
)

AN ANALYSIS OF CONCEPTS OF PLAGIARISM

AS THEY ARE APPLIED IN

COMPUTER PROGRAMMING

by

John Bradley Connely

A Research Report

In Partial Fulfillment of the

Requirements for the Degree

Master of Science

(Computer Science)

November 1988

i

Chapter
I.

II.

III.

IV.

TABLE OF CONTENTS

INTRODUCTION • • • . 1

Statement of the Problem
Hypotheses
Summary of the Findings

PLAGIARISM. • • • • • • • • • • • • 5

Literary Concepts
Computer Science Concepts
Student Concepts
Summary

EXTENT OF THE PROBLEM.
PLAGIARISTIC TECHNIQUES SUGGESTED BY STUDENTS

First Analysis
Second Analysis
Summary

• 22

. 28

V. SUGGESTED METHODS TO CURB PLAGIARISM .•..•.• 39

A Similarity Check
Practical Advice
Positive Techniques
More Elaborate Procedures
Some Pedagogical Concerns
Summary

VI. AN EXPOSITION AND COMPARISON OF
SOME SUGGESTED METRICS•.•••••.•• 47

A Review of Relevant Articles
Summary

VII. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS •.••• 60

Background
The Problem
Conclusions
Recommendations

ii

)

APPENDICES • • • • • • • • • • • • • • • • • • 6 5

A. A Pascal Program.
B. AC Program.
C. A copy of a letter to CSU Computer Science

Departments.
D. A copy of a faculty questionnaire.
E. Surveys and Interviews

BIBLIOGRAPHY . . . • . • • • • • • . . . • • • • . • • . • • 81

iii

)

MEMBERS OF COMMITTEE

Curtis R. Cook, Ph.D., Chairman

Tim Budd, Ph.D.

Ted Lewis, Ph.D.

iv

)

CHAPTER I

INTRODUCTION

Statement of the Problem

There has been concern voiced for a number of years about

the problem of program plagiarism. A number of SIGCSE Bulletin

articles have discussed the issue. However, it is not at all

clear as to what behavior we are actually referring, nor to what

extent it is occurring. How do faculty define 'plagiarism?' How

do students define the term? What do students typically do when

they plagiarize? Are there discernible patterns in plagiaristic

behavior? Are there ways to accurately measure such behavior? Do

some types of students plagiarize more than others? Does

plagiarism occur more in some kinds of classes than in others?

Can we use some kind of metrics to determine when program

plagiarism has taken place? What solutions are used or have been

suggested to control or to eliminate the occurrence of

plagiarism? Are they effective? Lastly, is there any consensus in

the computer science profession on these issues and, if not,

should there be and can there be?

Summary of the Findings

There is no clear-cut, easily applied, generally accepted,

adequate definition of computer plagiarism. On a superficial

1

{) level it is easy to get agreement that copying other's work and

submitting it as your own is wrong. However, when an effort is

made to apply this definition to actual cases it readily becomes

apparent that there are too many gray areas. To what extent can a

student paraphrase an already existing publicly available

algorithm in order to adapt it to a specific problem without

being accused of plagiarism? What is the body of "common

knowledge" in computer science that does not require citation?

Up to what point is collaboration acceptable and when not? As of

yet there are no generally agreed upon answers.

It is difficult to tell if there is very much program

plagiarism and how serious a problem it is. This is significantly

due to the lack of an adequate definition of the term. The

comments in the literature are largely anecdotal in nature and

cannot be used as a basis for a valid generalization. One can be

of the opinion that any plagiarism is too much and that even the

suspicion of successful plagiarism is demoralizing to the honest

students. That is an acceptable position, but it does not answer

the question of how much program plagiarism is occurring. The

general opinion is that program plagiarism occurs mostly in lower

division introductory classes and that it is committed mostly by

non computer science majors.

There have been a number of attempts to formulate some form

of metrics to determine the degree of similarity of homework in

an effort to use such information as a means of detecting

2

)

possible instances of plagiarism. The schemes have been useful

and productive of a greater understanding of the issues involved.

They have foundered for a variety of reasons . One of them again

being the lack of an adequate development of the concept of

program plagiarism. The schemes have had a rather limited

applicability to the comparison of whole programs which have

undergone cosmetic alterations. For them to work at all, the

original had to be submitted in the same homework set. So program

plagiarism which involves using any other source of information

is outside the realm of the use of the metrics that have been

discussed.

There apparently are definite patterns involved in student

plagiarism, at least as can be determined by asking students what

they would do if they set out to plagiarize. There are patterns

of what type of changes they would make and in what order. The

protocol studies indicated that non-cosmetic changes are common.

Thus a metric which would only catch cosmetic transformations

would chance missing a significant number of cases of program

plagiarism.

None of the solutions proposed to curb program plagiarism

are anything more than piecemeal efforts. They all have some

merit. They all may help. There is always a need for a clear-cut

policy and procedures if one works in an institutional setting.

The general solution must involve all of the aspects suggested.

There must be negative reinforcement for those hopefully few who

3

)

stray, and positive procedures and teaching styles to help guide

the many. Here, too, a better definition of program plagiarism is

absolutely necessary.

Finally, as is now evident, except at an abstract level

there is little consensus as to the nature, extent or seriousness

of the problem. There is a consensus that there is a problem,

that it has negative consequences, and that it should be

addressed.

4

)

CHAPTER II

PLAGIARISM

Literary Concepts

Is a specific behavior an act of plagiarism? Is program

plagiarism a frequent occurrence? Is plagiarism a serious problem

in computer science programming?

These questions point to a basic difficulty that must be

dealt with before any reasonable answers can be found to the

questions themselves. The problem concerns the conceptual

difficulty of the meaning of the word 'plagiarism'. What then is

'plagiarism' and, specifically, what is it in terms of computer

programming? Certainly we cannot categorize behavior, nor

determine the extent of the problem before the problem itself is

clearly defined, nor should we make moral judgments before we

have determined what behavior constitutes plagiarism. In fact, it

would seem morally questionable on our part to condemn a

student's behavior if we have not previously explained what

behavior is unacceptable and why this is so. Thus, the analysis

of the concept is a primary concern both for the authorities who

attempt to apply it and for the students who are supposed to

understand and abide by it.

Plagiarism is commonly defined as presenting somebody else's

words or ideas as one's own, i.e., fraudulently copying something

5

)

)

(5:1031). Size is largely irrelevant. " •.• the copied matter may

range from a few sentences to a whole paper copied from another

student or from a book or a magazine" (8:635).

William W. Watt states that,

••. It is as immoral to steal from another person's
writing as from his ••. wallet.

There are, to be sure, degrees of plagiarism. For every
student who commits grand literary larceny--lifting an
entire theme word for word--there are a hundred
fundamentally honest classmates who indulge in various kinds
of petty larceny through ignorance of the laws of literary
ethics. (See also Fowler, 482-484 on this point)

•.. The general principles for all honest writing can be
summarized briefly. Acknowledge indebtedness:

1. Whenever you quote another's person's actual words.
2. Whenever you use another person's idea, opinion, or

theory, even if it is completely paraphrased in your
own words. (10:5-6)

On the other hand,

When you write a research paper, you use information
from three kinds of sources: (1) your independent
thoughts and experiences; (2) common knowledge, the
basic knowledge people share; and (3) other people's
independent thoughts .•. Of the three, you must
acknowledge only the third, the work of others .

..• even when [someone else's ideas] are expressed
entirely in your words and format, they require
acknowledgment.

Common knowledge consists of the standard
information of a field of study as well as folk
literature and common sense observations. (4:
482-484)

The MLA Handbook would include proverbs and familiar

quotations along with common knowledge (6:28). Oregon State

University's "Handbook for Writing Teachers" further states that

•.. there are several situations where the rule

6

[concerning plagiarism] is relaxed. Information
generally known and accepted in your field is not
documented ..•• Sources are not cited for
information that your readers are unlikely to
question or can easily verify.(37:7)

To summarize at this point, plagiarism, in general, is

copying or paraphrasing of someone else's work and, by not giving

credit for the words or ideas or theories used, allowing others

to assume that they are yours. This is so regardless of the

amount of material plagiarized. There are degrees of opprobrium

depending on your intent, e.g., if you plagiarize through

ignorance of proper footnoting procedure and without deliberate

intent, it is not nearly so serious a breach of ethical behavior

as if you knowingly plagiarize and deliberately try to obscure

that fact. As a complication, however, if you copy information

) which is common knowledge in general or common knowledge in your

field, "information that your readers are unlikely to question or

can easily verify" (37:7), material from folk literature,

proverbs or familiar quotations, then you need not cite the

source and you are not committing plagiarism. The above

considerations would seem to indicate that plagiarism is to some

extent a matter of the context of the situation, i.e., it will

depend on your intent and yours and others understanding of

'common knowledge'. We are faced with a dilemma at this point.

It is not at all obvious how we should acknowledge everything

that is borrowed (words and ideas) which really, ultimately,

means the vast plurality of what we know, but not acknowledge

7

)

that which is of common knowledge. Lastly, whatever plagiarism is

defined to be, it is felt to be immoral, dishonest, unethical,

larcenous and a form of stealing.

Computer Science Concepts

In an effort to clarify the relationship of the concept of

plagiarism as it relates to computer programming, a number of

SIGCSE journal articles have modified and expanded on the

literary definitions of plagiarism.

One of the earlier papers asserts that plagiarism has most

likely occurred when two program listings can be determined to be

equivalent or "(nearly) identical" (30:30).

Ottenstein enters several caveats, however:

••• it is possible for identical work to be performed
independently, the semantic equivalence of two items cannot
always be shown deterministically, and there is a subjective
area between plagiarism and paraphrasing •

••• Unfortunately, a student who cheated on only part of
a program will not be detected.(30:30-31)

Thus, he clearly assumes that plagiarism is a kind of

copying. He considers plagiarism to have occurred when the

copying involves cheating, although he makes no effort to define

what is meant by 'cheating' nor does he address the issues of

intent, the possibility of standard information, or the question

of legitimate collaboration. Ottenstein's search for similarity

and invariants is analogous to seeking either the exact text or

the ideas and structure which lie behind a prose work. His

cautions are interesting also. Moreover, where they are not

8

relevant to traditional plagiarism is instructive. It makes sense

when dealing with any kind of plagiarism to be aware that" ••.

the semantic equivalence of two items cannot always be shown

deterministically, and there is a subjective area between

plagiarism and paraphrasing." It is not made clear how to

distinguish between legitimate paraphrasing (or even what it is)

and the assumption that a similarity of invariants between two

papers should be considered as a possible instance of cheating.

It is not very likely in prose that" ••• it is possible for

identical work to be performed independently". Furthermore, it

would seem odd to assert in grading an English composition that

" •.• a student who cheated on only part of a program will not be

detected". The reason for the first deviation from a prose work

) is simply that computer languages are extremely limited in terms

of vocabulary and syntax in comparison with natural languages,

so, with a moderately simple assignment given to an entire class,

there might well be solutions submitted that were very similar.

The second deviation relates more to the mechanical way in which

Ottenstein and others propose to ascertain whether program

plagiarism has taken place. Although variations might deal with

different computer languages and seek to implement varying ideas

of invariance, the methods generally result in a comparison of

the totality of one aspect of a program with another, e.g., the

number of unique variables in program A versus the number in

program B. Thus to the extent that any part of a program is not

9

') plagiarized, it may start to significantly affect the metrics

being used to compare the two programs. Ottenstein does not

assert that plagiarism is simply a matter of copying a complete

program, but that his method will only be appropriate to

measuring such a case. Furthermore, if a large segment of several

programs consisted of what might be considered common knowledge,

it would also becloud any assertion that similarity should be

viewed as possible plagiarism.

)

Mary Shaw chaired a computer science departmental committee

at Carnegie-Mellon University in 1979 to, among other things,

" ... draft a policy statement defining cheating .••. (33:72). In

Appendix I of her paper she quotes extensively from the Carnegie

Melon University Student Handbook.

Cheating includes but is not necessarily limited to:

1. The use of unauthorized materials including computer
programs ••••

3. The submission of work that is not the student's own.
4. Plagiarism.

7. Collaboration in the preparation of an assignment, unless
specifically required by the department •••• (33:74)

Shaw notes that" ••• the nature of the computer introduces

unique problems" (33:72) in applying standard university

policies on cheating and plagiarism. To clarify to students the

nature of plagiarism, her department prepared and distributed a

handout that specifies that the question of cheating depends on

"the intent of an assignment or exam, the ground rules specified

by the instructor, and the behavior of the student" (33:75).

10

1) Cheating is to be suspected if two programs are so similar that

one can be transformed into the other by mechanical means, e.g.,

"renaming variables, rearranging statements and expressions and

making systematic changes of data structures such as the

substitution of integers ranging over [0,1] for booleans"

(33:73).

)

)

Cheating should also be suspected whenever a student cannot

explain his/her solution or how it was arrived at. Shaw also

seeks to define cheating/plagiarism by listing several examples:

Here are some examples of cases which are clearly cheating
and clearly not cheating.

Cheating

• Turning in someone else's work as your own (with or
without his knowledge). Turning in a completely duplicated
assignment is a flagrant offense.

• Allowing someone else to turn in your work as his or her
own.

• Several people writing one program and turning in multiple
copies, all represented (implicitly or explicitly) as
individual work.

• Using any part of someone else's work without the proper
acknowledgment.

Not Cheating

• Getting or giving help on how to solve minor syntax errors.
• High-level discussion of course material for better

understanding.
• Discussion of assignments to understand what is being asked

for. (33:75)

Shaw's paper generally supports the traditional idea of

plagiarism, i.e., it is the falsely claimed use of someone else's

work; it is cheating. She ignores the question of common

knowledge, unless she possibly intended to mean this by the term

11

"unauthorized material." She points out that there are aspects of

the problem of plagiarism that are unique to computer science, at
:·

least in their emphasis. For instance, collaboration is forbidden

in the preparation of an assignment unless specifically required.

However, by introducing the term 'collaboration' the conceptual

difficulty is not eased, but rather made worse. Shaw then feels

compelled to mention types of collaboration which are acceptable,

even though not specifically required by the department [a

contradiction?], e.g., "getting or giving aid on solving minor

syntax errors", "high-level discussions" or "discussion of

assignments". Note that a number of additional difficulties have

been introduced. The person who helps, aids or collaborates may

now also be culpable. It is not at all clear, certainly to a

) novice, if indeed to anyone, where the boundaries for "minor",

"high-level" and "discussion" are to be found.

)

Shaw does address the earlier mentioned contextual nature of

plagiarism by stipulating that the question of cheating does

involve "the intent of an assignment or exam, the ground rules

specified by the instructor, and the behavior [intent?] of the

student". It can be a matter of partial or wholesale copying. She

continues that plagiarism includes the transformation of copied

materials through mechanical means and that cheating should be

suspected "whenever a student cannot explain his/her solution or

how it was arrived at."

These are interesting and worthwhile observations, but they

12

f~) also obscure any specific definition by, in reality, allowing

completely contradictory requirements from course to course or

from instructor to instructor. Such statements are useful in an

heuristic sense, but serve poorly as guidelines for students.

They do serve to raise our consciousness of the new, or at least

more numerous, difficulties of clarifying the concept of

plagiarism in relation to computer programming. They are not,

however, self-defining. It is not clear what is meant by

unauthorized materials, nor the degree to which a student should

be able to explain what he/she has done. The solution may have

been honestly stumbled upon without any great insight, but great

persistence.

A panel discussion moderated by Philip L. Miller elicited

several comments on the nature of plagiarism:

... the tendency of students to resort to unorthodox means
in fulfilling course requirements .
•.. such tactics as copying programs, stealing programs
written by other students, and paying to have programming
assignments written for them [Dodrill] (29:26)

In addition, another member of the panel noted that:

In computer science it is particularly valuable for
students to work cooperatively. Throughout their
professional careers they will be working in teams and it is
a poor educational system which does not prepare them for
this. We should foster teamwork, rather than isolated
individual activity; we should train students to work
together, rather than looking upon it with suspicion; and we
should encourage the sharing of ideas, rather than a jealous
secrecy. There is nothing inherently unethical about such
collaborative work. [Lidtke](29:27)

A member of a different panel supported this last point of
view:

13

)

)

1. A certain amount of student collaboration is a powerful
and useful teaching method. It invariably leads to
look-alike programs.

2. Use of standard 3ubprograms for often used algorithms
should be tolerated. [Criss] (26:263)

Here we are seeing both the extension of ideas as the

concept of plagiarism is applied to computer programming and the

conflict which arises when the opprobrium generally felt toward

plagiarism is not felt to be appropriate in regards to certain

aspects of the proposed extended definition. If "a certain amount

of collaboration" is good and the "use of standard subprograms

should be tolerated" then mutual aid under some conditions and

verbatim copying or close paraphrasing of common algorithms are

both possibly acceptable. In other words, collaboration and

cheating are not synonymous nor are copying, paraphrasing and

plagiarism. We are back to a question of context.

Hwang and Gibson presented a long list of activities that

would count as efforts to plagiarize a program.

Students have devised an assortment of ways for
cheating on programming assignments. Below, are listed
several of them:

1. Copying a program by changing only the author's
name.

2. Having someone else write all
program.

3. Copying a program
4. Copying a program
5. Copying a program
6. Copying a program
7. Copying a program
8. Copying a program

lot.(25:51)

given in an
by changing
by changing
by changing
by changing
by changing

or part of the

earlier class.
only the line numbers.
the documentation.
the logic a little.
the variable names.
the logic a

The above list does little in general to further our insight

14

)

into plagiarism, although it does support the central core of

meaning. Of interest, however, are points number 3 and number 8.

Does number 3 really mean that it is plagiarism to use one's

own work in a different class? That would seem an odd extension

to the basic meaning of 'plagiarism', but might be of interest as

an extension of the meaning of 'cheating'. The problem with

number 8 is that once again we are faced with a concept with

extremely vague boundaries. Is there no point at which a change

of logic becomes so extensive that the result is no longer

plagiarism?

Janet Cook, as part of a much larger concern with overall

student ethics in a computer science environment, suggests

meanings for 'collaboration', 'consultation' and 'plagiarism'.

Collaborative problem solving can be valuable in
computing ..•• Unless group work is explicitly authorized
for a project, however, assume that it is to be done by each
student individually.

When working on an "individual" project, the line
between legitimate and illegitimate consultation is drawn at
the point where a solution is put into writing on paper, in a
machine, or elsewhere. The detailed development of the written
solution should be one's own independent work.

1. Plagiarism, any act of accessing or copying another
person's work and submitting it as one's own.

Individually,
- copying another person's program, perhaps
modifying parts, and turning it in as one's own
work. (16:464)

Here, as in the other papers, we find puzzling gray areas.

It seems clear to say that collaboration is forbidden with

individual projects, but legitimate consultation is acceptable.

15

)

Is the difference one between joint work and asking advice? But

is not collaboration between students often a form of one asking

advice of another, i.e., consultation? Apparently consultation is

all right up until the students begin writing their program, but

reality is not so precise. Many students do not ponder and

workout the entire program in their minds and then type it in. Is

any consultation allowed, e.g., a further discussion of the use

of sentinels, after coding has started? What if the consultation

before coding started involved detailed analysis of every aspect

of the assignment to the point where the students involved had

extremely similar code, even though each one actually wrote

his/her program individually?

For the meaning of 'plagiarism', no new issues have been

raised. Once again it is left vague as to whether one can

plagiarize a partial program and what amount and kind of

modifications can occur before one no longer is submitting

someone else's work.

Faidhi and Robinson (21) have come closest to an operational

definition of plagiarism by developing a taxonomy of levels of

plagiarism from novice to expert:

Level 1--represents the changes in comments and indentation.
Level 2--represents the changes in level 1 and changes in

identifiers.
Level 3--represents the changes of level 2 and changes in

declarations (i.e., declaring extra constants, changing
the positions of declared variables and shuffling the
procedures/functions, etc.).

Level 4--represents the changes of level 3 and changes
in program modules (i.e., changing a function to a
procedure, merging two procedures into one, creating new

16

)

procedures).
Level 5--represents the changes of level 4 and changes in the

program statements (i.e., FOR instead of WHILE, etc.).
Level 6--represents the changes of level 5 and changes in

the decision logic (i.e., changes in expression).(21:18)

They also note that:

Novice student plagiarism mainly utilizes certain
stylistic and syntactic changes, whilst expert programmers
may introduce semantic changes (e.g., changing the data
structures used, changing an iterative process to a
recursive process, etc.) as well. (21:11)

Such a table of transformations as shown above is certainly

of interest and potentially very useful, but there is no

justification given for either the entries of a given level or

the order of the levels. While many would intuitively agree with

some aspects of the table, it is not at all obvious that Level 5

is intrinsically more difficult than Levels 4 or 6. Lacking a

theoretical or even empirical foundation, one cannot simply

assert that a hierarchy is valid as stated. In addition, such a

table would seem to imply that no matter how extensive such

changes are, it is still plagiarism if you start from a copied

program or, perhaps, even a copied fragment. Yet the authors

later state:

••• [that] when the original program has been so
significantly changed that it can no longer be considered to
be copied (and if it were, would require a plagiarizing
skill exceeding that required to produce an independent
program in the first place). (21:18)

Are we to assume that if the changes made are extensive enough

and skillful enough, then it ceases to be plagiarism?

Student Concepts

As part of the protocol analyses--which will be discussed in

17

)

)

detail in the next chapter--nineteen of the twenty-two subjects

were asked for a brief definition of plagiarism (three were no

longer available at the time). All responded in some form that

plagiarism was using or copying someone else's work or ideas

without giving credit. A number of them added comments which

indicate that they have given some further thought to the

matter. Bibliographic numbers refer to Appendix E.

• .•. [plagiarism] ••. would not include adapting someones ~¾¥] ideas or thought into something of your own design.

• ..• It [plagiarism] doesn't apply to general ideas and
procedures that might be considered in the "public
domain". (6)

• •.. [plagiarism] is the direct, unrefined usage of someone
else's information, without the proper permissions/
acknowledgments. (7)

• Plagiarism occurs when a document or parts of a document
are copied, or copied and modified, and then used ••• [by]
those who do not have permission (legal or implied) •.. (9)

• •.• If the originator is unknown and the piece of work is
deemed accessible to the public, then I would not consider
it plagiarism. (16)

• ••. If someone else liked the idea and spent his energies
developing the idea again, that is not plagerism [sic].
(17)

• Plagiarism--copy of somebody elses [sic] work word for
word without giving proper credit to them [sic]. (21)

Summary

Glaring in its absence is a generally accepted, clear-cut

and easily understood definition of the concept 'plagiarism'.

Through all of the above mentioned articles does run the common

thread that plagiarism is a form of copying where proper credit

18

J

is not given to the original author. Everyone would seem to agree

that to put your name on someone else's complete program, with

perhaps some minor cosmetic modifications, is plagiarism. This

would be so whether you stole the program, bought it or it was

given to you. There is no disagreement that copying an entire

program and claiming it as your own is wrong. There seems to be

agreement, where the issue is noted, that copying part of someone

else's program is also plagiarism. Thus copying from someone else

with an intent to deceive is an essential feature of plagiarism.

A number of related concepts have also been mentioned:

cheating, stealing, collaboration, paraphrasing, and the idea of

common knowledge and its use.

Cheating is also an essential feature of plagiarism.

Whatever else plagiarism is, it is clearly an attempt to

circumvent the explicit and/or implicit guidelines of a course.

It is an attempt to delude the instructor as to the fulfillment

of the program requirements. It is not~ priori self-evident what

those requirements are or even that they would be considered

reasonable by other professionals in the computer science field.

A great deal will probably depend on the intentions of the

instructor and the context of the class, but whatever the

requirements are, for the student to deliberately mislead the

instructor as to whether the rules of the course vis-a-vis the

program assignment were honestly followed, is cheating.

An important distinction can be made between cheating or

19

)

stealing. Stealing would assume lack of permission and probably

some degree of injury or loss being sustained by the original

owner. Yet in program plagiarism the owner may have gifted the

program to the plagiarizer and/or for all intents and purposes

suffered no loss. Again, if the program or part of it had been

written by the current user, but for a previous course, there

could be no question of theft. Thus 'stealing' or 'theft' is not

an essential aspect of plagiarism, but, rather, a frequently

concomitant characteristic. Plagiarism may often involve

stealing, but the concepts are not synonymous.

There is a great deal of confusion concerning the term

"collaboration". Two positions have been taken. The first is that

since all work must be done independently, any collaboration is

cheating unless specifically authorized. This is not as clear-cut

as it seems for surely no one intends that no questions may be

asked at all of anyone concerning anything. The second position

is that collaboration is acceptable up to a certain point. This

is more realistic and forces one to consider more carefully what

is meant by "collaboration" and what values accrue from it.

Several of the articles noted in this chapter have spoken to the

positive pedagogical values of student collaboration, but the

difficulties of setting clear limits and how to cope with the

effect that collaboration may well have on similarity of programs

are still to be solved. In any case, collaboration per~ cannot

be considered a type of plagiarism.

20

)

)

The problem of paraphrasing needs to be viewed in two

aspects. One would be where minor changes were made to obscure

the original form of a program, i.e., cosmetic or novice changes.

There is a consensus that this is plagiarism. The second aspect,

however, is somewhat more complex. Is there a point at which the

original idea or algorithm has been changed so much that its use

no longer constitutes plagiarism? There is disagreement on this

point, both as to whether such a point exists and, if so, where

it is. What is really needed is a defensible rational for the

degree of similarity that can be taken to indicate plagiarism.

The problem which has received the least attention is that

of common knowledge. In the traditional definition of the term

"plagiarism", one could use "common knowledge" without the

necessity of citing the source. Aside from the traditional

difficulty of how a novice is supposed to know what is general

knowledge, computer science has the additional difficulty that

very little effort seems to have gone either into spelling out

what is included in the concept or in teaching students to work

with such a concept and learn what it does and does not include.

This is a critical lack because in a larger sense, part of

becoming a professional in any field is both learning what is

"common knowledge" in one's field and how to give credit where

credit is due. But, what seems to have been overlooked is that a

sense of both is necessary since it really is impossible to give

credit for everything.

21

r)

)

j

CHAPTER III

EXTENT OF THE PROBLEM ----------
There has been a remarkable consistency in the data

available relating to both the concern about program

plagiarism and the perception of its occurrence. Ottenstein's

SIGCSE article in 1976 (30) marks an early attempt at coping with

plagiarism by devising a computerized means to apply a metric to

the problem of program plagiarism. Shaw's comments in 1980 about

cheating (33) are still relevant and up-to-date. In it she

reports on a survey in which she received replies from the

computer science departments at the Universities of British

Columbia, California (Berkeley), Colorado, Pennsylvania State,

Princeton, Stanford, Tennessee, Waterloo, Wisconsin, and Yale.

The following is part of her summary of the responses:

The factors most conducive to cheating are generally
believed to be large class size, beginning students, and
out-of-class programming assignments. Unfortunately, all
three factors are usually present in the most commonly
offered computer science course--introductory programming.
Our colleagues uniformly believe this is where the cheating
monster lurks. As with Nessie of Loch Ness there does not
seem to be a clear picture of this beast, only a variety of
eyewitness reports •••• Most respondents reported one or two
blatant cases per course and a feeling that many more less
obvious cases went undetected

We asked about explicit definitions of and policies
toward cheating. All departments reported the same basic
system: no single, explicit definition or policy at the
departmental level and a brief definition and elaborate
policy at the university level. (33:75)

22

A sample of relevant SIGCSE articles largely support Shaw's

summary. Grier's article in 1981 asserts that "Plagiarism has

become a problem in introductory Computer Science courses", and

that "Sophisticated plagiarism is not the problem ••• " He

justifies his latter statement by assuming that the student

intelligent enough to plagiarize with sophistication has no need

to plagiarize" (23:15). He asserts that" ••• [students] cheat

more now, ••• [and that this is] a rising phenomenon ••• (23:18).

Donaldson et al. take a somewhat different tack. They

mention that there is a "feeling of many faculty members that

incidents of plagiarism are quite prevalent". They do not say

that there is more plagiarism in lower level courses, however,

just that it has been more difficult to detect at that level due

to the use of graders, less complex assignments and several

sections of a course having a similar assignment (19:21).

In the panel discussion moderated by Philip Miller, the

panel members all assume that cheating is a problem. William

Dodrill is more explicit when he notes that

••• the need to teach larger [introductory] classes
consisting of a wider variety of students has introduced
many problems. Outstanding among these is the tendency of
students to resort to unorthodox means in fulfilling course
requirements. In other words, students cheat. (29:6)

He then goes on to characterize such courses as containing "Many

students [who] must take computer programming whether they have

an interest in the subject or not" (29:26). A member of the same

panel, Mary Dee Harris Fosberg, notes that "Plagiarism on

23

)

programming assignments has been a persistent problem for

Computer Science educators, ... "(29:27).

Hwang and Gibson, on the other hand, do not limit plagiarism

to introductory courses, freshmen or to non-computer science

majors.

Cheating on programming assignments, it would seem has
become a way of life for many, and fraudulent
misrepresentation of one's credentials for entrance into the
marketplace is increasingly commonplace ••••

••• (We simply assume that cheating on programming
assignments is a highly undesirable practice which has
adverse effects upon the students' preparation for their
later professional performance in the computing industry.)
(25:50)

However, interesting enough, when Hwang moderated a panel at the

same meeting where the previously mentioned paper was delivered,

his opening statement was that

Plagiarism on programming assignments, particularly in
lower-level computer classes, has been a problem of
considerable concern. We suspect that the strongest
contributing factor to the increase in this kind of cheating
is the computing profession's reputation for being able to
offer such high-salaried positions. (26:262)

Here he continues to seem to stress that those going into the

computer profession, i.e., computer science majors, are the

major group, but apparently mostly in lower division classes. A

member of that same panel, Clinton Fuelling, noted that

"Plagiarism seems to be a continual problem in the teaching of

computer science courses in which programming assignments are

requirements" (26:263).

A year later, in 1983, R. Wayne Hamm did not select

freshmen, introductory courses or non-majors when asserting that

24

"Too often students encounter classes in which plagiarism is

rampant, ••• " (24:248). All that we can assume from this is that

plagiarism was thought to be a serious problem.

Repeating the observations of previous writers, Bensen

states that " ••. [in those classes where plagiarism occurred] the ·

background of the class in question was varied" (13:25).

Finally, the more recently published works by Cook (16), Faidhi

and Robinson (21) and Jankowitz (27) indicate the continuing

concern with the problem of program plagiarism, e.g., Faidhi

talks about" ••. novice plagiarism [being] •.. quite a common

occurrence" (21:11).

Three recent unpublished surveys (See Appendix E) conducted

by this author support the continuing authenticity of the

) findings that were published at the beginning of the 1980's by

Shaw.

1. In a survey (See Appendix C) taken in August of 1987 of

the computer science departments at the 19 campuses of

the California State University system, 14 of the 17

reporting do not have departmental policies on

plagiarism, but rely on the general university rule which

is taken from the California Administrative Code, Title V,

Article 1.1, Section 41301. Part (a) of this section

states that students may be expelled, suspended or put on

probation for "Cheating or plagiarism in connection with

an academic program at a campus" (2:66). It is left

up to individual campuses to expand on the definitions of

25

)

)

'plagiarism' and 'cheating'.

2. In a survey (see appendix D) of May 1987 taken by the

Computer Science Department faculty at Oregon State

University, 100% of the responses--19 returned out

of 29--thought that plagiarism was occurring. On a scale

of 1 (not very serious) to 5 (very serious), the mean was

2.7 overall, but 3.23 for lower division service courses

and 3.53 for lower division major courses. This clearly

is somewhat at odds with many other reports in that

plagiarism is perceived as happening throughout the

curriculum, although more so in lower division classes,

and it is not at all limited to non-majors.

3. The same survey as in #2 above was undertaken at Cal Poly

San Luis Obispo in December 1987. Again of those

responding (21 out of 28) 100% reported that plagiarism is

occurring. On the scale of 1 to 5 (not very serious to

serious), the overall average was 3.01, somewhat higher

than at OSU, although not significantly so. Lower division

service courses had a mean of 3.31, whereas lower

division major courses had a mean of 3.0.

Thus the problem continues as the decade is coming to an

end, much in the same terms as at the beginning. Plagiarism is

thought to frequently occur, more so in large lower division

courses than upper division and, it is generally perceived, more

so in service courses than in major courses. It is considered a

26

moderately serious problem. Novice plagiarism is felt to be much

more of a problem than sophisticated plagiarism.

Of particular interest is the lack of any quantification of

the problem of plagiarism. All we have are the personal feelings

and experiences of a variety of computer science faculty. There

is really very little evidence as to the extent or the

demographic characteristics of the problem.

27

)

CHAPTER IV

PLAGIARISTIC TECHNIQUES SUGGESTED BY STUDENTS

The literature available concerning program plagiarism is

faculty focused. It represents their perceptions and value

judgments. Plagiarism is abhorred, but it is usually discussed in

the abstract. Moreover, even in those instances where specific

types of plagiaristic behavior are listed, there is no way to

determine whether the lists are in some sort of order of

precedence or to what extent they are representative of the

totality of actions that students might actually take. It would

be of interest to discover what students would suggest as to the

nature of plagiarism and what they might do if they were to set

out to obscure the original characteristics of a copied program.

This chapter describes the results of two studies designed

to solicit this information from students. Two techniques were

used in an effort to collect data on students' perceptions on the

question of plagiaristic practices. One was to conduct classroom

surveys. Each student was asked to make a list of everything

he/she could think of to do if the goal were to obscure the

authorship of a copied program.

The second was to conduct a series of observations of

28

J students as they worked at obscuring the original nature of a

copy of a program. The student was requested to verbalize his/her

thinking as decisions were being taken and as changes were being

made at the terminal. This type of experimental design is called

)

a protocol analysis (34)(36). Each student was given a listing (See

appendices A and B) of the original program and a copy of the

expected input and output. The student was allowed approximately

five minutes to become familiar with the material. Then, after

logging onto an account containing a copy of the program to be

modified, the subject had thirty minutes in which to make

changes. The vi editor was used by twenty out of the twenty-one

subjects. One student had been interviewed at Oregon State

University and had used the MacPascal editor. A protocol analysis

is felt to be potentially more valid than either an observer

simply taking notes on what was observed or the subject

predicting what he/she would do before the process takes place or

trying to recollect what took place after the process was

concluded.

A general problem became apparent when the analysis of the

data from both the classroom surveys and the protocol analyses

began. The responses were both somewhat idiosyncratic and very

diverse so that a scheme of categorization had to be developed.

Two such schemes were eventually used. The first was to divide

responses into two broad rubrics--cosmetic/trivial and non

cosmetic/logic--and list specific responses under the appropriate

29

)

group.

The second way was to use five functional categories:

1. Typographic: spacing/blank lines, indentation, variable

names, comments, order of declarations, etc. All those

ways that do not affect the semantics of the program in

any way.

2. Logic: changing loop types, changing if-then-else to

switch and vice versa, changing relational operator in

condition, DeMorgan's laws, etc.

3. I/0 and Files: strings and output form changed, I/0 error

checking, creating separate files, etc.

4. Modularization: combining or splitting functions or

procedures, replacing parameters with globals and vice

versa, etc.

5. Data Structures: changing from linked lists to arrays or

vice versa, creating new temporary variables, creating or

erasing of constants, etc.

FIRST ANALYSIS

CLASSROOM POLL RESULTS

Seven classes were surveyed (See Appendix E). Two of them

were taken by sophomores (CSc 218), two by juniors (CSc 345) and

three by a mixture of sophomores, juniors and seniors (CSc 204--C

& Unix). So on average the students in the classes surveyed were

juniors.

30

)

The individual responses have been grouped to get central

tendencies. The individual responses themselves, since they do

not refer to a particular program, nor even necessarily to a

particular language, make the answers often more abstract and/or

vague and thus less susceptible of being specifically listed in

subcategories than the behaviors observed in the protocol

analysis.

Mentioned by%
of the group

Cosmetic/trivial changes

1. Change variables
2-3. Other types of cosmetic changes
4. Change comments

Non-cosmetic/lo?ic changes
(Accepting theist as given below

100

54

for the Protocol Analysis as a definition
of this category.)

Mean of non-cosmetic/logic changes
suggested per person for the seven
classes. 72

PROTOCOL ANALYSIS RESULTS

92
87
77

There were twenty-one such studies conducted (See Appendix

E). C was used in eighteen. Pascal in three. The average student

was a senior: one sophomore, four juniors, twelve seniors and

four graduate students. The mean number of courses in which they

had used vi as an editor was 6.9. The mean number of courses in

which they had used C--for the eighteen who did-- was 4.6.

31

)

)

Mentioned by%
of the group

Cosmetic/trivial changes 100

1. Change variables: 95
a. Identifiers, e.g., global and local 95
b. Procedure/function names 43
c. Array names 10
d. Constants 19
e. Tag/type names 14

2. Change strings
a. Input
b. Output

3. Change general listing format
a. Add blank lines
b. Use tabs, different indentation
c. Change order of declarations
d. Change order of functions, e.g.,

alphabetize them
e. Change alignment of braces,

begin/ends, colons, etc.
f. Use multiple declarations, e.g.,

float a,b,c

4. Change comments

67
81

29
62
19

34

67

24

95

The following are the types of changes suggested:
a. Erase all comments, put in your own
b. Rewrite the comments by changing some words and

phrases here and there
c. Outline the comment blocks with stars
d. Place the comments in different places
e. Comment each line, not just one block of statements
f. Overcomment or undercomment in terms of the original

program
g. Change comment characteristics to one's own personal

style

Non-cosmetic/logic changes

These are listed in decreasing order of frequency. NINETY-FIVE
percent of the students (20/21) indicated at least one change in
this category.

1. Add constants
2. Change to different type

loop

32

Mentioned by
9

7

)

)

3. Take some in-line code and
develop another function 7

4. Change if/then/else to
switch 5

5. Combine 2 functions into 1 5
6. Shorten main by grouping

function calls with some
commonalty 4

7. Replace parameters with
globals 4

8. Replace globals with
parameters 3

9. Change switch to if/then/else
10. Create temp variables to

lengthen formulas, etc. 2
11. Change data structures, e.g.,

linked lists for arrays 2
12. Modify formulas 2
13. Reverse the logic on if/then/else

e.g., change the else clause so
that it is tested first where
possible 2

14. Use error checking on input
statements 2

15. Use functions/returns instead of
parameters or globals 1

16. Get rid of any temp variables 1
17. Use loops for multiple spaces

or stars for borders 1
18. Create separate files and link 1
19. Add date function to output 1
20. Reverse comparisons, e.g.,

> -- <= 1
21. Break up large procedures 1
22. Apply DeMorgan's rules where

possible with multiple comparisons 1

The following is a listing of how many non-cosmetic

suggestions were made per person during the protocol study.

1. 2
2. 1
3. 1
4. 0
5. 4
6. 3
7. 1
8. 6
9. 4

33

)

)

10. 3 Mean= 2.7 suggestions
11. 1
12. 1
13. 1
14. 2
15. 2
16. 8
17. 3
18. 1
19. 4
20. 6
21. 3

The following is a sublist of language specific suggestions

made during the protocol studies. Where relevant they have been

included in the above lists. Thus this is not a disjoint set.

Peculiar to C (all but three students used C)

1. Add define statements to create constants
2. Eliminate newline statements, include newlines

with other statements
3. Pretty print the file (use cb)
4. Use tab instead of spaces
5. Initialize the globals when declared
6. Add error check for scanf
7. Add 'void' before function name
8. Initialize the globals as a group, e.g.,

float a=b=c=0
9. Create and use a 'typedef'

10. Change arrays to pointers
11. Compile to different name than a.out
12. Rename source code file
13. Exchange 'A +=B' for 'A= A+ B'
14. Break source file into several files

Peculiar to Pascal (three students)

1. Add complete list of 'forward' statements
2. Get rid of unnecessary 'forwards'
3. Use 'with do' wherever possible
4. Remove any semicolons before and 'end'

Summary of First Analysis

9

8
3
2
2
1
1

1
1
1
1
1
1
1

1
1
1
1

Survey classes Protocol studies

34

)

.J

Students

Made cosmetic
changes

Made non-cosmetic
changes

Number of non
cosmetic changes
per student

155

100%

54%

0.72

21

100%

95%

2.7

N.B., the students in the protocol studies almost all made

non-cosmetic type changes and made approximately four times as

many per student as those in the surveyed classes.

SECOND ANALYSIS

A Spearman Rank Correlation of the protocol studies and the

class surveys was calculated using the five classes of changes.

The order represents the volume of changes suggested or made.

Survey Protocol
Typo 1 1
Logic 2 5
I/0 3 2 rho = .3
Module 4 4
Data 5 3

This was interesting, but would seem to indicate that

something rather different was going on in the minds of

the different groups. Upon looking at the material

again, however, it was noticed that the majority of 'Data'

entries for the protocol studies concerned the use of

'define' statements. When their weight was subtracted, on the

basis of those being specific to the program language

being used and its specific character, the results were

35

_j

quite different.

Typo
Logic
I/0
Module
Data

Survey
1
2
3
4
5

Protocol
1
4
2
3
5

rho= .7

With the weighting scheme used, the differences among

categories for the class survey results were larger than those

for the protocol study.

Survey results

1. Typo
2. Logic
3. I/0
4. Module
5. Data

Protocol results

747
250
196

86
37

1. Typo 107
2. I/0 61
3. Data 41
4 . Module 38
5. Logic 32

57%
19%
15%
07%
03%

38%
22%
15%
14%
12%

It was also of interest to determine whether the two groups

would suggest or make changes in a similar order. The

following represents the order in which a specific class of

change was first demonstrated:

Survey Protocol
Typo 1 1
Logic 2 4
I/0 3 2 rho = • 7
Module 4 3
Data 5 5

Thus, the order which represented the number of changes

36

in

these particular two studies was also the order in which the type

of class was first suggested or made. The rho value indicates a

substantial or marked correlation in both cases. Whether

students are looking at a specific program or imagining what they

would do with a hypothetical program apparently made little

difference as to the order in which they would try a particular

class of change.

Summary

All of the students participating in either the classroom

surveys or the protocol studies mentioned cosmetic changes. There

were noticeable differences, however, between the two groups as

regards non-cosmetic/logic changes. Only fifty-four percent of

the students in the classroom survey mentioned a non-cosmetic type

change whereas ninety-five percent of those in the protocol study

did so. The difference in numbers of such suggestions is even

more striking. The average student in the classroom survey

suggested .72 non-cosmetic changes, i.e., fewer than one change

per student. The average student in the protocol study suggested

2.7 changes.

It was of interest to determine whether there was a

correlation between the number of courses in which a student had

used the vi editor and the number of non-cosmetic/logic changes

which were suggested. One might hypothesize that the greater the

facility with an editor, the greater the ability to plagiarize.

There was, however, little or no significant relationship: rho=

-.304.

37

. J

There was a marked correlation between the order of changes

recommended by the surveyed classes and those recommended by the

students in the protocol study when a language specific item

was removed (rho= .7). This is of particular interest because the

students in the study represent various experiences with C,

Pascal, Modula2 and Fortran. The results may then represent a

general attitude toward program changes by students who have had

training in high level languages.

Finally, although the students in the survey and those in

the protocol study tended to approach the task in a similar

manner, the distribution of effort was quite different.

Fifty-seven percent of the effort in the surveyed classes would

have gone for cosmetic changes, whereas only thirty-eight percent

of the effort in the protocol studies was applied in this

category. Overall there was a more even distribution of effort

among the different categories of changes by the protocol

students.

Reviewing the class surveys and the protocol studies in

another light, it was found that the class surveys, on the whole,

contained more abstract statements, whereas the protocol studies

were more specific. Clearly the people in the protocol studies

were responding to having a concrete object on which to focus. This

would argue that their responses toward programmatic changes are

more realistic .

38

.J

CHAPTER V

SUGGESTED METHODS TO CURB PLAGIARISM

~ Similarity Checker

A number of the articles discussed various metrics which

could be used to measure the degree of similarity of the programs

handed in for a particular assignment (14,15,19,21,23,27,30).

Most of the articles specifically mentioned that student

awareness of an automated means to detect seemingly unreasonable

similarity should discourage plagiarism. The more direct goal of

the use of various metrics would be to detect suspect programs.

Practical Advice

Several authors listed one or more tactics that a teacher

might use to prevent or diminish the amount of plagiarism.

Darrell Criss offered a list of do's and don'ts.

1. Do not use same problem assignments over and over,
thus preventing copy returned solutions from
fraternity or sorority files.

2. Require different style header comment each year
that a course is given.

3. Encourage student to use a unique style or language
for program annotation--embedded comments. This does
not counter the use of standard program statement
format, which is important in their training for
future commercial or industrial work.

4. Make it well known that you do check for
submissions being exact or near copies of a fellow
students work--and levy a penalty or reject the work

39

if it is clear that one or the other has not done
his own work.

5. Periodic quizzes on specific details of required
programs will force students to do their own work in
order to be prepared for the quizzes. (26:262-263)

Darryl Gibson pointed out that cheaters often wait for

bright students to discard intermediate copies of their

assignments. Procedures for the proper disposal of such material

would avoid this problem (26:263).

Jerry P. Harshany takes a less serious view of the problem.

I have never considered the detection of plagiarism to
be worth the time and effort that is required, where this
aspect of the grading process is one of the major goals.
Blatant cases may, of course, not be ignored or passed
without a comment.

I rely on several methods for "discouraging" (is this
preventing?) plagiarism and encouraging self-expression in
a program. (26:264)

Positive Techniques

Betty Hwang found that requiring a structured walkthrough,

for instance on a day the logic design was due, was a highly

effective way to prevent cheating. Peer pressure at that time

creates a strong motivation to come prepared rather than publicly

demonstrate one's lack of understanding (26:264).

Ernest Ferguson reports on the use of a conference grading

method. Each student in the class is to sign up for a one-on-one

fifteen minute conference with the professor. At that time the

student is to submit his/her final listing and output. During the

conference each student is asked to explain the algorithm(s) used

in the program. The professor grades the work and explains how the

40

)

)

grade reflects the style, syntax, etc. of the program (22:361-

365).

Hwang and Gibson argue that

Much of this problem [cheating on programs], certainly
not all of it, could be alleviated if we who are charged
with the preparation of future computing professionals could
guarantee, to the extent possible, that our graduates have
in fact learned the material and are in fact competent ..•
We can do this only if we can design and adopt practices
which will systematically require the students to master
both the theoretical and practical aspects of the
discipline. (25:52)

To achieve their goal they examine five different types of

combinations of examinations and program assignments in regard to

how each is weighed when generating the final course grade. There

is a great deal of detail with pro's and con's pointed out, but

the following gives a brief idea of their ideas:

1. Exams given greater weight than programs. More negative

characteristics than positive ones.

2. Programs given greater weight than examinations. More

negative characteristics than positive ones.

3. Examinations and programs given equal weight. More

negative characteristics than positive ones.

4. Final exam given all weight. More negative

characteristics than positive ones.

5. This entry is split into X and Y subtypes. Both are

representative of a function where the final grade on the

programming project is derived from relating the score on

the relevant quiz to the provisional score on the project.

X--multiply the percentage made on the quiz with the

41

provisional score on the project to obtain the final

project grade. Slightly negative evaluation.

Y--add the score made on the quiz to the provisional

score for the project to obtain the final project

score.

Type 5.Y was felt to be the best method. It was not perfect,

but it was significantly superior to types 1, 2, 3, and 4. It was

somewhat better than type 5.X.

More Elaborate Procedures

Mary Shaw's committee report for the Computer Science

Department at Carnegie-Mellon University (33) is the description

of an effort to develop a formal document concerning cheating

that would implement the general university policy by addressing

) the unique problems of program plagiarism. Her report is an

elaboration of her overall recommendation to her department.

)

Specifically, the Department should

•establish an interpretation of cheating in computer
science that supplements and extends the University
definition of cheating and plagiarism
•develop technological and policy mechanisms for
preventing and detecting cheating
•set forth procedures and sanctions for dealing with
cheating incidents, and uniformly enforce them (33:72)

Basically the suggested procedure is an attempt to legislate

against behavior which is believed to be undesirable. Professors

are to be responsible for ferreting out wrongdoers. Possible

punishments are delineated for various degrees of unacceptable

activities. The report goes into some detail to explain the need

42

)

for such procedures and the negative impact on all concerned if

cheating is allowed to occur without any adequate attempt at

prevention.

Janet Cook has also been involved with an effort to develop

policies and procedures concerned with student misbehavior in a

computer science environment. Her paper is, however, more student

oriented. She emphasizes that "Students are unsure of what is

expected of them" (16:462). The body of her article contains two

sample policies. One deals with a policy toward microcomputer

software. The other, and by far the more involved, deals with

the ethics expected of computer science students in relation to

individual and group projects, behavior in any of the labs, work

with software and files and the accessing of computer budget

accounts, i.e., the ethical and unethical usage of one's own and

others' computer accounts.

In an effort to ensure that the students who will be

affected by these policies will be cognizant of them, each

student is given a copy of the document and required to sign and

date a statement that he/she has read it. Overall, Cook's

procedures and policies are as elaborate as Shaw's, although they

cover somewhat different concerns. Both documents represent a

high degree of positive effort and address significant problems.

They are both examples of an effort to come to grips with

unacceptable student behavior by explanations, rules, regulations

and proposed punishments.

43

Some Pedagogical Concerns

While voicing their opprobrium towards cheating and

plagiarism, several individuals also tried to call upon a larger

context to give some sense of direction to their concerns.

Dodrill muses that

The primary difficulty in teaching computer programming
is not necessarily centered around detecting and punishing
cheating cases, but rather on how to teach a discipline with
the unique characteristics of computer programming in a way
that will encourage individual effort and reward individual
achievement. Examples of questions which might be posed in
order to improve teaching methods include: How can student
interest in computer programming be stimulated? What can be
done to reduce the frustrations inherent in writing and
debugging code? What should be expected (and what should not
be expected) of students taking introductory programming
courses? How can individual performance and achievement be
measured effectively for grading purposes. (29:26)

Doris K. Lidtke puts her finger on an important aspect of

computer science as a subject:

In computer science it is particularly valuable for
students to work cooperatively. Throughout their professional
careers they will be working in teams and it is a poor
educational system which does not prepare them for this. We
should foster teamwork, rather than isolated individual
activity; we should train students to work together, rather
than looking upon it with suspicion; and we should encourage
the sharing of ideas, rather than a jealous secrecy. There
is nothing inherently unethical about such collaborative
work. At the same time it is incumbent upon instructors and
the profession in general to encourage mutual honesty, open
frankness about how results have been achieved and
enthusiasm for a subject which can be approached
cooperatively. (29:27)

Summary

There is a wide enough variety of suggestions. Similarity

checkers are basically a negative action. They are used to catch

44 ·

)

cheaters. They would also seem to have some discouraging effect.

A number of ad hoc practical pieces of advice could be helpful. ---
They amount to specific means to make it harder to cheat.

Harshany offers the clearest and easiest advice to follow. He

does not think that plagiarism is normally a big enough problem

to worry about.

There were several positive techniques offered: a structured

walkthrough, conference grading and a specific mixture of testing

and grading. They are of particular interest because they offer

the possibility of improved learning alongside of a reduction in

cheating. The article by Hwang and Gibson on using testing

procedures to ascertain the understanding of the programming

assignment seems particularly pertinent since it will involve the

instructor in a greater effort to write relevant examinations and

motivate students to better understand the programming

assignments.

Two articles specified in great detail the establishment of

policies aimed at defining, preventing and, if necessary,

punishing cheating. Such policies and procedures may be

necessary, but they too, are basically negative and will do

little to improve learning.

Dodrill and Lidtke asked the more far-seeing questions.

Rather than concentrate on the discordant aspects of computer

science in an effort to suppress them, we should ask what the

nature of the discipline is and how best to prepare students for

45

)

it. In the process we may reduce our problems or find ways to

handle them differently.

All the suggestions were felt by their authors to have been

of benefit. Perhaps anyone getting involved and doing something

has a positive effect. It is not that they are not useful. It is

very difficult to accumulate any but circumstantial evidence as

to the effect of these differing techniques. How does one measure

the degree that a policy has curbed some behavior, especially if

there is very little data as to the extent of the behavior?

46

)

CHAPTER VI

AN EXPOSITION AND COMPARISON OF SOME SUGGESTED METRICS

A Review of Relevant Articles

The early paper by Karl Ottenstein (30) represents an effort

to use Halstead's basic software science parameters, i.e., a

four tuple of size measurements of the number of unique

operators, the number of unique operands, the total number of

occurrences of operators and the total number of occurrences of

operands, to detect similarities among student homework papers

written in FORTRAN. Ottenstein's work is based on some

observations made by Bulut in his Ph.D. dissertation.

Ottenstein quotes Bulut as stating that the chances of two

programs having equal four tuples was "slim" (30:31).

Ottenstein's paper is both an expansion of Bulut's work and

a critique of it. He quantifies "slim" by noting that:

Assuming [a] ... normal distribution [of programs], there is
clearly a greater likelihood of finding a pair of
independently written programs with equal parameter values
near the means as there is of finding such a pair with
values on the tails. Thus, we can be more confident of a
partition's accuracy as its individual parameter values
approach the tails of their distribution curves. (30:31)

He cautions that the method as it stands is only valid for

cosmetic alterations. Furthermore it can only be usefully applied

with the assumption that entire programs have been copied.

However, Ottenstein asserts that" ... Most non-cosmetic

47

)

alterations fall into one of six well-defined impurity classes,

all of which are detectable by a slightly more sophisticated

counter'' (30:31). He defines impurity classes by citing the following

as listed in Bulut:

(1) self-canceling operations
(2) ambiguous usage of an operand
(3) synonymous usages of operands
(4) common subexpressions
(5) unnecessary replacements
(6) unfactored expressions (30:32)

Finally, Ottenstein concludes that this method can be

applied to other programming languages. However, earlier he had

noted that the ideal function which would prove plagiarism is

unobtainable because

... it is possible for identical work to be performed
independently, the semantic equivalence of two items cannot
always be shown deterministically, and there is a subjective
area between plagiarism and paraphrasing. (30:30)

Thus this key paper offers a technique immediately

applicable to classes taught in FORTRAN where the instructor's

goal is to detect similarity between whole programs where one of

these may be a copy with only cosmetic changes. Whether two

programs with equal four tuples represent an example of

plagiarism is less likely if their tuples lie near the mean of

the tuples of the other programs handed in for that assignment.

In any case, the degree of similarity cannot prove plagiarism

because of subjective and non-deterministic aspects of

programming. Ultimately the instructor must exercise his/her

judgment.

48

)

J

Robinson and Soffa used Ottenstein's techniques as a control

method in their project whose purpose was to develop a tool to

aid in program advising (32). The language used was FORTRAN. Their

own method for detecting possible collaborators used code

optimization techniques and the following steps:

1. Group the programs by the number of leaders.
2. Compare the number of statements in each basic

block. Eliminate the programs which match less than
50% of the time.

3. Compare the control structures and retreating edges.
Eliminate the programs that have different values.

4. Compare the data structures. Eliminate programs with
a difference of more than one for each data
type.(32:125)

Robinson and Soffa did not discuss the effectiveness of

their software tool in terms of cosmetic versus non-cosmetic

changes. Hence, there was no testing done along those lines. Their

tool was successful" in calling attention to a greater

number of possible copies. The final evaluation must be made by

the instructor" (32:125). In comparing the results of their scheme

and the results of running the same data using the Ottenstein

technique they concluded that the "Ottenstein approach is an

ef f ec ti ve but conservative approach." (32: 125), i.e. , it used too

fine a mesh.

Donaldson et al. alludes to the Ottenstein technique (19).

Their paper was concerned with FORTRAN, but it was noted that the

method had been used with Cobol and BASIC. In reference to

Ottenstein, it was asserted that for program assignments of the size

typical of introductory classes there was a greater than "slim"

49

)

chance of tuples being quite similar. This is not as pertinent as

it might appear, since Ottenstein himself had stated that Bulut's

original notion of the significance of unique t uples had to be

modified in terms of the mean of the group of papers submitted.

After a brief discussion of Ottenstein's methods, the size

measurements used by Donaldson were elaborated upon. The Computer

Science Department at Bowling Green University had recently

implemented an automatic detection system. It was felt that those

students in introductory classes who did plagiarize used quite

simplistic techniques, e.g., renaming variables, changing the

ordering of statements, and changing format statements. Therefore,

a detection scheme was developed to measure the following:

1. Total number of variables
2. Total number of subprograms
3. Total number of input statements
4. Total number of conditional statements
5. Total number of loop statements
6. Total number of assignment statements
7. Total number of calls to subprograms
8. Total number of statements of type 2-7 (19:22)

In addition, the sequence of statements in the program were

represented by a coding scheme, e.g., VVV===RHR=DI=EE ... would

represent three declaration statements, three assignment

statements, Read, While loop, Read, assignment statement, Do

loop, If Then, assignment statement, End IF or While, End IF or

While, etc. (19:22-23).

After the data analysis was accomplished, the degree of

similarity or difference between the counters of any two

assignments was determined. Later an algorithm was used to

50

match the code sequences of different programs to try to find a

match. Then, an instructor, by comparing both the counts and the

structures of two programs, could make a judgment as to the

possibility of plagiarism.

The paper gave no mention of any attempt to use any other

technique as a control nor was there any mention of using the

technique itself in an experimental situation. It concluded by

stating that:

..• Already, the system has proved to be a useful tool. it
has enabled instructors who have used it to detect cases of
plagiarism that had gone unnoticed by the graders. (19:25)

Sam Grier at USAF Academy applied the Halstead measures to

an introductory computer science course in Pascal. It was

asserted that "Sophisticated plagiarism is not the problem

(23:15). Ottenstein's basic ideas were applied, but three more

"

) measures were added in an effort both to adjust the technique to

Pascal and to include some means to circumvent several tricks

which might skew the measurements. The three additional measures

were code lines, variables declared (and used) and total control

statements. Grier labeled his program 'Accuse'. As an example of

the effort to fine tune the measurements:

And,

•.. for every assignment operator found, two operands are
subtracted from "total operands," and "code lines" is
decremented. This should prevent Accuse from being misled by
unnecessary initializations and unnecessary assignment
statements.

Accuse is also selective about what it calls operators.
Software Science considers a BEGIN END combination as an

51

operator Because BEGINs and ENDs can be added to Pascal
code where not required, Accuse chose to ignore them.
Parentheses and several other operators are ignored by
Accuse for essentially the same reason. (23:16)

Grier noted that Accuse will not uncover changes made by the

sophisticated plagiarist (23:15). It will not prove plagiarism,

only indicate its possibility. There was no attempt made to

compare the results of Accuse with other plagiarism detection

tools. The testing of Accuse reported in the article was modest.

"The correlation scheme is admittedly ad hoc. The only thing that

can be said in its defense is that it seems to work" (23:18).

Berghel and Sallach's 1984 study (14) presented

a comparison between the Halstead metric as presented by

Ottenstein and a list of features they finally settled upon after

using various statistical measures. The programmers were

) considered to be "novice" and the programs were in FORTRAN.

J

Their general findings were:

Once the two metrics had been calculated, the validity
of their profiles was estimated by comparison with the
independent judgment of the graders. The general result of
these comparisons is that the Halstead metric consistently
detected similarities which did not exist. The alternative
metric, in contrast, showed itself to be consistently more
reliable. (14:68)

... Only if most programs fell into the narrow range
where the Halstead features are focused could that metric
provide superior identification of program similarity. (14:69)

Thus, the Halstead metrics used provided too broad a mesh.

Berghel and Sallach go on to make several interesting

comments which are relevant to the entire question of developing

a theory from which eventually a valid plagiarism detection tool

52

might be drawn .

... Our factor analysis demonstrates that a number of
features, of which Halstead's compose only a part, appear to
lie along the same underlying dimension.

We are forced to conclude that there is nothing unique
about the features isolated by the Halstead metric. While
the application of quantitative methods to program structure
has shown itself to be productive, the Halstead features
seem to have no unique theoretical or practical properties
which make them singularly effective indicators of program
structure. More specific features (such as a count of the
frequency of a specific operator like assignment
statements) and more general features (such as total code
lines, or perhaps even the size of an object module) may be
equally or more effective than the components of the
Halstead metric ...• , the isolation of the most powerful
indicators ••• is a task which is as yet incomplete. More
fundamentally, perhaps contextual factors will prevent any
set of features from achieving this type of conceptual
primacy. (14:70)

Faidhi and Robinson's paper (21) dealt with the interesting

question of the degree of sensitivity of plagiarism detection

schemes. Their main concern was the plagiarism being done by

novice programmers in introductory courses.

The study was in two parts. One was concerned with testing a

variety of metrics to ascertain whether they inappropriately

suggested plagiarism. This was found to be so for the Halstead

primitive software science measures used by Bulut and Ottenstein

(21:12). It was also found to be the case as regards " 'derived'

software science" measures (21:15) and as regards a set of

metrics previously used by the authors themselves to reflect an

evaluator's opinion of a program's styJe (21:15). All three

metrics found extensive plagiarism where there was none. There

was no effort made to discover if the three would not find

53

plagiarism where it was present.

The second aspect of the study was to select two sets of

measures which would hopefully be less broad in detecting

plagiarism. One set was a list made up of general features that

it was believed a novice programmer would most likely alter,

e.g., number of comment lines, number of blank lines, average

procedure/function length and number of reserved words. (21:15)

The other set was an attempt to form a list which represented

"hidden" features or invariants (21:15-16). In combination, the

two sets contained twenty-four items. When these items were

applied to the test sample used for part one of the study, the

new measures reported no plagiarism. Thus, the combined set was

less broad than the metrics tested in part one. In addition, the

authors were able to conclude that the empirical metrics set,

i.e., the combined one they had just constructed, was a minimal

set.

As a last test, they took a student program and transformed

it successively through six levels of ostensible complexity (See

pp. 16-17). At each level all of the metrics used in the study

were utilized. Their conclusion was:

••• We notice that all the metrics detect that these
programs are variants of the original. However, the
correlation difference between level 1 and level 6, and
between metric sets, shows the increased sensitivity of the
empirical metrics to the changes made in the original program •
••• The other metrics [from the first part of the study]
••• will continue to suspect plagiarism even when the
original program has been so significantly changed that it
can no longer be considered to be copied (and if it were,
would require a plagiarizing skill exceeding that required

54

r

to produce an independent program in the first place). (21:
18)

The evidence given for the broadness of several of the

metrics used in the study is of significance. The second part of

the study seemed to support the argument that those same metrics

do, however, at least point to plagiarism when it is present. The

merit of the combined set of measurements in not finding evidence

of plagiarism where it is not present is extremely valuable. It

is intriguing, perhaps shedding some needed light on our general

concept of plagiarism, that the more a copied program is

modified, the less we might consider it a plagiarism. If this

would become a standard perception, it would certainly be useful

to have a tool such as developed by Faidhi and Robinson that

would indicate by means of a correlation coefficient the

relationship of the copy to the original. (21:18)

Jankowitz (27) has taken a different direction in his effort

to develop a tool to detect program plagiarism. He alludes to

earlier approaches "mostly based on Halstead's" metrics. His

work, however, is concerned with" ... the order in which

procedures are referenced during static execution, ... "

(27:1). If the program is too small, e.g., consisting of only

three or four procedures, the order of procedure calls is trivial

and he would then compare "each procedure in the first program

with every other procedure in the second program" (27:1).

The patterns generated by the technique can be obscured by

splitting or merging procedures, but unless this were done for

55

)

every procedure in the program, parts of the original pattern

would still be identifiable. Jankowitz uses the rule of thumb that

more than 50% of the procedures must match before plagiarism

is seriously considered (27:5).

In initial testing several cases of plagiarism were

detected. Perhaps the wider application of such a scheme is of

even more interest, i.e., as a means to 'fingerprint' a program.

Summary

A number of the above studies utilize Halstead's software

science metrics in one way or another. Probably the first effort

to apply the Halstead ideas to program plagiarism was

Ottenstein's. In many ways the work was prototypical. It was

focused on the assumption that similarity of program structure,

i.e., invariants, is evidence of plagiarism, but could never be

considered proof. It sought to ascertain the degree of similarity

between entire programs. It could not be used to compare a

'mixed' copy with an original. It attempted to ferret out novice

plagiarism, i.e., plagiarism based on cosmetic changes.

Various additional measures have been either added to the

Halstead metrics or used in comparison with them in an effort

to test for similarity, e.g., Robinson and Soffa utilized code

optimization techniques in order to develop tallies of different

characteristics. These could then be compared among a set of

programs. Overall, however, there has not been very much

56

)

replication of experimentation. Only a few of the schemes have

involved any control groups. The validity of the techniques is

often open to question, e.g., different researchers

have made contradictory claims as to whether the Halstead

measurements are too fine or too broad. The size of the samples

involved in the experiments is often quite small.

Berghel and Sallach had one of the better experimental

designs. Part of their conclusions are especially pertinent as

they argue that the Halstead metrics have no unique properties

that make them any more effective than other metrics. Moreover,

perhaps "contextual factors will prevent any set of features from

achieving ••. conceptual primacy" (14:70).

Faidhi and Robinson have taken the interesting tack of

developing a complex metric and then testing it against an

original program, which they then successively altered in ways

suggested by a taxonomy of program complexity which they had

developed. They reported great accuracy in determining that the

repeated modifications were, in fact, a form of the original.

This seems a promising direction to take, but apparently no test

was conducted on actual student papers, nor has there been a

follow up study reported.

Jankowitz mentions the Halstead metrics and points out

that most of the previous approaches to the problem of program

plagiarism are based on them and that they attempt to ''analyze a

procedure without regard to the context in which it is

57

referenced" (27:1). By utilizing the order in which procedures/

} functions are called during static execution, he is not limited

to novice plagiarism or an inspection focused primarily on whole

copies. The system seems promising, but further testing is

necessary.

The use of metrics to test for similarity of structure has

been productive of a number of interesting and useful ideas, but

so far there has been a number of difficulties, both theoretical

and practical in nature, which has frustrated the attempt to

develop a practical, reliable and valid means of determining

program plagiarism. Practically, the tools available as of yet

are too limited and relatively untested.

Moreover, if the results of the protocol studies can be

)
shown to be generally true, any metric which focused primarily

on cosmetic changes would yield invalid results in perhaps a

)

majority of the cases, i.e., either too many instances of plagiarism

would be missed or too many innocent cases would be flagged.

Cheat detectors based on the Halstead metrics would be fooled by

many of the changes suggested and carried out by the students

involved in this study.

Of particular interest at this point are the protocol

results in which 95% of the subjects suggested an average of

approximately three types of non-cosmetic changes per person.

Given this finding, the two most promising metrics would be those

of Faidhi and Robinson and those of Jankowitz. The metrics of

58

Faidhi and Robinson have not been tested on actual programs, but

appear to be able to detect similarity where significant non

cosmetic modifications have been made. Their taxonomy is not

grounded in any theory of program complexity, nor does it appear

to include changes in data structures, but it does represent an

interesting effort to provide a structure by which to categorize

the types of changes which can be made.

The work of Jankowitz takes a different approach entirely.

It is the only one that fits Berghel and Sallach's concern about

a means of involving context in the utilization of the metrics.

If the program has few procedure/function calls it is clearly

ineffective, however. In larger programs it would be effective as

long as a student did not extensively modify the nature of the

procedures in the sense of the order in which they were called.

) Since this type of change was observed several times in the

protocol studies, the method would appear to be again a partial

means and would need to be combined with something like the

metrics suggested by Faidhi and Robinson.

)

59

CHAPTER VII

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Background

There has been a continuing concern over the extent or

program plagiarism. It is widely felt to exert a negative impact

on all involved: the students innocent or guilty, the

instructors, the university, and the general public who hire

and/or use the services of students who have taken computer

science classes.

In spite of the efforts which have been made to analyze the

problem, to find means to determine to what extent program

) plagiarism has taken place, to develop policies to deal with it

and, in general, to curb it, the issue is still largely

unresolved. A primary reason for this is the lack of a clear and

widely accepted definition of program plagiarism and the concepts

related to it. There is also a lack of information as to what

students actually and typically do when they plagiarize a

program.

The Problem

The purpose of this study was to analyze the concept of

computer plagiarism and those concepts related to it and to seek

to discover patterns in student attempts at program plagiarism.

This was done by seeking answers to the following questions:

60

)

1. Is there a coherent, generally accepted agreement as to

the concept of program plagiarism?

No, there is not. There is an agreed upon core, e.g.,

someone copying an entire program. There are too many

gray areas, however, where it is neither clear to the

instructor nor the students as to what is acceptable

behavior.

2. Can it be shown that program plagiarism is a serious

problem in computer science classes?

No it cannot. There is a widely held feeling among

computer science faculty that there is a problem, but

there is no objective data to substantiate the rate of

incidence, so it is difficult to judge the seriousness of

the matter.

3. Are there patterns involved in program plagiarism? Can it

be demonstrated what changes students are more or less

likely to make?

Both the classroom surveys and the protocol analysis

support the concept that there are patterns as to the

type of changes which are likely to be made, the order in

which they are made and the relative proportion of one

type of change to another .

4 . Can it be determined which of the suggested means to

control or reduce program plagiarism are effective?

No it cannot. All of the suggested mechanisms would

61

)

probably be of some use, if only to reduce the temptation

to cheat. It may be of greater importance to seek out

means which will enhance the learning process, e.g., a

better means of testing understanding, than to put into

place a means of catching students who have given in to

the pressure to plagiarize. There is no direct evidence,

however, as to either the relative or the absolute merit

of any of the suggested schemes.

5. Do any of the metrics proposed as a means to uncover

suspected program plagiarism effectively discover actual

instances of such plagiarism and, at the same time, not

falsely report programs that were not plagiarized?

None of the proposed metrics are adequate to discover

the range of plagiaristic techniques suggested by the

protocol studies. None of them have been used across a

variety of languages with adequate statistical controls

and adequate samples of students to ensure a high degree

of validity. Thus none of them can be relied upon.

Conclusions

There is no right answer in an absolute sense to a question

of the definition of a term. A term such as 'plagiarism' serves a

social need in a given context. We need to develop our meaning of

the term to meet the practical needs of computer science.

We need to ask "What are the practical results of this

definition over that one?" "How can we make the term meaningful

62

to our students?'' Any effort to be sticcessful will have to take

rJ into consideration and incorporate the related concepts of

collaboration, consultation, paraphrasing and common knowledge.

)

)

In a larger sense we need to develop a coherent vision of

professional behavior as it relates to computer science and

develop ways to communicate this to students. There should be a

clear articulation between being a student of the discipline and

being a professional person.

Recommendations

1. The development of a broader concept of what is and what

is not computer plagiarism. It should be generally

acceptable and applicable to all computer science

courses. It should involve an examination of the related

concepts of common knowledge and collaboration.

2. A continuing examination of the application of metrics to

the problems of similarity and invariance. The practical

need of devising a simple yet valid plagiarism checker is

important. The theoretical need to more clearly determine

what is "similarity" and what are "invariants" in the

field of computer programming has important implications

for the concepts of plagiarism, common knowledge and

collaboration.

3. Independent of the extent of program plagiarism, the

development of ways to promote more authentic learning of

the subject matter and professional attitudes of computer

63

)

I
I

/

science are important and relevant. Work should continue

on the pedagogical, tactical and administrative means to

achieve reasonable and valid academic goals for all

students.

64

A P P E N D I C E S

)

65

APPENDIX A

program Prufung(input,output);
(* John B. Connely

*)

July 20, 1988

This program accepts as input the id number, the number of
hours worked, the rate of pay and the number of dependents
claimed. After the data for one person has been input, the
program simulates printing out a check for the EXOTIC SofA
COMPANY of Corvallis.
Each check will list the ID number, the gross pay, federal
and state taxes, the social security contribution and the
netpay.

type

var

Employee model= record
ss num: integer;
Hours,
Rate : real;
Num_of_dep 1 .. 10;
Gross pay,
Fed_tx,
state tx,
Social security,
Net_pay: real;

end;

(* standard employee record*)

Answer: char; (* Answer and Continue are both used to control*)
) Continue : boolean; (* the loop in MAIN. *)

Indiv_Person: Employee_model;

procedure StateTax(var Persons: Employee_model); forward;

procedure FedDependents(var Persons: Employee_model); forward;

procedure StateDependents(var Persons: Employee_model); forward;

procedure InputRecord(var Persons : Employee model);
(* input module of personnel data*) -

begin

end;

writeln;
write('Please input the social security number. ');
read(Persons.SS num);
writeln; -
write('Please input the hours worked. ');
read(Persons.Hours);
writeln;
write('Please input the rate of pay. ');
read(Persons.Rate);
writeln;
write('Please input the number of dependents. ');
read(Persons.Num of dep);
writeln; writeln; -

66

procedure ComputeGrossPay(var Persons: Employee_model);
40
for the

(* To determine the gross pay based on regular rate for the first
hours, time and a half for the next ten hours, and double time
number of hours worked over 50 hours per week. *)

) const

)

First overtime= 10;
Standard week = 40;

begin

(* the first 10 hours after 40 *)
(* standard work week*)

with Persons do

end;

begin
if Hours<= 40 then Gross_pay:= Hours* Rate

end

else if (Hours> 40) and (Hours<= 50) then
Gross_pay:= Standard week* Rate+ (Hours - 40) * (Rate* 1.5)

else
Gross_pay:= Standard week* Rate+ First overtime* (Rate* 1.5)

+ (Hours-- 50) * (Rate* 2);

procedure FedTax(var Persons : Employee model);
(* To figure the federal tax based on the gross pay of each individual.

A deduction is made based on the number of dependents claimed*)
const

Higher fed rate= 0.28;
Lower fed rate = 0.20;

begin

(* the federal tax rate above $500 per week*)
(* the federal tax rate if below $501 per week*

end;

with Persons do
begin

if Gross pay<= 500 then
Fed tx := Lower fed rate* Gross_pay

else
Fed_tx := Higher_fed_rate * Gross_pay

end;
FedDependents(Persons);

(* to calculate the deduction from the federal
tax obligation due to number of dependents*)

procedure FedDependents; (* var Persons: Employee model*)
(* calculates a deduction based on the number of dependents claimed*)

var
People: integer;

begin
People:= Persons.Num of dep;
case People of - -

0:

1: Persons.Fed tx := Persons.Fed tx - 5;
(* 1 deduction claimed equals-$5 deducted from the tax obligation*)

2: Persons.Fed tx := Persons.Fed tx - 10;

) 3: Persons.Fed tx := Persons.Fed tx - 15;

67

4: Persons.Fed tx := Persons.Fed tx - 20;

5: Persons.Fed tx := Persons.Fed tx - 25;

otherwise
writeln('There is an error in the dependent input. ');

end;
if Persons.Fed tx < 0 then Persons.Fed tx := 0;

(*Noone should have a deduction greater than the tax owed*)
end;

procedure StateDependents; (* var Persons: Employee model*)
(* A deduction from the state tax based on number of deductions*)

var
People : integer;

begin
People:= Persons.Num_of_dep;
case People of

O:

1: Persons.State tx := Persons.State tx - 2;
(* A $2 deduction for each claimed dependent*)

2: Persons.State tx := Persons.State tx - 4;

3: Persons.State tx := Persons.State tx - 6;

4: Persons.State tx := Persons.State tx - 8;

) 5: Persons.State tx := Persons.State tx - 10;

otherwise

)

writeln;
end;

if Persons.State tx < o then Persons.State tx := 0;
(*Noone should have a deduction greater than the tax owed. *)

end;

procedure StateTax; (* var Persons : Employee model*)
(* To calculate the correct state tax due based on the level of gross pay

earned per week*)
const

Higher_state_rate = 0.09; (* the state tax rate above $500 per week*)
Lower state rate = 0.04; (* the state tax rate if below $501 per week*)

begin
with Persons do

begin
if Gross pay<= 500 then

state-tx := Lower_state_rate * Gross_pay
else

State tx := Higher_state_rate * Gross_pay;
end;
StateDependents(Persons);

(* To deduction an amount from the state tax based on the number

68

)

_)

of dependents claimed. *)
end;

procedure ComputeSS_Deductions(var Persons: Employee_model);
(* To figure the amount of social security tax owed based on a flat rate of

8 percent of the gross pay. Called by ComputeNetPay*)
const

ss rate= 0.08; (* standard percentage of salary for social security*)
begin

Persons.Social security:= ss rate* Persons.Gross_pay;
end;

procedure ComputeTaxWithholding(var Persons: Employee_model);
begin

FedTax(Persons);
StateTax(Persons);

end;

procedure ComputeNetPay(var Persons: Employee model);
(* Figures net pay from amounts figured previously. *)
begin

ComputeTaxWithholding(Persons);
ComputeSS Deductions(Persons);
with Persons do

end;

begin
Net pay:= Gross pay - (Fed tx + State tx + Social security);
if Net_pay < o then writeln('Error in netpay figure~');

end;

procedure PrintCheck(Persons: Employee model);
(* Procedure to print out the simulated-check for each employee. *)
begin

writeln;
writeln;
writeln;
writeln;
writeln('**');
writeln('* THE EXOTIC SofA COMPANY *');
writeln('* Corvallis, Oregon *');
wri teln ('* *,) ;
wr i teln (' * ,) ;

write('* SS# = ',Persons.SS_num);
writeln ('

write('* Gross Pay=
writeln ('

write('* Federal Tax
writeln ('

write('* State Tax=
writeln ('

* I) i
',Persons.Gross pay:12:2);

- *I) i
= ',Persons.Fed tx:10:2);

- *I) i
',Persons.State tx:12:2);

- *I) i

write('* Social Security=
writeln ('

',Persons.Social_security:6:2);
* I) i

wri teln ('*
write ('*

wri teln ('
wri teln ('*

* I) i

69

NETPAY
* I) i

= ',Persons.Net pay:10:2 ;

* I) i

)

)

writeln('**');
writeln; writeln; writeln;

end;

begin (*MA IN*)
Continue:= true;
while Continue do

begin
InputRecord(Indiv Person);
ComputeGrossPay(Indiv Person);
ComputeNetPay(Indiv Person);
PrintCheck(Indiv Person);
writeln('To process another employee input a "Y", else input an "N" '
readln(Answer);
if (Answer= 'Y') or (Answer= 'y') then Continue:= true

else Continue:= false;
end;

end. (* End of program*)

70

)

)

APPENDIX B

/* This program is to accept interactive input from a
keyboard and produce paycheck information. It consists of
functions which will:

*I

1. Request the name, id number, hours worked
per week and the rate of pay.

2. Use the hours worked per week and the
rate of pay, to calculate the grosspay.

3. Use the grosspay to figure the tax due.
4. Use the grosspay and the tax due, to figure

the net pay.
5. When all the input has been processed, the

individual paycheck information and the
cumulatative totals will be printed out.

#include <stdio.h>

struct person{
/* This is an array of records which will be used to load
all the input data and the results of the functions. Then
the information will be printed out for each person.
*I

char name[20J;
int id;
float hours;
float rate;
int depend;
float grpay;
int deduction;
float tx;
float net;
} payroll[20J;

float totalgrosspay;
float totalnetpay;
float totaltax;
/* These global variables are to be used to accumulate the
total amounts of gross pay, net pay and tax for any given week.
*I

dependents (ii)
int ii;
/* This function will calculate the tax deduction in dollars
generated by the number of dependents claimed.
*/
{

int deduct;

int t;
for (t = l; t <= ii; t++){

deduct= payroll[t].depend;
switch (deduct)
{

71

)

)

}

}

case o: payroll[t].deduction = 0; break;
case 1: payroll[t).deduction = 5; break;
case 2: payroll[tJ.deduction = 10; break;
case 3: payroll[t]. deduction= 15; break;
case 4: payroll[t).deduction = 20; break;
default: payroll[t].deduction = 25; break;

netpay(ii)
int ii;
/* This function will calculate the netpay by subtracting the
deduction from the tax and the tax from the grosspay. At the
end of the function it will add the current net pay to the
accumulative total net pay and add the modified tax to
the cumulative total tax.
*/
{

}

float grospay;
float tax;
int t;
int takeoff;

for (t = l; t <= ii; t++){
grospay = payroll[t].grpay;
tax= payroll[t].tx;
takeoff= tax - payroll[t].deduction;
if (takeoff< 1)

{
payroll[tJ.tx = 0;
payroll[t].net = grospay;
}

else
{

}

payroll[t].net = grospay - takeoff;
payroll[t].tx = takeoff;

totaltax = totaltax + payroll[t].tx;
totalnetpay = totalnetpay + payroll[t].net;

}

grosspay(ii)
int ii;
/* This function will calculate the grosspay by
figuring rate times hours for the first 40 hours, 11/2
times rate for the hours between 40 and up to 50, and
double time for the hours over 50 worked in a single
week. At the end of the function, it will add the
current grosspay to the cumulative total grosspay.
*I
{

72

)

}

int t;
float hrs;
float rte;
for (t = l; t <= ii; t++){

hrs= payroll[tJ.hours;
rte= payroll[t].rate;
if (hrs<= 40) payroll[t].grpay =hrs* rte;
else

if (hrs <= 50)

else

payroll[tJ.grpay = (40 * rte) + (1.5 * rte
* (hrs - 40));

payroll[tJ.grpay = (40 * rte) + (1.5 *rte*
10) + (2 *rte* (hrs - 50));

totalgrosspay = totalgrosspay + payroll[t].grpay;
}

input(ii)
int ii;
/* This function will request that the last name, id,
hours worked per week and rate of pay be typed in at
the keyboard.
*/
{

}

int t;
for (t = l; t <= ii; t++){

printf(11Type in the last name: 11);

scanf ("%s 11 ,payroll[t] .name);
printf (11\n 11);

printf(11Type in the ID: 11);

scanf (11 %d 11 , &payroll [t J . id) ;
printf (11 \n 11) ;

printf(11Type in the hours worked: 11);

scanf(11%f 11 ,&payroll[t].hours);
printf ("\n 11) ;

printf(11Type in the rate of pay: ");
scanf (11%f 11 , &payroll [t]. rate);
printf (11 \n 11) ;

printf(11Type in the number of dependents:");
scanf (11 %d 11 , &payroll [t J . depend) ;
printf (11 \n 11) ;

}

tax(ii)
int ii;
/* This function will calculate the tax due on the
basis of a 5% tax on the first hundred dollars of pay,
a 7% tax on the second 100 dollars of pay and a 10% tax on
any pay over 200 dollars.
*I
{

int gropay;
int t;

73

)

)

for (t = l; t <= ii; t++){
gropay = payroll[t].grpay;
if (gropay <= 100) payroll[t].tx = .05 * gropay;

else if (gropay <= 200)
payroll[t].tx = (.05 * 100) +

(.05 * (gropay - 100));
else

payroll[t].tx = (.05 * 100) +
(.07 * 100) + (.10 * (gropay - 200));

}
}

printchecks (ii)
int ii;
/* This function will print out a header for the
company and the pertinent information for each employee
which is needed to complete a weekly paycheck*/
{

}

int t;

printf(\n\n\n\n\n\n\n\n\n");
printf(ACME TOOL and DIE COMPANY");
printf(\n");
printf(
printf(\n");
printf(
printf(\n");
printf(
printf(\n");
printf(
printf (\n");
printf (\n");

for (t = l; t <= ii;
printf("Name:
printf("ID:
printf("Dependents:
printf("Grosspay:
printf("Tax:
printf("Netpay:
printf("\n\n");

}

1223 Broadway");

San Luis Obispo");

California") ;

(805) 543-7771 11);

t++){
%s \n",payroll[t].name);
%d \n",payroll[t].id);
%d \n",payroll[t].depend);
%6.2f \n",payroll[t].grpay);
%6.2f \n",payroll[tJ.tx);
%6.2f \n",payroll[tJ.net);

printtotals()
{

}

printf("
printf("Total
printf("Total
printf("Total

main ()
{

inti, t;

The Payroll Totals \n\n");
Grosspay: %.2f\n",totalgrosspay);
Tax: %.2f\n",totaltax);
Netpay: %.2f\n",totalnetpay);

float gross;
totalgrosspay = O;

74

}

)

totalnetpay = O;
totaltax = O;
printf("How many records to input?");
scanf("%d",&i);
printf ("\n") ;
input (i) ;
grosspay(i);
dependents (i) ;
tax (i) ;
netpay (i) ;
printchecks(i);
printtotals();

75

)

J

APPENDIX C

August 21, 1987

Department Head/Chair
Computer Science

Dear Sir/Madam:

I'm conducting a survey to try to roughly determine whether
plagiarism involving student programs is considered enough of a
problem to have generated a formal departmental policy on the
matter.

If there is such a written policy in your department I'd very
much appreciate receiving a copy of it.

We have such a policy.

76

Thank you,

John B. Connely, Professor
Computer Science Department
Cal Poly State University
San Luis Obispo, CAL 93407

YES NO

)

APPENDIX D

June 3, 1987

*** In the following, plagiarism refers to computer program
plagiarism.

1. Do you believe that plagiarism does occur?

2. If so, how serious is the problem?
(please circle your response)

a. Lower division major classes?

b. Lower division service classes?

c. Upper division classes?

d. Graduate classes?

Not very

1

1

1

1

2

2

2

2

Yes

3

3

3

3

No

4

4

4

4

very

5

5

5

5

3. Do you feel that the departmental policy on computer program
plagiarism is helpful and well-defined?

Yes No No opinion

4. Do you feel that the students clearly understand the concept?

Yes No No opinion

5. Do you look for or do you instruct your grader to look for
plagiarism when you are grading a program assignment?

Yes No

6. Rate the following common forms of plagiarism.
(Please add any others that seem important to you.)

Very common common not common

a. Change only program name

b. Change only comments

c. Change only variable names

d. Shuffle order of procedures/
functions

77

e. Change program logic

f. Insert part of another
student's program

g. Other?

7. Which do you feel would do most to reduce the problem of
plagiarism?

(Please circle the one you favor)

a. A more detailed definition.

b. Better means of detection.

c. Better communication of the idea of plagiarism to the
students.

d. Harsher penalties.

e. Lower percentage of the class grade based on the
programming.

8. Would you use a plagiarism detection tool if there were one
available?

Yes No

9. Please circle the appropriate level.

I generally teach: a. Lower division service courses

b. Lower division major courses

c. Upper division courses

d. Graduate courses

78

,, APPENDIX E

Classroom Surveys

1. CSc 204, Introduction to C and Unix.
March 1988.

2. CSc 204, Introduction to C and Unix.
March 1988.

3. CSc 204, Introduction to C and Unix.
June 1988.

4. CSc 218, Advanced Pascal/ Introduction to Modula 2.
December 1987.

5. CSc 218, Advanced Pascal/ Introduction to Modula 2.
December 1987.

6. CSc 345, Data Structures. Language: Modula 2.
December 1987.

7 . CSc 345, Data Structures. Language: Modula 2.
July 1988.

Protocol Interviews

1. Ayson, Laurie. In C. July 28, 1988.

2. Beebe, Andy. In Pascal. June 10, 1987.

3. Cron, Chris. In C. July 22, 1988.

4. Crook, Ernie. In Pascal. November 9, 1988.

5. Dalke, Darrell. In C. July 25, 1988.

6. David, Paul. In C. July 26, 1988.

7. Dimmick, John. In C. July 16, 1988.

8. Grandjean, Paul. In C. July 22, 1988.

9. Jones, Bob. In C. July 25, 1988 .

.)

79

')

10. Kamimoto, Norman. In C. July 22, 1988.

11. Kaut, Debbi. In c. July 27, 1988.

12. Mach, Roger. In c. July 20, 1988

13. Maughrner, Mike. In Pascal. July 26, 1988.

14. Nakamura, Lee. In C. July 20, 1988.

15. Neuman, Phil. In C. July 22, 1988.

16. Otteson, Ingrid. In c. July 27, 1988.

17. Salter, Jim. In C. July 19, 1988.

18. Sartor, Vince. In C. July 19, 1988.

19. Sobel, Andy. In C. July 20, 1988.

20. Stark, Heather. In c. July 28, 1988.

21. Toftler, Elizabeth. In C. July 28, 1988.

Surveys

1. Connely, John B. "Plagiarism". Survey of Oregon State
University Computer Science Faculty. May 1987.

2. Connely, John B. "A Plagiarism Policy". Survey of California
State University and College Departments of Computer
Science. August 1987.

3. Connely, John B. "Plagiarism". Survey of California
Polytechnic State University Computer Science Faculty.
December 1987.

80

)

)

1.

2.

3.

4.

5.

6.

BIBLIOGRAPHY

Books

Best, John W. Research in Education. Englewood Cliffs:
Prentice-Hall, 1970-.-

California Pol~technic State University at San Luis Obispo
Catalog, 1 84-1986.

Conte, S.D., H.E. Dunsmore and V.Y. Shen. Software
En ineerin Metrics and Models. Menlo Park:
Benjamin Cummings, 198b.

Fowler, H. Ramsey. The Little, Brown Handbook. Boston:
Little, Brown and Company, 1980.

Funk~ Wagnalls Standard College Dictionary. New York: Funk &
Wagnalls, 1977.

Gibaldi, Joseph and Walter S. Achtert. MLA HANDBOOK for
Writers of Research Papers, Theses, and Dissertations. New
York: Modern Language Association, 1980.

7. Halstead, M.H. Elements of Software Science. New York:
Elsevier North-Holland, 1977.

8. Perrin, Porter G. Writer's Guide and Index to English.
Chicago: Scott, Foresman and Company, 195"9.

9. Turabian, Kate L. A Manual for Writers of Term Papers,Theses,
and Dissertations. 4th ed. Chicago: University of Chicago
Press, 1973.

10. Watt, William W. An American Rhetoric. New York: Rinehart and
Company, 1955-.-

11. Wilson, John. Language and the Pursuit of Truth. Cambridge:
Cambridge University Press, 1960.

12. ---=--~· Thinking With Concepts. Cambridge: Cambridge
University Press, 1963.

Articles

81

)

13. Benson, M. "Machine Assisted Marking of Programming
assignments", ACM SIGCSE Bulletin, Vol. 17, No. 3
(September 198"'5"'f;" 24-25.

14. Berghel, H.L. and D.L. Sallach. "Measurements of Program
Similarity in Identical Task Environments". SIGPLAN
Notices, Vol. 19, No. 8 (August ~984), 65-72.

15. ______ • "Computer program plagiarism detection: the limits
of the Halstead metric". Journal of Educational
Computer Research . Vol. 1, No. 3 {1985), 295-315.

16. Cook, Janet M. "Defining Ethical and Unethical Student
Behaviors Using Departmental Regulations and Sanctions."
ACM SIGCSE Bulletin, Vol 19, No. 1 (February 1987), 462-
4b8.

17. Cross John A. and James L. Wolfe. "Paperless Submission and
Grading of Student Assignments", ACM SIGCSE Bulletin, Vol.
1 7 , No • 1 (March 198 5) , •

18. Denenberg, Stewart A. "Test Construction and administration
Strategies for Large Introductory Courses", ACM SIGCSE
Bulletin, Vol. 13, No. 1 (February 1981), 23"5"=243.

19. Donaldson, John L. et al, "A Plagiarism Detection System" .
ACM SIGCSE Bulletin. Vol. 13, No. 1 (February 1981), 21-25.

20. Ericsson, K.A. and H.A. Simon, "Verbal reports as data".
Psychological Review. Vol. 87, No. 3 (1980), 215-251.

21. Faidhi, J.A.W. and S.K. Robinson. "An empirical approach for
detecting program similarity and plagiarism within a
university programming environment". Computers and
Education. Vol. 11, No. 1 (1987), 11-19.

22. Ferguson, Ernest. "Conference Grading of Computer Programs".
ACM SIGCSE Bulletin. Vol. 19, No. 1 (February 1987), 361-
365.

23 . Grier Sam. "A Tool that Detects Plagiarism in Pascal
Programs". ACM SIGCSE Bulletin, Vol. 13, No. 1 (February
1981), 15- 20:-

24. Hamm, R. Wayne, et al. "A Tool for Program Grading: The
Jacksonville University Scale." ACM SIGCSE Bulletin,
Vol. 15, No. 1 (February 1983), 248-252.

25. Hwang, C. Jinshong and Darryl E. Gibson . "Using an Effective

82

	Connely_John_Bradley_1988_11_A
	Connely_John_Bradley_1988_11_B

