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The problem of supporting more advanced selective undo operations has received a lot

of attention. However, selective undo is generally missing in commonly used editors.

Moreover, partial selective undo, the ability of undoing just part of some edit so that other

edits may be undone, is not supported at all. We observe that a fundamental obstacle is

the lack of a more flexible and compositional edit model. This project addresses this issue

and proposes the choice edit model, which is based on the representation provided by the

choice calculus. The central idea is to represent an edit through a choice that contains

the old and the new code as alternatives. Edits inherit properties from choices and can

thus be composed, nested, and transformed so that dependent edits may be untangled and

undone partially. The choice representation is an internal representation, not meant to

be exposed to programmers directly. To communicate the structure and dependencies of

edits we introduce program edit graphs as an alternative, more abstract representation.



Program edit graphs explicitly represent program variants and their relations. We also

discuss the scalability of PEGs.
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Chapter 1: Introduction

In this project description, I present my work on a choice-based edit model that supports

flexible program edit, undo, and redo operations. In particular, it can untangle dependent

edits to support partial selective undo, an operation that hasn’t been supported by previous

editors despite numerous efforts of improving them.

This chapter motivates the needs for a better support of program editing, discusses

previous work, and outlines the structure of the rest of this project report.

1.1 Flexible undo operations and challenges

Editing program source code and related artifacts is an integral task of software develop-

ment. However, editing support is still primitive, even with modern editors. Most editors

build upon on the linear edit model, which orders all editing operations based on the time

points they occurred. While this model is amenable to a simple implementation, it limits

editing operations that users may perform. Specifically, this ordering limits the flexibility

of undo and redo operations. Earlier operations can be undone only after later operations

have been undone. A similar restriction applies for redo operations.

However, it’s quite common that we want to keep later edits but undo previous edits.

This kind of operations is known as selective undo. A concrete example and a detailed

description of selective undo are given in Section 2.2. According to a recent study
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performed by Yoon and Myers [2014], about 9.5% of all programmer backtracking is

selective undo. Selective undo is an active software engineering research topic [Cass and

Fernandes, 2007; Myers and Kosbie, 1996; Shao et al., 2010; Yoon and Myers, 2012;

Yoon et al., 2013].

In search for smart merging strategies, many version control systems (VCSs) maintain

non-linear editing histories, which enable them to support selective undo to some degree.

Examples are Git1, Mercurial2, and Darcs3. However, it’s hard to rely on VCSs to provide

selective undo for two reasons. First, it’s very cumbersome to use VCS to track each

editing operation. Second, selective undo fails in many cases in VCSs. To illustrate,

consider a very simple example. Assume we have a file that contains two lines: a in

the first line and b in the second. Now we have two changes and correspondingly two

commits. The first change modifies a to c and is named commit A. The second change

modifies b to d and is named commit B. Since A and B change different places of the file,

we would expect to be able to undo A without affecting B. However, undoing A will lead

to a conflict in both Git and Mercurial, and manual interventions are needed to resolve

the conflict. In this situation, Darcs is able to undo the edit A without affecting B.

While supporting selective undo can be challenging, daily editing calls for even more

flexible operations, such as the partial selective undo, which is explained in Section 2.3.

Supporting selective undo and partial selective undo requires an edit model that possesses

two properties. First, it must represent program edits in a succinct and compositional

way so that different edits can be easily put together and certain edits can be singled

1http://git-scm.com
2http://mercurial.selenic.com
3http://darcs.net/

http://git-scm.com
http://mercurial.selenic.com
http://darcs.net/
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out for undoing or redoing without affecting other edits. Second, it must be possible to

discover relations between edits based on the representation so that entangled edits may

be unchained and undone. Besides these properties, the relations between edits and the

result of applying edits should be exposed to the user in a simple way so that the benefits

of the flexible model can be reaped by the user.

This project report proposes a choice edit model that exhibits both properties and

program edit graphs that show the relations between applying program edits and the

resulting programs in a systematic way. The choice edit model employs choices to

represent program edits. Specifically, if a program part p is changed to q, then a choice

between p and q is created. Each choice has two alternatives, denoting the “old” program

and “new” program, respectively. When multiple places are changed, multiple choices

are created. The choice calculus [Erwig and Walkingshaw, 2011] provides a set of rules

for transforming choice expressions, which can be used directly to manipulate program

edits. Though simple, choice expressions maintain enough structural information so that

the relations among edits can be extracted and reasoned about.

1.2 Project report outline

This section gives an overview of the rest of this project report and presents main

contributions. This project report is mostly based on the draft paper [Erwig et al., 2015]

and extends it with a full description of an empirical study about grouping low-level edits

to high-level edits.
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Chapter 2 (Background) presents the basis for understanding this report. It gives a

detailed account of the linear edit model, selective undo, and partial selective

undo through several examples. It also introduces the choice-based variation

representation.

Chapter 3 (Choice Edit Model) discusses how choices are introduced as programs are

changed and how choice expressions are interpreted as program edits. A very im-

portant observation there is that editing programs corresponds to creating program

families, which are programs encoding a set of related programs. This chapter also

shows two important kinds of relations among program edits, contingent edits and

divergent edits, and a set of rules for discovering them.

Chapter 4 (Program Edit Graphs) presents a graphical representation that shows the rela-

tions between program families, applying edits, and the resulting programs without

exposing choice expressions, the underlying representations of the edit model, to

the user. This chapter also presents an algorithm for constructing such graphs

and discusses the implications of the density of graphs. This chapter also briefly

presents a method to deal with the scalability problem of program edit graphs.

Chapter 5 (Scalability) investigates the scalability problem empirically. Through an

empirical study of the Python source code, this chapter concludes that edits in over

85% of files can be grouped into fewer than 4 high-level edits. This demonstrates

that program edit graphs can work well in many cases.

Chapter 6 (Conclusion) summarizes this project report and presents several directions

for future work.



5

1.3 Previous work

The desire for formalizing undo operations and supporting more flexible undo operations

has a long history. [Leeman, 1986] gave a formalization of linear undo, which means that

earlier operations can’t be undone without undoing later ones. The insight of that work

was that undo can be added to not only program edits, but also any form of computations

through a generic form and using a set of only four primitives. A common definition

of selective undo was given in [Berlage, 1994], which also presented an approach to

selective undo for graphical user interfaces.

Although not termed selective undo, some form of selective undo was introduced by

[Archer et al., 1984], who also included an implementation named COPE. However, the

model doesn’t deal with editing directly but was about transformation of states of other

objects, for example, the cursors in editors. The model consists of two kinds of commands:

normal commands for manipulating the transformation of objects and metacommands for

controlling the executions of normal command sequences, which were called scripts. The

selective undo facility was supported through the use of metacommands undo, modify

and redo.

undo back to ci then modify commands . . . in R and then redo through c j.

where ci is a command and R is a sequence of commands. The form of supported selective

undo in COPE was limited since it didn’t track dependencies between commands and

requires direct interaction between the user and the script being executed. This system

was improved in [Vitter, 1984] by adding a mechanism for handling skip commands and

in [Yang, 1988] by adding a mechanism for rotating a sequence of commands. Each
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addition made the original system more powerful, but also incurred more burdens for

users since they have to step through commands or explicitly control the executions of

commands.

Besides the script-based undo model [Archer et al., 1984] and its derivatives [Vitter,

1984; Yang, 1988], many other models for supporting selective undo have been devel-

oped [Zhou and Imamiya, 1997; Myers and Kosbie, 1996; Edwards et al., 2000; Cass and

Fernandes, 2007]. The nonlinear undo model [Zhou and Imamiya, 1997] distinguished

itself by introducing the notion of local objects so that selective undo can be applied to

specific objects while previous models only had global objects. A particular challenge

was partitioning global objects, which may contain circular dependencies, into subdirec-

tories to hold local objects. The focus of [Cass and Fernandes, 2007] was to correctly

handle dependencies among different user actions and ensure the correct ordering of

undoing dependent edits. This model was called cascading selective undo. The model

distinguishes between parent actions and child tasks and classifies the relations of child

tasks to different categories to capture their dependencies.

A large body of work on selective undo for collaborative systems has been done

based on the idea of operational transformation [Prakash and Knister, 1994; Ressel and

Gunzenhäuser, 1999; Sun, 2002; Weiss et al., 2009; Sun and Sun, 2009; Shao et al., 2010].

Selective undo is critical for collaborative systems, where multiple people may work

on the same document and it’s unrealistic to undo later edits that may be performed by

other people to undo an earlier edit. A particular challenge in collaborative editing is that

locations relevant to local editors become invalid when edits are put together and applied

to the global document. A common solution to this problem is operational transformation,
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which adjusts the local locations when edits are combined. To undo the given operation

o within the edit history H, [Prakash and Knister, 1994] first transposes o to the end of H

by commutating adjacent operations. Note that o will be changed during the transposing

process, in particular, the location information needs to be adjusted. When o is transposed

to the end of H, it can be undone as usual. The transposing process fails if two operations

fail to transpose due to conflicts. [Ressel and Gunzenhäuser, 1999] performs undo in

a similar manner but is restricted to local operations only. The improvement is that it

achieves convergence of undo operations under certain conditions. Other work in this

context mainly focused on showing the properties of undo operations and improving the

complexity of undo.

Supporting selective undo in text editors brings up many tricky user interface is-

sues [Yoon and Myers]. The first question results from regional conflicts among edit

operations. This can happen when multiple operations are involved in overlapping loca-

tions. Another issue is how users specify what to selectively undo since it is difficult to

name editing operations and showing snapshots is not helpful either. Azurite [Yoon and

Myers, 2011, 2012; Yoon et al., 2013; Yoon and Myers], an Eclipse plugin, addresses

these problems by remembering conflicting regions, visualizing the fine-grained editing

history through a timeline, allowing users to move back and forward on the timeline, and

accepting changes at any time point. Azurite, however, is still based on the linear history

model. The main difference between Azurite and the work here is that Azurite focuses

on providing a better user interface and is less concerned with the underlying edit model,

which is the focus of this work. Thus our work can complement their work.
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In this work we are also interested in knowing how many low-level (primitive) edits

may be classified into one high-level (conceptual) edit and how many conceptual edits

typically appear between two versions of a file. A more detailed definition of primitive

and conceptual edits is given in Section 5.1. Many efforts have been made to identify

high-level changes from low-level edits [Demeyer et al., 2000; Ying et al., 2004; Dagit

and Sottile, 2013; Negara et al., 2014; Kim and Notkin, 2009; Nguyen et al., 2010; Kim

et al., 2013]. In many cases, low-level changes are intended to form refactorings, fix

bugs, add new features, and so on. Most of these approaches [Demeyer et al., 2000;

Ying et al., 2004; Negara et al., 2012b] identify refactorings from low-level edits, such as

variable renaming, value extractions, and method renaming. LSdiff [Kim and Notkin,

2009; Nguyen et al., 2010; Kim et al., 2013] works differently in that no predefined rules

of grouping changes are specified. Instead, high-level changes together with rules for

grouping them are deduced from low-level changes. Most of these approaches are based

on mining change histories. Although the completeness and precision of this method are

challenged in [Negara et al., 2012b], it remains mainstream for understanding software

changes.
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Chapter 2: Background

This chapter presents examples and principles that will be used throughout this report. In

Section 2.1, I introduce three editing scenarios. In Section 2.2, I present the linear edit

model, which doesn’t support selective undo and redo. In Section 2.3, I describe entangled

edits and partial selective undo. In Section 2.4, I introduce the choice calculus [Erwig and

Walkingshaw, 2011], which is a language for representing variations and which forms

the basis for the choice edit model.

2.1 Three editing scenarios

I will introduce three editing scenarios that will be used frequently in this project report.

The first scenario involves independent edits. Figure 2.1 shows this editing process and

the related programs. This scenario starts with the function Pab. Now we rename the

parameter a to c, which yields Pcb. We call the change from Pab to Pcb edit A. Next we

change the local variable b to d. We obtain the program Pcd and refer to this change as

edit D.

The second scenario, as shown in Figure 2.2, is a slightly modified version of the

first scenario. After the edit A, we change the local variable b to c, which causes a name

conflict between the function parameter and the local variable. To avoid this problem



10

int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int c){int d; return c+d;} Pcd

edit D

Figure 2.1: Scenario 1: independent changes.

int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int d){int c; return d+c;} Pdc

edit B

Figure 2.2: Scenario 2: entangled changes.

we have to rename the parameter c to d. We refer to this change as edit B and call the

resulting program Pdc.

The third scenario including three edits is also based on the first scenario. After the

edit A, we revert it and modify a to x at the same time. We view the whole action as edit

B′ and name the resulting variant Pxb. In the following edit C, we delete the local variable

b and use the constant 5 to substitute the now dangling reference b. With that, we obtain

the program Px5. We show this editing process in Figure 2.3.

2.2 The linear edit model and selective undo and redo

The linear edit model (LEM) is usually implemented through a use of stacks. Since stack

operations involve the top elements only, the LEM allows us to undo the most recent edit
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int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int x){int b; return x+b;} Pxb

edit B′

edit C

int f(int x){ return x+5;} Px5

Figure 2.3: Scenario 3: three edits.

only. Figure 2.4 illustrates the result of undoing edits in scenario 1. We observe that we

can successfully undo D, the most recent edit made. However, undoing A after edit D is

blocked because A is not the most recent edit.

Arguably, it’s too restrictive to block the attempt of undoing A solely because the

edit D hasn’t been undone. We observe the edit A of renaming the parameter is indeed

independent of the edit D of renaming the local variable. If two edits do not overlap, they

are independent of each other, and either one can be undone. We call such kind of undo

selective undo. The idea of selective undo lifts the restriction of temporal ordering of

edits. Figure 2.5 depicts undoing edits in selective undo for the scenario 1. We observe

that undoing either edit first is allowed. Moreover, different undoing orderings lead to

the same resulting program.

Next we will discuss the selective redo. Based on scenario 3, now assume we want to

return to the state of applying the A edit but keeping the C edit. What we can do is undo

the B′ edit and redo the A edit. Although edit C occurs after both the edits A and B′, we
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int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int c){int d; return c+d;} Pcd

edit D

undo D undo A

int f(int c){int b; return c+b;} Pcb

undo A

int f(int a){int b; return a+b;} Pab

Figure 2.4: Undo in the LEM for scenario 1.

can still choose to undo the earlier edit B′, redo the earlier edit A, and keep the later edit

C because they are independent of each other. Finally, we end up with the program Pc5.

We capture this selective redo in Figure 2.6.

2.3 Entangled edits and partial selective undo

In the previous section, we observed that selective undo improves the LEM in that it

provides a more flexible support for undoing edits. More specifically, as long as two edits

are independent, either one can be undone without changing the other edit. Now how

about the case that two edits are actually entangled, for example, the edits A and B in the

scenario 2.

To see how selective undo behaves for the scenario 2, Figure 2.7 presents the attempt

of undoing A directly after the edit B. However, it fails since the edit B depends on the

edit A in that B changes the parameter that was previously renamed by A.
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int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int c){int d; return c+d;} Pcd

edit D

undo D undo A

Pcb | int f(int c){int b; return c+b;}

int f(int a){int b; return a+b;} Pab

int f(int a){int d; return a+d;} Pad

undo A undo D

Figure 2.5: Selective undo for scenario 1.

However, it’s not the case that the whole B depends on A. In fact, we can split B into

two edits B1 and B2, where B1 renames the parameter c to d and B2 renames the local

variable b to c. Thus, although B1 depends on A, B2 is independent of A. Figure 2.8

presents this split and the resulting programs. The figure makes it clear that B2 in fact

depends on A. In the figure, we use dashed arrows to denote the applications of edits

conceptually. For example, while A is applied to the original program Pab, we can

envision that it is applied to the program Pac since A changes the parameter a, which still

exists in Pac.

With this view, it should be clear that undoing A should be possible. Meanwhile,

B1 should be undone while B2 can be kept. Figure 2.8 also demonstrates the process of

applying this undo operation. In addition to selective undo, this operation relies on the

notion of partiality of edits. Specifically, in order to undo A, we have partitioned B into

B1 and B2. We call this undo operation partial selective undo.
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int f(int a){int b; return a+b;} Pab

Pcb int f(int c){int b; return c+b;}

edit A

int f(int x){int b; return x+b;} Pxb

edit B′

edit B

edit C

int f(int x){int b; return x+b;} Pxb

int f(int x){ return x+5;} Px5

undo A

int f(int a){ return a+5;} Pa5

undo B′

redo A

int f(int c){ return c+5;} Pc5

Figure 2.6: Selective redo for scenario 3.

int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int d){int c; return d+c;} Pdc

edit B

undo B undo A

int f(int c){int b; return c+b;} Pcb

undo A

int f(int a){int b; return a+b;} Pab

fail to undo A

Figure 2.7: Selective undo fails for the scenario 2.

From Figures 2.2 and 2.7, we know that the LEM and selective undo can produce

three programs Pab, Pcb, and Pdc in scenario 2, which are produced by not applying any

edit, applying the edit A only, and applying both the edits A and B, respectively. With the

partial selective undo, we can reach an additional program Pac as shown in Figure 2.8.
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int f(int a){int b; return a+b;} Pab

int f(int c){int b; return c+b;} Pcb

edit A

int f(int d){int c; return d+c;} Pdc

edit B1

int f(int a){int c; return a+c;} Pac

int f(int d){int b; return d+b;}

edit B2

edit B2

edit A and B1

int f(int a){int c; return a+c;} Pac

undo B1

undo A

Figure 2.8: Undo in partial selective undo for scenario 2.

While selective undo is more flexible than the LEM, partial selective undo is yet

more flexible in that it allows us to reach more editing states, for example, the program

Pac in scenario 2. Although discovering the hidden program Pac can simplify the editing

process, it is not easy to achieve this without a good tool support. This project report

presents a method to discover, represent, and exploit such hidden programs with support

for partial selective undo.

At this time, we find that without a formal representation, it takes a lot of effort to

keep track of all the edits, remember the relations among these edits, and reason about the

resulting programs. We will go back to these examples in Chapter 3 after we introduce a

variation representation in the next section.
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2.4 Variation representation

The choice calculus provides a systematic and formal representation of software varia-

tions. It has been widely explored in software variation research, for example, in variation

programming [Erwig and Walkingshaw, 2013], variational typing [Chen et al., 2012,

2014], projectional editing [Walkingshaw and Ostermann, 2014], type checking software

product lines [Kästner et al., 2012], and other analyses of software product lines. In

this project report, to represent program editing evolutions, we mainly utilize its choice

representations and selection semantics. We focus our discussion on binary choices.

Each choice consists of a dimension name and two alternatives. The following example

displays a general form on how we use choices to represent program edits.

vp ∶ int A⟨a,b⟩=1;

Here vp is a variational program, which declares the variable a or b and assigns the value

1 to it. The tag A is called a dimension. Variables a and b are the left and right alternatives

of choice A, respectively. Choices under the same dimension represent one program

edit, and choices under different dimensions represent independent edits. In general, a

variational program may have a more complicated variational structure, for example,

nesting a variational expression in a choice. Note that we use single letters in alphabetical

order to show the edits in the order in which they occurred. Thus choice B is an edit that

happened later than A.

The syntax of variational programs is given as follows.

e ∶∶= token ∣ D⟨e,e⟩ ∣ e . . .e
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This syntax says that a variational program can be a token, a choice of variational

programs, or a concatenation of other programs. We can represent the variational

program vp as follows.

vp ∶ e1 A⟨e2,e3⟩ e4

e1 ∶ int
e2 ∶ a
e3 ∶ b
e4 ∶ =1;

An important operation on choice expressions is the selection of an alternative of

some choice. To formally discuss this operation, we introduce the notion of selectors,

which are defined as follows. Given a dimension D, we can form two selectors D and

D, corresponding to the left and right alternative of D, respectively. We use s to range

over selectors. We can now formally define the selection operation ◁∶e×s→ e as follows.

In the definition, we assume that there is no nesting of choices with the same name.

This can always be achieved by applying choice simplification rules defined in [Erwig

and Walkingshaw, 2011]. For example, the expression A⟨1,A⟨2,3⟩⟩ can be simplified to

A⟨1,3⟩.

token◁ s = token
D⟨e1,e2⟩◁D = e1

D⟨e1,e2⟩◁D = e2

D⟨e1,e2⟩◁ s =D⟨e1◁ s,e2◁ s⟩ where s ≠D∧ s ≠D
(e1 . . .en)◁ s = (e1◁ s) . . .(en◁ s)

In this project report, we want to produce plain expressions, which are expressions

without any choices. We define the operation ◂ of the type e×S → e to realize this goal.
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The variation space S over a set of dimension ∆ is defined as follows.

S = ⨉
D∈∆
{D,D}

The operation ◂ is then defined as follows.

e◂{} = e
e◂{s1,s2, . . . ,sn} = (e◁ s1)◂{s2, . . . ,sn}

In the following, we call a set of selectors a decision, and we use δ to range over decisions.

We observe that the second argument of ◂ is a set. Thus, for ◂ to be well defined, we

need to ensure that the ordering of applying selections doesn’t matter, that is,

e◁ s1◁ s2 = e◁ s2◁ s1

While we will not prove this result in general, we show it with one example in the

following.

(A⟨B⟨a,b⟩,D⟨c,d⟩⟩◁A)◁D =D⟨c,d⟩◁D = c
(A⟨B⟨a,b⟩,D⟨c,d⟩⟩◁D)◁A = A⟨B⟨a,b⟩,c⟩◁A = c

While choices are scoped with dimensions in the original work of the choice calculus [Er-

wig and Walkingshaw, 2011], we assume that all choices are globally scoped. This

simplified view was also adopted in [Chen et al., 2012, 2014]. However, choice names

are still significant in that choices with the same name are synchronized and choices with

different names are independent.
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Chapter 3: Choice Edit Model: Uncovering hidden relations

Based on the choice syntax and selection semantics in Section 2.4, we will introduce a

non-linear edit model, which we call choice edit model (CEM), in this chapter. We use

the latter two examples introduced in Section 2.1 throughout this chapter. Using the CEM,

we are able to discover more program variants than using a linear edit model (LEM).

Also we have a clearer view of program evolution for the program editing process. These

observations are described in Section 3.2. In Section 3.3, we discuss two relationships

among edits: contingent and divergent edits.

3.1 Edits as choices

The basic idea of the CEM is viewing edits as choices, which means that we use choices

to express editing results. The question is how can the choice representation precisely

distinguish different edits and efficiently navigate through different program variants? In

this section, we use the examples introduced in Section 2.1 to illustrate our answer to

this question.

Consider the first program edit of the scenario 2, which introduces the choice A and

produces the variational program VA as follows.

int f(int A⟨a,c⟩) {

int b;

return A⟨a,c⟩+b;
}

VA
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For this single choice A, selecting with the selector A applies the program edit A, which

produces Pcb. Instead, choosing the selector A means not applying or reversing the

previous edit A (undoing edit A), which produces the original program Pab. Their

selection results are shown below:

Pcb =VA◂A
Pab =VA◂A

Now consider both program edits, which introduce both the choices A and B and produce

the variational program VAB, shown in the following.

int f(int A⟨a,B⟨c,d⟩⟩) {

int B⟨b,c⟩;
return A⟨a,B⟨c,d⟩⟩+B⟨b,c⟩;

}

VAB

Similarly, applying only the edit A and not applying the edit B leads to the program Pcb.

Applying both edits results in the new program Pdc. The selection results are presented

below, which exactly correspond to the three cases in the linear edit model (LEM).

Pab =VAB◂{A,B}
Pcb =VAB◂{A,B}
Pdc =VAB◂{A,B}

So far we have considered selecting the variational program VAB with the selectors {A,B},

{A,B}, and {A,B}. But how about {A,B}? Does this selection correspond to a possible

program variant? The answer is yes. Applying the selection operation with {A,B}, we

obtain the following

Pac =VAB◂{A,B}
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which is a reasonable program variant, although it cannot be reached by the LEM. The

question is then what is the semantics of applying this selection? The literal meaning

is not applying edit A but applying edit B. Although this seems to contradict the choice

dependence since part of edit B depends on the edit A, the application of this selection can

be interpreted as a partial selective undo. More specifically, it corresponds to reversing

the previously applied edit A (undo A) but keeping the edit B. Since part of the edit B is

independent of the edit A, undoing edit A will automatically undo only part of the edit B

that depends on the edit A.

While choice expressions can have arbitrary variation structures, we impose some

conditions of using them to represent program edits. First, for any given two dimensions

D1 and D2, if some choices of D2 appear in the left alternatives of some choices of D1,

then no choices of D2 appear in the right alternative of any choice of dimension D1. This

is because programmers can take editing actions only on one particular program variant,

which includes the same alternatives of the choices with the same names. That variant

can be the original program or the result of some selections. This implies that the choices

created by later edits can only appear in one of the two alternatives (or not at all) for each

choice created by earlier edits.

Second, as mentioned before, edits are ordered, which means that if the choice

C2 occurs in choice C1, then C1 comes before C2. Thus, choosing choice names in

alphabetical order, the expression A⟨a,B⟨c,d⟩⟩ means that the program produced by

applying the edit A is transformed or changed to a new program by applying the edit B.

So far we have seen only expressions where edits have a chain structure, which means

that the inner choice nests in the right alternative of the outer choice. For example, in
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the program VAB, the choice B is in the right alternative of the choice A. The scenario 3

discussed in Section 2.1 generates the following variational program VABC, which has

a branch structure. In this case, the inner choice (B) is the left alternative of the outer

choice (A).

int f(int A⟨B⟨a,x⟩,c⟩) {

C⟨int b;,ε⟩
return A⟨B⟨a,x⟩,c⟩+C⟨b,5⟩;

}

VABC

The difference between the CEM and the linear model is that the CEM relaxes the

restrictions of temporal ordering in the LEM. In the LEM, any two adjacent edits are

ordered such that a later edit can be applied only when an earlier edit has been applied.

Similarly, an earlier edit can be undone only when a later edit has been undone. In the

CEM, this ordering constraint is weakened.

Although the choice representation contains all the information for undo and redo

operations, we don’t show it to the user directly for two reasons. First, as the number

of choices is linear in the number of edits, showing the whole expression will create a

huge cognitive burden. Second, showing the whole expression can also confuse users

who might want to figure out which variant is the one they care about. Instead, we only

show the variant determined by the decision reflecting the editing history. We will return

to this in the next section.
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3.2 Discovering program families

In both, the CEM and the LEM, program editing leads to a series of similar programs

although only the latest version is shown. However, without a formal representation, we

can hardly express the transformations and differences among such a huge amount of

programs in a compressed and efficient way. Thanks to the choice representation, we can

encode all versions of programs in one variational program.

I now explain how edits, edit operations, the choice expression, view decisions, and

variants are related. A view decision is a decision as introduced in Section 2.4 that

defines the current variant (called view) that a programmer sees when making edits.

Since programmers shouldn’t see and manipulate choice expressions directly, we need

a connection between the choice expression that represents an editing history and the

content on which the programmer performs editing operations. This connection is

realized by a view decision. In particular, we use the current view decision to refer to the

view decision that’s used to select the choice expression to get the current content in the

editor. If the choice D is created in response to an edit, then D is added to the current

view decision. If the edit D is undone, then the selector D is changed to D in the current

view decision. Dually, if the edit D is redone, the selector D is changed to D in the

current view decision. Making an edit creates a choice in the currently “active” variant,

which is obtained by selecting the choice expression with the current view decision. The

selection operation is defined in Section 2.4. Choice expressions are created once edits

have been made. Undo and redo edit operations will change the view decision. The

following table lists the relationships between program edits, variational programs, the
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decisions chosen, and their corresponding variants for the undo example introduced in

Section 2.2. Each row includes five columns, the current time point, the current edit, the

generated variational program, the accumulated decision so far, and the visible variant

produced by applying the current decision to the variational program in the same row.

Variational View Visible
Time Edit Program (V) Decision (δ) Variant (P)

Pab ∅ Pab
1 A VA {A} Pcb
2 B VAB {A,B} Pdc
3 undo A VAB {A,B} Pac

From this table we observe that more program variants can be produced in the CEM than

those in the LEM. The reason is that the CEM treats the portion of the B edit that doesn’t

depend on A as a partial, independent edit. We call this partial edit BI . This separation

allows us to reverse the edit A but preserve the edit BI . This view is reasonable since

there is no dependency between the edits A and BI . In contrast, the variant corresponding

to this case is exactly what is ignored by the LEM, which prevents the edit A from being

undone before undoing the edit B.

We can observe that, in each row, the generated program variant can be obtained

by selecting the corresponding variational program with the decision in that row. We

formally define this relation as follows.

P =V ◂δ
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Moreover, the current view decision δi can be computed by merging the previous view

decision δi−1 with the present edit D expressed in the following equations.

δ i = δi−1∪{D} if Edit =D
δ i = δi−1−{D}∪{D} if Edit = undo D
δ i = δi−1−{D}∪{D} if Edit = redo D

With these relations, we can compute the results of the corresponding edits for the redo

example in Section 2.2. The details are shown in the following table.

Variational View Visible
Time Edit Program (V) Decision (δ) Variant (P)

Pab ∅ Pab
1 A VA {A} Pcb
2 undo A VA {A} Pab
3 B VB {A,B} Pxb
4 C VABC {A,B,C} Px5
5 undo B VABC {A,B,C} Pa5
6 redo A VABC {A,B,C} Pc5

Note that the variational program VB at the time 3 and the visible variant Pa5 at the

time 5 appear the first time, and we present them below.

int f(int A⟨B⟨a,x⟩,c⟩) {

int b;

return A⟨B⟨a,x⟩,c⟩+b;
}

VB

int f(int a){ return a+5;} Pa5

Conceptually, once the edits are applied, the corresponding choices will be added to the

variational program and never be removed. Specifically, succeeding operations, such
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as undo and redo, do not eliminate choices in the variational program. However, these

operations do change the present view decisions and program variants that are visible to

the programmers.

3.3 Contingent and divergent edits

Each choice has two alternatives: the left alternative and the right alternative. Correspond-

ingly, we have two kinds of relationships between edits: divergent edits and contingent

edits. A divergent edit corresponds to the case of undoing a certain edit before applying

a new edit, and a contingent edit represents the case that a later edit changes the result of

a prior edit. The edit B is a divergent edit or a contingent edit of the edit A if B is nested

in the left alternative or the right alternative of A, respectively. Consider the following

choice expression e1.

e1 = A⟨B⟨e1,e2⟩,C⟨e3,e4⟩⟩

Since B is in the left alternative of A, it is a divergent edit of A. Likewise, since C is in

the right alternative of A, it is a contingent edit on A.

To formally discuss the relations among edits, we introduce the notion of dominant

sets and contingent edits. A dominant set is a set of dimensions. We use ∆ to range over

dominant sets. We say that ∆ is a dominant set of the contingent edit D in e if the effect

of (part of) the edit D is visible only after all the edits in ∆ have been applied. We use the

judgement e ⊢ ∆↪D to express the relation that the edit D is contingent on ∆.

In the expression e1, we have e1 ⊢ {A}↪C, meaning that {A} is a dominant set of the

contingent edit C. For example, suppose we apply both edits A and C, and then undo
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TOP

D⟨e1,e2⟩ ⊢ {}↪D

e1 ⊢ ∆1↪D ⋯ en ⊢ ∆n↪D

e∗ ⊢ ∆1, . . . ,∆n↪D
GROUP

e` ⊢ ∆↪D

C⟨e`,er⟩ ⊢ ∆↪D
BRANCH

er ⊢ ∆↪D

C⟨e`,er⟩ ⊢ ∆∪{C}↪D
CHAIN

Figure 3.1: Inference rules for computing contingent edits.

both of them. Now although we can redo the edit C before redoing the edit A, the effect

of the edit C is invisible until being triggered by applying the edit A. We say the edit C is

in a pending state before having applied the edit A. We define a set of inference rules to

compute this dependency relation.

For choice expressions, we give the inference rules for computing dominant sets and

contingent edits in Figure 3.1.

The rule TOP initializes the dominant set for each edit to empty. Both the rules

BRANCH and CHAIN recursively deliver the dominant sets of a particular edit D from

the inner layer to the outer layer for two different choice structures. Specifically, the rule

BRANCH keeps the dominant sets of a particular edit D if edit D is in the left alternative

of choice C. The rule CHAIN computes the dominant sets of a particular edit D by

adding C to each dominant set if the edit D is in the right alternative of choice C. As we

illustrated in Section 3.1, an edit D can only occur in either the left or the right alternative

of a choice C, but never in both. Thus only one of the rules BRANCH and CHAIN may

apply. The rule GROUP clusters all the dominant sets for one particular edit D for the

concatenated expression.
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We can capture the essential edit structure of the undo example in the following

simplified expression.

eAB = A⟨a,B⟨b,c⟩⟩ B⟨d,e⟩

With the inference rules in Figure 3.1, we can compute dominant sets for the edits A and

B, respectively by drawing the following derivation trees.

GROUP

CHAIN
B⟨b,c⟩ ⊢ {}↪B TOP

A⟨a,B⟨b,c⟩⟩ ⊢ {A}↪B B⟨d,e⟩ ⊢ {}↪B TOP

A⟨a,B⟨b,c⟩⟩ B⟨d,e⟩ ⊢ {},{A}↪B

GROUP
A⟨a,B⟨b,c⟩⟩ ⊢ {}↪A TOP

A⟨a,B⟨b,c⟩⟩ B⟨d,e⟩ ⊢ {}↪A

In short, we have the following judgements about contingent edits for the expression eAB.

eAB ⊢ {},{A}↪B

eAB ⊢ {}↪A

The first judgement conveys that the edit B is only partially contingent on edit A because

of the existence of VAB ⊢ {}↪B, which means that we can apply the partial edit B without

applying any other edits. From the second judgement, we know that A is an independent

edit. These results are consistent with our view on the CEM (Section 3.1). Similarly, we

can repeat this process for the redo example. For this example, the dominant set for edits

A, B, and C are empty sets, which means that the edits A, B and C are independent of

each other.
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Note that when applying the rule GROUP, there may exist some duplicate sets or

overlapping subsets. We can certainly remove repetitive sets, but not overlapping subsets

because that will cause the loss and incompleteness of the dependencies. For example,

consider the relation {A},{A,B}↪C. One may be tempted to delete the edit A in the

dominant set {A,B} to avoid redundancy and obtain the reduced relation {A},{B}↪C.

However, the reduced relation means that part of the edit C solely relies on the edit A,

and the other part of the edit C solely depends on the edit B. This, in turn, means that

selecting with the decision {A,B} will cause part of the edit C being applied. However,

{A},{A,B}↪C tells us that no part of C is triggered until at least A has been applied.

With the help of rules in Figure 3.1, we can prove that the CEM supports selective

undo. Given an expression e and two edits A and B, if there is no dominant set ∆ such

that A ∈ ∆ and e ⊢ ∆↪B, then there must be a subexpression e1 in e that contains itself

two subexpressions e2 and e3 and A occurs in e2 and B occurs in e3. In other words, edits

A and B must involve different subexpressions of e. Thus, either edit can be undone

without affecting the other. Therefore, we say that the CEM supports selective undo.

Similarly, given an expression e and two edits A and B, if there is a dominant set ∆ such

that A ∈ ∆ and e ⊢ ∆,{}↪B, we can derive following information about e. First, there

must be a subexpression e1 in e and e1 contains two subexpressions e2 and e3. More

specifically, there exist e′, e′′, and e′′′ such that e1 = e′e2e′′e3e′′′. Second, without the

loss of generality, we assume that some part of the edit B occurs in e2 and the other part

of B is nested in A in e3. Thus, undoing the edit A will undo the edit B in e2, but not the

edit B in e3. Therefore, we conclude that the CEM supports partial selective undo.



30

PLAIN

token / {}
P-P
D⟨token, token⟩/ {}

DIVERGE

C⟨e`D⟨e1,e2⟩er,e3⟩/ {C,D}

GROUP
e1 / ∆1 ⋯ en / ∆n

e∗ / ∆
∗

CHOICE
e` / ∆

∗

` er / ∆
∗

r

C⟨e`,er⟩/ ∆
∗

` ∪{C},∆∗r

Figure 3.2: Inference rules for computing divergent edits.

We employ the notation A / B to express that edits A and B are divergent, which

corresponds to the case when choice B is nested in the left alternative of choice A. Note

that it’s impossible for A to nest in B due to the naming convention. We say the edit B

branches from the edit A, or the edits A and B are divergent from each other. We write

e / ∆ to denote that all edits in ∆ are mutually divergent. We write ∆∗ for a list of ∆s

starting with ∆1 and ending with ∆n. Figure 3.2 defines the rules for computing divergent

edits.

The first two rules indicate that there are no divergent edits in an expression without

choice nestings. The rule DIVERGE gives the base case for two divergent edits. The rule

GROUP collects all the divergent sets for concatenated expressions. The rule CHOICE adds

the dimension C to all divergent sets obtained from the left alternative. It also collects

the divergent sets from the right alternative.

We use the following expression eABCD to show how to apply the rules in Figure 3.2.

eABCD = A⟨B⟨C⟨a,b⟩,c⟩D⟨d,e⟩,f⟩
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We can compute its divergent edits by drawing the following derivation trees. The result

is two divergent sets /{A,B,C} and /{A,D}.

CHOICE

GROUP

DIVERGE B⟨C⟨a,b⟩,c⟩/ {B,C} D⟨d,e⟩/ {} P-P

B⟨C⟨a,b⟩,c⟩D⟨d,e⟩/ {B,C},{} f/ {} PLAIN

A⟨B⟨C⟨a,b⟩,c⟩D⟨d,e⟩,f⟩/ {A,B,C},{}

DIVERGE A⟨B⟨C⟨a,b⟩,c⟩D⟨d,e⟩,f⟩/ {A,D}

With the same process, we find that no divergent sets exist in the undo example. As

for the redo example, there is one divergent set eABC / {A,B}.

A choice expression can contain contingent edits as well as divergent edits. For

example, consider the choice expression eABC.

eABC = A⟨a,B⟨C⟨b,c⟩,d⟩⟩B⟨e,f⟩C⟨g,h⟩

We have the following judgements about dependencies among edits for the expression

eABC.

eABC ⊢ {},{A}↪B

eABC ⊢ {},{A}↪C

eABC ⊢ {}↪A

eABC / {B,C}

These two kinds of edits can be entangled with each other, making the choice expres-

sions hard to comprehend. Program edit graphs (PEGs), a visualization representation,

are better at revealing the relations among the choice expression, applying edits, and the

corresponding resulting program variant. We describe PEGs in Chapter 4.
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Chapter 4: Program Edit Graphs

Choice expressions encode editing histories in a compact way. The CEM that is based on

choice representations can discover hidden editing states and discover relations between

edits, which are essential for supporting partial selective undo and redo. However,

working directly with choice expressions should be avoided for many reasons. First,

presenting choices to users directly increases the cognitive burden because they have

to understand choice constructs and the related conventions. Second, editing choice

expressions directly may introduce, create, and alter choice structures that could violate

the invariants of the choice representation.

This chapter presents Program Edit Graphs (PEGs), a graphical notation for rep-

resenting the relations among variational programs, applying edits, and the resulting

variants. In Section 4.1, I present the principles of PEGs through two examples. I give a

nondeterministic algorithm for constructing PEGs in Section 4.2. I observe that PEGs

are quite dense. In Section 4.3, I discuss the implication of this observation and present

an approach to reduce the complexity of PEGs.

4.1 Principles and examples

A PEG G = (N,E,F) consists of three parts, a set of nodes N, a set of edges E, and a

partial function F that maps nodes to contingent edit information. Each node n ∈N is a
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A B

B A
{A}↪→ B

(a) PEG for VAB.
A

A

C C

B

B C

(b) PEG for VABC.

Figure 4.1: PEGs for scenarios two and three, respectively.

set of dimensions. Each edge η ∈ E has the form (ns,nt ,D), meaning that the directed

edge starts from ns and ends at nt with the label D. The relation nt = ns∪D always holds.

When n ∈ dom(F), then F(n) is a set of pairs. Each pair has the form (∆∗,D) denoting

that e ⊢ ∆∗↪D, where e is the expression for which the PEG is being constructed.

We further distinguish different kinds of nodes. We use two concentric circles to

denote the unique source node of the PEG. A black dot without outgoing edges denotes a

sink. Each PEG has only one source node, but may have several sinks. Generally, if the

choice calculus expression has no branch structure, that is, no choices are nested inside

the left alternative of other choices, then the corresponding PEG has one sink. However,

if the expression contains branch structures, then its PEG must have more than one sink.

For example, Figures 4.1a and 4.1b present the PEGs for the variational expressions VAB

and VABC introduced in Section 3.1, respectively. We observe that Figure 4.1a contains

only one sink but Figure 4.1b contains two since B is nested in the left alternative of A in

VABC.

In Figure 4.1a, F = {{B}↦ ({A},B)}. This means that the edit B is, although applied,

pending until the edit A has been applied. Another interpretation of {A}↪B on the node

{B} is that, at the time when B is applied but A hasn’t, only part of B has effect. As in

the expression VAB, part of B is nested in A but the other part isn’t, which means that on
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the node {B}, the part outside A has been applied while the part inside A is pending and

will be triggered after A has been applied.

Given an expression e and the corresponding PEG G, we can compute view decisions

and the corresponding program variants and perform edits and undo as follows. First, we

use ∆ to denote all the dimensions included in e. The view decision for the node n can be

computed as follows.

δ = {D ∣ D ∈ ∆−n}∪{D ∣ D ∈ n}

The program variant P corresponds to that node can be obtained as follows.

P = e◂δ

Thus, the source node corresponds to the view decision that contains the left al-

ternatives of all dimensions, denoting the variant in which no edits have been applied.

Based on the relations among nodes, view decisions, and the corresponding variants,

if (ns,nt ,D) is an edge in the PEG, then the variant corresponding to nt is obtained by

applying the edit D to the variant corresponding to ns. For example, in Figure 4.1a,

the source node corresponds to the variant Pab. Following the edge labeled with A, we

arrive at the node that corresponds to the decision {A,B}. According to Section 3.1,

VAB◂{A,B} = Pcb. Moreover, according to Figure 2.2, applying edit A to Pab yields Pcb.

Thus, PEGs truly model the editing process.

Interestingly, traversing an edge (ns,nt ,D) backward means to undo the edit D.

Moreover, by undoing D, the variant corresponding to ns can be achieved from nt . For

example, the sink in Figure 4.1a corresponds to the variant Pdc. When we go backward

the edge labeled B, we arrive at the variant Pcb. This matches the editing process shown
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in Figure 2.7. We observe that there is another edge labeled A ending in the sink. By

undoing A, we end up with the node {B}, which leads to the view decision {A,B}. Thus,

we derive that the corresponding variant is Pac. This result coincides with the editing

process shown in Figure 2.8.

The ability to traverse edges backwards increases the expressiveness of PEGs. Given

any node, we can follow any outgoing edge to move to another node, which corresponds

to applying or redoing an edit. Meanwhile, we can follow any incoming edge to go

backwards, which corresponds to undo the edit. Thus, the directions of the edges should

not be understood as restricting editing flows but should be viewed as indicating the

actions of undo or redo only. If we view PEGs as undirected graphs but remember

their edge directions, then a random walk on a given PEG denotes an editing sequence

consisting of applying edits, undo, and redo operations.

4.2 Construction

Given an expression, the idea of constructing the PEG is to start with the source node

and then gradually add edges and nodes until no more edges can be added. Specifically,

given the expression e, the construction process consists of two phases: the initialization

phase and the iteration phase.

In the first phase, we initialize the PEG G0 and the related variables as follows.

Besides the following information, we maintain the global expression e so that it’s
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accessible during the whole construction process.

e0 = e
D0 = any top level choice in e0

N0 = {∅}
E0 = ∅

In the second phase, we iterate through following steps until no progress can be made.

Specifically, we compute the result for the (i+1)st iteration based on that for ith iteration

as follows.

ei+1 = ei◂Di ⋅ei◂Di ⋅Di⟨a,b⟩
Di+1 =D where ei+1 = ep ⋅D⟨el,er⟩ ⋅eq

ni+1 = pick {n ∈Ni ∣ extensible(n,D)}
n′i+1 = ni+1∪{Di+1}
Ni+1 =Ni∪{n′i+1}
Ei+1 = Ei∪{(ni+1,n′i+1,Di+1)}

The essential idea of each iteration is that based on the current expression ei+1, a dimen-

sion Di+1 is chosen. The current expression is a concatenation of three parts. The first

part is the left alternative from the dimension Di of the previous expression ei. This

part ensures that the dimensions in the left alternative becomes available in subsequent

iterations. The second part is similar but taking the right alternative from Di and the

purpose is to make sure that the dimensions in the right alternative become available

in subsequent iterations. Similarly, the third part Di⟨a,b⟩ makes sure that Di will be

available in later iterations. Based on the current expression, a top-level dimension is

chosen, and we use Di+1 to denote it. Moreover, an arbitrary node ni+1 in Ni may be
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picked as long as extending that node with Di+1 is valid. If such a node exists, then the

node set Ni+1 and edge set Ei+1 are updated accordingly.

The most critical operation is picking a node in the previously constructed nodes such

that an edge starting from that node and with label Di+1 may be added in this iteration.

The relation extensible(n,D) is satisfied if all of the following conditions are met:

(a) D ∉ n,

(b) D ∉ ∆∗(n) for e / ∆∗, and

(c) there is some ∆ such that e ⊢ ∆↪D and ∆ ⊆ n.

The first condition ensures that no node will contain a certain dimension multiple times.

In terms of editing, this means that no edit will be applied more than once to the same

program. The second condition ensures that D is not divergent to any dimension in n.

The operation ∆∗(n) is defined as follows.

∆
∗(n) = ⋃

D∈n,1≤i≤m
∆i(D)

∆(D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∆−{D} if D ∈ ∆

∅ otherwise

Since VABC / {A,B}, Figure 4.1b doesn’t have an outgoing edge labeled with B from {A}

and {A,C}. Similarly, from {B} and {B,C}, there is no outgoing edge labeled with A.

The third condition ensures that before applying Di+1, all the edits that Di+1 depends

on must have been applied. Intuitively, if Di+1 is nested in the right alternative of other

choices, then the edits correspond to those choices must be applied before Di+1 may be

applied. Of course, if Di+1 is a top-level dimension in e, then Di+1 can be applied at any
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A B

C

Figure 4.2: PEG for some expression that has both contingent and divergent edits.

time since e ⊢ {}↪Di+1. For example, since both A and B appear on the top level in VAB,

they may be applied at any time, as can be seen in Figure 4.1b. However, the situation is

quite different in Figure 4.2, which shows the PEG for the expression A⟨C⟨a,b⟩,B⟨c,d⟩⟩.

We observe that B is nested in right alternative of A only, which is reflected in Figure 4.2

that B can appear on the edge coming out from the node {A} only.

Thus, the whole construction process starts with the initialization and stops when

no more edges can be added, which happens when no dimension exists such that

extensible(n,D) holds for some n. After the construction is completed, we need to

add F . Specifically, for each node n in the final PEG, we add F(n) as follows. Here we

assume that ∆∗−n is not empty. If ∆∗−n is empty for some D′, we simply drop the item

({},D′).

F(n) = {(∆∗−n,D) ∣ D ∈ n,e ⊢ ∆
∗↪D}

Specifically, for each D ∈ n, we first derive its dominant sets ∆∗ and then subtract n. The

notation ∆∗−n is defined as follows.

{∆−n ∣ ∆ ∈ ∆
∗}

In other words, ∆∗−n collects for each ∆ in ∆∗ the result of ∆−n if ∆−n is nonempty.

Since VAB ⊢ {A}↪B, the node {B} in Figure 4.1a, the PEG for VAB has F({B}) =

{({A},B)}. For the node {A,B}, although we still have VAB ⊢ {A}↪B, we don’t have an
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A B

B A
{A}↪→ B

e0 = A〈ε, B〉 ·B
D0 = A

A

e1 = B ·B ·A
D1 = A

n1 = {}

(0) Initialization (1) Added the node {A}

A B

e2 = B ·B ·A
D2 = B

n2 = {A}

A B

B

e3 = A ·B
D3 = B

n3 = {}

(2) Added the node {A,B} (3) Added the node {B}

A B

B

e4 = A ·B
D4 = B

n4 = no choice

(4) No progress made

e5 = A ·B
D5 = A

n4 = {B}

(5) Construction finished

Figure 4.3: The process of constructing the PEG for VAB.

entry for {A,B} in F since {A}−{A,B} = ∅. Intuitively, both edits A and B have been

applied in the node {A,B}, and thus no edit is pending.

Based on the construction process, Figure 4.3 depicts this process for the expression

VAB. Note that we have simplified the presentations of expressions by leaving out all to-

kens. For example, we write D for D⟨token, token⟩ and A⟨−,B⟩ for A⟨token,B⟨token, token⟩⟩.

We use this convention for the rest of this chapter. In each step i, we list the expression

ei, the dimension chosen Di, the node chosen ni, and the PEG built so far. We observe

that in some steps no progress can be made. For example, in step (4) when B is chosen as
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(a) PEG for A⟨D,B⟩ ⋅B⟨−,C⟩. (b) PEG for A⟨−,B⟨−,C⟩⟩ ⋅B⟨−,C⟩.

Figure 4.4: PEGs produced by the prototype.

the dimension, no extensible node is available and thus no node or edge can be added.

The process is completed with step (5) when the edge ({B},{A,B},A) is added.

We have implemented a prototype for constructing PEGs in Haskell. The prototype

also goes through several iterations. Although the algorithm presented here is nonde-

terministic, the prototype is deterministic. In particular, it maintains fringe for storing

all nodes that maybe expanded later. The fringe is initialized to {∅}, denoting that

the source node is extensible. In each iteration, the first node in fringe is removed

and is referred to as n. For each dimension D in the original expression, we check if

extensible(n,D) is satisfied. If this is the case, we further check if n∪{D} has been

visited. If not, we add n∪{D} to the end of fringe and to the PEG node set. For each

added node, we update F accordingly. We also add the edge (n,n∪{D},D) to the PEG

edge set. The iteration stops when fringe becomes empty. At that time, the final PEG is

returned.
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Figure 4.4 shows two PEGs produced by our prototype. In these figures, I have

omitted node labels since they are very easy to construct. The label of each node is

simply the set of all labels on the path from the source node to that node. For example,

the bottom node in Figure 4.4b would have the label {A,B,C}. Instead, for each node n

when n ∈ dom(F) we show F(n) for that node.

Some tricky questions may be addressed easily with the help of PEGs. For example,

it is unclear what edits can be undone from the final state of the variational program

A⟨−,B⟨−,C⟩⟩ ⋅B⟨−,C⟩. By looking at the corresponding PEG in Figure 4.4b, one imme-

diately concludes that the edits A and C, but not B, can be undone. One may wonder why

B couldn’t be undone. The reason is that in both occurrences of B, C appears in the right

alternative of B, which means C always depends on B. Thus, in the state when both B

and C are applied, as in the final state {A,B,C}, B couldn’t be undone until C has been

undone.

4.3 Discussion

From all the PEGs presented in this chapter, in particular the PEGs in Figure 4.4, we

observe that PEGs are quite dense. The question is, what is the implication of the density

of PEGs, or what does the density measure? At the end of Section 4.1, we concluded that

by viewing PEGs as undirected graphs, a random walk on the PEG represents a sequence

of editing operations, including applying new edits and undoing and redoing previous

operations. Thus, the fact that PEGs are dense reflects the fact that PEGs support flexible

undo and redo operations.
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A B
CC

A
C

{B}�C{B}�C
B

(a) PEG for A⟨B⟨−,C⟩,−⟩ ⋅C.

B CA
C

A
C

{B}�C{B}�C

(b) Branch filter for A ⋅C.

Figure 4.5: PEG and branch filter.

Nevertheless, showing all the condensed information in a PEG might be overwhelm-

ing for the user. In particular, the PEG for a choice calculus expression with n independent

dimensions contains 2n nodes. When all dimensions are independent, any node con-

taining any combination of dimensions is valid. When dimensions are dependent, the

situation is more complicated. A precise complexity measurement is difficult to give

since expressions may have arbitrary choice structures. However, we do observe that

both chain and branch structures help to reduce the number of nodes. For example, due

to the divergent relation VABC / {A,B}, the PEG for VABC in Figure 4.1b contains 6 rather

than 8 (23) nodes. Similarly, for e5 =A⟨−,B⟨−,C⟩⟩ ⋅B⟨−,C⟩, we have e5 ⊢ {A,B},{B}↪C

and e5 ⊢ {A}↪B. Due to the contingent edits, the PEG for e5 in Figure 4.4b contains 6

and not 8 nodes.

However, in general, the exponential relation between the number of the nodes and

the number of the dimensions holds. One observation that can help here is that the user

usually focuses on a small part of a big variational program. Based on that view, we

can try to build the PEG for that part only and expand the PEG for other parts when

required. We call this idea of showing the PEG for only certain branches branch filters.
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A B C D

B A

A B

B A

C D

Figure 4.6: PEG for A ⋅B ⋅C ⋅D (left) and branch filter for A ⋅B.

For example, Figure 4.5a shows the PEG for the expression A⟨B⟨−,C⟩,−⟩ ⋅C. The branch

filter for the branch A ⋅C is shown in Figure 4.5b.

Although branch filters don’t show the full PEG, the F component for the shown

nodes contains complete contingent edits information. For example, while edges labeled

with B are absent in Figure 4.5b, the nodes {C} and {A,C} still show {B}↪C, which

indicate that the C edits are partial and the part that depends on B has no effect at this time.

The use of branch filters can significantly reduces the number of nodes. For example, the

branch filters in Figure 4.6 reduces the number of nodes from 16 to 4.

Although branch filters can help to reduce the complexity of the PEG for the whole

variational program, it doesn’t help for the branch being shown. In other words, the

size of a branch filter is still exponential in the number of dimensions in that branch.

Chapter 5 discusses this issue.
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Chapter 5: Scalability

When the dimensions are independent, the size of a PEG is exponential in the number

of the dimensions in the corresponding expression. Thus constructing and presenting

PEGs immediately becomes intractable for expressions, except the most trivial ones. In

particular, if we represent each edit as an independent dimension, then choice expressions

can contain hundreds of dimensions. Section 4.3 presents the method of using branch

filters to show just part of the PEG to the user. However, the part that is shown to the user

may be still large. This chapter investigates another method of addressing this issue. The

idea is to assign the same dimension to edits sharing the same intention, which reduces

the number of dimensions significantly and the sizes of PEGs exponentially. Section 5.1

explains this idea in detail. In Section 5.2, I present some empirical results about the

feasibility of this idea.

5.1 Grouping primitive edits into conceptual edits

In the previous section we have seen how branch filters can make PEGs more comprehen-

sible by showing just part of them. However, branches can also be very big if they contain

many edits. A potential approach to address this problem is to group different edits into a

single edit so that they are assigned the same dimension. To see the significance of this

idea, consider the following example. If we represent each edit in a unique dimension,
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then we may get the following expression.

A⟨1,2⟩ + B⟨3,4⟩ + C⟨5,6⟩ + D⟨7,8⟩

However, if the first and last two edits belong together and are viewed as a single edit,

then we get the following expression instead.

A⟨1,2⟩ + A⟨3,4⟩ + B⟨5,6⟩ + B⟨7,8⟩

We observe that while the PEG for the first expression has 16 nodes, that for the second

expression has only 4 nodes, reduced by a factor of 4.

In the following, we distinguish between different kinds of edits.

1. A primitive edit displays the differences at the lowest level, which can be a list of

lines, a sequence of characters, and even a single character between two plain text

files.

2. A lexical edit denotes a change of a meaningful atomic unit, which is known as

a token. Tokens can be names, keywords, identifiers or any low level language

elements.

3. A syntactic edit involves changes in higher-level program constructs, for example,

expressions, statements, or functions.

4. A conceptual edit consists of many syntactic edits or lexical edits that serve the

purpose of implementing a conceptual change. The term conceptual change has

a broad meaning, it may denote an addition of a feature in the source node code

within a single file, a refactoring of programs, or even a bug fix.
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public int days(int month) {

int [] l = {1,3,5,7,8,10,12};

if (Arrays.asList(l).contains(month))

return 31;

else

return 30;

}

public int days(int month) {
int [] large = {1,3,5,7,8,10,12};
int more = 31;

int less = 30;

if (Arrays.asList(large).contains(month))

return more;

else

return less;

}

Figure 5.1: Two different implementations, old (left) and new (right), for returning the
number of days for the given month.

Refactoring kind: RENAME_LOCAL_VARIABLE

Refactoring ID: 3

Arguments count: 2

Key: NewName

Value: large

Key: OldName

Value: l

Timestamp: 1406698679627

Refactoring kind: EXTRACT_LOCAL_VARIABLE

Refactoring ID: 4

Arguments count: 2

Key: ExtractedValue

Value: 31

Key: VariableName

Value: more

Timestamp: 1406698693783

Figure 5.2: Conceptual edits discovered by CodingTracker for the programs in Figure 5.1.

Conceptual edits are quite common in practice, in particular, when the initial devel-

opment has been finished. There has been a lot of work of identifying conceptual edits

from primitive edits. First, Dig et al. [2007] and Negara et al. [2012a; 2013] explored

this idea from the perspective of program refactorings.

We use the example presented in Figure 5.1 to illustrate this idea. In the figure, we

present two programs for implementing the same functionality of returning the number

of days for the given month in Java. The program on the right is the new program, where

underlined code highlights the changes. For this pair of programs, CodingTracker [Negara

et al., 2012a, 2013] discovers three conceptual edits. The first conceptual edit is the

refactoring RENAME LOCAL VARIABLE, presented in detail in the left of Figure 5.2. Since

the local variable l has been renamed to large at two different places in the program,

they are identified as one conceptual edit. Both the second and third edits are about the
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-- The old version

public class VerticalPlot{

void draw(Graph g, Shape s){...} }

public class VerticalRenderer{

void draw(Graph g, Shape s){...} }

public class HorizontalPlot{

void draw(Graph g, Shape s){...} }

public calss HorizontalAxis{

public int height(){...} }

public calss VerticalAxis{

public int height(){...} }

-- The new version

public class VerticalPlot{
void draw(Graph g)... }

public class VerticalRenderer{
void draw(Graph g, Shape s)... }

public class HorizontalPlot{
void draw(Graph g){...} }

public calss HorizontalAxis{
public int getHeight(){...} }

public calss VerticalAxis{
public int getHeight(){...} }

-- Inferred rules

for all x:*.*(Graph, Shape)

except VerticalRenderer.draw(Graph, Shape), argDelete(x, Shape)

for all x:*Axis.height() procedureRename(x, height, getHeight)

Figure 5.3: Two versions of a drawing editor (up) and the inferred edits (down).

refactoring EXTRACT LOCAL VARIABLE, and we present one edit on the right of Figure 5.2.

This edit is about extracting the constant value 31 into the local variable more.

A very different approach of discovering conceptual edits is to use rule deduction to

infer rules that describe low-level changes. A typical tool is LSdiff [Kim and Notkin,

2009; Nguyen et al., 2010; Kim et al., 2013]. Figure 5.3 presents two versions of a

drawing tool and the conceptual edits discovered by LSdiff [Kim et al., 2013]. We

observe that no refactorings can be identified from these edits because they involve

different classes and have no close relation (except that they are in the same package).

For these changes, LSdiff identifies two edits, represented in two rules. The first rule

says that, in all the classes, all the methods that have parameter type Graph×Shape are

changed so that the parameter of the type Shape is deleted. However, one exception is

the method draw in the class VerticalRenderer, for which no change happened. The
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-- Python 2.7.6

if (co->co_flags & CO_GENERATOR) {
...

Py_XDECREF(f->f_back);

f->f_back = NULL;

PCALL(PCALL_GENERATOR);

...

return PyGen_New(f);

}

-- Python 2.7.7

if (co->co_flags & CO_GENERATOR) {
...

Py_CLEAR(f->f_back);

PCALL(PCALL_GENERATOR);

...

return PyGen_New(f);

}

Figure 5.4: Code snippets from ceval.c in Python 2.7.6 and 2.7.7, respectively.

second rule says that all the methods named height in all the classes whose name ends

with the string “Axis” are renamed to getHeight.

While LSdiff uses rules to deduce high-level changes, some conceptual changes

are quite tricky and can’t be discovered easily. Figure 5.4 presents such an example,

which is about changes in ceval.c between Python 2.7.6 and 2.7.7. Since Py CLEAR also

assigns its argument to NULL, there is only one conceptual edit here. However, without

the knowledge about Py CLEAR, one would expect that there are two conceptual changes:

one changes the function name and the other one removes the assignment.

In summary, we have used three examples to demonstrate that conceptual edits are

quite common. What we would like to know is how many conceptual edits typically

occur between two consecutive versions for each changed file. It’s easy to count the

number of primitive edits in each changed file by textual diff, but it’s difficult to measure

the number of conceptual edits. If we knew the ratio of primitive edits to conceptual edits

in general, we could roughly estimate the number of conceptual edits. For that, we need



49

the ratio of primitive edits to conceptual edits and the number of primitive edits in each

file changed.

To answer these questions, our first attempt was to reuse the data from an empirical

study performed by Kim et a. [Kim et al., 2013]. They investigated the results of using

LSdiff to deduce conceptual edits for three projects: carol, dnsjava, and the LSdiff itself.

They found that in carol for each pair of consecutive versions, LSdiff deduced 10 rules

and 20 facts on average. Here each fact represents a change that is not subsumed in

any rule by LSdiff. Thus, if we treat each rule and each fact as a conceptual edit, each

pair of consecutive versions contains about 30 conceptual changes. They also reported

that each pair of consecutive versions contain about 1229 diff in LOC (Line Of Code),

which means that in carol the ratio of primitive edits to conceptual edits is about 40.

This ratio for dnsjava and LSdiff itself is 27 and 20, respectively. In carol, 13 files are

changed on average in each version. This implies that each changed file contains about

30/13 = 2.31 conceptual edits. That average number of conceptual edits in each changed

file for dnsjava and LSdiff itself is also below 3.

These results indirectly demonstrate the feasibility of PEG, at least for representing

changes when we can identify conceptual edits and the source code has become quite

stable. However, these results are valid only when we can in fact treat each rule as a single

conceptual edit. Also, their results didn’t show the worst case about the number of rules

and facts for each file in the three projects. For example, it’s likely that some specific

files can contain quite many conceptual edits. These issues challenge the conclusion

about the scalability of PEGs. To address this problem, we have performed an empirical

study presented in the next section.
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5.2 Empirical study

The study I performed focuses on the Python interpreter. Specifically, I compared each

pair of consecutive versions from Python 2.7.1 to 2.7.9, from 3.1 to 3.1.5, and from 3.2 to

3.2.1. Overall, there are 13 pairs. Each version of the Python interpreter contains about

75 files of C source code. For each two consecutive versions, I first wrote a script to filter

out all the files that contain changes and also log these changes. For each changed file, I

looked through all primitive changes that occurred and identified conceptual changes.

I grouped primitive edits into conceptual edits according to a set of rules. The rules

used most frequently are explained below. In other cases, the rules used are minor

variations of the presented rules.

1. The primitive edits are considered as one conceptual edit if many operations in

the old version are merged into one operation in the new version. This is quite

common for API changes. The following code snippet lists such an example from

ceval.c. The function Py CLEAR includes the functionalities of Py XDECREF and

also resets the argument pointer.

-- Python 2.7.6

Py_XDECREF(f->f_back);

f->f_back = NULL;

-- Python 2.7.7

Py_CLEAR(f->f_back);

2. The primitive edits are considered as one conceptual edit if a block comment

spanning multiple lines is added or removed.

3. The primitive edits are considered as one conceptual edit if changes are about the

same macro. The following code snippets list such an example from dtoa.c. Note

that the extra lines in Python 2.7.7 below were absent in Python 2.7.6. I view this
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as one conceptual edit since the lines added are for dealing with the change of the

macro MAX ABS EXP.

-- Python 2.7.6

#define MAX_ABS_EXP 19999U

-- Python 2.7.7

#define MAX_ABS_EXP 1100000000U

#if MAX_ABS_EXP > INT_MAX

#error "MAX_ABS_EXP should fit in an int"

#endif

4. The primitive edits are considered as one conceptual edit if multiple changes are

due to a variable renaming. For example, the following code lists such an example

from dtoa.c. These changes are identified as one conceptual edit since they are all

about renaming the variable nd to ndigits.

-- Python 2.7.6

nd0 = nd = s - s1;

...

nd += s - s1;

...

if (!nd && !lz) ...

-- Python 2.7.7

ndigits = s - s1;

...

ndigits += s - s1;

...

if (!ndigits && !lz) ...

5. The primitive edits are considered as one conceptual edit if a single if statement

is added. One example from sysmodule.c is given below. I treat these edits as a

single conceptual edit because if they are not changed at the same time, the change

will cause compiling error.

-- Python 2.7.6 -- Python 2.7.7

if (PyErr_Occurred()) {

Py_DECREF(version);

return NULL;

}

6. The primitive edits are considered as one conceptual edit if the changes are caused

by the change of the signature of some function. The following lists such an

example from ast.c.
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-- Python 2.7.7

static PyObject *

parsestr(struct compiling *c, const char *s){
...

if ((v = parsestr(c, STR(CHILD(n, 0)))) != NULL) {
...

s = parsestr(c, STR(CHILD(n, i)));

-- Python 2.7.8

static PyObject *

parsestr(struct compiling *c, const node *n, const char *s){
...

if ((v = parsestr(c, n, STR(CHILD(n, 0)))) != NULL) {
s = parsestr(c, n, STR(CHILD(n, i)));

7. The primitive edits are considered as one conceptual edit if the same statement is

added at multiple places. They are treated as a single conceptual edit because they

have the same functionality. The following example from ceval.c

-- Python 2.7.7 -- Python 2.7.8

if (_Py_Finalizing && tstate != _Py_Finalizing) {

PyThread_release_lock(interpreter_lock);

PyThread_exit_thread();

assert(0); /* unreachable */

}

...

if (_Py_Finalizing && _Py_Finalizing != tstate) {

PyThread_release_lock(interpreter_lock);

PyThread_exit_thread();

}

8. The primitive edits are considered as one conceptual edit if the changes are about

introducing a variable and the corresponding operations on the variable. The

following is such an example from pythonrun.c. I view these changes as one con-

ceptual change because all the changes are related to the variable Py Finalizing.
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-- Python 2.7.7 -- Python 2.7.8

PyThreadState *_Py_Finalizing = NULL; -- Global

...

_Py_Finalizing = NULL; -- Inside a function

...

/* Remaining threads...

_Py_Finalizing = tstate;

9. The primitive edits are considered as one conceptual edit if a function is added. The

whole function is treated as a conceptual edit. One such example from marshal.c

is shown below.

-- Python 2.7.5 -- Python 2.7.6

static void

w_pstring(const char *s, Py_ssize_t n, WFILE *p){

W_SIZE(n, p);

w_string(s, n, p);

}

10. The primitive edits are considered as one conceptual edit if the visibility of a

sequence of statements is restricted through a use of macros. The following code

snippets present such an example from bltinmodule.c.

-- Python 2.7.3

...

if (unicode_newline == NULL) {

Py_CLEAR(str_newline);

Py_CLEAR(str_space);

return NULL;

}

if (unicode_space == NULL) {

Py_CLEAR(str_newline);

Py_CLEAR(str_space);

Py_CLEAR(unicode_space);

return NULL;

}

-- Python 2.7.4

#ifdef Py_USING_UNICODE

...

if (unicode_newline == NULL) {

Py_CLEAR(str_newline);

Py_CLEAR(str_space);

return NULL;

}

if (unicode_space == NULL) {

Py_CLEAR(str_newline);

Py_CLEAR(str_space);

Py_CLEAR(unicode_space);

return NULL;

}

#endif
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11. The primitive edits are considered as one conceptual edit if multiple calls of

the same function are replaced by calling another function. For example, the

following is such an example from compile.c. We observe that all places calling

PyObject REPR(x) have been replaced to call the function PyString AS STRING(

PyObject Repr(x)). Thus they are treated as one conceptual edit.

-- Python 2.7.8

PyObject_REPR(c->u->u_ste->ste_id),

PyObject_REPR(c->u->u_ste->ste_symbols),

PyObject_REPR(c->u->u_varnames),

PyObject_REPR(c->u->u_names)

PyObject_REPR(name),

PyObject_REPR(co->co_freevars));

-- Python 2.7.9

PyString_AS_STRING(PyObject_Repr(c->u->u_ste->ste_id)),

PyString_AS_STRING(PyObject_Repr(c->u->u_ste->ste_symbols)),

PyString_AS_STRING(PyObject_Repr(c->u->u_varnames)),

PyString_AS_STRING(PyObject_Repr(c->u->u_names))

PyString_AS_STRING(PyObject_Repr(name)),

PyString_AS_STRING(PyObject_Repr(co->co_freevars)));

12. The primitive edits are considered as one conceptual edit if some code of a com-

plicated function has been extracted out to form another function. One example

from sysmodule.c is given below. The function sys getsizeof in Python 2.7.8

contains 59 LOC. In Python 2.7.9, this function contains about 20 LOC. This is

realized by extracting most computations into a new function PySys GetSizeOf.
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-- Python 2.7.8

sys_getsizeof(PyObject *self, PyObject *args, PyObject *kwds){
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:getsizeof",

kwlist, &o, &dflt))

return NULL;

...

if (PyType_Ready(Py_TYPE(o)) < 0)

return NULL;

...

}

-- Python 2.7.9

size_t _PySys_GetSizeOf(PyObject *o) {
...

if (PyType_Ready(Py_TYPE(o)) < 0)

return (size_t)-1;

...

}
sys_getsizeof(PyObject *self, PyObject *args, PyObject *kwds){

...

if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|O:getsizeof",

kwlist, &o, &dflt))

return NULL;

size = _PySys_GetSizeOf(o);

...

}

13. The primitive edits are considered as one conceptual edit if the definition of a type

has changed and other changes in response to that change. The example from

dtoa.c, presented in Figure 5.5, illustrates this rule. I view these changes as one

conceptual edit since the they are all related to the removal of fields of BCinfo.

14. The primitive edits are considered as one conceptual edit if multiple statements

that are introduced at the same time are removed simultaneously. For example, in
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-- Python 3.1.1

struct BCinfo {

int dp0, dp1, dplen, dsign, e0, inexact;

int nd, nd0, rounding, scale, uflchk;

};

...

dsign = bc->dsign;

bc.dp0 = bc.dp1 = s - s0;

bc.dp1 = s - s0;

bc.dplen = bc.dp1 - bc.dp0;

-- Python 3.1.2

struct BCinfo {

int e0, nd, nd0, scale;

};

Figure 5.5: Changes related to a type definition are viewed as a single conceptual edit.

-- Python 2.7.8

if (_Py_Finalizing && tstate != _Py_Finalizing) {

PyThread_release_lock(interpreter_lock);

PyThread_exit_thread();

assert(0); /* unreachable */

}

...

if (_Py_Finalizing && _Py_Finalizing != tstate) {

PyThread_release_lock(interpreter_lock);

PyThread_exit_thread();

}

-- Python 2.7.9

Figure 5.6: The edits of removing both statements that were introduced in the previous
change are classified as one conceptual change.

Figure 5.6, both if statements were introduced in Python 2.7.8 but were removed

in Python 2.7.9. Thus they are considered as one conceptual edit.

Based on these rules, Figure 5.7 presents the study results in detail. In the figure, we

list the old and new version compared, the number of files changed (nf ), the total number

of primitive changes (tp), the total number of conceptual changes (tc), the maximum

number of primitive changes among all the files changed (mp), the maximum number

of conceptual edits (mc), the ratio of primitive edits to conceptual edits, and the number

of conceptual changes per file (cpf ). Note that we don’t present the ratio of mp over

mc since they may not occur in the same file. For example, in the change from 2.7.3
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old version new version nf tp tc mp mc ratio cpf

2.7 2.7.1 6 42 13 27 4 3.2 2.2
2.7.1 2.7.2 9 359 21 214 12 17.1 2.3
2.7.2 2.7.3 12 106 25 21 5 4.2 2.1
2.7.3 2.7.4 16 546 51 260 10 10.7 3.2
2.7.4 2.7.5 1 5 1 5 1 5.0 1
2.7.5 2.7.6 5 84 6 51 2 14 1.2
2.7.6 2.7.7 4 59 6 49 3 10.0 1.5
2.7.7 2.7.8 6 49 7 17 2 7.0 1.2
2.7.8 2.7.9 9 218 17 80 4 12.9 1.9

3.1 3.1.1 5 37 13 13 6 2.8 2.6
3.1.1 3.1.2 16 1445 117 769 43 12.4 7.3
3.1.3 3.1.4 8 122 13 63 6 9.4 1.6
3.1.4 3.1.5 2 12 7 8 4 1.7 3.5

3.2 3.2.1 11 258 36 67 10 7.2 3.3

overall 110 3342 333 769 43 10.0 3.0

Figure 5.7: Results of the empirical study of identifying conceptual edits. The number nf
denotes the number of files changes. The columns tp and tc denote the total number of
primitive edits and conceptual edits, respectively. The ratio in the table is computed as
tp/tc. The columns mp and mc denote the number of maximum primitive and conceptual
edits, respectively. The column cpf shows the number of conceptual changes per file.

to 2.7.4, two files contain 10 conceptual changes whereas their primitive changes differ

significantly. While one contains 260 primitive changes, the other contains only 42.

From the figure, we observe that the average ratio of primitive edits to conceptual

edits is 10. Also, the average number of conceptual edits is only 3. While most files

contain very few conceptual edits, the file dtoa.c has 43 conceptual changes from version

3.1.1 to 3.1.2. The number of primitive edits for that file is 769.

To give a better idea about the number of conceptual edits in files, Figure 5.8 shows

the percentage of all files against number of conceptual edits. Each point (x,y) in the
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Figure 5.8: Number of conceptual changes over all the files. Note that two points (31,99)
and (43,100) have been omitted in the figure to make the rest of the figure more readable.

graph denotes that y% of all files have fewer than x conceptual edits. For example, the

point (4,85) represents the fact that 85% of all the files contain at most 4 conceptual edits.

A PEG can handle 4 number of conceptual edits very well because it contains at most 16

nodes.

Figures 5.7 and 5.8 show that while some files may contain quite many conceptual

edits, the frequency of that happening is very low. For example, in the 110 files I

investigated, only 2 files contain more than 12 edits. Also, 94% of all the files contain

fewer than 7 conceptual edits. Thus, we conclude that PEGs are scalable in practice, at

least when source code is relatively stable. In cases with more than 4 independent edits,

we can employ the concept of branch filters to reduce the complexity of PEGs.
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Chapter 6: Conclusions

In this project, I have proposed a choice edit model as a new foundation for reasoning

about edits and supporting more flexible selective undo, in particular, partial selective

undo, which wouldn’t be possible without untangling entangled edits. Based on the

choice calculus, the edits in the choice edit model are highly compositional, allowing edits

to be transformed systematically and identified for undoing without affecting other edits.

Another advantage of the choice edit model is that discovering relations among edits is

made simpler and formal. Note that the inability of precisely detecting dependencies

among edits is a main obstacle for supporting partial selective undo.

This project has further presented the concept of PEGs to facilitate users of reaping

the full benefits of the choice edit model. In particular, they make the hidden relations

between program edit, undo, and redo operations, and the resulting programs explicit.

PEGs are dense and this fact reflects that the choice edit model is very flexible in

supporting selective undo and redo.

A potential challenge with PEGs is their high complexity. Concretely, a PEG can

have an exponential number of nodes with respect to the number of dimensions in

the expression. I have argued that this is often not a big problem in practice if we

represent conceptual changes. Through an analysis of the Python interpreter source code,

our empirical study showed that above 85% of all changed files contain fewer than 4

conceptual changes, demonstrating the feasibility of PEGs. Moreover, we can handle
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complexity by making PEGs modular through branch filters. Overall, we view the choice

edit model and PEGs as viable foundations for the study of powerful undo operations.
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