of the data file name specifications.

No data files will be used in your network,

The data file name specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or "no".

How many inter-node messages
are to be sent during the simulation?

6000

There will be 6000 messages sent.

The number of inter-nod~ messages specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or "no".

C-3

Appendix D -- Compilation and Simulation Example

)
In the following example the compilation program, simulator

and checkup program are executed, The simulator is ran as a

background job.

% comp
The node code for node 0 has been compiled.
The node code for node 1 has been compiled.
The node code for node 2 has been compiled.
The node code for node 3 has been compiled.
The node code for node 4 has been compiled.
The node code for node 5 has been compiled.
The node code for node 6 has been compiled.
% sim > simout&
process id
% simcheck
5999 messages to go.

Again?
yes
5997 messages to go.

Again?
no

) %

D-1

)

)

Appendix E -- Report Program Output

In the following example the report program is executed.

Only a portion of the output is shown due to its length.

The network contains 7 nodes.
The nodes were numbered from Oto 6.
The network traffic during the simulation
was 6000 inter-node messages.

Node 1 requested a message
Node 2 requested a message
Node 3 requested a message
Node 4 requested a message
Node 5 requested a message
Transmit 12 bytes from node 6 to node 0
Node O requested a message
Node 6 requested a message
Transmit 12 bytes from node 0
Transmit 12 bytes from node 1
Node 1 requested a message
Transmit 12 bytes from node 2
Node 2 requested a message
Node O requested a message
Transmit 12 bytes from node 3
Node 3 requested a message
Transmit 12 bytes from node 4
Node 4 requested a message
Transmit 12 bytes from node 5
Node 5 requested a message
Transmit 12 bytes from node 6

Network simulation errors= 0
Messages transmitted= 6000
Messages requested= 6006
Idle nodes= 0

to node 1
to node 2

to node 3

to node 4

to node 5

to node 6

to node 0

E-1

)

Appendix F -- User Manual

This appendix contains the User Manual for the network
simulator.

F-1

() _

)

Appendix F -- User Manual

Oregon State University
Computer Science Department

Network Simulator User Manual

Walter Domka
Pat Kalvin

Michael Freiling

WASP-2
August 1981

A software system to study network algorithms was implemen
ted on UNIX. Each part of a network algorithm is written as a
single C program which becomes a virtual node in the network,
During a simulation, all virtualized nodes run as separate pro
cesses on a single PDP 11/40. Inter-node communication is carried
out with procedures local to each node, to send and receive
inter-node messages to and from a mess~ge queuing process, Com
munication between nodes is effected by use of virtual links
which are specified in the simulated network's topology. The
links are implemented on inter-process pipes between the message
queuing process and the node processes.

Working and Software Papers are intended primarily for internal
circulation. They contain software documentation and rough drafts
of ideas. These papers are kept as up-to-date as possible,

F-2

)

1.
2.
3.
4.
5.

6.

7.
8.
9.
10.

Appendix F -- User Manual

T A B L E O F C O N T E N T S

Introduction
Definitions
Capabilities
Reserved Files
Node Code
5.1 Utilities

5.1.1 Communication Utility
5.1.2 Random Number Utility
5.1.3 Database Utility

5.2 An Example
Specifications
6.1 Modes

6 .1.1

6.1.2

NEW Mode
6.1.1.1 Topology
6.1.1.2 Node Code
6.1.1.3 Data File Names
6.1.1.4 Data File Usage
6.1.1.5 Data File Formats
6.1.1.6 Number of Messages
6.1.1.7 An Example
CHANGE Mode
6.1.2.1 An Example

6. 1. 3 OLD Mode
Compilation
Simulation
Report

Checkup

Appendices

A. Query Response Syntax

1
4
5
7
9

10
11
14
15
15
17
17
18
18
21
22
24
24
25
26
31
32
34
35
36
37
40

41

Appendix F -- User Manual

1. Introduction

A computer network consists of two or more communicating

virtual machines. The algorithm that controls the interaction

between components of a network is distributed amongst these com

ponents. Until now, the developement of network algorithms has

required that a hardware implementation of the network be in

existence for testing of the algorithm. The network simulator

which this manual describes, allows a network algorithm to be

created and then tested under a simulated environment. This

manual is intended to be the source of information needed by

anyone to successfully use the network simulator .

The network simulator runs on the UNIX operating system of

) the PDP 11/40. In fact, the simulation of a network is made pos

sible by the flexibility and accessibility of the UNIX operating

system. To use the simulator, one must be fluent in the C pro

gramming language, the UNIX operating system and the use of the

UNIX text editor.

A simulation run requires that the user create one or more

component algorithms which make up the network algorithm. The

components are then coded in the C programming language. After

this, the C code and any needed data files are text edited into

UNIX files.

The network to be simulated is then described to the speci-

fications program. These specifications will be used by the

simulator to carry out the simulation. The specifications pro

gram which collects this information concerning the network from

the user is interactive. It queries the user to input his network

-1-

Appendix F -- User Manual

specifications by using full sentence queries. Any errors detec

ted in these specifications are reported to the user who may then

correct them before proceeding further. After each step of the

specification input has been completed, the specifications are

displayed back for the user's inspection. If any changes are

needed, the user is given a chance to make them. After completing

the input of a particular network's specifica~ions, they are

saved on a file that may be reused or altered.

Node code programs must be compiled prior to a simulation.

The ~ode code file ~ames, which are stored in the specifications

file, are used by the compilation program to compile the pro

grams. After each simulation, the resulting core image file is

copied onto a reserved file. Reserved files are used so that the

) files may be located by the simulation driver program.

The compilation program is also capable of detecting compi

lation errors which occur while compiling node code programs. If

this occurs, the user is queried to determine if a listing file

of the node code program and compilation error messages is needed

for diagnostic purposes. An affirmative response from the user

causes the compilation program to create the listing file.

When all node code programs have been successfully compiled,

the simulation driver program is used to carry out the actual

simulation. The driver program creates a separate UNIX process

for each node and for the message queuing process, and esta

blishes the UNIX pipes used to transmit inter-node messages. The

core image files created during compilation of node code programs

are then loaded into the UNIX processes. A core image of the

message queuing program is also loaded into one process which

-2-

)

Appendix F -- User Manual

becomes the message queuing process. Initialization of each pro

cess is accomplished by having the process read the information

needed to communicate with other processes from a temporary file,

The temporary file was created by the simulation driver program

prior to initialization of the process.

After all node processes and the message queuing process are

initialized, the simulation driver broadcasts a startup signal to

the processes informing them to begin the simulation. While the

node processes are busy with the simulation, the driver waits on

the message queuing process to terminate indicating completion of

the simulation.

During a simulation, the message queuing process creates a

file which contains a record of each inter-node transaction and

each inter-node message. The contents of the file, called a

network history file, may be examined by the user to determine

success or failure of a particular simulation. A report program

is available which prints a listing of the transactions that

occurred during a simulation. The report program reads the his

tory file in order to generate its listing.

Simulations may require a considerable amount of machine

time, particularly if many nodes are in a network, Progress of a

simulation may be determined by using the checkup program. The

checkup program interrupts the message queuing process and ob

tains the current number of inter-node messages which must be

transmitted before the simulation is completed. After the

checkup program obtains the number of messages, it prints the

number at the user's terminal.

-3-

Appendix F -- User Manual

2. Definitions

It is necessary to define the meaning of several words and

phrases as used in this manual.

Node The entity which represents a virtual machine in a

network. The virtual machine level at which a network is simula

ted may be chosen by the user. For example, one user might regard

a node as being a complete computer installation while another

user might view a node as a low level communication loop inter

face processor.

) Link - A communication channel that connects a pair of nodes. A

link is best viewed as a virtual, bidirectional channel between

the nodes in that the mechanics of the channel are completely

transparent to the user and the nodes.

Topology A description of how the nodes in a network are con-

nected together by links,

Node code - The code which implements the part of a netwo~k al

gorithm which is local to a particular node. If all nodes of a

network are duplicated, then a user would only have to create one

version of the node code. If a network is to contain different

node code at some nodes, the user would code each distinct algor

ithm separately, Each node code is a complete algorithm in

itself, but also a component of the network algorithm,

-4-

Appendix F -- User Manual

Data file - A rectangular set of values which is local to a node

in the network. The values are treated as attributes in the

relational database sense. Each node can manipulate the contents

of any of its data files during a simulation by performing upda

tes, retrievals, deletions and stores,

Utility - A commonly used procedure which may be called by the

user from his node code. The utilities are loaded with the node

code as needed by using the C compiler's preprocessor. The util

ities are useful for such tasks as manipulating the data files,

and most importantly, performing inter-node communication.

History file - A file created during a simulation which contains

information about the simulated network's performance, The

inter-node communication utility traps each message and writes it

and identifying information onto the history file.

3. Capabilities

The capabilities of the network simulator are determined by

the values of defined constants in the simulator and the current

configuration of the UNIX operating system on which the simulator

is running.

-5-

)

Appendix F -- User Manual

These defined constants are listed below:

MAXDATATYPES 2
MAXFIELDS 10
MINN0DES 2
MAXN0DES 45
MAXLINE 100
MAXPIPE 4096

Each of the constants control the indicated capability of the

simulator:

MAXDATATYPES - The number of different data types that may be

used in any data file.

character strings.

The 2 types are integer (16 bit) and

MAXFIELDS - The number of fields or attributes that may occur in

any data file tuple.

MAXLINE The maximum number of characters in a line of input

from the user's terminal to the simulation control software.

MAXN0DES - The maximum number of nodes that may be in a simulated

network. This constant is very dependent upon the local UNIX

operating system. Each node is simulated by using a process in

the operating system. Care should be taken not to set this con

stant too high and therefore conflict with the number of pro

cesses needed for the UNIX kernel,

This constant also sets the number 1of data files used at any

node. This allows each node to have a local data file that is not

used at any other node in the network.

-6-

)

Appendix F -- User Manual

MINNODES - The minimum number of nodes in a network.

MAXPIPE - The maximum size, in bytes, of a UNIX pipe buffer,

Since messages are sent through pipes, the maximum pipe size for-

ces the maximum message size -to be 4092 bytes.

used by the simulator for a message header,

Four bytes are

4. Reserved Files

During a simulation several UNIX files are used, The files

which contain programs used before, during and after a simula

tion, are present in the user's directory. In addition to these,

temporary files are created and used by several of the programs.

The user must obtain the programs which are used for simula

tions from the backup device on which they are stored. These

files are not normally kept on the system.

To prevent file name conflicts the user must not use any of

the files in the list shown below,

File Name

cm.c
cm.gvar

comp
dm,c
dm.gvar

mqp
netprt

Contents

C source code for the communication utility.
An "include" file of global variables needed by
the communication utility.
The compilation program.
C source code for the database utility.
An "include" file of global variables needed
by the database utility.
The message queuing program,
The report program,

-7-

()
ntext

rn,c
sim
simcheck
specs

Appendix F -- User Manual

A procedure file which calls the editor to
place line numbers on node code files for
diagnostic purposes.
C source code for the random number utility,
The simulation driver program.
The checkup program,
The specifications program,

While completing a simulation temporary files are created,

used and unlinked within the user's directory. The list of files

shown below describes which files are used by the various pro-

grams and processes.

File Creator Used By Unlinked By Contents

net. spec specs specs, It is not network
comp, unlinked specifications
sim

net.history message netprt It is not inter-node
queuing unlinked messages,
process error messages

from a
simulation

node,init sim node sim initialization
processes information

needed at the
node processes

cm,init sim message message initialization
queuing queuing information
process process needed at the

message queuing
process

net.check message message message process id
queuing queuing queuing number of the
process process process message queuing

process and
number of
messages, or
process id of
the checkup
process

t comp comp comp compilation
error messages

-8-

)

)

Appendix F -- User Manual

a.out comp comp comp core image of
' a node code

program

nout comp comp comp preprocessed
node code
program with
line numbers

nodecode.i comp comp comp preprocessed
node code
program

nodecode.e comp comp It is not preprocessed
unlinked node code

program with
line numbers
and compilation
error messages

ncXX comp comp, sim core image of
sim a node code

program for
node XX

5. Node Code ----

Node code programs are simply C programs. As such, they

must meet all requirements inposed by the Version 6 C compiler.

Three additional requirements are imposed on node code programs,

to allow them to be used in a simulation. The three requirements

are:

1. The C compiler's preprocessor is used to include utility source

code and global variable declarations into node code programs.

The first line of the source code must have the "II" character

at the front of the line. This alerts the C compiler to

preprocess the source code.

-9 -

)

Appendix F -- User Manual

2. Variable names and function names may not begin with the underscore

character, "_". The underscore character is reserved for unique

variable names and function names within the utilities' source code,

Additional function names are reserved because they are used

for a utility or the node initialization function. The reserved

function names are: "nodeinit", "cm", rn" and "dm".

3. The first executable statement within the "main" function

of every node code program must call a function which

initializes the node prior to a simulation. This function

is part of the communication utility since it must always

be used. The function is called with a function reference

as shown below.

main() {

nodeinit ();

}

5.1 Utilities

Utilities are collections of one or more C function subpro-

grams. Each utility performs a special function at a node. The

-10-

')

Appendix F -- User Manual

communication utility must be used at all nodes to allow inter

node communication. The other utilities may be used if they are

useful.

Some utilities require global variables in order to work

correctly. These global variables are also included in the node

code programs by using the C preprocessor, The included global

variables must be positioned in the node code program where glo

bal variable declarations normally appear.

Utilities and their global variables are included by placing

a statement of the following form in a node code program.

include filename

) where filename is the UNIX file that contains the utility or glo

bal variables.

5.1.1 Communication Utility

This utility allows nodes to:

1. Send messages to other nodes.

2. Receive messages.

3. Set the node to an idle status. This informs the message

queuing process that the node is not going to receive any

messages. This allows the message queuing process to skip the

node when deciding which node to deliver a message to, and

decreases the amount of time required to carry out a simulation ,

-11-

)

4.

5.

Appendix F -- User Manual

Poll the message queuing process to determine how many

messages are queued up for the node,

Obtain the node number which identifies the node within the

network, This allows the user to write node code which is independent

of any particular node numbers.

6. Pack integers into character arrays when forming inter-node

messages in a character array buffer.

7. Unpack integers from character arrays when messages are stored

in character array buffers.

The communication utility is called from node code programs

with the following function reference.

cm(code, to, madr, nbytes);

with: int code, to, nbytes;

*char madr;

The value of the parameter code determines what the utility

does as explained below.

Code Value

1 In this case, the utility will receive
which is to be delivered to the node,
have the following interpretations,
to= Not used,

the next message
The other parameters

madr = The address of a buffer into which the message will
be placed. The buffer must be large enough to
accommodate the message.

nbytes = Not used.
If a message is received successfully, the utility returns
the number of bytes transfered into the buffer, otherwise
it returns a -1 value,

2 A message is to be sent to another node,
to= Node identification number of the node to which the

message is to be sent,

-12-

\

Appendix F -- User Manual

madr = Address of a buffer in which the message is stored.
nbytes = Number of bytes in the message, must be less than

4093.
In this case the utility returns the number of bytes
transmitted (nbytes) if no errors occurred, otherwise
-1 is returned.

3 Set the node to idle status,
to, madr, nbytes = Not used.
In this case the utility returns a value of O if no errors
occurred, otherwise -1 is returned,

4 Poll the message queuing process to find out how
many messages are waiting to be delivered to
the node.
to, madr, nbytes = Not used,
In this case, the utility returns a value that
is greater than or equal to zero to inform the
node code of the number of messages, otherwise
-1 is returned if an error occurred.

The communication utility contains a function which returns

the local node's identification number. The function reference

has the following form.

_ln();

Packing of integers into character array buffers may be

accomplished with the following function reference,

_itoc(n, c);

with: int n;
*char c;

where n is the integer value and c is the address of a 2 byte

area into which the integer value is to be packed, No value is

returned by the function.

-13-

n

)

Appendix F -- User Manual

Unpacking of integers from character arrays is accomplished

with the following function reference.

_ctoi(c);

with : *char c;

where c is the address of a 2 byte area from which a 16 bit in

teger is unpacked. The function returns the integer's value.

The communication utility is stored on a file named "cm.c"

and the global variables used by the utility are stored on

"cm.gvar". Placement of the include statements in a node code

program in order to use the utility is demonstrated in section

5.2.

5.1.2 Random Number Utility

Random numbers are often used in simulations. UNIX provides

a system call, rand, which generates pseudo-random integer values

in the range Oto ((2Al5)-l). The random number utility allows a

user to specify a smaller range from which random values may be

selected. This is done by calling the utility with two

parameters which set the lower and upper bounds of a closed in

terval in which the number may occur.

-14-

)

Appendix F -- User Manual

The utility is called with the following function reference,

rn(lo, hi);

with: int lo, hi;

where lo and hi are the lower and upper bounds of the range. The

endpoints (lo and hi) are considered to be in the valid range.

The source code for the utility is stored on a file named

"rn.c". No global variables are used by the utility.

5.1.3 Database Utility

This section will be completed by Pat Kalvin,

5.2 An Example

This section contains two node code programs, They demon

strate how utilities are included in node code, and where the

node initialization function reference is placed, These programs

make up a simple network in which node O continually sends mes-

sages to node 1. The message is the character ti " a •

-15-

)

Node Code for Node 0

II include "cm.gvar"

char buf [5];

main () {

int i, j;

nodeinit();
cm(3,0,0,0);
buf [0] = 'a';

Appendix F -- User Manual

for (j = O; j < 32000; ++j) {
if ((i = cm(2,l,buf,l)) != 1)

printf("Node O cant send\n");
}

}

II include " " cm.c

Node Code for Node 1

II include "cm.gvar"

char buf [5];

main () {

int i, j, sum;

nodeinit();
j = l;
sum= O;
while (j) {

if ((i = cm(1, 0, bu£, 0)) ! = 1)
printf("Node 1 cant receive\n");

else

}

printf("%d\n", ++sum);
}

II include "cm. c"

-16-

n

)

Appendix F -- User Manual

6. Specifications

This section describes entry of the specifications. The

order in which the different types of specifications are presen

ted in this section is the same as the program will use when

querying the user.

6.1 Modes

The specifications may be completed by using one of three

modes: NEW, CHANGE, or OLD. Each of the modes has the following

effects:

NEW - An entirely new network specification file, net.spec, is to

be created. The user will have to preserve any previous net.spec

by copying it to a backup file with another name prior to enter

ing the NEW mode,

CHANGE - An existing network specification file is to be altered,

The specifications must be present in a file named net.spec in

the current UNIX directory being used.

OLD - An existing network specification file, net.spec, is to be

used without alteration. Again, the file must be present in the

user's directory.

-17-

)

Appendix F -- User Manual

The specifications program will display an introductory message

and a mode menu on the user's terminal, and then wait for entry

of one of the modes. If the user enters an incorrect mode, an

error message will be displayed and the user will be allowed to

try again,

6. 1. 1 NEW Mode

If the user wishes to create a new specifications file the

NEW mode is used. After entering the mode the user will be

queried to begin the topology input.

6.1.1.1 Topology

The topology specifications contain two parts; the number of

nodes and the network's topology. The number of nodes is input

first, Any value entered here must be in the range displayed.

The number of nodes is displayed back to the user along with

the numbers that will identify the nodes, These identification

numbers will be used when entering other specifications, It is

important to remember that the numbers range from Oto (N-1)

rather than from 1 to N, where N is the number of nod~s in the

network.

-18-

)

Appendix F -- User Manual

There are several error messages that may be displayed to

the user if the number of nodes entered is out of the valid

range.

After entering the correct number of nodes, a topology menu

will be displayed and the user may then enter the topology which

he needs. The. topologies which appear in the menu are commonly

used to describe networks. The topologies have the following

interpretations.

COMPLETE - The nodes will be connected so that each node has a

link to every other node.

RING - A ring is formed with links connecting node 0 to node 1,

node 1 to node o, node 1 to node 2, node 2 to node 1, ... ' node

N-2 to node N-1, node N-1 to node N-2, node N-1 to node 0 and

node 0 to node N-1.

STAR - A center node is specified and that center node is connec

ted to every other node. The other nodes are connected to the

center.

GENERAL - A network which is not one of the above, rather the

user adds links to a network as needed until the desired topology

is created. When using this topology, the user specifies pairs of

nodes which will be connected with links from one to the other,

Links may also be dropped from a network while using this topolo-

gy.

-19-

J

Appendix F -- User Manual

When specifying the network's topology the user should

remember that after completing a topology, he may alter it, An

example would be that the user wishes to set up a backbone topo

logy of 30 nodes, To efficiently do this, the user would first

set up a ring topology of 30 nodes and then break the ring to

form the backbone topology. Other general topologies may be

created in the same manner by altering one of the topologies

rather than entering all the links in the GENERAL mode ,

In every case, the program will display the topology type

and number of nodes, an adjacency matrix that shows the links, a

translated form of the adjacency matrix, and a query to the user

asking if he is satisfied with the topology.

A star topology requires that the center of the star be

) entered. The center may be entered by either placing the

center's identification number on the line, or waiting to be

queried for it after entering "star".

A general topology allows the user to add or delete links in

the network. The general mode differs in that after entering the

links, the program checks the topology to ascertain that the

network is connected , Connectedness is determined by performing

a depth first search of the nodes beginning at node 0. If a node

is found that is not connected to the remaining nodes, the pro

gram displays the disconnected nodes. This check for connected

ness is also performed if the user alters the topology.

While entering the link specifications, a variety of errors

may occur. Each error message explains the situation and in

structs the user on how to rectify the erroneous response,

-20-

)

Appendix F -- User Manual

6.1.1.2 Node Code

The node code specifications allow the user to indicate

which UNIX files contain the node code that will be used at the

individual nodes. These specifications consist of the node code

file name and the associated node numbers for each node in the

network. The node code files for all nodes are displayed to the

user who may change them if desired.

The keyword "all" may be used if one node code file is to be

used at all the nodes.

Each node code file name is tested to ascertain that it is

valid. A valid file name is 14 or less characters.in length,

ends with ".c" and is composed of only valid characters. Valid

characters are either upper or lower case letters, the digits and

the period. If these syntax rules are violated an error message

will be displayed.

After a node code file name has been accepted as being syn

tactically correct, a check is made to determine if the file

exists in the user's current directory. A file's existence is

assumed if it can be opened, If the file cannot be closed after

being opened, a fatal error message will be displayed and the

specifications program will terminate.

If any line of the node code specifications contain a syntax

error or an invalid node number, an appropriate error message

will be displayed,

Since each node must have a node code file, the program

checks to make sure that the user has in fact specified a file

-21-

)

Appendix F -- User Manual

for all nodes in the network, If any nodes were forgotten, a

message will inform the user of the oversight.

Entry of the node code specifications for networks with many

nodes which use the same node code may be simplified by entering

the predominant node code file name with the keyword "all",

Other file names are then entered for the few nodes at which they

are needed,

6.1.1.3 Data File Names

The data file name specifications are the UNIX file names of

all data files to be used in the network, These file names are

needed only if data files are used in the network. Data file

names and data file usage specifications are used by the simula

tor to place the data files at the nodes where they are to be

used.

Each node reads the contents of its data files into data

structures local to the node. The node's database utility may

then manipulate the contents of the data structures when called

by the user's node code,

All file names are displayed back to the user, As always,

the user may change the data file name specifications by re

peating the process.

Each data file name is checked for syntactic validity after

it is entered. A valid data file name is 14 or less characters

in length, and is made up of valid characters only. A valid

character is either an upper or lower case letter, one of the

-22-

)

Appendix F -- User Manual

digits, or the period, If a file name violates one of the syntax

rules, the user will be notified,

A data file must exist in the user's current directory be

fore it can be used by the network simulator, The existence of a

file is determined by the ability to open it. If a file name is

entered that is syntactically correct, but the file cannot be

opened, a message will be displayed.

Any data file which was opened but cannot be closed will

cause termination of the specification program.

Since the data file names are entered for all data files in

the ~etwork, the program checks for duplicates, If a duplicate

file name is inadvertantly entered, a message is displayed.

The number of data file names that may be entered is limited

(See Section 3). If the user enters more data file names than

are allowed, a message will be displayed and the extra file names

will be ignored by the program.

Some networks which will be studied do not require data

files. In this situation the user simply enters a null line.

After the specification program is informed that data files are

not needed, it will not query the user for data file usage speci

fications (Section 6.1.1.4) or data file format specifications

(Section 6.1.1.5).

-23-

)

Appendix F -- User Manual

6.1.1.4 Data File Usage

Network simulations which use data files require that the

user declare which files are used at each individual node, The

data file usage specifications allow the user to do this,

A user will be queried with a single data file name and

asked to enter the node numbers of all nodes at which the data

file is to be used, This process is repeated for all data files

declared in the data file name specifications,

As many node numbers may be entered as needed when respon

ding to the query. The keyword "all" may be used if a data file

is needed at all the nodes, A null line is used to terminate

entry of the node numbers.

After completing entry of the data file usage specifica

tions, they are displayed to the user for inspection, The user

is given an opportunity to change the specifications if they are

not satisfactory.

Data file formats are used in conjunction with the data file

name and usage specifications to load data files into databases

at nodes. A format is a description of a logical record in a

data file, Two types of data may be . used, integer and character

strings.

-24-

)

Appendix F -- User Manual

Assume that a data file contains logical records with the

following fields.

Field Columns Data ~

1 1-5 Integer
2 6-15 Character
3 16 20 Character
4 21-25 Character
5 26-28 Integer

The format specification for the data file would be,

i 5 C 10 C 5 C 5 i 3

Entry of the formats is done in the same manner as entry of

the usage specifications. The user is queried for the format of

each file. After entering a format for all files, they are

displayed back to the user for inspection. If any changes are

needed, the user is given an opportunity to do so.

6.1.1.6 Number of Messages

The duration of a simulation is controlled by the number of

inter-node messages that are transmitted by all nodes. A user is

queried to enter the number of messages to be used by the simula

tor. The maximum value that may be entered is 32767.

As always, the number of messages will be displayed back to

the user for inspection.

-25-

Appendix F -- User Manual

6.1.1.7 An Example

This section demonstrates entry of the specifications for a

network. The network topology is shown in Figure 6.1.

Figure~-.!.

7 8
I I

0-1-2-3-4-5
I I
6 9-11

I
10

Nodes O through 5 use node code file ncl.c, nodes 6, 9 and

11 use nc2.c, and nodes 7, 8 and 10 use nc3.c.

There are 3 data files used. Data file dfl is used at all

nodes, df2 is used at nodes O through 5 and df3 is used at node

10.

File
dfl
df2
df3

Data file formats of the 3 files are shown below.

i 2 C 5
C 10 C 6 C 8
i 1 i 3 C 5 i 2 i 1

The number of messages sent between nodes during the simula

tion will be set at 30000.

The terminal session in which thes .e specifications are en

tered is shown below.

-26-

n

Appendix F -- User Manual

Welcome to the Network Simulator.

This program is the initial step in using the
network simulation package on the PDP 11.

You may set up and/or use a network
simulation specification file by entering one
of these modes:

new
old
change

new

A network may contain 2 - 45 nodes.
How many nodes are needed in your network?

12

There will be 12 nodes in the network.
They will be numbered O - 11.

Please enter the topology specifications.
) The topologies which are available are:

complete
ring
star
general

What is the topology of your network?

general

The topology will be a general network of 12 nodes.
You may now specify the links in the network.

Please use a carriage return on a new line to
terminate input of the link specifications.

1 -> 0 2 6 7
2 -> 3
3 -> 4 8
4 -> 3 5 9
9 -> 10 11

-27-

)

Appendix F -- User Manual

This is the adjacency matrix which
represents the topology of your network.

To
11

From 012345678901
0 010000000000
1 101000110000
2 010100000000
3 001010001000
4 000101000100
5 000010000000
6 010000000000
7 010000000000
8 000100000000
9 000010000011

10 000000000100
11 000000000100

The adjacency matrix has been translated
into a more readable form.

The links in your network are:

From To
0 l,
1 o, 2, 6, 7,
2 1, 3,
3 2, 4, 8,
4 3, 5, 9,
5 4,
6 1,
7 1,
8 3,
9 4, 10, 11,

10 9,
11 9,

The topology specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or "no".

yes

Please enter the node code specifications.

Please use a carriage return on a new line to
terminate input of the node code specifications.

ncl.c all
nc2.c 6 9 11
nc3.c 7 8 10

-28-

)

J

Appendix F -- User Manual

The node code file for each node is:

At node o, ncl.c
At node 1, ncl.c
At node 2, ncl.c
At node 3, ncl.c
At node 4, ncl.c
At node 5, ncl.c
At node 6, nc2.c
At node 7, nc3.c
At node 8, nc3.c
At node 9, nc2.c
At node 10, nc3.c
At node 11, nc2.c

The node code specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes or "no".

yes

Please enter the data file names of all files
needed in your network. You may enter
up to 45 data file names, if more are
entered they will be ignored.

Please use a carriage return on a new line to
terminate input of the data file name specifications.

dfl
df2
df3

These are the data files which are needed in your network.

dfl
df2
df3

The data file name specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes or "no".

yes

Please enter the data file usage specifications.

Please use a carriage return on a new line to
terminate input of the data file usage specifications.

-29-

)

Appendix F -- User Manual

At which nodes is data file dfl needed?

all

At which nodes is data file df2 needed?

0 1 2 3 4 5

At which nodes is data file df3 needed?

10

Data file dfl will be used at nodes:

o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

Data file .df2 will be used at nodes:

o, 1, 2, 3, 4, 5,

Data file df3 will be used at nodes:

10,

The data file usage specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or 0 no".

yes

Each data file may contain up to 10 fields.
If more than this are entered, they will be ignored.

Please enter the format of the dfl data file.

i 2 C 5

Please enter the format of the df2 data file.

C 10 C 6 C 8

Please enter the format of the df3 data file.

i 1 i 3 C 5 i 2 i 1

The formats of the data files are:

dfl i 2 c 5

df2 c 10 c 6 c 8

df3 i 1 i 3 c 5 i 2 i 1

-30-

)

)

Appendix F -- User Manual

The data file formats specifications have been completed,
Are you satisfied with the current
specifications? Enter "yes or "no",

yes

How many inter-node messages
are to be sent during the simulation?

30000

There will be 30000 messages sent,

The number of inter-node messages specifications have been completed,
Are you satisfied with the current
specifications? Enter "yes" or "no",

yes

6.1.2 CHANGE Mode

When using the CHANGE mode, specifications which were en

tered during a previous terminal session may b~ altered, A user

is given an opportunity to change any of the specifications, The

program queries the user to determine if any change is needed in

each type of specification. If the user responds with an affir

mative, the user is allowed to enter new specifications. A nega

tive response from the user leaves the specifications in their

original form.

Entry of changes to a particular specification is done in

the same manner as NEW specifications. As with NEW specifica

tions, if no data files are used the program will not query the

user for data file usage or format specification changes.

-31-

)

Appendix F -- User Manual

6.1.2.1 An Example

An example of using the CHANGE mode is given in this sec

tion. The network which was described in section 6.1.1.7 will be

changed in the following ways: node 7 will now be linked to node

0 rather than node 1, and only 20000 messages will be sent during

the simulation.

Welcome to the Network Simulator,

This program is the initial step in using the
network simulation package on the PDP 11.

You may set up and/or use a network
simulation specification file by entering one
of these modes:

new
old
change

change

Do you need to change the topology specifications?

yes

A network may contain 2 - 45 nodes,
How many nodes are needed in your network?

12

There will be 12 nodes in the network.
They will be numbered O - 11.

Please enter the topology specifications,
The topologies which are available are:

complete
ring
star
general

What is the topology of your network?

general

-32-

)

Appendix F -- User Manual

The topology will be a general network of 12 nodes.
You may now specify the links in the network.

Please use a carriage return on a new line to
terminate input of the link specifications.

l -> 0 2 6
2 -> 3
3 -> 4 8
4 -> 3 5 9
9 -> 10 11
7 -> 0

This is the adjacency matrix which
represents the topology of your network.

To
11

From 012345678901
0 010000010000
l 101000100000
2 010100000000
3 001010001000
4 000101000100
5 000010000000
6 010000000000
7 100000000000
8 000100000000
9 000010000011

10 000000000100
11 000000000100

The adjacency matrix has been translated
into a more readable form.

The links in your network are:

From To
0 1' 7,
1 o, 2, 6,
2 1, 3,
3 2, 4, 8,
4 3, 5, 9,
5 4,
6 l'
7 o,
8 3'
9 4, 10, 11,

10 9,
11 9,

The topology specifications have been completed,
Are you satisfied with the current
specifications? Enter "yes" or "no-.

-33-

Appendix F -- User Manual

yes

Do you need to change the node code specifications?

no

Do you need to change the data file name specifications?

no

Do you need to change the data file usage specifications?

no

Do you need to change the data file formats specifications?

no

Do you need to change the number of inter-node messages specifications?

yes

How many inter-node messages
are to be sent during the simulation?

20000

There will be 20000 messages sent.

The number of inter-node messages specifications have been completed.
Are you satisfied with the current
specifications? Enter "yes" or "no".

yes

6.1.3 OLD Mode

The OLD mode is used to check for existence of the specifi

cations file prior to a simulation. The file's existence is

determined by opening it, and if it cannot be opened by the pro

gram, the program displays an error message and terminates.

-34-

')

)

Appendix F -- User Manual

7. Compilation

The compilation program causes the node code programs to be

compiled and saves the resulting core image files on reserved

files.

The network specifications file, net.spec, is used by the

compilation program to obtain the node code file names. Each

node code file is compiled using the Version 6 C compiler. After

each successful compilation, a message is printed to inform the

user. If a compilation error occurs, the user is queried to

determine if a listing of the node code program and compilation

error messages is to be saved for diagnostic purposes. If the

user responds affirmatively to the query ., the compilation program

creates a file named nodecode.e which contains the listing and

error messages. This listing file will have the same name and

the node code file except ",e" is appended to the file name rath-

er than ",c".

An example terminal session in which the compilation program

is executed is shown below.

% comp
The node code for node O has been compiled,
A compilation error occurred while compiling
the node code for node 1.

Do you want a source code listing with error messages?
Enter "yes" if you do.

yes
%

-35-

Appendix F -- User Manual

8. Simulation

The actual simulation is initiated by the simulation driver

program. This program causes a separate UNIX process to be

created for each node in the network and for the message queuing

process. The simulation driver also establishes the pipes which

are used by the message queuing process and the node processes to

transmit inter-node messages.

Each node's core image file which was craated by compiling

the node code program is loaded into a UNIX process and allowed

to initialize itself. The message queuing process is also loaded

and initialized. The simulation driver then broadcasts a signal

to all of these processes to begin the simulation. After star-

) ting the simulation, the driver waits for the message queuing

process to terminate which means that the simulation is complete

(for normal or abnormal reasons), Temporary files used during

the simulation are then unlinked by the driver and the UNIX pro

cesses are killed.

)

The simulation driver program may be executed as a back

ground job or as a detached job. Either of these techniques free

the user to do other tasks at the terminal, Detached jobs allow

the user to log off of UNIX while a simulation proceeds, In

either background of detached jobs, the user should redirect any

output from the simulation driver to a file, This allows any

error messages to be saved on the file, The two commands shown

below cause the simulation driver to execute while saving any

output,

-36-

)

)

Appendix F -- User Manual

As a background job:

sim > temp&

As a detached job:

nohup sim > temp&

Any error which the simulation driver detects will cause a

self-explanatory error message to be printed. Most of these

errors are caused by lack of the proper files in the user's

directory when attempting to run a simulation (See Section 4).

9. Report

During each simulation a history file will be created by the

message queuing process. The transactions which took plac~

between nodes during the simulation are recorded in the file.

The report program prints a list of these transactions.

The report program listing does not print the actual mes

sages which are also saved in the history file, Messages are not

printed because of the wide variety of message formats that dif

ferent users might use. These messages may be obtained by using

the "od" utility which is supported by UNIX (see od(I) in the

UNIX Programmer's Manual),

-37-

)

Appendix F -- User Manual

A user should always review the report listing because non

fatal errors which occurred at nodes during the simulation are

included in the listing. The errors are identified by numbers

which are explained below.

Error

l

Cause

Communication utility was called with an invalid value for
code parameter.

User Action: Correct the parameter value.

2 Communication utility could not place a request to receive
a message in the RIN pipe.

User Action: Refer the problem to the UNIX system maintenance
person.

3 Message received at a node does not contain the correct number
of bytes as determined by the message header.

4

User Action: Refer the problem to the UNIX system maintenance
person,

Message was sent to the wrong node,

User Action: Refer the problem to the UNIX system maintenance
person.

5 An attempt was made to send a message which was too large to '
fit into a UNIX pipe,

User Action: If the larger message size is crucial to the
simulation at hand, the UNIX kernel code can be recompiled
with a larger pipe size, This is not recommended, however,
A more reasonable approach would be to split messages into
packets.

6 A request to send a message cannot be placed in the RIN pipe.

User Action: Refer the problem to the UNIX system maintenance
person.

7 A message cannot be placed in the MIN pipe ,

User Action: Refer the problem to the UNIX system maintenance
person.

8 A idle message cannot be placed into the RIN pipe.

User Action: Refer the problem to the UNIX system maintenance
person,

-38-

)

Appendix F -- User Manual

9 A node attempted to send a message to another node via a
non-existent link.

User Action: Correct the node code or change the network
specifications,

The message queuing process can also generate error messages

which will appear in the report listing. These errors indicate

failure of the message queuing process to perform correctly, and

should be reported to the UNIX system maintenance person. A list

of the error numbers and their causes is shown below.

Error

1

2

3

4

5

6

7

8

9

10

Cause

A request read from the RIN pipe caused an I/0 error.

An invalid request message identifier appeared on a request
message.

The history file could not be closed.

A seek operation on the history file to position the file
pointer at EOF failed.

An I/0 error occurred while writing something onto the history
file,

A seek operation on the history file to position the file
pointer at a message failed.

An I/0 error occurred while reading a message from the
history file.

An I/0 error occurred while reading a message from the
MIN pipe.

Not used.

The free list of message queue elements was exhausted,
This error may be corrected by increasing the LISTLENGTH
defined constant, in net.const.c, and recompiling the
message queuing program,

-39-

()

)

Appendix F -- User Manual

The following listing is an excerpt from a report listing.

The network contains 7 nodes.
The nodes were numbered from Oto 6.
The network traffic during the simulation
was 6000 inter-node messages.

Node 1 requested a message
Node 2 requested a message
Node 3 requested a message
Node 4 requested a message
Node 5 requested a message
Transmit 12 bytes from node 6 to node 0
Node O requested a message
Node 6 requested a message
Transmit 12 bytes from node 0
Transmit 12 bytes from node 1
Node 1 requested a message
Transmit 12 bytes from node 2
Node 2 requested a message
Node O requested a message
Transmit 12 bytes from node 3
Node 3 requested a message
Transmit 12 bytes from node 4
Node 4 requested a message
Transmit 12 bytes from node 5
Node 5 requested a message
Transmit 12 bytes from node 6

Network simulation errors= 0
Messages transmitted= 6000
Messages requested= 6006
Idle nodes= 0

10. Checkup

to node 1
to node 2

to node 3

to node 4

to node 5

to node 6

to node 0

A user may use the checkup program to determine how a simu

lation is progressing. This is particularly useful when a simu

lation is being run as a background or detached job.

The checkup program interrupts the message queuing process

to obtain the number of messages left to be transmitted before

-40-

)

Appendix F -- User Manual

the simulation is completed. This number of messages is reported

to the user's terminal. The checkup program repeatedly performs

this process until the user indicates that no further checkups

are needed.

The example below shows a typical terminal session in which

the checkup program is used.

% simcheck
5999 messages to go.

Again?
yes
5997 messages to go.

Again?
no
%

A. Query Response Syntax

The user must use the proper syntax while responding to

queries from the program that collects the network's specifica

tions. The syntax rules that govern the responses are expressed

in a modified Backus-Naur Form (MBNF) for the user's convenience,

MBNF Convention

{ }

{ }n

n{ }

n{ }m

Interpretation

Alternation

Terminal symbol

Optional, unlimited repetition

Optional repetition up ton times

Repetition at least n times

Repetition at least n times

-41-

)

Appendix F -- User Manual

[]

A// B

()

A <> B

but not more than m times

Optional inclusion

Concatenation of A to B

Grouping

A may not be equal to B

Intervening characters or symbols

are allowed

The syntax rules show that terminal symbols contain only

lower case letters. This was done for brevity although either

lower or upper case letters are permitted. Terminal symbols are

separated by at least one space unless concatenation is indica

ted.

Mode query response:

modes := "new" I "old" l "change"

Topology query response:

numberofnodes := validnode

validnode := "2" I "3" , I "4" I .•• I "43" I "44" I "45"

topologies := "complete" "ring" l star I "general"

star := ("star" validnode) I twolinestar

twolinestar := starlinel starline2

starlinel := ."star"

starline2 := validnode

linkspecs := 1{ addlink I droplink} nullina

addlink := ["+"] originatingnode ["-)"]

(1{ terminalnode} I "all")

-42-

)

Appendix F -- User Manual

droplink := "-" originatingnode ["-)"]

(l{ terminalnode} I "all")

originatingnode := validnode

terminalnode := validnode <> originatingnode

nulline := "carriage return CR on a new line"

Completion or change query response:

completeorchange := "yes" "no"

Node code query response:

nodecodespecs := l{ nodeline} nulline

nodeline := nodefile (l{ validnode} I "all")

nodefile := character { character }11 // ".c"

character := "a" " ,. z .. A" "Z"

"9" fl .. .

Data file names query response:

datafilenamespecs := { datafilename }45 nulline

datafilename := character { character }13

Data file usage query response:

usagespecs := ("all" I l{ validnode}) nulline

Data file format query response:

datafileformat := l { fieldform.at }10

fieldform.at := ("i" "l"

-43-

"Sn) I

"51")

Appendix F -- User Manual

Number of messages response:

messages := { "l" I "2 .. I .•• I "9" I "O"}

)

-44-

	Domka_Walter_F_1982_06_A
	Domka_Walter_F_1982_06_B

