
Video Streaming in Unstructured Peer-to-Peer networks

by

Craig Furtado

A PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of

the requirements for the degree of

Master of Science

Presented December 2008

Commencement June 2009

 2

AN ABSTRACT OF THE PROJECT OF

Craig Furtado for the degree of Master of Science in Computer Science presented on

_________.

Title: Video Streaming in Unstructured Peer-to-Peer networks

Abstract Approved:_______________________________

Dr Thinh Nguyen

With the increase in demand for streaming media capabilities across the Internet, the

focus has shifted from traditional client-server to peer-to-peer approaches. Content

Distribution Networks (CDNs) have also recently moved from web acceleration to media

streaming. P2P CDNs can be used both as a delivery mechanism and as an independent

network. However, media streaming poses different challenges from traditional content

distribution, such as in-order distribution; and p2p networks use more traffic, and lack

QoS control and measurement. In addition, constraints like a high churn rate and small

upload bandwidths can affect the video playback at the peers. We find that certain

strategies can be used to optimize the streaming experience at the receiving nodes, while

also being scalable and robust to churn. This project presents the experimental results of

MPEG-4 video streaming using different approaches in unstructured p2p networks.

 3

TABLE OF CONTENTS

1. Introduction ... 4
2. Design ... 5

2.1 General Architecture ... 7
2.2 Class Diagram ... 9
2.3 Knowledge Management .. 11
2.4 Quality Score and Measurements ... 13
2.5 An Overview of Threads ... 15

3. Algorithms .. 17
3.1 Peer Management.. 17
3.2 Push-based streaming: .. 18
3.3 Pull-based streaming ... 22
3.4 A Hybrid Approach... 24

4. Performance Evaluation .. 28
4.1 Pull Approach ... 29
4.2 Push Approach .. 31
4.3 Hybrid Approach .. 34
4.4 Other ... 36

References ... 40

 4

1. Introduction

Peer-to peer systems consist of multiple nodes spread across a public network and use the

cumulative bandwidth of network participants rather than conventional centralized

resources where a relatively low number of servers provide the core value to a service or

application [6]. In recent years, several systems have emerged for purposes like file-

sharing (BitTorrent, Kazaa), telephony (Skype), media-streaming (PULSE, PPLive,

CoolStreaming), etc. Peer-to peer networks may also be classified according to their

degree of centralization, which may be ‘pure p2p’, i.e. having no central server or router,

where peers perform roles of both server and client; and ‘hybrid p2p’, where a central

server keeps information on peers and responds to requests for information, [6]. All peers

provide resources, including bandwidth, storage space, and computing power. However,

challenges like scalability, bandwidth-awareness, resilience etc. frequently arise [2].

Thus, as nodes arrive and demand on the system increases, the total capacity of the

system also increases. PULSE [3] is a related p2p system for unstructured networks,

which places resource-rich nodes close to the source.

In live streaming for events like sporting events, live webcasts, etc. the transmission is

characterized by large number of distributed clients, short ramp-up time between fewest

connected nodes and most connected nodes, and quick network teardown at the end of

the transmission. In such networks, we may either have a video server which contains the

seed video to be distributed, or a set of one or more peers contributing the video. In

hybrid or structured networks, we frequently need to distinguish between peers such as

super-node [7]. Being a p2p network, the other features of peer-to-peer systems are also

preserved: peers arrive and depart on demand; resource discovery is supported, etc. In

constructing a p2p network supporting video streaming, we consider the case of an

unstructured network for live streaming of mpeg4 video. We use the standard audio-

video interleaved (avi format), and build our own protocols for distribution, peer-

management and stream-management. To implement video playback at the peer, we use

the IBM Toolkit for MPEG4 [5].

 5

2. Design

The design goals for this project aimed to create a flexible, efficient unstructured network

for video streaming. The p2p overlay network consists of all the participating peers as

network nodes. The presence of edges between one node A and another node B is based

on whether or not the node A is aware of node B, and vice versa. In an unstructured

network, the edges are constructed arbitrarily; provided an incoming peer is aware of at

least one node it can proceed to build its peer-list over time. Structured P2P network

employs a globally consistent protocol to ensure that any node can efficiently route a

search [6]. For this project we consider the case of unstructured networks. A big

challenge in using unstructured networks is to efficiently transmit from source to

receivers while maintaining transmission efficiency.

Some of the problems that can arise in p2p networks include freeloading, where users do

not share resources, asymmetry and variability of bandwidth over time, jitter in the

packet arrival times and churn. In structured systems, nodes are organized following a

hierarchical tree structure to form an application-layer overlay network [2]. The benefits

of this approach include easy analysis and an intuitive understanding of the data-flow.

Disadvantages include the problem of finding successors for failed non-leaf nodes,

bottlenecks in performance due to low bandwidths at non-leaf nodes and lack of

contribution from leaf nodes. In our approach, we use an unstructured network which

resembles a mesh like BitTorrent. These can be built and on-the-fly node departures have

a lesser effect on the streaming performance since the streaming algorithm does not rely

on the structure of the network.

Some of the assumptions that we make are: we do not discard chunks of video that have

already been played. For streaming which may potentially have an extremely large

bandwidth however, we can consider a sufficiently large window of time for preserving

the packets within which most packet requests may be answered. We consider a single

streaming session, however, multiple video sessions may be established. To demonstrate,

some of the peers in our experiment may join late or leave early, with their exit handled

 6

gracefully by the overlay network. Peers do not need to recover from packet loss, since

the buffer-time window is adjusted appropriately to facilitate retransmission of missing

chunks.

 7

2.1 General Architecture

 The general architecture can be shown by the following block diagram:

Fig 1. General Architecture

The system consists of four modules connected to a network interface:

Peer Management: This module is responsible for managing the peer’s neighbors,

through peer-join, exchange of buffermaps and node properties, messaging, etc. It is also

responsible for satisfying requests of the connected peers. The peer-management function

is closely tied to the system management.

Stream Management: This is the set of algorithms that ensures that the stream continues

to function till the end of video-playback. While the video is essentially broken into

chunks and transmitted via the overlay network, stream management is responsible for

 Network Interface

 Peer Management

 Video Player

Stream Management

System Management

 8

assembling the chunks into a single coherent stream. It ensures that the video is sent to

the player in order, or that buffering occurs while waiting for chunks to arrive.

Video Player: Video Playback of MPEG-4 video is possible through the use of a set of

class libraries.

System Management: This module acts as a bridge between the others. It is responsible

for configuring parameters and beginning the streaming sessions.

 9

2.2 Class Diagram

We explain some of the important classes used to construct the system beginning from

the lowest level of detail.

Chunk: This class wraps a unit of video data within a payload field. Chunks are

transmitted between peers during the session. It also contains a sequence number for the

purpose of organizing the data chronologically, and node-data of the sending node.

Node-Data: Instances of the node-data class are passed in messages between peers during

the streaming session. The object encapsulates the data about the owner-peer such as IP

address, Peer-ID, number of connected nodes and Quality Score. These messages indicate

both the presence and state of the peer, and can be used to detect the departure of peers.

Buffer Map: A buffer map of predefined size BUFFERSIZE is used to store a fixed

amount of sequence numbers of chunks. These are the sequence numbers within a

particular window of time. Buffer maps are periodically exchanged so that peers may

know the chunks available at their neighbor peers.

Message: This is a generic class that can wrap any object e.g.: of class Node-Data,

BufferMap, or Chunk according to the protocol. It can also wrap primitive types and each

type is distinguished by means of a Message-ID field. Messages are exchanged between

peers during the session.

Peer-Manager: This class is responsible for peer management functions such as peer-join

and peer-leave, exchanging status messages and buffermaps. It maintains a list of hash-

tables that store the sequence numbers of chunks of its connected peers. Incoming

buffermaps from these peers are used to create and update the hash-tables. Peer-Manager

also launches a separate multi-threaded TCP server that performs its peer-management

functions.

 10

Quality Score: This class maintains and computes the metrics for any streaming session

which includes the arrival times, jitter, number of out-of-order packets, number of

duplicate packets, peer-uptime, connected nodes at the beginning and end of the session,

etc. The quality score of a peer is a weighted function of metrics. These are written to log

files by separate threads.

Peer: This is the overall class that controls all the peer functions. It contains instances of

the Peer-Manager and Quality Score classes.

A simplified view of the class diagram with some members is shown:

Fig 2. Class Diagram.

PeerManager

Attributes
NodeData myNode
PeerServer PListener
Vector PeerList
Vector PolicyList

Operations
peerJoin()
sendMessage()
returnPolicy()
requestPacket()
addOrUpdatePeer()

Peer

Attributes
PeerManager PM
StreamServer mySS
M4App VideoPlayer
QualityScore QSObj

Operations
patch()
updateMyQueue()
makeMap()
startM4AppSample()
findHighestQS()

M4App (Video Player)

Attributes
PlayerControl m4Playr
M4PlayerController PC
Menu playMenu
PlayerControlPanel CP

Operations
createMenuBar()
open()
close()
stopAction()
playPauseAction()

M4PlayerController

Attributes
int lastPlayed

Operations
run()

QualityScore

Attributes
long jitter
long duplicateChunks
QSTimer myQSTimer
File QSFile

Operations
updateQualityScore()
updateJitter()
run()
waitForMe()
writeLine()

BufferMap

Attributes
long[] BMap

Operations
insertPacket()

NodeData

Attributes
int PeerID

Operations
getPeerID()

 11

2.3 Knowledge Management

Knowledge management refers to the knowledge a peer has about the local network. In

an unstructured network, a peer is unable to make assumptions about the entire network.

However, we can consider the global network to be an aggregate of several local

networks. Thus, every peer has a neighborhood which defines the peers with which it

may carry out transactions. The peers to which a peer is connected may be divided into

two groups, active peers and passive peers. While a peer is aware of both groups, it

chooses to interact with only one group of peers due to the selection criteria like

QualityScore. Peers may however, move between groups during the length of the session.

The information known to the peer includes:

-Node-Data of connected nodes.

-Buffermaps of connected nodes

-QualityScore measurements at connected nodes

Node-Data are periodically transferred between peers to ensure that the peers are still

online. Since the QualityScore measurements are part of the Node-Data, they are also

transferred periodically between peers. Every node has a history queue, in which a fixed

number of chunk sequence numbers are stored. This queue is updated whenever a packet

arrives at the peer. At intervals, the contents of the history queue are used to construct a

buffermap which is sent to the connected peers. Every peer maintains a unique hash-table

for each of the connected peers. When a buffermap from peer ap arrives at peer bp , the

individual sequence numbers from the buffermap are updated in the hash-table for ap

stored at bp . Thus bp has an approximately close view of the state of the buffer at ap ,

and similarly other connected nodes.

Message-passing: Messages, which are serializable objects, are passed between peers

over TCP. Examples of messages include Node-Data request and response, BufferMap

broadcast, Peer-Join request, accept and reject, chunk request and response, Peer-Info

(which provides information about connected peers), Policy-Tokens etc. A Policy-Token

 12

for some node An is stored at Bn and determines how streaming from Bn to An will take

place. The different types of Policy-Tokens include default, even, odd, and none. These

designate all, even-numbered, odd-numbered and no chunks respectively. Policy-Tokens

are normally initialized to default when nodes connect but can be changed by the

requesting node. Consider the following case

Although we construct mesh networks, when using a single source the above situation

(Fig 3.a) frequently arises. Assume there is a part of the network in which the following

condition is satisfied: packets reaching P1 and P5 must be routed through P1. In that case,

a stream containing chunks 1, 2, 3… would be duplicated to both P4 and P5. Assuming

P4 and P5 are connected, this would be a waste of bandwidth. We implement streaming

policies between P1 and P4 and between P1 and P5. Thus, P1 sends odd-numbered

packets to P4 and even-numbered packets to P5 (Fig. 3b.). The video stream is

reconstructed and provides good results (Section 4.4 Fig 1).

 P1

 P4 P5

 P1

 P4 P5

Fig 3a. Without modification Fig 3b. With modification

1, 2, 3 ..
1, 2, 3 ..

1, 2, 3 ..

1, 2, 3 ..

1, 3, 5 .. 2, 4, 6 ..

1, 3, 5 ..

2, 4, 6 ..

 13

2.4 Quality Score and Measurements

One of the criticisms of current approaches to p2p video streaming is that p2p uses much

more traffic to deliver the same asset [1], increasing the delivery costs for the network

owners. Additionally, it has been claimed that there is a lack of Quality of Service and

measurements. Also, most p2p video streaming applications are limited to the upstream

bandwidth of the uploading peer. Using a multi-thread based model, we measure the

performance of the peers during the streaming session, on the basis of which we make

some useful observations characterizing the system.

During a streaming session, one of the most important characteristics is the timely arrival

of chunks in playback order. We define jitter as the variation in the packet arrival times.

A constant arrival rate would lead to no jitter, which is optimal. Jitter could be caused by

network congestion, packet routing changes, or unbalanced loads in the network. We

measure jitter for packet pi as the un-weighted mean of the difference in arrival times of

the previous 10 packets i.e. pi-1, pi-2 … pi-10. If each of these times is represented by Δti,

then jitter J is

∑
=

∆=
10

110
1

i
itJ

Assume a new node joins the network. We need to construct the immediate node

neighborhood from a set of peers. Given the set of peers to choose from, we need to

select those peers with high bandwidth and a low churn rate. We also choose to reward

Peers that have a long uptime, low jitter and have contributed more to the stream.

Contributions can be calculated by s, the total number of chunks sent. Quality Score Q.S.

is

dwJwswrwSQ 4321.. −−+=

 14

Where 1w , 2w , 3w , 4w are weights and r, s, J, dare the running-time, number of

contributed chunks, jitter and number of duplicate packets received respectively. The

weights 1=iw , 5.0432 === www chosen were maintained constant for all sessions.

The Quality Score factor can be used while selecting the node peers as well as while

choosing peers to actively trade chunks with. The BitTorrent protocol uses a tit-for-tat

strategy, which ensures clients send chunks of data back to those clients who contributed

to them. However, strict policies like these can result in suboptimal situations, such as

when new peers join, which have not yet contributed to the system. Thus, we consider the

total number of contributed packets to the network, and not to any single peer.

 15

2.5 An Overview of Threads

The system can also be conceptualized as a set of interacting threads of execution. The

Java platform is designed to support concurrent programming, and the Java programming

language provides basic concurrency support. With the increasing use of multi-core

hardware and support for multi-threading in software, we can use concurrency to better

utilize computing hardware resources. Since the Java Virtual machine runs as a single

process, we can use multiple threads even on single-core systems. The following threads

were designed to execute in parallel at any peer node:

1. Playback Thread: This thread is the back-end interface between the media stream and

the media player. The playback thread is launched when the video is opened, and

monitors the available video stream; if the stream is available it is played, else buffering

time is computed. This thread can directly access the media player interface and requires

no manual control once playback has begun.

2. Quality Score Thread: This thread maintains data about events such as packet arrivals,

duplicate chunks, etc. and writes information to log files. It executes concurrently with

other threads and updates statistics like Quality Score. It has an associated QSTimer

thread class that provides timing information that can be written and read or re-read from

log files, i.e. data is saved between different executions of the program. This models real-

world streaming more accurately since churn occurs; peers arrive and depart from the

same session while in progress.

3. Stream Server and Stream Server Thread: This is a threaded TCP server that accepts

incoming chunks and processes them. For each incoming chunk, a new thread (Stream

Server Thread) is launched that processes the chunk. Thus, multiple threads can be

independently launched to handle several chunks at a time. Since this is peer-to-peer

computing, this component performs functions of both client and server for other peers.

 16

4. Pull and Check tasks: These are background tasks set up to automate the process of

either pulling or checking for missing chunks, respectively.

5. Peer Server and Peer Server Thread: These threads are owned by the Peer Manager.

They are analogous to the Stream server and Stream Server Threads, but used for the

message-passing and knowledge-management functions.

 17

3. Algorithms

3.1 Peer Management

For the experiment, we designate a single peer, called as video-server, as having both the

seed video as well as being a bootstrap node. The video-server has almost equal

capabilities as other peers but for its ability to begin network construction.

Peer management deals with the algorithms for peer-join and peer-leave.

A peer connects first to the video-server (Peer-ID = 0) and then to other peers. Joining the

network is done in two phases:

Phase1: A new peer p connects to the video-server (well-known IP) with a peer-join

message request. Every peer initially has a priority field (tunable parameter, initially

priority = 1) that indicates the number of iterations of requests (a single iteration of

requests is defined as all the peers to which it attempts to connect to with the same

priority-value.

The video-server (VS) has minimum and maximum limits on the number of peers it can

accept; if the request from p is within these limits it may be accepted. If it is less than this

limit it may be accepted or rejected with equal probability. A peer-accept or peer-reject

message is sent to p and if-accepted, VS adds p to its peer-list and p adds VS to its peer-

list. VS sends a list of peers LP to p which is a subset of the peers at VS.

Phase 2: The value of priority is incremented. While priority is less than some value MaxP

(MaxP >4), p attempts to connect to nodes in the list LP . As in Phase 1, the request may be

accepted or rejected with equal probability from each of the nodes. For every iteration of

peer-requests, the priority value is incremented. In order to prevent every request of p

from being rejected, we stipulate that no node may reject a priority = 4 request. This

continues until p has sufficient number of neighbors.

 18

Video Streaming Algorithm/ Modes of streaming:

There are various approaches to distribute the streaming media. These can range from

pushing, to pulling, to a combination of pushing and pulling. In pushing, the seed peers

actively disperse the video through the network. In pulling, the seed peer passively

responds to requests for chunks from peers on the network. In the hybrid approach, we

explain our results and observations when we permit both pushing and pulling in the

streaming session. In this project, we aim to measure the performance of push-based

streaming, pull-based streaming and a combination of the two.

3.2 Push-based streaming:

At peer-join time, peers establish some policy by which packets will be pushed to them

from each incoming connection. This may be odd, even, default, or none. In the figure

(fig 4a.) below, Peer 1P has three incoming edges where odd-numbered, even-numbered

and odd-numbered chunks arrive respectively. It also has outgoing edges where all, even-

numbered, odd-numbered, even-numbered and all chunks are sent. Those policies

correspond to the nodes to which the packets are incoming.

In this mode, the video server pushes content to each of the nodes successively. The

algorithm may be stated as follows:

VS

P1

P2

P4 P5 P6

P3
 P1

0 E 0

D E E 0 D

Fig 4a. Streaming Policies Fig 4b. Example network

 19

Pushing algorithm at the video-server

In our approach, the video-server (VS) described has essentially the same functionality as

the peers; however, it is also a bootstrap node and contains the seed data (video).

1: Given a video-file at the seed peer (VS) split that file into a series of distinct chunks

...,, 321 ccc

2: Set 0=i

3: For every chunk ic do

4: Set 0=j

5: For every peer jp in the peer-list LPof VS, do

6: Extract the streaming-policy P(jp) from the policy-list LPol at VS

7: if P = odd and i%2 = 1 then

8: Transmit ic to jp

9: else-if P = even and i%2 = 0 then

10: Transmit ic to jp

11: else-if P = default

12: Transmit ic to jp

13: end if

14: end for

15: end for

At the peer, the following sequence of execution takes place

1: For every received chunk ic do

2: Set 0=j

3: For every peer jp in the peer-list LPof the peer, do

4: Extract the streaming-policy P(jp) from the policy-list LPol at the peer

5: if P = odd and i%2 = 1 then

 20

6: Transmit ic to jp

7: else-if P = even and i%2 = 0 then

8: Transmit ic to jp

9: else-if P = default

10: Transmit ic to jp

11: end if

12: end for

13: end for

A parallel sequence of execution at the video-server VS (not shown) handles incoming

requests for packets from peers and fulfils them in serial order. In the push-based

approach, a similar algorithm as explained above executes at the peers. While peers do

not generate chunks, they forward incoming chunks to all other outgoing nodes

depending on the streaming policy. In addition, a separate thread of execution

periodically checks that the chunks are incoming continuously, else it begins to request

chunks (e.g. to prevent excess buffering time due to missing chunks). Thus, the behavior

of push in the case of retransmissions approximates pull. This happens as follows:

Algorithm to patch the video stream and request retransmission

To playback video, it is necessary to patch the individual chunks into a stream which can

then be played back by the player. Given a set of chunks with sequence numbers, the

player considers lastPatched as the sequence number of the chunk that can be played last

(i.e. chunks with sequence numbers from 0 to lastPatched have been received. In

contrast, lastReceived is the highest sequence numbered chunk received.

(lastPatched<=lastReceived)

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been

reconstructed)

 21

2: Let lastReceived be the sequence number of the last received unique chunk with

highest sequence number

3: When the first chunk 0c arrives, invoke the following sequence of execution

4: For every unit of time ,t∆ do:

5: if lastPatched < lastReceived

6: Determine the missing chunk

7: if there exists a peer in the Peer-List LPwhich owns that chunk (based on the data

contained in hash-tables) then

8: Request that chunk from that peer

9: else

10: Determine the peer with highest Quality-Score and request from that peer

11: end if

12: end if

13: end for

14: For every received chunk c with sequence number s, do:

15: if s > lastReceived, then

16: lastReceived = s

17: end if

18: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with

sequence number S are present, where lastPatched < S < s

19: if patched, then

20: lastPatched = s

21: end if

22: end for

 22

3.3 Pull-based streaming

The pull algorithm takes place with the video-server in a passive role. Peers connect at

will and establish a mesh following peer-join. The algorithm for pull resembles the one

for retransmission during push.

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been

reconstructed)

2: Let lastReceived be the sequence number of the last received unique chunk with

highest sequence number

3: For every unit of time 1t∆ do:

4: Find the next chunk sequence number = lastPatched+1

5: if there exists a peer in the Peer-List LPwhich owns that chunk (based on the data

contained in hash-tables) then

6: Request that chunk from that peer

7: else

8: Determine the peer with highest Quality-Score and request from that peer

9: end if

10: End for

11: For every received chunk with sequence number s, do:

12: if s > lastReceived, then

13: lastReceived = s

14: end if

15: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with

sequence number S are present, where lastPatched < S < s

16: if patched, then

17: lastPatched = s

18: end if

19: end for

 23

The following diagram is useful in understanding the patching of the stream. If we

initially have chunks 5 and 6 missing in a sequence from 1 to 10, then we need to wait till

chunks 5 and 6 are available before we can patch the stream till the end. Once chunk 6

arrives, it automatically patches the rest to have a complete stream from 1 to 10.

1

2

3

4

7

8

9

10

Fig 5a. Stream with chunks, 5, 6 missing. lastPatched = 4. lastReceived = 10

1

2

3

4

7

8

9

10

Fig 5b. Chunk 5 arrives. lastPatched = 5. lastReceived = 10

1

2

3

4

7

8

9

10

Fig 5c. Chunk 6 arrives. lastPatched = 10. lastReceived = 10

5

5

6

 24

3.4 A Hybrid Approach

From our observations on push and pull strategies, we inferred that pushing may have

performed worse for reasons like the large number of duplicate chunks or bandwidth

wastage. Nodes having a larger round-trip time from the Video Server could also slow

down the streaming for those with a shorter round-trip time. Also, the overall push

strategy was not very efficient. We aim to determine if it is possible that a hybrid strategy

between pushing and pulling will give results better than those of pull.

In this approach, there will be essentially two flows of media into peers:

1: The stream of chunks that is pushed by the video-server

2: The stream of chunks that is pulled by the individual peers from other peers or the

video-server.

Our strategy in the hybrid approach is manifold:

1. To ensure that the bandwidth is utilized effectively, which implies zero or minimal

overlap of chunks between streams in 1 and 2 above.

2. To reduce the overhead of pushing at the seed peer, this implies transmitting to some

and not all peers, for some and not all chunks.

3. To limit the number of peers connected to any node; this would make our design more

scalable.

As we observed the push approach to be slower than pull, at any time we aim to always

push those chunks which have a sequence number greater than the highest sequence-

numbered chunk pulled so far.

This approach has the following changes from the above two:

-To impose a hard-limit on the number of peers that can connect to a single peer

-To pull from multiple peers simultaneously and to pull multiple chunks at a time

-To push to some and not all peers. At the video-server, this is set in limit, which is the

limit of the number of peers we may push a given chunk to. We push chunks 0 to 10 to

 25

all peers, 11 to 100 to half of the peers, 101 to 1000 to one-third the number of peers, and

so on. We do this in order to reduce the repetitive process of pushing.

-We also alternate pushing between sets of sequence numbers, e.g. we push 0, 20 to 30,

40 to 50, 60 to 70 etc.

Below we explain our algorithm. Let i denote the chunk sequence number. At the video-

server:

1: Given a video-file at the seed peer (VS) split that file into a series of distinct chunks

...,, 321 ccc

2: Set 0=i

3: for every chunk ic do

4: if icdoes not lie in a transmission interval (e.g. 10-20, 30-40, 40-50, etc) then

5: Set I = i+1 and skip transmission

6: endif

7: if (100 ≤≤ i) then

8: Set limit = size(Peer-List)

9: else if (10011 ≤≤ i) then

10: Set limit = 0.5 * size(Peer-List)

11: else if (1000101 ≤≤ i) then

12: Set limit = 0.33 * size(Peer-List)

13: end-if

14: Set 0=j

15: for every peer jp in the subset (0, limit-1) of the peer-list LPof VS, do

16: if ic has already been pulled then

17: Set i = i+1 and skip transmission

18: else Extract the streaming-policy P(jp) from the policy-list LPol at VS

19: if P = odd and i%2 = 1 then

20: Transmit ic to jp

21: else-if P = even and i%2 = 0 then

 26

22: Transmit ic to jp

23: else-if P = default

24: Transmit ic to jp

25: end if

26: end if

27: end for

28: end for

At the peer, we implement an extension of pull where we pull several chunks in each

interval of time, as long as we do not already have them. The algorithm is as follows:

1: Set lastPatched = -1 (the sequence number up till which the video-stream has been

reconstructed). Let lastReceived be the sequence number of the last received unique

chunk with highest sequence number

2: For every unit of time 1t∆ do:

3: Find the next missing chunk sequence number = lastPatched+1

4: For each value of i in)51(+≤≤+ dlastPatcheidlastPatche

5: if there exists a peer in the Peer-List LPwhich owns that missing chunk (based on

the data contained in hash-tables) then

6: Request that missing chunk from that peer

7: else

8: Determine the peer with highest Quality-Score and request from that peer

9: end if

10: End for

11: End for

12: For every received chunk c with sequence number s, do:

13: if s > lastReceived, then

14: lastReceived = s

15: end if

 27

16: Attempt to reconstruct (patch) the video stream if and only if the all the chunks with

sequence number S are present, where lastPatched < S < s

17: if patched, then

18: lastPatched = s

19: end if

20: end for

 28

4. Performance Evaluation

The system was built with a GUI which could be used to begin the video playback.

Buffering time depends entirely on the availability of chunks to be played. We used a

sample video with a 544 x 304 resolution, with 119 kbps MPEG1 Layer3 audio and 1162

kbit/s MPEG4 video streams, providing for a total data rate of about 1280 kbit/s. The

selected chunk-size was 100,000 bytes, which for one chunk approximates to about

(100,000*8)/1280,000 = 0.625 sec of playback. We deployed the system on PlanetLab,

an open platform for developing, deploying and accessing services over the Internet. The

software was run on 20 machines over the Internet repeatedly. We present our results

below.

 29

4.1 Pull Approach

1. Results for the pull algorithm, with number of chunks vs. time in msec. Each of the

nodes is labeled on the right. We note the slower performance of two of the nodes, while

the rest complete streaming between 220 sec and 600 sec. Most of the nodes complete

downloading the file before 300 seconds. The playback duration (not shown) is 225 sec.

Pull 20

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1 23 45 67 89 111 133 155 177 199 221 243 265 287 309 331

Packet

Ti
m

e
M

se
c

Cornell1
Cornell2
Hiit1
Hiit2
Msu
Nd
Orst
Polito
Purdue
Stevens
Uchicago
Uiuc1
Uiuc2
Umass1
Umass2
Unc

2. For the case of 20 peers, we observe the streaming for the first 50 chunks as in the

figure below, for all peers.

Pull 20 - 50 chunks

0

100000

200000

300000

400000

500000

600000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Packets

Ti
m

e
M

se
c

Cornell1
Cornell2
Hiit1
Hiit2
Msu
Nd
Orst
Polito
Purdue
Stevens
Uchicago
Uiuc1
Uiuc2
Umass1
Umass2
Unc

 30

3. Results for the pull algorithm for 10 peers. From top to bottom, the jagged line is the

playback; the lines below indicate the streaming performance of the peers. The slowest

peer completes at 170 sec. Looking at the difference in slope between the playback line

and the peer-streaming lines, we conclude that buffering would not be required in this

case.

Ten Peers - Pull

0

50000

100000

150000

200000

250000

300000

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

Chunks

Ti
m

e
M

se
c

Cornell1
Cornell2
Purdue
Uchicago
Umass1
Umass2
Unc
Wayne
Wisc
Playback

4. The first 50 chunks are blown up for the same algorithm.

Ten Peers -pull

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Chunks

Ti
m

e
M

se
c

Cornell1
Cornell2
Purdue
Uchicago
Umass1
Umass2
Unc
Wayne
Wisc
Playback

 31

4.2 Push Approach

1. The Push Algorithm, for 20 peers, with Time vs. packets. From top to bottom, the first

line represents een.orst.edu, which does not complete. We then have a set of lines

representing all peers, which complete all at the same time (670 sec) approximately. The

lowest line indicates the linear playback rate, which would have to be shifted up on the

Y-axis to compensate for the delay (buffering).

Push-20

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324

Packets

M
se

c

Cornell1
Cornell2
Hiit1
Hiit2
Msu
Nd
Orst
Polito
Purdue
Stevens
Uchicago
Uiuc1
Uiuc2
Umass1
Umass2
Unc
Uoregon
Wayne

2. The streaming for the first 50 chunks is expanded below. The lowest (straight) line is

the playback.

Push 20- First 50 chunks

0

20000

40000

60000

80000

100000

120000

140000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Packets

Ti
m

e
M

se
c

Cornell1
Cornell2
Hiit1
Hiit2
Msu
Nd
Orst
Polito
Purdue
Stevens
Uchicago
Uiuc1
Uiuc2
Umass1
Umass2

 32

3. Results for the push algorithm for 10 peers. The first set of lines indicates all nodes

download times. The lower line is the playback.

Push-Ten Peers

0

50000

100000

150000

200000

250000

300000

350000

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

Chunks

Ti
m

e
M

se
c

Cornell1
Cornell2
Purdue
Uchicago
Umass1
Umass2
Unc
Wayne
Wisc
Playback

4. Only the first 10 chunks are shown, for the same algorithm.

Push-Ten Peers-Ten Chunks

0
1000
2000
3000
4000
5000
6000
7000
8000

1 2 3 4 5 6 7 8 9

Chunks

Ti
m

e
M

se
c

Cornell1
Cornell2
Purdue
Uchicago
Umass1
Umass2
Unc
Wayne
Wisc
Playback

 33

5. The same graph, with a buffering time now added (top black line).

Push Ten Peers With Buffering

0

50000

100000

150000

200000

250000

300000

350000

1 28 55 82 109 136 163 190 217 244 271 298 325

Chunks

Ti
m

e
M

se
c

Playback with Buffering of
31544
Cornell1

Cornell2

Purdue

Uchicago

Umass1

Umass2

Unc

Wayne

Wisc

 34

4.3 Hybrid Approach

1. The results of the hybrid approach, for 20 peers, with Time vs. packets. The lowest line

indicates the linear playback rate, which implies all peers would require buffering to view

the video. We note that the number of chunks arriving out of order is large, and the jitter,

or the difference in inter-arrival times, varies a lot. This is indicated by the jagged lines as

compared to the smoother lines in the other approaches.

Hybrid - Twenty Peers

0
100000
200000
300000
400000
500000
600000
700000
800000

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

Chunks

Ti
m

e
M

se
c

Cornell1
Cornell2
Hiit1
Hiit2
Msu
Nd
Purdue
Stevens
Uchicago
Uiuc1
Uiuc2
Umass1
Umass2
Unc
Uoregon

2. We observe interesting results for the case of five peers (below). The network has been

graphed to display the connected nodes. In the figure, v.s. is the source node.

 vs

 P2

 P3

 P4

 P1

Fig 6. Network graph for 5 peers

 35

3. For 5 peers, the streaming finishes much earlier than the playback time, which implies

no buffering and a fast stream. The jitter is also less as compared to the case of 20 peers.

Hybrid Approach - Five Peers

0

50000

100000

150000

200000

250000

300000

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316

Chunks

Ti
m

e
M

se
c

Umass1
Wisc
Uchicago
Wayne
Playback

 36

4.4 Other

1. The average streaming rates (average number of chunks, both incoming and outgoing)

for peers on PlanetLab in a streaming session. The modified algorithms (through the use

of Policy tokens for streaming) indicate a more efficient streaming. The hybrid approach

also shows a far lower number of packets transmitted on average.

Peers Average Streaming Rates

Push

Pull

Push modified

Pull modified
Hybrid

0
200
400
600
800

1000
1200
1400
1600
1800

Configuration

Av
er

ag
e

Ch
un

ks
 fo

r A
ll

pe
er

s

Push
Pull
Push modified
Pull modified
Hybrid

2. We plot the number of chunks sent/received with number of peers to see the effect of

increasing the number of peers. The average number of chunks sent/received in each push

or pull configuration, first with 5 peers, then 10, then 20 is shown. The pull algorithm

was more efficient in terms of number of packets sent and received.

Average Streaming Rate vs Peers

5 - push

5 - pull

10 - push

10 - Pull

20 - Push

20 - Pull Hybrid

0
500

1000
1500
2000
2500
3000
3500
4000

1Peers configuration

Av
er

ag
e

Pa
ck

et
s

se
nt

/re
ce

iv
ed

5 - push
5 - pull
10 - push
10 - Pull
20 - Push
20 - Pull
Hybrid

 37

3. Jitter across nodes during a streaming session appears to be relatively constant for push

and largely variable for pull.

Comparison of Jitter

0
500

1000
1500
2000

2500
3000

Corne
ll1

Corne
ll2

Hiit1 Hiit2 Msu Nd
Poli

to

Purd
ue

Steve
ns

Uch
ica

go
Uiuc1

Uiuc2

Umas
s1

Umas
s2 Unc

Uoreg
on

Wayn
e

Wisc

Nodes

Ji
tte

r a
t c

om
pl

et
io

n

Push
Pull

4. A sample peer’s values of jitter were taken below for each configuration. We observe

that in general, there are higher values of jitter for push, and lower values for pull and the

hybrid approach. Also, as the number of peers increase, we find that total jitter also

increases.

Jitter across configurations

0
500

1000
1500
2000
2500
3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Readings

Ti
m

e
M

se
c

20push

20pull

10pull

10push

5pull

5push

5hybrid

10hybrid

20hybrid

 38

5. The node neighbors were randomly generated. Sample number of connected nodes for

a streaming session (each pair of values on x-axis represents a different machine).

Connected nodes

0
2
4
6
8

10
12
14
16
18

Corn
ell

1

Corn
ell

2
Hiit1 Hiit2 Msu Nd

Poli
to

Purd
ue

Stev
en

s

Uch
ica

go
Uiuc

1
Uiuc

2

Umas
s1

Umas
s2 Unc

Uore
go

n

Way
ne

Wisc

Peer

N
um

be
r o

f C
on

ne
ct

ed

no
de

s

Push
Pull

6. The sample throughput at a single peer is shown below for the different tests. We find

that the throughput increases as the number of peers decrease, and that it is largest in the

case of hybrid approach (push and pull) for five peers. On average, pull had higher

throughput than push.

Sample Peer Throughput

0

500

1000

1500

2000

2500

3000

3500

PUSH PULL HYBRID

Configuration

Th
ro

ug
hp

ut
 k

bi
t/s

20
10
5

 39

Conclusions

We observe that in general, pulling appears to be more effective than pushing. In an

unstructured peer-to-peer network, it is difficult for a peer to predict whether neighboring

peers require a newly-received chunk. This increases the number of duplicate

transmissions during a session. To mitigate that, we introduce the concept of streaming

policies, and find that average number of transmissions is reduced. However, an

advantage in unstructured networks is non-reliance on key nodes; any node may fail

gracefully without affecting the remaining nodes. In terms of throughput, we find that

pull again performs better on average. However, the throughput decreases as the number

of peers increase. In the hybrid approach, we aimed to improve the efficiency of the pull

algorithm by pushing selectively; while this was successful for five peers, it was not as

successful for larger number of peers.

 40

References

[1] Content Delivery Network, http://en.wikipedia.org/wiki/Content_Delivery_Network

[2] F. Pianese. “PULSE. An Adaptive, Practical Live Streaming System”, Oct 2007

[3] F. Pianese, J. Keller, and E. W. Biersack. “PULSE, a Flexible P2P Live Streaming

System”.

[4] F. Pianese, D. Perino, J. Keller, and E.W. Biersack. “PULSE: An Adaptive, Incentive-

Based, Unstructured P2P Live Streaming System”, IEEE Transactions on Multimedia,

Vol 9., No. 8, December 2007.

[5]. IBM Toolkit for MPEG-4, http://www.alphaworks.ibm.com/tech/tk4mpeg4

[6]. Peer-to-Peer, http://en.wikipedia.org/wiki/Peer-to-peer.

[7] T. Nguyen, K. Kolazhi, R. Kamath, S. Cheung. “Efficient Video Dissemination in

Structured Hybrid P2P Networks”, IEEE International Conference of Multimedia and

Exp., 2006.

	1. Introduction
	2. Design
	2.1 General Architecture
	2.2 Class Diagram
	2.3 Knowledge Management
	2.4 Quality Score and Measurements
	2.5 An Overview of Threads

	3. Algorithms
	3.1 Peer Management
	3.2 Push-based streaming:
	3.3 Pull-based streaming
	3.4 A Hybrid Approach

	4. Performance Evaluation
	4.1 Pull Approach
	4.3 Hybrid Approach

