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With the increase in demand for streaming media capabilities across the Internet, the 

focus has shifted from traditional client-server to peer-to-peer approaches. Content 

Distribution Networks (CDNs) have also recently moved from web acceleration to media 

streaming. P2P CDNs can be used both as a delivery mechanism and as an independent 

network. However, media streaming poses different challenges from traditional content 

distribution, such as in-order distribution; and p2p networks use more traffic, and lack 

QoS control and measurement. In addition, constraints like a high churn rate and small 

upload bandwidths can affect the video playback at the peers. We find that certain 

strategies can be used to optimize the streaming experience at the receiving nodes, while 

also being scalable and robust to churn. This project presents the experimental results of 

MPEG-4 video streaming using different approaches in unstructured p2p networks.  
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1. Introduction 
 

Peer-to peer systems consist of multiple nodes spread across a public network and use the 

cumulative bandwidth of network participants rather than conventional centralized 

resources where a relatively low number of servers provide the core value to a service or 

application [6]. In recent years, several systems have emerged for purposes like file-

sharing (BitTorrent, Kazaa), telephony (Skype), media-streaming (PULSE, PPLive, 

CoolStreaming), etc. Peer-to peer networks may also be classified according to their 

degree of centralization, which may be ‘pure p2p’, i.e. having no central server or router, 

where peers perform roles of both server and client; and ‘hybrid p2p’, where a central 

server keeps information on peers and responds to requests for information, [6]. All peers 

provide resources, including bandwidth, storage space, and computing power. However, 

challenges like scalability, bandwidth-awareness, resilience etc. frequently arise [2]. 

Thus, as nodes arrive and demand on the system increases, the total capacity of the 

system also increases. PULSE [3] is a related p2p system for unstructured networks, 

which places resource-rich nodes close to the source. 

 

In live streaming for events like sporting events, live webcasts, etc. the transmission is 

characterized by large number of distributed clients, short ramp-up time between fewest 

connected nodes and most connected nodes, and quick network teardown at the end of 

the transmission. In such networks, we may either have a video server which contains the 

seed video to be distributed, or a set of one or more peers contributing the video. In 

hybrid or structured networks, we frequently need to distinguish between peers such as 

super-node [7]. Being a p2p network, the other features of peer-to-peer systems are also 

preserved: peers arrive and depart on demand; resource discovery is supported, etc. In 

constructing a p2p network supporting video streaming, we consider the case of an 

unstructured network for live streaming of mpeg4 video. We use the standard audio-

video interleaved (avi format), and build our own protocols for distribution, peer-

management and stream-management. To implement video playback at the peer, we use 

the IBM Toolkit for MPEG4 [5]. 
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2. Design 
 

The design goals for this project aimed to create a flexible, efficient unstructured network 

for video streaming. The p2p overlay network consists of all the participating peers as 

network nodes. The presence of edges between one node A and another node B is based 

on whether or not the node A is aware of node B, and vice versa. In an unstructured 

network, the edges are constructed arbitrarily; provided an incoming peer is aware of at 

least one node it can proceed to build its peer-list over time. Structured P2P network 

employs a globally consistent protocol to ensure that any node can efficiently route a 

search [6]. For this project we consider the case of unstructured networks. A big 

challenge in using unstructured networks is to efficiently transmit from source to 

receivers while maintaining transmission efficiency. 

 

Some of the problems that can arise in p2p networks include freeloading, where users do 

not share resources, asymmetry and variability of bandwidth over time, jitter in the 

packet arrival times and churn. In structured systems, nodes are organized following a 

hierarchical tree structure to form an application-layer overlay network [2]. The benefits 

of this approach include easy analysis and an intuitive understanding of the data-flow. 

Disadvantages include the problem of finding successors for failed non-leaf nodes, 

bottlenecks in performance due to low bandwidths at non-leaf nodes and lack of 

contribution from leaf nodes. In our approach, we use an unstructured network which 

resembles a mesh like BitTorrent. These can be built and on-the-fly node departures have 

a lesser effect on the streaming performance since the streaming algorithm does not rely 

on the structure of the network. 

 

Some of the assumptions that we make are: we do not discard chunks of video that have 

already been played. For streaming which may potentially have an extremely large 

bandwidth however, we can consider a sufficiently large window of time for preserving 

the packets within which most packet requests may be answered. We consider a single 

streaming session, however, multiple video sessions may be established. To demonstrate, 

some of the peers in our experiment may join late or leave early, with their exit handled 
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gracefully by the overlay network. Peers do not need to recover from packet loss, since 

the buffer-time window is adjusted appropriately to facilitate retransmission of missing 

chunks. 
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2.1 General Architecture 
 

 The general architecture can be shown by the following block diagram: 

 

 

 
Fig 1. General Architecture 

The system consists of four modules connected to a network interface: 

 

Peer Management: This module is responsible for managing the peer’s neighbors, 

through peer-join, exchange of buffermaps and node properties, messaging, etc. It is also 

responsible for satisfying requests of the connected peers. The peer-management function 

is closely tied to the system management.  

 

Stream Management: This is the set of algorithms that ensures that the stream continues 

to function till the end of video-playback. While the video is essentially broken into 

chunks and transmitted via the overlay network, stream management is responsible for 

 
   Network Interface 

 
   Peer Management    

 
       Video Player 

 
Stream Management 

 
System Management 



 8 

assembling the chunks into a single coherent stream. It ensures that the video is sent to 

the player in order, or that buffering occurs while waiting for chunks to arrive. 

 

Video Player: Video Playback of MPEG-4 video is possible through the use of a set of 

class libraries. 

 

System Management: This module acts as a bridge between the others. It is responsible 

for configuring parameters and beginning the streaming sessions. 

 

 

 



 9 

2.2 Class Diagram 
 

We explain some of the important classes used to construct the system beginning from 

the lowest level of detail. 

 

Chunk: This class wraps a unit of video data within a payload field. Chunks are 

transmitted between peers during the session. It also contains a sequence number for the 

purpose of organizing the data chronologically, and node-data of the sending node. 

 

Node-Data: Instances of the node-data class are passed in messages between peers during 

the streaming session. The object encapsulates the data about the owner-peer such as IP 

address, Peer-ID, number of connected nodes and Quality Score. These messages indicate 

both the presence and state of the peer, and can be used to detect the departure of peers. 

 

Buffer Map: A buffer map of predefined size BUFFERSIZE is used to store a fixed 

amount of sequence numbers of chunks. These are the sequence numbers within a 

particular window of time. Buffer maps are periodically exchanged so that peers may 

know the chunks available at their neighbor peers.  

 

Message: This is a generic class that can wrap any object e.g.: of class Node-Data, 

BufferMap, or Chunk according to the protocol. It can also wrap primitive types and each 

type is distinguished by means of a Message-ID field. Messages are exchanged between 

peers during the session.  

 

Peer-Manager: This class is responsible for peer management functions such as peer-join 

and peer-leave, exchanging status messages and buffermaps. It maintains a list of hash-

tables that store the sequence numbers of chunks of its connected peers. Incoming 

buffermaps from these peers are used to create and update the hash-tables. Peer-Manager 

also launches a separate multi-threaded TCP server that performs its peer-management 

functions. 
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Quality Score: This class maintains and computes the metrics for any streaming session 

which includes the arrival times, jitter, number of out-of-order packets, number of 

duplicate packets, peer-uptime, connected nodes at the beginning and end of the session, 

etc. The quality score of a peer is a weighted function of metrics. These are written to log 

files by separate threads. 

 

Peer: This is the overall class that controls all the peer functions. It contains instances of 

the Peer-Manager and Quality Score classes. 

 

A simplified view of the class diagram with some members is shown: 

 

 

 
Fig 2. Class Diagram. 

PeerManager 
 
Attributes 
NodeData myNode 
PeerServer PListener 
Vector PeerList 
Vector PolicyList 
 
Operations 
peerJoin() 
sendMessage() 
returnPolicy() 
requestPacket() 
addOrUpdatePeer() 
 

Peer 
 
Attributes 
PeerManager PM 
StreamServer mySS 
M4App VideoPlayer 
QualityScore QSObj 
 
Operations 
patch() 
updateMyQueue() 
makeMap() 
startM4AppSample() 
findHighestQS() 

M4App (Video Player) 
 
Attributes 
PlayerControl m4Playr 
M4PlayerController PC 
Menu playMenu 
PlayerControlPanel CP 
 
Operations 
createMenuBar() 
open() 
close() 
stopAction() 
playPauseAction() 
 

M4PlayerController 
 
Attributes 
int lastPlayed 
 
 
 
Operations 
run() 
 

QualityScore 
 
Attributes 
long jitter 
long duplicateChunks 
QSTimer myQSTimer 
File QSFile 
 
Operations 
updateQualityScore() 
updateJitter() 
run() 
waitForMe() 
writeLine() 

BufferMap 
 
Attributes 
long[] BMap 
 
Operations 
insertPacket() 

NodeData 
 
Attributes 
int PeerID 
 
Operations 
getPeerID() 
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2.3 Knowledge Management 
 

Knowledge management refers to the knowledge a peer has about the local network. In 

an unstructured network, a peer is unable to make assumptions about the entire network. 

However, we can consider the global network to be an aggregate of several local 

networks. Thus, every peer has a neighborhood which defines the peers with which it 

may carry out transactions. The peers to which a peer is connected may be divided into 

two groups, active peers and passive peers. While a peer is aware of both groups, it 

chooses to interact with only one group of peers due to the selection criteria like 

QualityScore. Peers may however, move between groups during the length of the session. 

 

The information known to the peer includes:  

-Node-Data of connected nodes. 

-Buffermaps of connected nodes 

-QualityScore measurements at connected nodes 

 

Node-Data are periodically transferred between peers to ensure that the peers are still 

online. Since the QualityScore measurements are part of the Node-Data, they are also 

transferred periodically between peers. Every node has a history queue, in which a fixed 

number of chunk sequence numbers are stored. This queue is updated whenever a packet 

arrives at the peer. At intervals, the contents of the history queue are used to construct a 

buffermap which is sent to the connected peers. Every peer maintains a unique hash-table 

for each of the connected peers. When a buffermap from peer ap arrives at peer bp , the 

individual sequence numbers from the buffermap are updated in the hash-table for ap  

stored at bp . Thus bp  has an approximately close view of the state of the buffer at ap , 

and similarly other connected nodes.  

 

Message-passing: Messages, which are serializable objects, are passed between peers 

over TCP. Examples of messages include Node-Data request and response, BufferMap 

broadcast, Peer-Join request, accept and reject, chunk request and response, Peer-Info 

(which provides information about connected peers), Policy-Tokens etc. A Policy-Token 
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for some node An  is stored at Bn  and determines how streaming from Bn  to An  will take 

place. The different types of Policy-Tokens include default, even, odd, and none. These 

designate all, even-numbered, odd-numbered and no chunks respectively. Policy-Tokens 

are normally initialized to default when nodes connect but can be changed by the 

requesting node. Consider the following case 

 

 
 

Although we construct mesh networks, when using a single source the above situation 

(Fig 3.a) frequently arises. Assume there is a part of the network in which the following 

condition is satisfied: packets reaching P1 and P5 must be routed through P1. In that case, 

a stream containing chunks 1, 2, 3… would be duplicated to both P4 and P5. Assuming 

P4 and P5 are connected, this would be a waste of bandwidth. We implement streaming 

policies between P1 and P4 and between P1 and P5. Thus, P1 sends odd-numbered 

packets to P4 and even-numbered packets to P5 (Fig. 3b.). The video stream is 

reconstructed and provides good results (Section 4.4 Fig 1). 

 P1
  

  P4  P5 

 P1
  

  P4  P5 

Fig 3a. Without modification    Fig 3b. With modification 

1, 2, 3 .. 
1, 2, 3 .. 

1, 2, 3 .. 

1, 2, 3 .. 

1, 3, 5 .. 2, 4, 6 .. 

1, 3, 5 .. 

2, 4, 6 .. 
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2.4 Quality Score and Measurements 
 

One of the criticisms of current approaches to p2p video streaming is that p2p uses much 

more traffic to deliver the same asset [1], increasing the delivery costs for the network 

owners. Additionally, it has been claimed that there is a lack of Quality of Service and 

measurements. Also, most p2p video streaming applications are limited to the upstream 

bandwidth of the uploading peer. Using a multi-thread based model, we measure the 

performance of the peers during the streaming session, on the basis of which we make 

some useful observations characterizing the system.  

 

 

During a streaming session, one of the most important characteristics is the timely arrival 

of chunks in playback order. We define jitter as the variation in the packet arrival times. 

A constant arrival rate would lead to no jitter, which is optimal. Jitter could be caused by 

network congestion, packet routing changes, or unbalanced loads in the network. We 

measure jitter for packet pi as the un-weighted mean of the difference in arrival times of 

the previous 10 packets i.e. pi-1, pi-2 … pi-10. If each of these times is represented by Δti, 

then jitter J is  

∑
=

∆=
10

110
1

i
itJ  

 

Assume a new node joins the network. We need to construct the immediate node 

neighborhood from a set of peers. Given the set of peers to choose from, we need to 

select those peers with high bandwidth and a low churn rate. We also choose to reward  

Peers that have a long uptime, low jitter and have contributed more to the stream. 

Contributions can be calculated by s, the total number of chunks sent. Quality Score Q.S. 

is  

dwJwswrwSQ 4321.. −−+=  
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Where 1w , 2w , 3w , 4w are weights and r, s, J, dare the running-time, number of 

contributed chunks, jitter and number of duplicate packets received respectively. The 

weights 1=iw , 5.0432 === www  chosen were maintained constant for all sessions. 

The Quality Score factor can be used while selecting the node peers as well as while 

choosing peers to actively trade chunks with. The BitTorrent protocol uses a tit-for-tat 

strategy, which ensures clients send chunks of data back to those clients who contributed 

to them. However, strict policies like these can result in suboptimal situations, such as 

when new peers join, which have not yet contributed to the system. Thus, we consider the 

total number of contributed packets to the network, and not to any single peer.  
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2.5 An Overview of Threads 
 

The system can also be conceptualized as a set of interacting threads of execution. The 

Java platform is designed to support concurrent programming, and the Java programming 

language provides basic concurrency support. With the increasing use of multi-core 

hardware and support for multi-threading in software, we can use concurrency to better 

utilize computing hardware resources. Since the Java Virtual machine runs as a single 

process, we can use multiple threads even on single-core systems. The following threads 

were designed to execute in parallel at any peer node: 

 

1. Playback Thread: This thread is the back-end interface between the media stream and 

the media player. The playback thread is launched when the video is opened, and 

monitors the available video stream; if the stream is available it is played, else buffering 

time is computed. This thread can directly access the media player interface and requires 

no manual control once playback has begun. 

 

2. Quality Score Thread: This thread maintains data about events such as packet arrivals, 

duplicate chunks, etc. and writes information to log files. It executes concurrently with 

other threads and updates statistics like Quality Score. It has an associated QSTimer 

thread class that provides timing information that can be written and read or re-read from 

log files, i.e. data is saved between different executions of the program. This models real-

world streaming more accurately since churn occurs; peers arrive and depart from the 

same session while in progress. 

 

3. Stream Server and Stream Server Thread: This is a threaded TCP server that accepts 

incoming chunks and processes them. For each incoming chunk, a new thread (Stream 

Server Thread) is launched that processes the chunk. Thus, multiple threads can be 

independently launched to handle several chunks at a time. Since this is peer-to-peer 

computing, this component performs functions of both client and server for other peers. 
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4. Pull and Check tasks: These are background tasks set up to automate the process of 

either pulling or checking for missing chunks, respectively.  

 

5. Peer Server and Peer Server Thread: These threads are owned by the Peer Manager. 

They are analogous to the Stream server and Stream Server Threads, but used for the 

message-passing and knowledge-management functions.  
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3. Algorithms 
 

3.1 Peer Management 
 
For the experiment, we designate a single peer, called as video-server, as having both the 

seed video as well as being a bootstrap node. The video-server has almost equal 

capabilities as other peers but for its ability to begin network construction.  

Peer management deals with the algorithms for peer-join and peer-leave. 

 

A peer connects first to the video-server (Peer-ID = 0) and then to other peers. Joining the 

network is done in two phases: 

Phase1: A new peer p connects to the video-server (well-known IP) with a peer-join 

message request. Every peer initially has a priority field (tunable parameter, initially 

priority = 1) that indicates the number of iterations of requests (a single iteration of 

requests is defined as all the peers to which it attempts to connect to with the same 

priority-value. 

The video-server (VS) has minimum and maximum limits on the number of peers it can 

accept; if the request from p is within these limits it may be accepted. If it is less than this 

limit it may be accepted or rejected with equal probability. A peer-accept or peer-reject 

message is sent to p and if-accepted, VS adds p to its peer-list and p adds VS to its peer-

list. VS sends a list of peers LP  to p which is a subset of the peers at VS.  

 

Phase 2: The value of priority is incremented. While priority is less than some value MaxP  

( MaxP >4), p attempts to connect to nodes in the list LP . As in Phase 1, the request may be 

accepted or rejected with equal probability from each of the nodes. For every iteration of 

peer-requests, the priority value is incremented. In order to prevent every request of p 

from being rejected, we stipulate that no node may reject a priority = 4 request. This 

continues until p has sufficient number of neighbors. 
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Video Streaming Algorithm/ Modes of streaming:  

There are various approaches to distribute the streaming media. These can range from 

pushing, to pulling, to a combination of pushing and pulling. In pushing, the seed peers 

actively disperse the video through the network. In pulling, the seed peer passively 

responds to requests for chunks from peers on the network. In the hybrid approach, we 

explain our results and observations when we permit both pushing and pulling in the 

streaming session. In this project, we aim to measure the performance of push-based 

streaming, pull-based streaming and a combination of the two. 

 

3.2 Push-based streaming: 
 

At peer-join time, peers establish some policy by which packets will be pushed to them 

from each incoming connection. This may be odd, even, default, or none. In the figure 

(fig 4a.) below, Peer 1P has three incoming edges where odd-numbered, even-numbered 

and odd-numbered chunks arrive respectively. It also has outgoing edges where all, even-

numbered, odd-numbered, even-numbered and all chunks are sent. Those policies 

correspond to the nodes to which the packets are incoming. 

 
In this mode, the video server pushes content to each of the nodes successively. The  

algorithm may be stated as follows: 

VS 

P1
  

P2 

P4 P5 P6 

P3 
 P1
  

0 E 0 

D E E 0 D 

Fig 4a. Streaming Policies Fig 4b. Example network 
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Pushing algorithm at the video-server 

 

In our approach, the video-server (VS) described has essentially the same functionality as 

the peers; however, it is also a bootstrap node and contains the seed data (video). 

 

1: Given a video-file at the seed peer (VS) split that file into a series of distinct chunks 

...,, 321 ccc  

2: Set 0=i  

3: For every chunk ic  do  

4: Set 0=j  

5: For every peer jp  in the peer-list LPof VS, do 

6: Extract the streaming-policy P( jp ) from the policy-list LPol  at VS 

7: if P = odd and i%2 = 1 then 

8:  Transmit ic  to jp  

9: else-if P = even and i%2 = 0 then 

10: Transmit ic  to jp  

11: else-if P = default 

12: Transmit ic  to jp  

13: end if 

14: end for  

15: end for 

 

At the peer, the following sequence of execution takes place 

 

1: For every received chunk ic  do  

2: Set 0=j  

3: For every peer jp  in the peer-list LPof the peer, do 

4: Extract the streaming-policy P( jp ) from the policy-list LPol  at the peer 

5: if P = odd and i%2 = 1 then 
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6:  Transmit ic  to jp  

7: else-if P = even and i%2 = 0 then 

8: Transmit ic  to jp  

9: else-if P = default 

10: Transmit ic  to jp  

11: end if 

12: end for  

13: end for 

 

A parallel sequence of execution at the video-server VS (not shown) handles incoming 

requests for packets from peers and fulfils them in serial order. In the push-based 

approach, a similar algorithm as explained above executes at the peers. While peers do 

not generate chunks, they forward incoming chunks to all other outgoing nodes 

depending on the streaming policy. In addition, a separate thread of execution 

periodically checks that the chunks are incoming continuously, else it begins to request 

chunks (e.g. to prevent excess buffering time due to missing chunks). Thus, the behavior 

of push in the case of retransmissions approximates pull. This happens as follows: 

 

Algorithm to patch the video stream and request retransmission 

 

To playback video, it is necessary to patch the individual chunks into a stream which can 

then be played back by the player. Given a set of chunks with sequence numbers, the 

player considers lastPatched as the sequence number of the chunk that can be played last 

(i.e. chunks with sequence numbers from 0 to lastPatched have been received. In 

contrast, lastReceived is the highest sequence numbered chunk received. 

(lastPatched<=lastReceived) 

 

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been 

reconstructed) 
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2: Let lastReceived be the sequence number of the last received unique chunk with 

highest sequence number 

3: When the first chunk 0c arrives, invoke the following sequence of execution 

4:  For every unit of time ,t∆ do: 

5:  if lastPatched < lastReceived 

6:  Determine the missing chunk 

7: if there exists a peer in the Peer-List LPwhich owns that chunk (based on the data 

contained in hash-tables) then 

8: Request that chunk from that peer 

9: else 

10:  Determine the peer with highest Quality-Score and request from that peer 

11: end if 

12: end if 

13: end for 

14: For every received chunk c with sequence number s, do: 

15: if s > lastReceived, then 

16: lastReceived = s 

17: end if 

18: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with 

sequence number S are present, where lastPatched < S < s 

19: if patched, then 

20: lastPatched = s 

21: end if 

22: end for 
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3.3 Pull-based streaming 
 

The pull algorithm takes place with the video-server in a passive role. Peers connect at 

will and establish a mesh following peer-join. The algorithm for pull resembles the one 

for retransmission during push.  

 

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been 

reconstructed) 

2: Let lastReceived be the sequence number of the last received unique chunk with 

highest sequence number 

3: For every unit of time 1t∆ do: 

4: Find the next chunk sequence number = lastPatched+1  

5: if there exists a peer in the Peer-List LPwhich owns that chunk (based on the data 

contained in hash-tables) then 

6:  Request that chunk from that peer 

7: else 

8:  Determine the peer with highest Quality-Score and request from that peer 

9: end if 

10: End for 

11: For every received chunk with sequence number s, do: 

12: if s > lastReceived, then 

13: lastReceived = s 

14: end if 

15: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with 

sequence number S are present, where lastPatched < S < s 

16: if patched, then 

17: lastPatched = s 

18: end if 

19: end for  

 



 23 

The following diagram is useful in understanding the patching of the stream. If we 

initially have chunks 5 and 6 missing in a sequence from 1 to 10, then we need to wait till 

chunks 5 and 6 are available before we can patch the stream till the end. Once chunk 6 

arrives, it automatically patches the rest to have a complete stream from 1 to 10. 
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Fig 5a. Stream with chunks, 5, 6 missing. lastPatched = 4. lastReceived = 10 
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Fig 5b. Chunk 5 arrives. lastPatched = 5. lastReceived = 10 
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Fig 5c. Chunk 6 arrives. lastPatched = 10. lastReceived = 10 
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3.4 A Hybrid Approach 
 
From our observations on push and pull strategies, we inferred that pushing may have 

performed worse for reasons like the large number of duplicate chunks or bandwidth 

wastage. Nodes having a larger round-trip time from the Video Server could also slow 

down the streaming for those with a shorter round-trip time. Also, the overall push 

strategy was not very efficient. We aim to determine if it is possible that a hybrid strategy 

between pushing and pulling will give results better than those of pull. 

 

In this approach, there will be essentially two flows of media into peers: 

1: The stream of chunks that is pushed by the video-server 

2: The stream of chunks that is pulled by the individual peers from other peers or the 

video-server.  

 

Our strategy in the hybrid approach is manifold: 

1. To ensure that the bandwidth is utilized effectively, which implies zero or minimal 

overlap of chunks between streams in 1 and 2 above. 

2. To reduce the overhead of pushing at the seed peer, this implies transmitting to some 

and not all peers, for some and not all chunks. 

3. To limit the number of peers connected to any node; this would make our design more 

scalable. 

 

As we observed the push approach to be slower than pull, at any time we aim to always 

push those chunks which have a sequence number greater than the highest sequence-

numbered chunk pulled so far. 

 

This approach has the following changes from the above two: 

-To impose a hard-limit on the number of peers that can connect to a single peer 

-To pull from multiple peers simultaneously and to pull multiple chunks at a time 

-To push to some and not all peers. At the video-server, this is set in limit, which is the 

limit of the number of peers we may push a given chunk to. We push chunks 0 to 10 to 
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all peers, 11 to 100 to half of the peers, 101 to 1000 to one-third the number of peers, and 

so on. We do this in order to reduce the repetitive process of pushing. 

-We also alternate pushing between sets of sequence numbers, e.g. we push 0, 20 to 30, 

40 to 50, 60 to 70 etc. 

Below we explain our algorithm. Let i denote the chunk sequence number. At the video-

server: 

 

1: Given a video-file at the seed peer (VS) split that file into a series of distinct chunks 

...,, 321 ccc  

2: Set 0=i  

3: for every chunk ic  do 

4: if icdoes not lie in a transmission interval (e.g. 10-20, 30-40, 40-50, etc) then 

5: Set I = i+1 and skip transmission 

6: endif 

7: if ( 100 ≤≤ i ) then 

8: Set limit = size(Peer-List) 

9: else if ( 10011 ≤≤ i ) then 

10: Set limit = 0.5 * size(Peer-List) 

11: else if ( 1000101 ≤≤ i ) then 

12: Set limit = 0.33 * size(Peer-List) 

13: end-if 

14: Set 0=j  

15: for every peer jp  in the subset (0, limit-1) of the peer-list LPof VS, do 

16: if ic  has already been pulled then 

17: Set i = i+1 and skip transmission 

18: else Extract the streaming-policy P( jp ) from the policy-list LPol  at VS 

19: if P = odd and i%2 = 1 then 

20:  Transmit ic  to jp  

21: else-if P = even and i%2 = 0 then 
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22: Transmit ic  to jp  

23: else-if P = default 

24: Transmit ic  to jp  

25: end if 

26: end if 

27: end for  

28: end for  

 

 

At the peer, we implement an extension of pull where we pull several chunks in each 

interval of time, as long as we do not already have them. The algorithm is as follows: 

 

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been 

reconstructed). Let lastReceived be the sequence number of the last received unique 

chunk with highest sequence number 

2: For every unit of time 1t∆ do: 

3: Find the next missing chunk sequence number = lastPatched+1  

4: For each value of i in )51( +≤≤+ dlastPatcheidlastPatche  

5: if there exists a peer in the Peer-List LPwhich owns that missing chunk (based on 

the data contained in hash-tables) then 

6:  Request that missing chunk from that peer 

7: else 

8:  Determine the peer with highest Quality-Score and request from that peer 

9: end if 

10: End for 

11: End for 

12: For every received chunk c with sequence number s, do: 

13: if s > lastReceived, then 

14: lastReceived = s 

15: end if 
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16: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with 

sequence number S are present, where lastPatched < S < s 

17: if patched, then 

18: lastPatched = s 

19: end if 

20: end for 
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4. Performance Evaluation 

 
The system was built with a GUI which could be used to begin the video playback. 

Buffering time depends entirely on the availability of chunks to be played. We used a 

sample video with a 544 x 304 resolution, with 119 kbps MPEG1 Layer3 audio and 1162 

kbit/s MPEG4 video streams, providing for a total data rate of about 1280 kbit/s. The 

selected chunk-size was 100,000 bytes, which for one chunk approximates to about 

(100,000*8)/1280,000 = 0.625 sec of playback. We deployed the system on PlanetLab, 

an open platform for developing, deploying and accessing services over the Internet. The 

software was run on 20 machines over the Internet repeatedly. We present our results 

below. 
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4.1 Pull Approach 
 

1. Results for the pull algorithm, with number of chunks vs. time in msec. Each of the 

nodes is labeled on the right. We note the slower performance of two of the nodes, while 

the rest complete streaming between 220 sec and 600 sec. Most of the nodes complete 

downloading the file before 300 seconds. The playback duration (not shown) is 225 sec.  
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2. For the case of 20 peers, we observe the streaming for the first 50 chunks as in the 

figure below, for all peers. 
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3. Results for the pull algorithm for 10 peers. From top to bottom, the jagged line is the 

playback; the lines below indicate the streaming performance of the peers. The slowest 

peer completes at 170 sec. Looking at the difference in slope between the playback line 

and the peer-streaming lines, we conclude that buffering would not be required in this 

case. 
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4. The first 50 chunks are blown up for the same algorithm. 
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4.2 Push Approach 

 

1. The Push Algorithm, for 20 peers, with Time vs. packets. From top to bottom, the first 

line represents een.orst.edu, which does not complete. We then have a set of lines 

representing all peers, which complete all at the same time (670 sec) approximately. The 

lowest line indicates the linear playback rate, which would have to be shifted up on the  

Y-axis to compensate for the delay (buffering). 
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2. The streaming for the first 50 chunks is expanded below. The lowest (straight) line is 

the playback. 
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3. Results for the push algorithm for 10 peers. The first set of lines indicates all nodes 

download times. The lower line is the playback. 

 

Push-Ten Peers

0

50000

100000

150000

200000

250000

300000

350000

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

Chunks

Ti
m

e 
M

se
c

Cornell1
Cornell2
Purdue
Uchicago
Umass1
Umass2
Unc
Wayne
Wisc
Playback

 

 

4. Only the first 10 chunks are shown, for the same algorithm. 
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5. The same graph, with a buffering time now added (top black line). 
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4.3 Hybrid Approach 
 
1. The results of the hybrid approach, for 20 peers, with Time vs. packets. The lowest line 

indicates the linear playback rate, which implies all peers would require buffering to view 

the video. We note that the number of chunks arriving out of order is large, and the jitter, 

or the difference in inter-arrival times, varies a lot. This is indicated by the jagged lines as 

compared to the smoother lines in the other approaches. 
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2. We observe interesting results for the case of five peers (below). The network has been 

graphed to display the connected nodes. In the figure, v.s. is the source node. 
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Fig 6. Network graph for 5 peers 
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3. For 5 peers, the streaming finishes much earlier than the playback time, which implies 

no buffering and a fast stream. The jitter is also less as compared to the case of 20 peers.  
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4.4 Other 

1. The average streaming rates (average number of chunks, both incoming and outgoing) 

for peers on PlanetLab in a streaming session. The modified algorithms (through the use 

of Policy tokens for streaming) indicate a more efficient streaming. The hybrid approach 

also shows a far lower number of packets transmitted on average. 
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2. We plot the number of chunks sent/received with number of peers to see the effect of 

increasing the number of peers. The average number of chunks sent/received in each push 

or pull configuration, first with 5 peers, then 10, then 20 is shown. The pull algorithm 

was more efficient in terms of number of packets sent and received. 
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3. Jitter across nodes during a streaming session appears to be relatively constant for push 

and largely variable for pull. 
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4. A sample peer’s values of jitter were taken below for each configuration. We observe 

that in general, there are higher values of jitter for push, and lower values for pull and the 

hybrid approach. Also, as the number of peers increase, we find that total jitter also 

increases. 
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5. The node neighbors were randomly generated. Sample number of connected nodes for 

a streaming session (each pair of values on x-axis represents a different machine). 
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6. The sample throughput at a single peer is shown below for the different tests. We find 

that the throughput increases as the number of peers decrease, and that it is largest in the 

case of hybrid approach (push and pull) for five peers. On average, pull had higher 

throughput than push. 
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Conclusions 
 
We observe that in general, pulling appears to be more effective than pushing. In an 

unstructured peer-to-peer network, it is difficult for a peer to predict whether neighboring 

peers require a newly-received chunk. This increases the number of duplicate 

transmissions during a session. To mitigate that, we introduce the concept of streaming 

policies, and find that average number of transmissions is reduced. However, an 

advantage in unstructured networks is non-reliance on key nodes; any node may fail 

gracefully without affecting the remaining nodes. In terms of throughput, we find that 

pull again performs better on average. However, the throughput decreases as the number 

of peers increase. In the hybrid approach, we aimed to improve the efficiency of the pull 

algorithm by pushing selectively; while this was successful for five peers, it was not as 

successful for larger number of peers.  
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