
) 

Robin: An Experimental Protocol 

for Asynchronous Serial Lines 

. by 

Hon Pan Chum 

A Research Paper 

- Submitted to 

Oregon State University 

In partial fulfillment of · 

the requirements for the degree of 

Master of Science 

December 9, 1988 



) 

_) 

ACKNOWLEDGEMENT 

I would like to thank my major advisor Dr. Swart for his year long guidance and 

encouragement. Having had two classes and a research project under him was most beneficial to 

me. Mr. John Sechrest give me the most help because of his excellent understanding on computer 

networks and operating systems. He was always there when I needed him most. I was really enjoy 

to discuss with him. 

I would also like to thank my family for their support on my studies. A lot of 

encouragement came from Chinese Christian Fellowship and I thank fot that 



) 

Table of Contents 
1. Introduction 

1.1 The Main Problem 

1.2 The Goal of Robin 

2. Architecture of Robin 

2.1 Data, Command and Packet Formats 

2.1.1 Escape characters 

2.1.2 Hot character 

2.1.3 Control command 

2.1.4 Packet 

2.2 State Diagrams 

2.2.1 Modes 

2.2.2 Sessions 

2.2.3 Input state diagram 

2.2.4 Output state diagram 

) 
2.3 Upper Robin Protocol 

2.3.1 Asynchronous vs. Synchronous read/write 

2.3.2 Pipelining and Sliding window 

2.3.3 Time out mechanism 

2.3.4 Dynamic buffering 

2.3.5 Checksum 

3. Robin, SLIP and Kermit 

4. Discussion on Implementation 

4.1 Implementation Problem under Unix 

4.2 Temporary Solutions 

4.2.1 Xinu approach 

4.2.2 Non-blocking I/0 

4.2.3 Select system call 

5. Conclusion 

6. Future research 

7. Appendix A: Hardware Requirements 

8. Appendix B: Summary of SLIP 

_) 
9. References 



) 

1. Introduction 

Computer networking research has been going on for almost twenty years; however, most 

of the protocols concern high and low speed synchronous transmission. All synchronous 

communication needs special transmission lines. The TCP/IP (Transmission Control Protocol / 

Internet Protocol) protocols, Ethernet, X.25, X windows system are very successful protocols. 

Less work has been done on low speed asynchronous serial communication. Asynchronous 

communication software can be applied to the telephone system by using a modem to transform 

digital signals into analog signals. Telephone (voice grade) lines are established world wide; 

therefore, any improvement in asynchronous protocols affects our entire society. Currently, 

software developers rely on improved hardware, like the Integrated Services Data Network (ISDi\T) 

[ 4], a high bandwidth communication channel for voice, data, image, etc. Switching to this 

technology is a major change for telephone companies, and won't be in common use for some 

years [6]. There are a number of commercial software products providing serial communication 

such as: xmodem, Kermit, procomm; etc. However, they are slow because they do not fully utilize 

the transmission line. Research seeks to improve telephone data transmission by making efficient 

use of limited communication capabilities by giving high priority to interactive activities while 

simultaneously supporting less critical requests. An experimental protocol has been designed 

which can transfer files in background, and remote log-in to a host machine at the same time. 

1.1 The Main Problem 

The major problem of using the telephone line for transmitting data is its low speed. The 

cutoff frequency on an ordinary telephone line is near 3000 Hz [7, pp.93]. The maximum bit rate 

achieved by modems now is 19200 bps [7, pp.93], but such modems are expensive and 

uncommon. The processing speed of a 20 MHz microprocessor is obviously much faster than 

input and output. Therefore, the communication bottleneck between a user's microcomputer and a 
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host machine is the telephone line. If we use a typical protocol for high speed transmission on a 

serial line, there is a big overhead cost. For example, a TCP/IP packet consists of 20 - 24 bytes of 

IP header, 20 - 24 bytes of TCP header which is a very inefficient way to transmit one byte of 

data. The internetworking ability of these protocols implies they need extra space to put source 

address, destination address and other control flags into the headers. However, since we are 

concerned with point-to-point serial communication between a microcomputer and a more powerful 

host machine, 40 bytes of TCP/IP overhead is not acceptable, especially on a serial line. A new 

protocol called SLIP (Serial Line Internet Protocol) [5] has been developed that replaces the 

Ethernet to become the underlaying protocol of TCP/IP in Unix systems. However, SLIP does not 

solve the overhead problem. Kermit [3], designed at Columbia University, is a point-to-point 

communication protocol offered by most of communication systems. It deals well with 

asynchronous serial lines but works in half duplex and cannot handle both a remote log-in session 

and a file transfer session simultaneously. Half duplex transmits data between machines alternately 

and slows down the whole communication. 

1.2 The Goal of Robin 

Robin is a protocol that supports multiple sessions and to rapidly send very small packets to 

support remote log-in from a terminal emulator through a serial line. To fully utilize an 

asynchronous serial line and be portable, we include a full duplex, single process, user level 

application in our design. It involves designing a Data Link Layer which is the second lowest level 

according to the ISO OSI Reference Model [10]. The application part of Robin is a file transfer 

capability which is a low priority background job from the user's point of view. The file transfer 

session can be interrupted at almost any time to allow a remote command to be issued. 
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2. Architecture of Robin 

Robin Protocol 
Host mech 

microcomputer ◄ ► v1ith high ed 

RS-232C LAN 

Client Server 

Fig. 2-1 The configuration of Robin between a microcomputer 

and a host machine with LAN 

An overview of where the Robin protocol is used is shown in Fig. 2-1 (see Appendix A for 

microcomputer and host machine hardware requirements). Basically, Robin is divided into two 

layers: Upper Robin (UR) and Lower Robin (LR). The UR deals with multiple sessions, 

asynchronous read/write, file transfer, and sliding windows. The LR deals with input/output state 

diagrams, error checking and framing packets . Robin is based on the Client/Server Model [9] 

which allows client applications to request services from a server process. Both client and server 

can be a sender and/or receiver because of the full duplex capability of the protocol. Therefore, a 

client process initiates the whole communication. Fig. 2-2 is the schematic diagram of the 

Client/Server Model. 
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Upper Robin Upper Robin 

Lower Robin ....._ _________ _, ► ..__ __ L_o_w_e_r_R_o b_i_n __ _ 

Client Robin Server Robin 

Fig. 2-2 Schematic diagram of Client/Server Model in Robin 

Section 2.1 discusses formats for data, commands and packets. Input/output state diagrams 

which handle all incoming or outgoing data, control commands, and packets are discussed in 

. section 2.2. Section 2.3 describes upper Robin protocol. 

2.1 Data, Command and Packet Formats 

Robin is a character-oriented protocol. Some characters must be attached at the beginning 

and end of a block of data to form a packet. To avoid mistaking the header character (start of 

packet) as data, escape characters are used. There are hot characters, packets and commands which 

are sent across the line. All of these will be discussed in the following subsections. 
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2.1.1 Escape Characters 

Most of the existing asynchronous protocols are based on transferring packets. In Robin, 

packets are interruptible by data, or "hot characters" (see section 2.1.2), which need to be sent 

immediately and are usually short To distinguish a hot character from a character in a packet, one 

escape character, called the Interrupt Escape character (INTESC, octal 024), is used in front of 

each hot character when it is inserted in a packet. Another escape character, called the Control 

Escape character (CTLESC, octal 021), is used as a header of a packet or control command. 

These two escape characters have special meanings to the Robin protocol. When escape 

characters appear in a packet as data, the receiver would be confused; therefore, we have a special 

interpretation for the following characters. To allow the receiver to receive intended character 

patterns, the sender inserts an extra CTLESC in front of any CTLESC and INTESC inside a 

) packet. Double CTLESC implies that CTLESC is part of data. The sequence of CTLESC INTESC 

implies that INTESC is part of the data. For example, suppose the data given to UR is Fig. 2-3 (a). 

The LR inserts escape characters into the data before sending it out as Fig. 2-3 (b). This method 

for achieving data transparency is known as character stuffing [7, pp.165] . 

(a) .. CTLESC ... INTESC ... CTLESC INTESC . .. 

(b) .. CTLESC CTLESC ... CTLESC INTESC ... CTLESC CTLESC CTLESC INTESC ... 

Fig. 2-3 Escape characters sequence on incoming data. 

2.1.2 Hot Character 

Hot characters are data which are sent immediately without framing or packaging. In some 

sense, they are "raw" data which was received and sent without being processed. A telephone line 

is not reliable because of the electrical noise. No packaging implies hot characters could easily have 

) undetected errors. Therefore, a parity bit is used on each hot character for minimal error checking. 
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One parity bit and a seven bit ASCII character make up one hot character. 

For most communication protocols, packets are not interruptible. If one wants to send a 

small amount of data, even one character, the sender has to wait for completion of the current 

packet. With Kermit, a user cannot input any commands to the remote log-in session before 

completion of the entire file transfer. In Robin, hot characters can be "inserted" into packets. They 

are distinguished by an INTESC in front of each of them. They are especially useful for remote log

ins to a host machine because shell commands issued by a user are usually short. All hot characters 

are received by the host machine and then sent to the shell of the host to execute. The result will 

also be sent back as hot characters. We assume that issuing shell command in remote log-in 

session is short and urgent. For example, if a user "cats" a big file to a terminal (i.e. reading from 

the terminal) during file transfer, that will only slow down the whole protocol. 

2.1.3 Control Command 

7 bits 8 - 24 bits 3 4 bits 

CTLESC commends 

r r per1ty session 
number bit sequence 

number 

Fig. 2-4 A control command format 

A control command is a sequence of ASCII bytes, usually less than 4 bytes, which controls 

the operation of the line and the communication between two applications. Each byte has a parity 

bit. There are two types of commands, one used for verification and error checking of Robin, 
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including acknowledgement, negative acknowledgement, etc.; and, the second used to establish 

control over the line, such as open, close and reset a session. LR handles the first type of 

commands while UR handles the second type. 

A control command begins with a CTLESC, one to four byte sequence of commands, and 

one byte with three bits for session number (see section 2.2.2), four bits for sequence number (see 

section 2.1.4) and one bit for parity (Fig. 2-4). 

2.1.4 Packet 

A packet is a block of data with a header and a trailer which are used for control. Bytes 

have no parity bit except for control bytes in the header and trailer. Packets are used only for file 

transfers at this stage of development The maximum size for a packet is lK bytes, and there can 

be empty packets. The size of a packet is determined by the UR. Since the data can be any kind 

(e.g. ASCII text, binary, graphic image), a checksum is calculated at the end of a packet to detect 

transmission errors. We will not deal with the problem of incompatible file types between a 

microcomputer and a host machine [3]. The function of a packet is to transfer a block of data safely 

without looking at the data itself. 

Each packet begins with a header which containing a CTLESC, BOP (Beginning Of 

Packet) and a session number (three bits), a sequence number (four bits) and one parity bit 

combination (Fig. 2-5). A trailer contains a CTLESC, EOP (End Of Packet) and a checksum (8 

bits). The sequence numbers, ranging from O to 15, are unique to each outstanding packet. This 

implies that no more than sixteen packets are out at the same time (section 2.3.2., shows that the 

number of packets out at one time is only equal to half of the maximum sequence number). The 

order of these sequence numbers represents the sequence of sending packets (see section 2.3.2). 
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8 8 1 3 4 bi ts 0-1024 bytes 8 8 8 bits 

dete I CTLESC I EDP I CKSUM I 
header ---- t re i l e r--------1 

Fig. 2-5 A packet format. CTLESC, BOP and EOP each contain one parity bit. 

There are two common ways to determine the size of a packet: a special character at the end 

of a packet is common among existing protocols, e.g. HDLC and X.25, or having a counter in the 

header that contains the size of the following data to be transferred, e.g. DDCMP [7, pp.172]. The 

first method was chosen because of the ease of changing the size of a packet during data transfer. 

Both methods can provide different packet sizes, but the counter method will limit the size before 

being sent which may be beneficial for future research on dynamic packets (see section 6). 

2.2 State Diagrams 

To make the Robin protocol easier to implement, and to have a model to follow, Finite State 

Machines are used (we refer them by state diagrams afterward). State diagrams are used by LR to 

separate packets, hot characters and control commands. Input to the input state diagram is data 

from the serial line. The output state diagram receives its input data from UR. The output of input 

state diagram and output state diagram is sent to UR and serial line, correspondingly. 

2.2.1 Modes 

A mode is a conceptually dominant set of states in a state diagram . There are three modes 

associated with each state diagram: COMMAND, HOT and FILE. In each mode, the 

corresponding format is expected to be received or sent, i.e. packets are received or sent in FILE 

mode. In HOT mode, hot characters are sent directly without INTESC in front of each of them . In 

FILE mode, a hot character can be sent by inserting INTESC before it. In COMMAi\1D mode, only 
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control commands are received or sent. A control command sequence can be sent in any mode of a 

state diagram. 

2.2.2 Sessions 

Robin can support a maximum of eight logical channels over a single physical line. Each 

session is associated with one logical channel. The session number in a packet header is used to 

determine which session it belongs to. Session O is dedicated to remote log-in, the rest of them are 

used for sending or receiving one file, but not both at the same time in the same session. The 

sharing of the line is on a demand basis. If only one file transfer session is active, all packets 

passing along the line will have the same session number. 

) 2.2.3 Input State Diagram 

Mode State Name Full name 

COMMAND CMDM command mode 

C_RESC received escape character 

C_RCMD received command 

HOT HOTM hot mode 

H_RESC received escape character 

H_RCMD received command 

FILE FILEM file mode 

F_RESC received escape character 

F_RCMD received command 

F_IFH interrupt for hot character 

CKSUM checksum expected 

SEQ:t\TUME sequence number expected 

TABLE 1. 
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<CK SUM> 

<EDP>, <INTESC>, 
<CTLESC> / ERR 

<HOT>, <EDP> I ERR 

<HOT> 

<CTLESC> 
/ TD HOT 

<SESSISEO> 

► B */TO HOT 

<INTESC> ~--_, 

<BOP>, <HOT> / ERR 

<EDP> 

<INTESC>, 

<CTLESC> 
I TO FILE 

<CMD> 

<BOP> 

* /TO HOT SESSION 

<SESSISEO> 

<CMD> 

Fig . 2.6 Input Stl:lte Dil:lgrnrn 
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The Input State Diagram (Fig. 2-6) consists of twelve states. Table 1 contains the names of 

all states and their explanations. Notation details are in Table 2. 

The initial state is CMDM. While in this state, the protocol is waiting for a control 

command, a packet, or an instruction (i.e. a sequence of CTLESC HOT) to go into hot mode. 

After receiving a CTLESC, it goes into C_RESC, and can either accept a control command or a 

packet. If a command sequence is received, it passes it up to the UR and goes back to CMDM. No 

data will be transferred in command mode until the protocol explicitly receives control commands 

which lead to hot mode (CTLESC HOT) or file mode (CTLESC BOP) . If there are any illegal 

combinations of commands, it sends an error message to the UR and returns to CMDM state . 

In HOTM state, every character which comes in is treated as "hot", and is passed up to the 

UR without any interpretation. If a CTLESC is received, it goes into H_RESC, and can either 

accept a control command or a packet. If double CTLESC are received, it treats CTLESC as data . 

If CTLESC BOP (Beginning Of Packet) is received (i.e. a packet is being transmitted), it accepts 

the next byte as the session number and sequence number, then goes into FILE mode . 

Name 

<BOP> 

<CKSUM> 

<CMD> 

<CTLESC> 

<EOP> 

<HOT> 

<INTESC> 

<SESSISEQ> 

ERR 

Explanations 

beginning of packet 

the byte for checksum 

control command 

control escape 

end of packet 

explicitly change to hot mode 

interrupt escape 

session number and sequence number 

error patterns 

* 
<>: 

any input bytes except those change the current state to other states. 

one byte 

TABLE 2. 
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In FILEM state, every character which comes in will be treated as packet data. If an 

INTESC is received, the next byte will be sent to hot session. The sequence CTLESC CTLESC 

and CTLESC INTESC represents CTLESC and INTESC as data. When an EOP (End Of Packet) 

is received after a CTLESC, it accepts one more byte as the checksum of that packet, then goes 

back to CMD mode. 

2.2.4 Output State Diagram 

The Output State Diagram (Fig. 2-7) consists of three states. Each mode contains only one 

state. Table 3 contain the names of all states and their explanations. Notation details are in Table. 4. 

Mode State Name Full Name 

COMMAND CMDM command mode 

HOT HOTM hot mode 

FILE FILEM file mode 

TABLE 3. 

The initial state is CMDM. In this mode, the protocol is waiting for something to send. It 

expects a control command, hot characters, or packets from its UR. When it receives a control 

command, it frames a CTLESC in front of the command and a combined session number and 

sequence number at the end and then transmits this new string. When the character read is a hot 

character, it goes into HOTM state, and inserts an INTESC before that character. When it is a 

packet, it goes into FILEM state, and inserts CTLESC BOP SESSISEQ sequence as the header. 

In HOTM state, every character received from UR will be sent immediately. A control 

command can be sent in this state. If CTLESC is part of the data, double CTLESC will be sent. 

In FILEM state, all data in a packet will be sent as they are. If a hot character is received 

from the UR, an INTESC will be inserted before it. Double CTLESC and CTLESC INTESC 

11 



CMOS/ <CTLE SC><CMD> <SESSISEO> 

HOTM/ <C"TLE SC> <HD1> 

CMDS/ <CTLESC><CMD> <SESS:SEO> 

F_START / 
<CTLESC> <BDP><SESSISEQ> 

CMDS/ <CTLESC><CMD><SESS!SEO> 

INT l<INTESC> * 

EDP/ 
< CT L :SC >< E OD>< CK s u :-1) 

CMD 
MODE 

HOT 
MODE 

FILE 

1-LDAT A/SEND 

CTLESC / <CTLESC><CTLESC> 

F_DATA/SEND 

CTLESC,IN"TESC/ <CTLESC> * 

Fig . 2 .7 Dt.:tpu t Ste: t e Diegrem 
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represent CTLESC and INTESC as data. A checksum is calculated and sent out after the EOP . 

After LR completes sending a packet, it goes back to CMDM state. 

2.3 

Name Explanations 

CMDS control commands from UR 

CTLESC CILESC as data 

EOP end of packet 

F_DATA file data 

F_START stan of file transfer 

H_DATA hot data 

H01M change to hot mode 

INT interrupt in file mode for hot data 

INTESC INTESC as data 

* · a byte that corresponding to the input 

<>: one byte 

TABLE 4. 

Upper Robin Protocol 

The algorithm used in Robin protocol [7, pp.162] is bidirectional, allowing multiple 

outstanding packets and accepting out of order packets. 

2.3.1 Asynchronous vs. Synchronous read/write 

Protocols dealing with asynchronous serial lines are usually known as asynchronous 

protocols because signals passing along this line are asynchronous. This particular form of 

asynchronization is about the physical line; however, all protocols should be synchronous in 

transmitting data since the sender and receiver need to be coordinated. Protocols working on half 

duplex methods have few problems operating synchronously. Kermit [3] is a stop-and-wait 

._.} protocol [1, pp.143] which sends one packet and then waits for an acknowledgement before 
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proceeding. Robin can send and receive simultaneously. If there is nothing to read from the serial 

line, alternate read/write (or synchronous read/write) is not an effective way to handle bidirectional 

communication. Such a method keeps looking at the line to try to read data even when there is no 

data to read. Ideally, a transmission line is read whenever there is data, which is known as 

asynchronous read/write. Synchronous read/write uses a polling technique, asynchronous 

read/write uses an interrupt technique. Robin uses this interrupt technique to achieve asynchronous 

read/write (see section 4 ). 

2.3.2 Pipelining and Sliding Window 

After a packet is transmitted across a serial line and successfully received, the receiver 

sends an acknowledgement (ACK) back. The time between sending out a packet and receiving the 

acknowledgement is known as propagation delay [7, pp.113]. The longer the distance, the longer 

the propagation delay. Time is wasted while waiting for the acknowledgement as in stop-and-wait 

protocols, additional packets could be sent. Sending multiple packets before waiting for an 

acknowledgement is known as pipelining [7, pp.153]. This technique fully utilizes the line. 

Let B bits/sec be the baud rate of a serial line, L bits be the packet size, and R seconds be 

the round-trip propagation time. The time required to send a packet is L/B seconds. It takes R/2 

seconds to arrive at the receiver. The receiver takes L/B seconds to read the packet. It takes another 

R/2 seconds to return an acknowledgement (assuming the time required to read an 

acknowledgement is negligible). After sending the packet, for stop-and-wait protocol, there is 

· (BR+L)/B seconds idle time. In this idle time, the protocol can send more packets. The number of 

packets that can be sent to the line before receiving an acknowledgement is (BR+L)/L [7, pp.154). 

We assume the packet size (L) and the baud rate (B) are constants. Thus, the longer the 

propagation time (R), the more packets can be sent to the line before rece1 vrng an 

acknowledgement. 
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Sliding window [7, pp.151] is a method for keeping track of all unacknowledged packets 

out on the line. Both sender and receiver have their own sliding windows. Each window is 

associated with a sequence number and a buffer. If a packet is corrupted during transmitting, the 

receiver will send a negative acknowledgement (NAK) and continue to accept correct packets , and 

store them into individual buffers until the sliding windows are full. Whenever these packets are in 

order again, they will be passed to the upper layer, and the sliding windows will be updated . 

Sender's 
Sl i di ng Wi ndov1s 

Receiver's 
Sliding Wi ndo\./s 

!h° 
~ 

(e) ( b) (c) 

3(\0 

~ 

(d) 

Fig. 2-8 A sliding window of size 4 , with 3-bit sequence number. (a) Initially . (b) After the first packet has 

been sent. (c) After the first packet has been received . (d) After the packet acknowled gement has been 

received. 

It is reasonable to make the size of a sliding window equal to the maximum sequence 

number+ 1. However, Robin protocol can accept out of order packets up to the size of the sliding 

window, so the size of the sliding window for Robin protocol should . be [(maximum sequence 

number+ 1)/2] to avoid overlapping of sequence numbers [7, pp .161]. An example is given in fig. 

2-8. 
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2. 3. 3 Time Out Mechanism 

Using acknowledgement alone is not enough to provide an efficient error detection 

protocol. If a NAK is lost in the line, the sender must be notified and retransmit the damaged 

packet. A multiple timers system is adapted and implemented. Each packet is associated with one 

timer. After sending a packet, the timer is switched on until an ACK of that packet has arrived. If 

the NAK has been received, the protocol stops the timer and sends that packet again. After 

retransmitting, it starts the timer again. If there is no acknowledgement at all and the time is out, it 

retransmits that packet and starts a new timer. The multiple timers system is simulated in software 

by using a single hardware clock that causes interrupts periodically. 

2.3.4 Dynan1ic Buffering 

) Since there is no fixed packet size, a sequence of packets may differ in size from each 

other. This condition leads us to use a dynamic buffering method with the sliding window in 

fig. 2-9. This technique is more flexible and saves space. The flexibility provides dynamic 

adjustment of packet size for one particular file transfer session (see section 6). 

Lb° 
N7: 

(a) 

0 

(b) 

2 3 

D 
maximum 

._ buffer size ( 1 KB) 

Fig. 2-9 (a) a sliding window with size of 4. (b) Each buffer corresponds to a window with different size. 
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2.3.5 Checksum 

There are a number of methods to calculate a checksum. The most reliable and common is 

cyclic redundancy code (CRC) [7, pp.129]. However, we chose a simple method: the summation 

of all bytes sent or received to form an 8-bit checksum. The carry of checksum after overflow is 

ignored. 

3. Robin, SLIP and Kermit 

The following brief discussion is based on the designs of Robin, SLIP (see Appendix B or 

[5]) and K_ermit [3]. This is not a complete comparison of these protocols, but a discussion of the 

main concepts. 

) (a) Layering 

I SO OS I MODEL 

epplicetion 

presentet ion 

session 

trensport 

network 

dete link 

physical 

ROBIN 

Upper 
Robin 

Lower Robin 

RS-232C 

Fig. 3-1 Layers ofISO OSI Model, Robin and SLIP architecture. 
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Fig. 3-1 is a diagram comparing the ISO OSI Reference model, Robin and SLIP . SLIP is a 

single layer protocol while Robin and Kermit are similar with multiple layers. By comparing them 

with the OSI Model, we can get some ideas about functionalities of Robin and SLIP . 

Robin is an application and can be used alone. Upper Robin (UR) handles file transfer, 

multiple sessions and remote log-in. Lower Robin (LR) sends and receives data based on input and 

output state diagrams. It is quite similar to Kermit, but Kermit doesn't handles multiple sessions at 

the same time. SLIP is no more than just a simple framing protocol. 

(b) Implementation Level 

Robin has been implemented in the C language on the user level. It is more portable since it 

is less dependent on a machine. SLIP is a device driver, so it is closely tied to the operating 

) system. Although it is less portable, it has the efficiency advantage that operating system routines 

can provide. SLIP has been integrated into 4.3 BSD Unix. Since we wish to develop an interface 

which will eventually be used with different operating systems and varied hardware, portability 

seems more important than efficiency. Kermit offers successful trade off. 

_J 

(c) Error Detection 

SLIP is a data link layer without error detection. The layer above SLIP is expected to check 

by itself any error which occurred in a packet. A protocol which assumes the lower layer to be 

reliable cannot be used over SLIP. The error detection capability of Robin can provide more 

general and reliable services to upper level protocols, that means one protocol can provide different 

services to different upper level protocols. 

There are different degrees of error checking. The algorithm chosen for Robin [7, pp.162] 

accepts out of order packets, but buffers them up until they are in order. Each outstanding packet is 
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associated with a timer. When a timer of a particular outstanding packet goes off, only that packet 

is retransmitted, not all the outstanding packets. Because of buffering on the receiver, accepting out 

of order packets becomes possible. This method is known as a sliding window protocol (see 

section 2.3 for details). 

(d) Data Format 

There are hot character, control command and packet formats which can be sent across the 

line. Section 2.1 has more details on the definitions and usages. However, SLIP only has packet 

format which is quite passive and has no control over the line. The control commands of Robin 

provide some control over the line, as well as, more services to the upper level protocols. Kermit is 

similar to Robin, but has no hot characters. 

( e) Addressing 

The emphasis of protocols is point-to-point asynchronous serial connection. There is a 

dedicated serial line or phone line, so addressing is not important and header space can be reduced. 

If we aim at intemetworking capability, addressing is necessary. 

(f) Data Compression 

Although data compression techniques are good methods to use on slow serial lines, they 

are not included in these protocols. A data compression algorithm has been suggested for 

implementation in SLIP. A later version of SLIP may have it. Even if SLIP includes this 

technique, the big overhead of TCP/IP is still a major problem. However, any method that reduces 

the big overhead and fully utilizes the line is good for Robin. 
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4. Discussion on Implementation 

Robin has been partially implemented on a Unix operating system. A dedicated serial line 

was connected to two serial ports on a single machine (VAX 750 running 4.3 BSD Unix). 

Protocol 6 [7, pp.162] has been modified and implemented to fit our Robin design. File transfer 

capability and interruptibility have been primarily tested. 

There are limitations in the available hardware. This simple experiment used just a short 

serial line (about 3 feet long). It will hardly notice the propagation delay during transmission. 

Robin will be implemented with both client and server in the same operating system first, before 

being ported to a microcomputer. One of the target operating systems is Unix (see Appendix A). 

Since, it is not quite suitable for what we have designed, Robin has only been partially 

implemented. 

4.1 Implementation Problem under Unix 

The problem is the implementation of asynchronous read/write on the user level. In Unix, 

"signal" is the only way to communicate between the kernel and a user process asynchronously. 

· An I/0 signal has been set up so that whenever data is available on the serial line, it receives a 

signal from the operating system. With this set up, Robin protocol can send data and read data 

when an I/0 signal is received (interrupted). Ideally, the protocol can handle a full duplex line. 

Theoretically, this technique should work, but practically, the data comes so fast that it fills up the 

internal buffer of Unix. The rest of the data is discarded . The context switching between the Robin 

process and kernel process takes time when I/0 signals are sent and received. Therefore, there is 

data lost in the middle of a file transfer. One way to solve this is to read more characters at a time 

and put them into a buffer by themselves. This approach works fine to clean up the internal buffer 

overflow problem, but it has a problem of missing characters at the end of a file. It is an 

inconsistent bug, which, although not guaranteed to occur, has not yet been solved. 
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4.2 Temporary Solutions 

The "signal" approach cannot achieve asynchronous read/write; therefore, in order to test 

the rest of our design, we used an alternative approach: synchronous read/write. The deficiency of 

this approach is that we must read, even if there is no data available. This implementation worked 

and the underlying Robin protocol has been tested using it. There are several alternatives to the 

synchronous read/write approach. The following sections discuss some of the possibilities. 

4.2.1 Xinu Approach 

Xinu [1] is an operating system created by Comer at Purdue University. It is mainly used 

for teaching how an operating system is implemented. Later, Comer implemented a language called 

Concurrent C which has the same concepts as Xinu, and is a superset of the C language. It 

) provides context switching within the program itself. The Lower Robin has been implemented in 

Concurrent C, but because of the lack of control over the frequency of the switching, the switch 

between read and write occurred too often which actually slowed down the whole process. 

_) 

4.2.2 Non-Blocking I/O 

Unix provides non-blocking input/output (see fcntl in [8]) which returns control to the 

program from the read system call if there is no data available. If non-blocking I/O is set, the read 

system call will be blocked until there is data . Therefore, the program has to read the line regularly 

to check whether there is data or not. This approach works, but there is another system call which 

is more general. 

4.2.3 Select System Call 

There is a system call called "select" [8] which is used for synchronous I/O multiplexing . 
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More than one file descriptor can be used. Select will check whether any file descriptor can be read 

or written. The difference between using "select" and "signal" is that "select" actively checks the 

availability of data while "signal" is passive. Select has to be used inside a loop so that all I/O will 

be monitored . The result of using select system call is better than previous methods. However, the 

problem of missing characters at the end of files still exists but occurs less often. 

5. Conclusion 

From the Robin design and implementation, we have encountered difficulties in 

implementing Robin on the user level, especially with the asynchronous I/O part. The problem 

mentioned in section 4.1 continues to exist. The design of signals in Unix was not in tended to be 

used so intensively for asynchronous communication between a user process and the operating 

system. The timing problem under Unix is a well-known competitive condition. To circumvent the 

problem, besides switching to synchronous I/O, we can implement Robin as a device driver (like 

SLIP did). Then, it will be faster and will allow better manipulation of internal buffers. 

6. Future Research 

Continuing to develop Robin's potential is worthwhile, although some difficulties have been 

encountered . The existing SLIP does not solve any problems about big overhead over serial lines. 

The overhead of Robin is 6 bytes per one character in packet mode for the worst case. There is no 

overhead in hot mode that will speed up the transmission. However, there is always a trade off 

between faster transmission and more reliable protocol. With the dynamic adjustment of packet size 

(section 2.3.4), the priority of a session can be changed by changing the packet size, or vice versa. 
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Appendix A : Hardware Requirements 

Two requirements must be met: the more powerful host should be a Unix-based system, 

with LAN and modem, and mass secondary storage, and the microcomputer should have a disk 

drive, a serial port and a modem. The other requirement is a standard RS-232C serial line and a 

modem set at 9600 baud, no parity, full-duplex, 8 bits data, with one start bit and one stop bit. 
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Appendix B : Serial Line Internet Protocol (SLIP) 

This summary is based on the RFC 1055 (June 1988) [5]. The motivation behind SLIP is 

quite simple. It encapsulates TCP/IP packets for asynchronous serial line communication. It is 

currently a de facto standard for point-to-point serial connections running TCP/IP. It has been 

implemented in 4.3 BSD Unix, Ultrix, Sun Unix and most other Berkeley-derived Unix Systems. 

SLIP is merely a packet framing protocol. It provides no addressing, error detection/correction, 

packet type identification or compression mechanisms. A sequence of characters that frame IP 

packets on a serial line is defined, and nothing more. SLIP is commonly used on dedicated serial 

links and sometimes for dialup purposes, and is usually used with line speeds between 1200 bps 

and 19 .2 Kbps. 

There are 4 special characters which are used to escape the next character or to indicate the 

end of a packet. They are FRMEND, FRMESC, M_FRMEND and M_FRMESC. 

Name Octal Description 

FRMEND 0300 Frame End Character 

FRMESC 0333 Frame Escape Character 

M_FRMEND 0334 Meta Frame End Character 

M_FRMESC 0335 Meta Frame Escape Character 

SLIP Packet FRMEND I 
IP header I TCP header I optional TCP data 

Since there is no header for a packet, any data sent is packet data . The FRMEND special 

character is used to terminate a packet. The data stream looks like the following sequence: 

... data ... FRMEND ... data .. . FRMEND ... data ... FRMEND ... 
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Data between two FRMEND characters is a packet. Therefore, to send a packet, SLIP 

simply starts sending the data in the packet . If a data byte is the same code as the FRMEND 

character, a two byte sequence of FRMESC and M_FRMEND is sent. If it is the same as the 

FRMESC character, a two byte sequence of FRMESC and M_FRMESC character is sent. When 

the last byte in the packet has been sent, a FRMEND character is then transmitted. Because there is 

no length limit for the packet size, there is no theoretical maximum packet size for SLIP . Using the 

maximum packet size used by the Berkeley UNIX SLIP drivers is suggested, i.e. 1006 bytes 

including the IP and transport protocol headers (not including the frame character). 

There are several features which would make SLIP more efficient, but they are not 

implemented . Because of the lack of addressing, the IP addresses of both computers must be 

known in advance. SLIP has no type field. Thus, only one protocol can be run over a SLIP 

connection on each side; however, not only the IP packet can be sent across the line. Error 

detection is not absolutely necessary at the SLIP level because any IP application is expected to 

detect damaged packets . Since transmitting data over a serial line is slow , packet compression 

would give large improvements in packet throughput. 

There is another SLIP (Serial Line Interlace Protocol) [2] which was defined in appendix D 

of RFC 914. Except for a common name, both SLIP methods are different. So far, no one has 

implemented the RFC 914 SLIP. 
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