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Graphics hardware in mobile devices has become more powerful, allowing rendering 

techniques such as ray-cast volume rendering to be done at interactive rates. This increase of 

performance provides desktop capabilities combined with the portability of a tablet.  

Volumes can demand a high amount of memory in order to be loaded in. This becomes 

problematic when dealing with mobile operating systems, such as Android, while trying to 

load large volumes into an application. Even though tablets on the market today contain 1 – 

3 gigabytes of memory, Android allocates only a fraction of the total memory per application. 

Cases in which the dataset does fit into memory, but the resolution of the volume surpasses 

the capabilities of the mobile GPU, results in an unresponsive application. Although 

downscaling the data is a remedy to both the lack of memory and GPU performance, it is 

sacrificing potentially useful information. This loss of data is undesired in scientific fields, 

such as medical imaging. Combining both downsizing and data division tactics, this research 

project introduces a method that allows the user to view the entirety of the dataset as a 

whole and zoom in on the native resolution sub-volumes. Additionally, our method allows 

the GPU to perform at an effective level to achieve interactive frame rates.  
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1 - INTRODUCTION 
 This paper will go over the details on the volume rendering application, Beaver 

Volume Renderer (BVR), created for the Android OS. The goal of this project is to explore the 

capabilities of a next-generation mobile GPU, the NVIDIA Tegra K1, by creating an application 

that is aimed towards helping veterinarians in either diagnosing animals with certain 

ailments, prepping for surgery, or helping educate students on the anatomy of a given animal 

by visualizing 3D datasets created by CT or MRI scans via volume rendering. 

Given how technology is moving, especially in the GPU scene, mobile devices are becoming 

even more of a viable option for 3D visualizations. State of the art mobile processors are 

starting to approach the performance of low-end desktop graphics cards. Since the 

performance of these GPUs are starting to rise, computational-expensive rendering 

techniques are becoming possible to perform at interactive frame rates.  

During our search for a device that has a next-generation mobile processor, NVIDIA released 

their SHIELD Tablet, which houses the Tegra K1 – a mobile processor that has 192 GPU cores, 

the same sort of cores that can be found on a low-end modern desktop GPU. Combining the 

convenient form factor and touchscreen found with a tablet, BVR was developed with the 

SHIELD in mind.  

This paper will begin with providing some background information. First, we briefly go over a 

few popular techniques to accomplish volume rendering. After, we discuss what has been 

previously done within the field of mobile volume rendering. Following the previous work 

discussion is a summary of technical specifications for the SHIELD Tablet. We will go over the 

limitations that a mobile device and the Android OS brings to the table and propose solutions 

to those shortcomings. Finally, a description of the data used is given.  

Once a general background has been established, we discuss the implementation details. To 

begin, we go over how the data is pre-processed and the bookkeeping that comes along with 

it. Second, we go over more detail on the ray-casting algorithm. Next, details of how the 

volume is explored will be given. After implementation details are finished, the results are 

given and we suggest what improvements can be put into BVR for future iterations.  
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2 - DISPLAYING 3D SCALAR DATA: VOLUME RENDERING 
 Volume rendering is a valuable 3D visualization technique, giving the user a unique 

ability to reveal interesting information from volumes of data, shown in the figure below. As 

one of the more expensive rendering techniques in scientific visualization, volume rendering 

has been categorized into two basic approaches – plane based and ray-casting.  

 

Figure 1 Example of the capabilities of what volume rendering can do while manipulating the variables of the 
rendering algorithm (https://www.evl.uic.edu/aej/524/pics/volume_texmap.jpg) 

The textured based method involves stacking multiple planes on top of each other and using 

the graphics pipeline to blend all of the textures together, which results in a composite image 

of the 3D dataset. A common approach utilizes three sets of axis-aligned planes, all with their 

own set of 2D textures. For example, if the viewer goes from looking down the x-axis to 

looking down the y-axis, the set of z-axis aligned textures would be loaded in. All this requires 

is the texture setup and understanding which direction the user is viewing.  

Another approach using multiple planes is to composite the image through view-aligned 

quads and sample within a 3D texture. The 3D texture is then sampled dependent on where 

the planes intersect the volume. View-aligned planes require rotating the amount of planes 

and computing the sample points for each plane. The following figure illustrates how these 

two techniques are done.  
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Figure 2 Illustrates the two various approaches to plane based volume rendering. Above is axis-aligned and 

below is view-aligned. (http://wwwvis.informatik.uni-stuttgart.de/~engel/eg2002_star/) 

Ray-casting is a technique in which the geometry represents the data (usually a cube or a 

sphere), accompanied by 3D texture coordinates. These texture coordinates are considered 

the starting locations of each ray. The rays then march through in the same direction as the 

viewer is looking into the scene. At each step, the ray picks up a sample and composites it 

with the accumulation of what has been sampled so far, which is scaled by an alpha. The 

termination condition is when either maximum alpha is acquired, the ray has stepped out of 

the bounds of the dataset, or the ray has hit the maximum amount of steps. The figure below 

illustrates the how this algorithm works.  

Figure 3 Illustration of the ray-casting algorithm. Note that the distance traveled per step and the amount of 

steps total can affect the quality of the image. (https://www.packtpub.com/packtlib/book/Game-

Development/9781849695046/7/ch07lvl1sec54/Implementing%20volume%20rendering%20using%20single-

pass%20GPU%20ray%20casting) 
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2.1 - Volume Rendering on Mobile: 2D Texture Slicing or Ray-Casting? 
Due to the low-performance cost of the algorithm, 2D texture rendering has been 

revitalized by various developers while creating mobile volume renderers. Drawing quads 

and sampling textures is much quicker than having to loop through various amounts of ray-

casting steps. The downfall of 2D texture rendering is that there are some noticeable 

artifacts while manipulating the data since the slices cannot always be perpendicular to the 

camera view.  

Ray-casting solves the downfalls of 2D texturing, since all of the rays being casted are 

perpendicular to the viewing plane. The downfall of the ray-casting algorithm is that it can 

become very computationally heavy, quickly. The reason why this can cause big performance 

hits can be found inside the implementation details found later in this paper. As stated in the 

introduction, one of the driving forces for BVR is to test out the newer generation of mobile 

GPUs, which is the reason why ray-casting is the chosen method for this application.  
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3 - PREVIOUS WORK 
 A survey released in winter of 2016, “Mobile Volume Rendering: Past, Present 

and Future” by Jose M. Noguera et. al., discusses the current state of the field and how it’s 

going to be shaped in the future. The authors also mention similar concerns which will be 

brought up later. These concerns are hardware limitations, server/network dependencies, 

and the ability to create a usable interface.   

Noguera continues to discuss different types of implementations that are currently being 

used in modern mobile volume rendering. These types include: 

 Thin – the device is only responsible for displaying a rendered image and is 

server dependent 

 Fat – the device renders and displays the visualization, but accesses the dataset 

through a network.  

 Local – the device is responsible for everything, no network is required. 

The figure below illustrates the responsibilities of the various implementation types. From 

the above definitions, BVR is considered a local implementation, sort of. Some pre-

processing is done for the datasets used in the app, but apart from that, everything resides 

on the device.  

The Noguera survey reports performance numbers (measured in frames per second) for thin, 

fat, and local implementations. The performance of BVR will be compared to the numbers 

reported to see where it stands amongst existing implementations.  

Figure 4 Noguera's visual explanation of each implementation type's responsibilities. Anything not shown is handled by 

the server (Noguera, 2016) 
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3.1 – Thin Implementations 
 Noguera reports that the minimum frame rate for a thin implementation was 1.7, 

which was done with a volume resolution of 512 x 512 x 415, developed by Hachaj. Looking 

into the paper authored by Hachaj, the Noguera reported the performance from the 

harshest test case, which includes rendering, transferring, and displaying a 1024 x 1024 

image. The server used in Hachaj’s implementation has a Core 2 Duo and a NVIDIA GeForce 

GTX 770. The following figure shows various devices running Hachaj’s application.  

The reported maximum performance for a thin implementation was done by Gutenko. 

Gutenko’s implementation was reported by Noguero to be done at 30 fps, with a volume size 

of 512 x 512 x 431. Unfortunately, we were unable to access the paper from which these 

numbers came, so it’s unknown whether it’s pushing the implementation to the limit. We 

instead examined the Gutenko’s academic website and was able to find details on the server 

used - a desktop system with two 6-core CPUs, 64 GB of memory and a professional grade 

NVIDIA Quadro K5000.  Given the system specifications, it is definitely plausible that this 

Figure 5 Hachaj et al.'s thin volume rendering application. When stressed, this performs as low as 0.7 fps (Hachaj, 

2014) 

Figure 6 Gutenko's application being ran on a tablet 

(Gutenko, 2014) 
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server can handle a very large load and perform and high frame rates. The previous figure 

shows Gutenko’s application.  

3.2 – Fat and Local Implementations 
 Noguera’s survey continues on, reporting the performances of fat and local 

implementations. Noguera does not explicitly state why fat and local implementations are 

lumped into the same category, but one can safely assume it’s due to the fact that these 

applications rely on the device itself to render the images. The lowest performing 

implementation was Noguera’s own work, reporting a low 0.8 fps. This implementation was 

done using a ray-casting algorithm on an iPad 2 while experimenting with saving data to 2D 

textures. The application was tested by using a 512 x 512 x 384 dataset. Examining the 

Noguera paper with this implementation, there wasn’t an image provided with the reported 

dataset, however the figure below is an example given from Noguera.  

The maximum reported performance for a fat implementation is 7.3 fps, which was 

developed by Rodriguez et al. using a 2D-textured slicing technique on a 256 x 256 x 256 

dataset. The figure below gives a good example of how the varying amount of slices of 

Rodriguez’s implementation can affect the quality of the visualization.  

Figure 7 Sample from Noguera's ray-casting 

application on an iPad 2 (Noguera, 2012) 
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3.3 – Fat and Local vs. Thin 
As the reader can observe from all of the figures presented in this chapter, thin 

clients produced higher quality images, while the local implementations produced a bit 

smaller, downgraded versions. This is due to the fact that if a local implementation was 

attempting the same job as one of the thin servers, it would take a while for the renderings 

to be completed.  

3.4 – Future of Mobile Volume Rendering 
Noguera continues on to discuss a few problems that future work will have to 

address. The first is dealing with multi-resolution: 

“Considering the small size of the mobile displays, multi-resolution rendering is a 

very interesting research line on mobile platforms because it would allow us to avoid 

spending resources on parts of the volume that are not visible.” (Noguera et al., 

2016, sect. 6.2.1) 

The above is then followed up with stating multi-resolution is a mature topic for desktop 

platforms, but haven’t been ported to a mobile device because of the computational 

complexity.  The authors continue by bringing up the difficulty of creating a usable interface 

on such a limited device.  

Figure 8 Balsa's application visualizing a 256 x 256 x 113 CT scan. The amount of slices used in the 2D-textured 

algorithm is 64, 128, and 256. (Rodriguez, 2012) 
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BVR addresses the issues of multi-resolution, not rendering non-visible parts of the volume, 

and usability through two methods presented in this paper. 
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4 – NVIDIA SHIELD TABLET & THE TEGRA K1 
The NVIDIA Shield Tablet is an 8” tablet which uses a slightly altered version of the 

Android OS. The reason why this device was chosen was due to the nice, compact form 

factor, a nicely sized screen, and having a powerful Tegra K1 processor inside. The Tegra K1 is 

NVIDIA’s way to bring desktop performance down to the mobile arena, which is 

accomplished by having 192 GPU cores on board. 

 

Figure 9 The NVIDIA SHIELD Tablet, designed for bringing desktop gaming to the mobile arena. 

(http://core0.staticworld.net/images/article/2014/08/shieldtablet-100367701-primary.idge.jpg) 

To put this in perspective, the K1 has more than half of the 336 GPU cores that can be found 

on a mid-grade NVIDIA GTX 560, which was released 5 years ago. It doesn’t seem like much 

in comparison, but having that sort of power inside of a tablet means there can be desktop-

like performance for applications on a device that can (almost) fit in the palm of your hand. 

Since working on this project, NVIDIA had released the Tegra X1, which holds 256 GPU cores 

with their more advanced Maxwell architecture. The newer chip is featured in a few NVIDIA 

products so far, but not in a tablet form. The performance on mobile devices are only going 

to continue to grow. However, there are some key disadvantages when working with a 

mobile form factor.  
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4.1 - The Disadvantages of a Mobile Device 
 When creating a mobile application, there are obvious disadvantages that come with 

developing on a tablet. These disadvantages come from the fact that desktop machines are 

inherently more powerful, easily upgradeable, and have more peripherals to play with 

(multiple monitors, better GUI capabilities). There are three distinct disadvantages that come 

to mind when dealing with a tablet.  

The first disadvantage is the amount of system memory. High-end desktops can come with 

16/32/64 GB of memory, allowing for large datasets to be loaded in at once. The SHIELD 

Tablet, however, only has 2 GB of shared memory, which isn’t much room. When the size of 

the data is larger than the size of what’s allowed to be loaded, this is called an out-of-core 

problem. The reader will see in later sections that with the addition of application memory 

constraints introduced by Android, it’s easy for a volume to surpass the 3D texture size limit 

depending on the representation of each voxel. 

The second disadvantage comes from a user experience point of view. With a desktop, the 

user has a large screen, with various peripherals readily available. With a tablet, all the user 

has is a 7”-10” touch screen. This disadvantage poses a challenge to the developer to create 

a clean, yet usable, interface. Note that both of these disadvantages were also brought up in 

the previous works section.  

The third disadvantage goes back to hardware limitations. Even though mobile devices are 

becoming more powerful, it doesn’t mean there are still strict limitations in performance. In 

order to keep an interactive user experience, the dimensions of the volume need to be 

within a threshold to allow the GPU to perform the rendering algorithm at interactive frame 

rates. It will be shown in the results section that even though a dataset can entirely fit into 

memory, a low frame rate can be achieved which equates to a poor user experience.  

4.2 - Addressing the Disadvantages 
 With both the restrictions of hardware and user experience capabilities, three 

questions concerning the development of BVR came up. The first question is:  

“How will the user view the entire dataset if it won’t fit inside memory or render at 

interactive frame rates?” 
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Since the amount of CPU power is lower compared with a desktop, mixed with the desire of 

keeping the app at interactive frame rates, any sort of image stitching algorithms are not 

considered – those algorithms are too power hungry and can cause a drastic change in the 

frame rate. Implementations have been done on desktop machines where they were able to 

overcome this problem, but considering the computation limitations, it wouldn’t be very 

practical on a tablet. The solution, for the time being, was to create low enough resolution 

copies of the given dataset and display those.   

Taking into account the previous solution of downsizing the dataset, the second question is:  

“How will the user explore the entire dataset in full resolution, interactively?”  

The issue of downscaling the data is that data is lost in the process, which can provide critical 

insight for the user. BVR’s solution is providing a way to navigate through the full resolution 

data with some sort of understanding of where they are in the data. This is done by splitting 

the dataset into sub-volumes at full-resolution, while also giving users a set of controls to 

maneuver through the sub-volumes. Each sub-volume has the dimensions that allow for 

interactive frame rates. The user is able to move forward and backwards throughout the data 

determined by the direction that they are looking at. The following figure displays a 2D 

representation of this idea. 

 

Figure 10 Hierarchy of resolution. As the user zooms in closer to the data, the more detail that will be seen. The 

highest resolution data will be segmented into sub-volumes. Each dot represents a “grid point”, which will be 

introduced in the implementation section.  

Now that the user is able to explore the high-res data, they may come across an interesting 

area within the dataset, however the area is not centered or is straddling a cutoff point 

between sub-volumes. This poses the third question:   
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“How will the user focus on a meaningful sub-volume at the native resolution of the 

dataset?”  

When it comes to the case of a user wanting to focus on a specific area of interest, it can be 

tricky to cut out the desired sub-volume. There are techniques such as object selection, but 

dealing with the transparency and depth of the visualization, it is difficult to select an area 

the user actually wants. Luckily, people who are used to viewing MRI/CT scans are 

comfortable seeing one image at a time and understand the flow while flipping through the 

images. Implementing a simple ‘bread-slice’ interface that the user is more accustomed to 

gives the capability of choosing a focal point for a custom sub-volume. The details of how 

these implementations were done will be explained in later sections.  

 

Figure 11 Slices of a scan and how they’re usually visualized. 

(http://www.ajnr.org/content/25/3/516/F1/graphic-2.large.jpg) 
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5 - THE TECH: ANDROID DEVELOPMENT 
 This section will go through some of the high-level details of developing an Android 

application. This includes enabling features such as OpenGL ES, file permissions, and system 

memory capacities. But first, we will go over the difference between Android software 

development kit (SDK) and the native development kit (NDK).  

The Android SDK is the typical choice when developing an Android app. The SDK uses Java as 

the programming language and comes with a debugger, various libraries (such as OpenGL ES 

and built in GUI resources), and a handset emulator. If unfamiliar with Android programming, 

the SDK is the most friendly when it comes to getting an app up and running. Additionally, 

there are plenty of tutorials on the internet to help with some basic features of Android, such 

as tracking a dragging touch, how to display an image, inserting buttons, etc. The following 

figure shows the SDK portion in the smaller box. 

 

Figure 12 Differences between the Android SDK and NDK. The NDK involves all the steps, whereas the SDK 

involves the smaller selection. This model is accurate up to Android 4.4 

(https://software.intel.com/sites/default/files/7709-f-1.jpg) 

The Android NDK is a way to compile a C/C++ program and executing that binary. This brings 

the program closer to the hardware, as it won’t have to jump through the Java layer as much. 

Although it will have a bit faster execution, it only really benefits heavy computational 
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algorithms or if it’s a huge burden to convert C/C++ code into Java. This increases the 

difficulty to create an app and hook into features that are readily available inside the SDK 

(such as GUI features, Bluetooth, camera, etc.).  

The general consensus, also a suggestion by Android, is to use the SDK if it isn’t too much of a 

burden to make the program in Java. Being new to Android development and having no prior 

programs that have the functionality needed for this project, we used the Android SDK as the 

basis for BVR. 

5.1 - Quirk of Android: Memory Management 
 There is one quirk about how Android deals with memory management that makes it 

a bit more restricting of an OS to work with. According to the Android website, there is a set 

capacity on the amount of heap space allocated for a given application. This hard cap is 

determined by the amount of total system memory (if one device had 1 GB of memory, it 

would have a smaller cap than a device with 2 GB of memory). Even if there are a small 

amount of apps running in the background, the heap size of the app will be significantly 

smaller than the amount of actual system memory available. This makes the out-of-core 

problem even more prevalent.  

With that said, there are ways to let Android allocate more heap space for an app, through 

the use of a keyword inside the Android Manifest, a list of permissions and settings set by the 

app, called largeHeap. Setting that keyword to true gives a bit more space, but not enough to 

load into entire datasets. On the SHIELD Tablet, the normal heap size is 134 MB. When 

running with largeHeap, it goes up to 469 MB, giving a lot more breathing room.  

Another smaller quirk of Android are the permissions. In order to access certain parts of 

storage, use OpenGL ES, and other features (camera, Bluetooth, etc.), there needs to be 

permissions set inside the Android Manifest. BVR sets read permissions from the storage 

device so it can list out and access the datasets within the device.  

5.2 - Setting up Android 

 There’s an installer which can be downloaded from the official Android website. 

Since the hardware on the tablet is a bit different than a normal Android device, NVIDIA has 

supplied their own development pack, called CodeWorks for Android (formally known as 

AndroidWorks or Tegra Android Development Pack). CodeWorks installs the necessary 
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drivers to recognize the SHIELD Tablet, a graphics debugger, Eclipse and a few other NVIDIA 

specific features. The debugger used in this project was the basic Android debugger that is 

found in Eclipse. 

5.3 - OpenGL ES 3.0 

 When originally looking at which graphics API to use, OpenGL ES 2.0 was the most 

popular – most modern mobile devices at the time had support for the API. ES 2.0 lacked 

something that 3.0 had which is critical to the volume rendering algorithm used in BVR: 3D 

textures. More information why that is critical is to come in the implementation section of 

the rendering algorithm.  

 Apart from the features, another aspect of OpenGL is understanding the limits of the 

GPU. Pushing the chip too far will drastically affect the interactive experience, as shown later 

in the results section. We will present the frame rates of various combinations of settings, 

texture sizes and viewing angles to gauge what is adequate for this specific device.  

5.4 - Android End Note 

When beginning this project, we were completely new to Android development. It’s 

beneficial to experiment with demo applications and read through development tutorials to 

understand the flow of an Android application. Usually starting small and incrementally 

adding in features is what we suggest.  Once comfortable, there is a great website with 

plenty of OpenGL ES tutorials which help with incorporating OpenGL ES to an Android 

application. Here’s the website:  

http://www.learnopengles.com/ 

 

 

 

 

 

 

http://www.learnopengles.com/
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6 - THE DATA 

6.1 – Dog Head 
The data used in this project is a set of MRI scans provided by Dr. Sarah Nemanic of 

the College of Veterinary Medicine at Oregon State University. This dataset is composed of 

894 separate images at a resolution at 512x512. Sample images of the dataset are shown at 

the end of this chapter. The format in which the images came is DICOM, which is a standard 

within the medical imaging field. There are plenty of DICOM libraries for reading these files, 

however none that was designed strictly for Android. As an effort to keeping the app 

specifically for rendering, the decision to make offline image conversion was made.  

The type of images being used are gray-scale, where the higher the pixel value, the higher 

the density of what was being scanned. Each pixel is represented by an unsigned byte. The 

downside of this dataset is that all of the images are separately stored, not loaded into one 

file. In order to keep the data more manageable, a method to combine all of the images 

together was needed.  

6.2 – Dataset Per-Voxel Size 
 The total size of the datasets are not only determined by the resolution of the 

dataset, but by how many bits are used per voxel. For example, each voxel inside the dog 

head dataset is represented by 8-bits, which makes the entire dataset approximately 234 

MB. If each voxel was represented by 16-bits, the dataset would become 468 MB, 1 MB less 

than the largeHeap allocation shown in section 5.1. At this time, BVR handles only 8-bit 

datasets, although it’s possible to expand to support various other representations.   

 Full-resolution datasets, such as the dog head, can be loaded within the 489 MB 

memory allocation, but the framerate takes a considerable hit due to how the ray-casting 

algorithm performs on volumes with larger dimensions. We will present the performance of 

rendering the entire dataset and the experience of exploring the data in the results section.  
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Figure 13 Sample images from the dataset. The entire dog head dataset is comprised of 894 images similar to 

those above. 
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7 - BVR: THE BEAVER VOLUME RENDERER 
The goal of BVR is to provide methods to allow for interactive experiences while not 

having to sacrifice the quality of the data. We first created a sample application which could 

perform volume rendering. We had to set the application to allow for OpenGL ES 3.0 and file 

I/O. Once we had a simple image in the application, the implementation of the rendering 

algorithm was done. Acquainted with rendering on Android via OpenGL ES 3.0, we began to 

develop BVR. We started off with converting the datasets into one, manageable dataset.  

7.1 - Data Pre-Processing 
This section will go over how the dataset is pre-processed for use inside BVR. This 

includes downsizing of the data and split up into manageable chunks. Since the dataset 

comes in hundreds of images, some file consolidation was needed.  

7.1.1 - Combining the DICOM Images 

We needed to come up with a method to take all of the images within the dog head 

dataset and combine them into one, simple file. Extracting the data from the Dog Head 

DICOM images was a multi-step procedure using a public domain program named ImageJ 

and a simple program we created that extracts pixel information out of an image and puts it 

all into one file.  

ImageJ is an open source scientific image viewer that has the following capabilities: 

 Ability to save DICOM files into JPEG or BMP file formats 

 Scripting which allows us to open and convert multiple images without the hassle 

of manually doing it.  

The two features listed above gave the ability to convert the dataset from DICOM to BMP. 

Once the BMP files were created, the BMP pixel extractor program was used to place all of 

the data into one file.  

The final product was a file that had all of the pixel data from the entire dataset. The file is 

simply a list of unsigned bytes, where every (single image width) x (single image height) 

represents one layer of the 3D dataset, and the depth represents the amount of images 

total. For example, to access the 5th slice/image of the dataset, the developer would seek to 

byte n = 4 x 512 x 512 byte and then read 512x512 bytes. The following figure illustrates how 

the file is created. 
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Figure 14 Illustration of how the dataset files were created. P represents the amount of pixels in each slice. 

Starting at the top, each row of pixels are written to the file. For BVR, each pixel is represented by a byte. For 

example, when accessing the middle slice in the file byte stream, the developer needs to seek P amount of 

bytes in the file and read in P amount of bytes.  

Another way of combining the images is to use MATLAB, which has a toolset specifically 

made for DICOM files. The developer is able to loop through each file of the dataset, read in 

the contents, and form a 3D array of information from it. This method was more of an 

afterthought, once the previous method was already finished.  

7.1.2 – Down-sampling the Dataset:  
The algorithm used in the pre-processing stage was a two-step bilinear interpolation 

algorithm. Although we can upscale with this algorithm, we only concerned ourselves with 

downscaling. Our preprocessing program performed bilinear interpolation between each 

slice in the z-direction, interpolating the x and y values down a given factor. An additional 

bilinear step is then taken between each slice in the x-direction, interpolating the y and z 

values. Once this was done, the result was a scaled down volume. The image below depicts 

how this was done. 

 

Figure 15 Idea of how the rescaling was done in the preprocessing stage. Using bilinear interpolation, we were 

able to create a downscaled image which looked good far away, but grainy close up. 
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The factors that the dataset was being scaled down were factors of 2. The dog head went 

from 512 x 512 x 894 down to 256 x 256 x 447 to make the medium-sized dataset. Then, 

from there, we scaled the medium-sized dataset down a factor of two to create a 128 x 128 x 

223 dataset. The reason for the multiple resolutions was to experiment to see how well the 

various levels of details looked and worked.  

Now that we have a way of viewing the entirety of the dataset, we have answered the first 

question brought in section 4.2 – “How will the user view the entire dataset, if it won’t fit 

inside memory?” 

7.2 - Ray-Casting: A Closer Look 
This section will go over ray-casting in more detail. From an algorithmic standpoint, 

ray-casting is a straight forward approach. Reiterating from before, ray-casting is done by 

taking several points on the surface of the geometry chosen and sampling along the direction 

that the viewer is looking.  

7.2.1 -The Geometry: Cube 
The geometry used in BVR is a simple cube with 3D texture coordinates on each 

corner. As you can see from the figure below, each texture coordinate will have a value 

between 0 and 1. The rasterization portion of the graphics pipeline will assign values to each 

pixel of the geometry that gets drawn, which will act as the starting point for each ray. The 

cube itself represents the boundaries of the data.  

 

Figure 16 Cube used for BVR. 
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7.2.2 - 3D Texture 
BVR utilizes OpenGL ES 3.0 for its ability to handle 3D textures. Without this feature, 

the sampling done for ray-casting would be much more complicated.  

7.2.3 - Variables inside the Algorithm  
 There are five variables to be considered: 

 Alpha – The variable which determines how translucent the data appears. 

Ranging from [0., 1.], the lower the value, the more of the inner pieces of the 

data is displayed. 

 Min value – The minimum value that will be applied to ray. If a sampled value is 

less than this, it is tossed out and the ray continues on.  Ranges from [0, 255] 

 Max value – Same idea as the min value, but instead the highest value allowed. 

Ranges from [0, 255] 

 Step size – the size of step each ray takes throughout its lifespan inside the 

volume. In practice, the size of the step should make sense to the resolution of 

the dataset; ideally, each step should be inside a new voxel that is somewhat 

near the recently visited voxel. Skipping over too many causes poor image 

quality.  

 Number of steps – The amount of steps to sample data. The lower the number, 

the faster the render will be, but it will cause a vanishing effect, as shown in 

figure.  

There isn’t a right number for any of the variables above. In the results section, we show 

what happens when varying certain values and the effect it has towards the performance of 

the application.  

7.2.4 – The Shader Loop 
The actual algorithm is a for-loop which lives inside the fragment shader. See 

Appendix A for a pseudo-code version of ray-casting. To summarize the main loop, which 

advances the ray, is the following process:  

 Check to see if the ray is outside of the boundaries 

 Sample the 3D texture and add to the accumulated color 

 Increase the accumulated alpha. If reached the max amount, then break out of 

the loop.  

 Advance the ray in the direction of where the viewer is looking by a distance of 

Step Size  

Note that the sample 3D texture phase gets a bit more complicated with additions pointed 

out in later sections.  
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7.2.5 – Ray Traversal 
The starting position of a ray is the interpolated texture coordinate for that given 

pixel. The ray then begins a traversal through the data in the direction of where the camera 

is looking.  The figure gives a visual representation of how this works. Each step length and 

the amount of maximum steps taken are both user defined.  

The finer the steps (to a limit bounded by the resolution of the data), the higher quality of an 

image the user will receive. Naturally, the number of steps dictate how fast the algorithm will 

run. As stated earlier, there is not a set value that is universal and the user must play around 

with these values to achieve an image fitting to their needs.  

7.2.6 – Coloring the Data: Transfer Function 
When a value is sampled, it isn’t necessarily a color that is being retrieved, but just 

some sort of data. The data inside the texture can be a density (in regards to medical 

imaging) or a temperature (3D heat maps). It’s up to the programmer to define a transfer 

function for these, whether it is with a gray scale or mapping values to a range of colors. This 

implementation uses a gray scale for the coloring scheme. In the future work section, we will 

discuss how to further improve this.  

7.2.7 – Determining the Opacity 
One of the termination conditions of this algorithm is reaching a maximum opacity 

for a ray. This is based off of the alpha value defined by the user. The following shows how 

it’s determined if the opacity of a color is reached:  

• Begin with a temporary alpha (alphaT) with a value of 1.0 

• The accumulated color is added with the product of alphaT, alpha, and the sampled 

color.  

• alphaT is then updated by subtracting the current value of alphaT and alpha.  

• If alphaT is zero (or within some tolerance, such as .001), that pixel has reached the 

total opacity and the ray exits the loop.  

For example, if the alpha value defined by the user is 1, that means it will go over the above 

process only once: the first value sampled (and that is inside the range of allowed values), so 

it will not penetrate deeper into the dataset.  
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7.3 - The Grid View 
This section will go over one of the main features of BVR, the grid view. When the 

user first loads the dataset, they are viewing with one of two downscaled volumes. Allowing 

the user to see everything, they are able to rotate and zoom in/out of the scene. Zooming far 

enough loads an even more downscaled dataset. Zooming in close enough begins to load in 

full resolution sub-volumes. This is where the viewer has the ability to explore the dataset 

without dealing with data loss from the downscaled volumes. This addresses the second 

concern brought up in section 4.2 – “How will the user explore the entire dataset in full 

resolution?”  

First, we will discuss how the volume is split and each sub-volume is identified. Second, we 

will go over how to keep track of the sub-volumes and how BVR knows which sub-volumes to 

load. Finally, an explanation of how the exploration controls work will be given.  

7.3.1 – Viewing the Down-Sampled Data 

Viewing the down-sampled data is straightforward. The user is able to move around 

the geometry to view various angles. Utilizing the pinch and spread gestures built into 

Android, the user can also control the zoom. Zooming is controlled by a scale factor. As the 

user pinches, the scale factor decreases, shrinking the geometry to mimic the dataset getting 

smaller. While spreading, the scale factor increase, enlarging the geometry and mimics the 

dataset becoming larger. 

The resolution swaps are done when the user either zooms too far away from the medium 

resolution dataset or too close to the smallest resolution dataset. The 3D texture is swapped 

in the background when a certain zoom threshold is given. BVR invokes the grid mode when 

the zoom factor becomes large enough.  

7.3.2 – Splitting the Volume 
There are two major ways of splitting the volume up – into different files or keeping 

the entire dataset in one file and paging in given sections of the file. BVR uses both 

approaches and there are pros and cons to each. 

Splitting the volumes into separate files allows loading the data into the scene to be done 

quickly. All that’s required is a file pointer to the correct file and one file read, from beginning 

to end, eliminating the need of seeking throughout the file to grab sub-volumes. The 
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downside of this approach is that the entirety of the dataset is broken up amongst various 

files, creating difficulties for extracting an arbitrary sub-volume.  

Leaving the entire dataset in one file allows for an easier time of creating custom sub-

volumes. The developer doesn’t need to worry about the logic behind extracting sub-

volumes from multiple files. The issue with this is that it still requires a lot of seeking and file 

I/O. A sub-volume requires data that is mostly non-sequential. For example, extracting a 256 

x 256 x 256 subset out of a 512 x 512 x 512 dataset will have 256 x 256 seeks and reads. The 

following figure illustrates the difference between the two approaches 

 

Figure 17 Left shows if the entire dataset was kept in one single file and the user queries for a sub-volume. 

Right shows the same scenario but the sub-volume is contained within its own file. Notice the amount of read 

calls that would be required to load in the left. 

As for the size of what to split the volume into, the obvious choice is slimming the size to 

something that the application can read in and the hardware handle. In the case of BVR, 

around 256 x 256 x 256 is the size that can be comfortably be read and displayed at a high 

frame rate. When splitting the dataset into different files, the user needs to be careful of 

how big the sub-volume slices are. Obviously, making the sub-volumes too large will still have 

the same issue of not being able to load it into memory. Making the sub-volumes too small 

will cause the rendered image to show too little information that could make no sense to the 

user. For BVR, the sub-volume slices were made at around 128 x 128 x 128. The reasoning 

behind this will be explained in the next section. 

7.3.3 – Viewing the Sub-Volumes 
Before going over how the grid view is created and traversed, we will discuss how 

the sub-volumes will be used to help view and understand the dataset. Rather than only 
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viewing one sub-volume at a time, there will be eight sub-volumes loaded in at once while 

exploring the highest resolution data. Doing so creates a 3D texture approximately 256 x 256 

x 256 in size.  

Modifications were added to the original ray-casting algorithm in order to sample all eight 

sub-volumes. Before going on, two types of texture coordinates need to be made:  

 Overall texture coordinates – The texture coordinates for the geometry being 

drawn, represented by blue in the figure below. 

 Local texture coordinates – The texture coordinates to sample one of the sub-

volumes. These coordinates are created by taking the current overall texture 

coordinates and translating them from various ranges to [0., 1.]. This is done to 

make sure that none of the sub-volumes are skipped over.  

Depending on the values of the overall texture coordinates (S, T, P), the coordinates were 

discretized into eight sections.  The following figure illustrates how the eight sections were 

split.  

Once the appropriate 3D texture is selected, the overall texture coordinates need to be 

translated into local texture coordinates for the appropriate sub-volume texture selected.  

Figure 18 How each of the eight sections are split up based on the 3D texture coordinate of the geometry. This allows the ray to 

identify which texture to sample inside the fragment shader. 
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For example, the figure above shows the orange sub-volume starts in the corner where the 

overall texture coordinates start at (0., 0., 0.). However, the range of texture coordinates that 

the orange textures covers is only [0, .5], in each direction. BVR takes the old range of [0, .5] 

and converts the current texture coordinate to a value between [0, 1]. So, the ray was at 

overall texture coordinate (0,0,0), the local texture coordinate is (0,0,0). If the ray advances 

to overall texture coordinate (.25, .25, 25), the exact middle of the orange texture, the local 

texture coordinate will be (.5, .5, .5).  

The reason why there are 8 sub-volumes loaded at once is to maintain some sense of 

continuity while exploring the dataset. This is why in section 7.3.2, the sub-volumes were 

split into approximate 128 x 128 x 128 chunks. Notice figure that whatever the current scene 

shows, there is at least one sub-volume shared between the two. This helps with giving the 

user a point of reference and seeing how the overall volume is connected, as shown in the 

following figure. 

  

 7.3.4 – Setting up the Grid 
The implementation of the grid view is comprised of grid points – a data structure 

which holds the information of what textures that point touches. Each grid point touches at 

least one sub-volume texture corner, with a maximum of eight textures and is spaced equally 

from each other. 

The amount of grid points are based off of the amount of sub-volumes created. There is one 

more grid point in each dimension than the amount of sub-volumes created. So in the case of 

the dog head, which is 4 x 4 x 4 sub-volumes, there are 5 x 5 x 5 grid points. 

Figure 19 Three steps through the high-resolution dog head volume of BVR. Left to right, the user can observe continuity while 

exploring. 
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Each grid point is classified as one of the following: 

 A corner – a point living on the one of the eight corners of the grid formation 

o Combination of bottom/top, upper/lower, right/left 

o Example: the bottom upper left corner, in Cartesian coordinates, is (-1, -

1, 1). The top upper left corner is (-1, 1, 1).  

 An edge – a point living on one of the edges where x and y coordinates are living. 

This naming convention can be a bit confusing.  

o Combination of bottom/top, positive/negative, x/z  

o Example: a top positive x edge point resides in any point (1, 1, z), where z 

is in the range of [-1, 1]. 

 A column edge – an edge which the varying value is y 

o Combination of negative/positive x, negative/positive z. 

o Example: a column edge which lives with x = 1, z = 1 is considered a 

Positive/Positive column edge. 

 A plane – a point living on one of the planes which 

o Combination of positive/negative, XY/YZ/XZ 

 A normal point – the only type of interior point in the grid. 

Figure 20 Examples of the different types of grid points there are. 
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Each point is classified as one of the above so the navigation portion of BVR can limit their 

movement. If the viewer is at an interior point, there’s no limitation of where to go next: up, 

left, forward, etc. If the viewer is at one of the corners, their only moves are down one of the 

edges, into one of the planes, or into the interior. 

While viewing the figure, it may seem like the grid points that live on the exterior of the sub-

volumes are unnecessary (since they are essentially repeated points in terms of sub-volumes 

represented by the grid point). However, if the user wants to view a data set that is very 

wide and skinny (think 1024 x 1024 x 128), there will only be exterior points.  

The next step is figuring out how to explore the grid points. Exploring requires two things: 

Advancing between grid points and determining which direction the viewer is looking.  

7.3.5 – Advancing to Various Grid Points 
Advancing between grid points is straightforward. A few examples include: 

 Moving from an interior grid point 

 Moving from a corner grid point 

 Moving from a plane grid point 

The key to this task is recognizing the pattern used for numbering the grid points. See the 

figure for the patterns inherent to the numbering scheme.  

 

Figure 21 Grid points in relation to a volume. Below, going from left to right, the progression of each slice is in 

the positive Z direction. This set of gridpoints have a dimension of 3 x 3 x 3 
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There are six basic maneuvers: 

 Positive/Negative X direction 

o Add 1 if it’s in the positive direction, subtract if negative. 

 Positive/Negative Y direction 

o Add the width of grid points if positive direction, subtract if negative.  

 Positive/Negative Z direction 

o Add the product of width and height of grid points, subtract if negative.  

Combining the above actions will allow for diagonal movement, if needed.  For example 

using the previous figure, if the user was at grid point 0, looking in the positive Z direction 

and moves forward, they will end up at point 9. From point 9, if the user is looking in the 

positive X direction, and they move forward, they will end up at point 10.  

The second item needed is having a way to know which combination of actions are required, 

which is done by determining the viewing direction. 

 7.3.6 – Determining Viewing Direction 
If the user is looking roughly in a direction parallel to positive x-axis, we want the 

viewer to advance in that direction. If the viewer is facing 45 degrees within the x-z plane, we 

want the viewer to move in the x and z directions. This requires some interpretation of the 

given viewing direction, which is accomplished by converting the viewing vector into 

spherical coordinates. The viewing vector is considered to be in the center of a unit sphere 

based around the origin.  

Converting the Cartesian vector and translating it to spherical coordinates gives us three pieces 

of information: 

 The radius, assumed to always be 1 with a normalized viewing vector.  

 Theta, the angle inside the Y-Z plane.  

o Theta = acos(NormalizedViewingVector.z) 

 Range: [0. o, 180 o]  

 Phi, the angle within the X-Y plane.  

o Phi = atan2(NormalizedViewingVector.y, NormalizedViewingVector.x) 

 Range: [-180. o, 180 o]  
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Figure 22 Cartesian to Spherical Coordinates (http://www.learningaboutelectronics.com/images/Rectangular-

to-spherical-coordinates.png) 

The more important pieces of information from the conversion are the angles theta and phi. 

When used correctly, we can figure out which direction the viewer is looking and from there 

can apply the appropriate math to advance the viewer in the scene.  

Theta is used to determine two things, the first being whether or not the viewer is facing the 

negative/positive z-direction. Note that all of the thresholds are somewhat arbitrary 

numbers. These are handpicked numbers which we felt gave the viewer enough margin for 

error for going in a given direction. Here are the thresholds to determine which z-direction: 

 Negative z-direction: Theta > 112.5 o 

 Positive z-direction: Theta < 67.5 o 

The second is whether or not the viewer is facing in the general area of the x-axis or y-axis. 

This threshold is the following: 

 Theta < 157.5 o && theta > 27.5 o 

Notice this allows some overlap of the previous thresholds, giving the viewer the ability to 

move in more complicated diagonals. 
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Phi is used to determine whether or not the viewer is looking in the positive/negative x-axis 

or y-axis, or a combination of both. To begin, the absolute value of phi is first used to 

determine whether the viewer is looking in the x or y directions. This is due to the range of 

values returned by atan2(), [-180, 180]. Using the absolute value can help decide the 

following actions: 

 Positive-X: |Phi| < 67.5 o 

 Negative-X: |Phi| > 112.5 o 

 Y-axis: |Phi| > 22.5 && |phi| < 157.5 o 

The direction of where the viewer is in relation to the y-axis isn’t decided with the above 

thresholds. This is, again, caused by the range of values phi can be. It works out that that the 

sign of phi represents which direction in the y-axis the viewer is looking: 

 If phi > 0 o, positive y-direction 

 If phi < 0 o, negative y-direction 

Figure 23 Thresholds of theta and the meanings behind them. 
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Figure 24 Thresholds of phi and the meanings behind them. Note that atan2() in Java returns [-180.00, 180.00] 

We now have a way to advance the viewer in the scene and a means to determine which 

direction they’re facing. The last part is to determine what limitations the viewer has when 

attempting to move from a given grid point. 

7.3.7 – Determining a Legal Move 
If the location of the viewer is at an interior grid point, they can move in any 

direction. If the viewer is on any of the exterior grid points, their choice of maneuvers 

becomes limited. For example, if the viewer is at the bottom lower left corner (grid point 0), 

the viewer can only go in any combination of the positive X, Y, or Z directions. If they are at 

the very last grid point, the top upper right corner (grid point 124), they can only go in any 

combination of negative X, Y, Z directions. Since BVR doesn’t handle the case of wrapping 

around datasets, a way of determining a legal move was needed.  
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Figure 25 Examples of limitations shown. Any interior point can advance in any direction, and all the exterior 

points cannot leave the surface. 

When BVR tries to decide the limitations of the viewer, it first assumes that every move can 

be done. Then, depending on the type of point the viewer is currently at, it limits their 

choices. There are three switch statements for each axis direction. Appendix B gives a code 

sample of one of the directions to show how this was done.  

7.4 – The Bread Slice View 
 The grid view allows for the entire dataset to be viewed in a full, but downsized, 

fashion or explored a sub-volume at a time. There are two main shortcomings of the grid 

view technique. The first is the ability to become lost within the data while exploring the 

high-resolution sub-volumes. At times, going from one sub-volume to the next can be rather 

disorienting and the viewer can lose the sense of direction.  

The second shortcoming is not having the ability to focus on an area of interest which 

straddles multiple sub-volumes within the grid view. It can be difficult to understand what’s 

going on between two pre-determined sub-volumes. 

The bread slice view addresses the above shortcomings by allowing the user to flip through 

each image within the high-resolution dataset, select the area of interest, and load a 3D 

texture with that area as the focus. The user is then able to flip back and forth between the 

full, downscaled dataset to see the highlighted area of where the custom sub-volume is 
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located in the overall view. The implementation of the bread slice view answers the third 

question posed in section 4.2: 

“How will the user focus on a meaningful sub-volume at the native resolution of the 

dataset?”  

We will first go over how the interface works for the bread slice viewer.  

7.4.1 – The Interface 
 The interface of the bread slice viewer is very straightforward. There are three 

buttons in this part of BVR: 

 Flip forward – progress forward in the image slices 

 Flip backwards – progress backwards into the dataset 

 View – this takes the selected area in the image, grabs the 256 x 256 x 256 3D 

texture and loads it into the rendering algorithm.  

 

Figure 26 Flipping through the image slices in the bread-slice viewer 
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Along with the three buttons, there’s a feature which involves tapping the image itself. While 

tapping on the image, a 256x256 red transparent box located around the middle of the 

tapped location will appear. The box is made by drawing a red rectangle with a low alpha 

value over the image of the current slice being viewed. This box is later used by BVR to 

determine what the user wants selected as the area of interest. 

Note that the data presented inside this view and the data gathered during the rendering 

process is from the full-resolution, single file dataset. The reason for this is to simplify the 

process of reading in data.  

Once there’s a custom volume loaded into the scene, notice that the top right “Custom” 

button is highlighted.  Clicking on it will alter the view back to a downscaled view, now with a 

highlighted region. In the figure below, the highlight represents what was chosen for the 

custom volume. This helps the user gain an understanding of where they’re viewing within 

the entire dataset.  

 

 

 

 

Figure 27 Tapping on the image inside the bread-slice view will highlight a 

256 x 256 section of the image. 

Figure 28 Tapping render in Figure 26 will result with this sub-volume 

rendering 
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7.5 – Adjusting the Ray-Casting Variables 
 Now that there are a few methods to explore the data, the user needs a way to 

experiment with the variables inside the ray-casting algorithm. There have been two 

iterations of creating adjustable knobs for these variables for BVR. The first version was 

cluttered with visible sliders and bars, which didn’t allow room for buttons needed for given 

features. The sliders were finicky with where the user touched, as well, causing accidently 

and drastic changes of values.  

The second, and current, version of the UI utilizes the idea of swiping up and down to adjust 

variables. With different modes, such as alpha, min/max, number of steps, etc. being all 

selectable choices, the user now just has to swipe up or down to control the value of these 

variables. The amount changed is relative to where the touch is. In other words, it doesn’t 

matter where the user touches, as long as they’re moving up and down the screen. This UI 

design significantly reduced clutter and ease of use. 

 

Figure 29 Red highlighted region represents what is loaded into the custom region. 
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7.6 – Final Thoughts  
 A key takeaway about the grid view is the inherent ability to adapt with future 

technology. All of the sub-volume choices that have been selected in BVR are catered to the 

limits of the mobile chip to provide interactive frame rates. As future iterations of these next-

generation chips start to arrive with more GPU cores and more memory, the grid view will be 

able to adapt by handling larger sub-volumes while achieving either the same or higher 

frame rates. 

 

 

Figure 30 Above: Old version of the user interface, which utilized scroll bars. Below: 

New interface, utilizes radio buttons and the direction of where the user is swiping on 

the screen to determine how to change the variable selected. 
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8 – RESULTS 
This section will analyze each viewing method presented including the downscaled, 

grid view, and the bread slice view produced volumes from the dog head dataset. We will 

also report on the performance numbers for rendering the entirety of the dog head at full 

resolution, since BVR does have the capability of loading it all in. These performance 

numbers will help show that, even though powerful, the Tegra K1 has its limitations on 

volume sizes. Additionally, we will go over how BVR’s performance compare to the 

implementations mentioned in the previous works section.  

8.1 – Values Used 
 To keep comparisons far, we used predefined values for each aspect of the render 

algorithm.  

 Zoom – 1 and 1.5 

o This determines how many pixels are being rendered. More pixels, more 

computation. 

 Alpha – 0.03 

 Min. Value – 0 and 0.84 

 Viewing angle – Sagittal and Frontal 

 Quality of the image 

o Step distance – 1/355 

o Amount of steps – 500 

 Spin 

o 5O / frame 

Keeping the zoom factor constant results in the same amount of pixels being drawn, thus the 

same amount of rays being casted. The values which define the quality of the image are a bit 

biased towards the smaller sized volumes, due to early exit. This does, however, allow for 

testing equality across all of the volume sizes.  

There is also a spin component to the performance numbers, which aims to find an average 

framerate after spinning 360O at the given spin rate of 5O per frame. This is done to mimic a 

user manipulating the viewing angle at a smooth, consistent rate and help determine if there 

is a “good side” and “bad side” when visualizing a given volume size.  

8.2 – Full Dataset: 512 x 512 x 894 Dog Head 
With Android allowing large enough heap allocations, BVR is capable of rendering 

the entire dog head dataset without the hassle of going through downscaling or viewing only 

sub-volumes. With that said, examining the spin performance numbers show that visualizing 
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the entirety of the dataset are done in unresponsive frame rates and causes severe hitches 

to the application itself. The sagittal view of this volume also performs at unresponsive frame 

rates. The frontal view is opposite. 

Sagittal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 4 fps 1 

1 0.03 0.84 4 fps 2 

1.5 0.03 0 4 fps 3 

1.5 0.03 0.84 4 fps 4 

     

Frontal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 20 fps 5 

1 0.03 0.84 20 fps 6 

1.5 0.03 0 8 fps 7 

1.5 0.03 0.84 8 fps 8 

     

Spin      

1 0.03 0 6 fps   

1.5 0.03 0 4 fps  
Table 1 Performance numbers on the 512 x 512 x 894 dog head dataset. The entire dataset is loaded and 

rendered with the values presented in section 8.1. Notice the difference between the frontal and sagittal view, 

presumably caused by the implementation of how 3D textures are stored and accessed. The spin number is an 

average framerate of the full 360O rotation. These images are in Appendix C  

Take note on how dramatic the change of performance is while going from the sagittal view 

to the frontal view. Earning similar frame rates as the 256 x 256 x 447 and 256 x 256 x 256 

volumes, the frontal view of the native dataset reports a high frame rate of 20 fps. At first 

glance, this is a bit odd – when dealing with a larger volume, the rendering algorithm is 

expected to perform with a lower performance. With that said, if we assume 3D textures are 

stored similarly as an array of 2D texture slices, then these performance numbers make 

sense. We can only speculate since the implementation details of 3D textures aren’t public 

knowledge. 

Since the frontal view is straight on, the rays are traveling perpendicularly through the slices. 

This perpendicular travel help minimize the amount of slices being sampled and efficiently 

utilize what’s being pulled into the cache. The frontal view is the best case scenario when it 
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comes to sampling, causing the high frame rate. The image below helps show how this is the 

case. 

If the frontal view is the best case, then the sagittal view is the worst case scenario. In the 

sagittal view, all of the rays are traversing parallel through the slices. That means up to 894 

separate slices are being sampled, all fighting to be loaded into cache. Taking this into 

account, it makes sense to why there’s such a difference between these two views. This 

pattern is observed the other volumes, other than the 8-chunk version.  

The spin frame rate of this dataset is approximately 4 fps. This is a bit more of a realistic 

number compared to the frontal (best case) and sagittal (worst case) views. With this 

framerate, it’s a harsh user experience.  

As for where this stands with previous works, it’s only fair if compared to the work of 

Noguera and their iPad 2 ray-casting implementation. The reported number for Noguera is 

0.8 fps while rendering a 512 x 512 x 384 dataset with a reported number of 80 steps. Their 

paper that presents these numbers does not provide an image of the configuration reported, 

however the below (also shown in the previous works section) gives a taste.  

Figure 31 Left - A sample of Noguera's implementation, although not the 512 x 512 x 384 reported (Noguera, 

2012) Right - Our own implementation of the 512 x 512 x 894 dog head dataset. The quality difference is 

noticeable in favor to the right. 

Our implementation shows that the next-generation mobile GPU was able to perform at a 

much higher rate, giving 4 fps while moving around the scene. This is 275% increase in 
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performance, including a 525% increase in the amount of steps used in the algorithm. These 

increases were expected due to the advancement of technology.  

8.3 – Downsized Dataset – 256 x 256 x 447 Dog Head 
The numbers here show the same pattern as the full scale version – sagittal being the 

worst and frontal being the best. With that said, the trend in general is higher performances 

all across the board, which is expected due to the lower dimension volume. The spinning 

performance gives a much better average than the full-sized volume, allowing for a smoother 

experience.  

Sagittal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 17 fps 1 

1 0.03 0.84 17 fps 2 

1.5 0.03 0 9 fps 3 

1.5 0.03 0.84 8 fps 4 

     

Frontal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 25 fps 5 

1 0.03 0.84 24 fps 6 

1.5 0.03 0 9 fps 7 

1.5 0.03 0.84 9 fps 8 

     

Spin     

1 0.03 0 18 fps  

1.5 0.03 0 8 fps  

Table 2 Performance numbers for the downsized, 256 x 256 x 447 dog head dataset. These numbers follow the 

same pattern observed in the full sized dataset, but with overall better frame rates. These images are in 

Appendix D 

The previous work of Rodriguez reported a frame rate of 7.3 FPS with a volume size of 256 x 

256 x 256 with 128 2D-texture slices. Table 2 shows that our implementation gives a frame 

rate of a lowest of 8 fps. This isn’t as big of a jump as seen in previous section, however the 

comparison is a bit unfair, seeing that Rodriguez implementation is with a 2D-texturing 

implementation opposed to ray-casting.  
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Figure 32 Left - Example of Rodriguez's implementation, a 256 x 256 x 113 skull dataset with 128 slices 

(Rodriguez, 2012) Right - Our own implementation at 500 steps. 

8.4 – Grid View Chunk – Eight, 128 x 128 x 223 Sub-Volume 
These performances are a bit lower than the single 256 x256 x 447, which is expected 

due to the extra logic for deciding which sub-volume to use inside the shader. A noticeable 

difference is that the frontal/sagittal pattern is reversed. Frontal performs at a lower frame 

rate than sagittal. The difference between this set of data and the previous two are the 

introduction to multiple textures and the added overhead of logic for determining which 

texture to sample from. 

As for the amount of detail being shown, there is a lot more detail being presented. We go 

into more detail of why this is beneficial in the next section.  
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Sagittal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 20 fps 1 

1 0.03 0.84 18 fps 2 

1.5 0.03 0 10 fps 3 

1.5 0.03 0.84 8 fps  4 

     

Frontal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 14 fps 5 

1 0.03 0.84 13 fps 6 

1.5 0.03 0 9 fps 7 

1.5 0.03 0.84 8 fps 8 

     

Spin     

1 0.03 0 19 fps  

1.5 0.03 0 9 fps  
Table 3 Performance numbers for the eight chunk, 128 x 128 x 223 sub-volume. What’s interesting about this 

set of numbers is that the pattern observed inside table 1 and 2 are opposite – the frontal view is slower 

compared to sagittal view. These images are shown in Appendix E 

 

Figure 33 Left - The same example from Rodriguez as shown in the previous figure (Rodriguez, 2012) Right - Our 

implementation showing a sub-volume of the dog dataset. Notice how much more detail is in the image due to 

visualizing a subset of the native resolution dataset. 
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There isn’t a previous work example that splits the data into various sub-volumes and pages 

into the appropriate 3D textures, but Rodriguez’s work once again is worth comparing to due 

to the dataset sizes used. Overall, the eight, 128 x 128 x 223 texture method gives a frame 

rate similar to the previous section. The addition our method brings is a more focused and 

detailed image.  

8.5 Bread Slice View – 256 x 256 x256 Sub-Volume 
The custom selected view provides the best experience. Having the best spin, frontal 

and sagittal frame rates, the bread slice view is the most customizable, as well. As for the 

amount of detail presented, it is relatable to the grid view, as shown in the following figure. 

 

Comparing our implementation to the previous work of Rodriguez, we outperform in terms 

of framerate and the amount of detail being shown in the image. Again, this is expected due 

to the nature of our method and the increased power of the mobile GPU used.  

 

 

Figure 34 Left - Basla's example image as compared to previously. Right - Our implementation showing a 

custom selected sub-volume of the dog head dataset. Similar to the grid view, there is more detail being shown 

in a more focused manner. 
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Sagittal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 25 fps 1 

1 0.03 0.84 24 fps 2 

1.5 0.03 0 12 fps 3 

1.5 0.03 0.84 9 fps 4 

     

Frontal     

Zoom Alpha Min Val. Framerate Image # 

1 0.03 0 30 fps 5 

1 0.03 0.84 24 fps 6 

1.5 0.03 0 12 fps 7 

1.5 0.03 0.84 10 fps 8 

     

Spin     

1 0.03 0 24 fps  

1.5 0.03 0 11 fps  

Table 4 Performance numbers of the custom selected 256 x 256 x 256 sub-volume. Unlike the other sub-volume 

method, the bread slice view follows the same pattern of the frontal view outperforming the sagittal view. 

These values are in Appendix F 

 

8.6 – Closing Thoughts 
 After presenting the performance numbers and some example figures which 

compares our implementation to previous works, we have shown that mobile GPUs have 

come a long way. Through that, we have also shown that mobile volume rendering using ray-

casting has become a more viable tool. Although none of our numbers are able to rival some 

of the thin implementations, the frame rates we have achieved are within the interactive 

range and are definitely worth noting.  
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9 – Characteristics of Sub-Volumes and Full-Volume Techniques 
 This section will go over a few distinct differences between the full, native resolution 

techniques and the two sub-volume techniques presented in this paper. The main motivation 

of this project is to provide two qualities to mobile volume rendering: a good user experience 

and not sacrificing the quality of the data.  

The first quality is the user experience. As shown throughout previously in various examples, 

the user experience is heavily reliant on the framerate. The framerate is a critical factor on 

how the entire Android device runs and responds to the user, which can potentially cause 

the user to experience miscues while adjusting variables or the orientation of the scene. The 

previous section showed that the dimensions of the volume, along with the amount of pixels, 

are the most influential driving factors to the frame rate.  

The full-volume rendering does provide a nice image which shows more detail of the entire 

dataset, but at the cost of the overall frame rate. The amount of detail is there, however it’s 

hard to make out the smaller details without zooming in closer. To gain a similar amount of 

detail comparing to either of the sub-volume rendering methods, the zoom factor must 

increase significantly which adds to the total amount of pixels rendered. When increasing the 

zooming factor, shows a bit more detail, however the frame rate drops down to 2 fps, 

causing a near dysfunctional application.  

On the other hand, the sub-volume renderings provide the two desired qualities. The first 

quality is a better number of pixels/amount of detail ratio. At smaller zoom factors, the user 

is able to see more intricate detail of the volume without needing to increase the amount of 

pixels rendered. The second quality is the smaller volume dimensions. As mentioned earlier, 

this helps alleviate any stress that the cache would experience during the casting of the rays. 

The combination of the two help reduce any overhead that would cause a very sluggish user 

experience.  

An additional quality we found is that the sub-volumes provide more populated chunks of 

data, depending on the dataset. In other words, there is less empty space with the images. 

This is due to the user’s ability to focus on a section of interesting data. This helps the user 

cull out any unwanted data in the scene without having to zoom in to do it, which can cause 

a more pixelated image. 
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Figure 35 Rendering these two volumes with the same settings (zoom factor, step size, etc.) will render the 

same amount of pixels. However, the left will show more intricate details of the data opposed to right. Also, 

note how more populated the left sub-volume compared to the right. 
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10 – CONCLUSIONS 
 In this paper, we presented methods that address issues of visualizing large 3D 

datasets in a memory- and performance-constricted environment with limited peripherals. 

We have also explored the capabilities of a next-generation mobile GPU, the Tegra K1, 

through the creation of an application aimed to aid veterinarians. This all was accomplished 

by designing and implementing methods which limit the size of the data being rendered at 

any given time. These methods include splitting the data into sub-volumes via the grid view, 

creating various resolutions of the dataset that allow for a view of the entire dataset, and 

custom sub-volume creation via the bread slice view. 

The methods implemented inside BVR addresses Noguera’s main concerns of the future for 

mobile volume rendering, mentioned in section 3. BVR provides a way to avoid rendering 

unnecessary regions of the volume through the use of the grid view and allowing the user to 

create custom sub-volumes to view with the bread-slice view. The sub-volume methods 

reduce the amount of pixels drawn while increasing the amount of detail depicted in the 

renderings. We also ran into what we assume are texture caching issues.  

We have also shown that BVR overcomes the lack of screen space and additional peripherals 

by utilizing the touch and drag gestures, available through the Android API, to adjust 

variables and alter the scene. 

We also have shown that the SHIELD Tablet performed, in most cases, at much higher frame 

rates compared to previous fat and local rendering implementations. It’s also shown that 

mobile devices are still at a disadvantage when it comes to rendering when going head to 

head with thin, server based rendering implementations.  

 

 

 

 

 

 



50 
 

 
 

11 – FUTURE WORK 
The future with BVR includes implementing a transfer function editor. Having the 

ability to color the data is very beneficial to the user.  

The user interface could be improved upon, as well. The SHIELD Tablet includes a stylus that 

was not considered during the development of the BVR. Future work with the interface could 

include a more simplistic way to set variables and using more advanced gestures.  

In addition to future features, there are some performance questions to be answered, as 

well. During the process of implementing and analyzing the performance of BVR, we have 

made some observations on the how the data is being sampled and accessed. As discussed in 

the results section, when marching the rays through a specific direction of the volume 

provides higher performance in most cases. Future work involving this includes an 

investigation regarding how the rendering pipeline can take advantage of the relationship 

between ray trajectory and how the data is stored. Initial thoughts include created various 

axis-aligned datasets, similar to that of 2D-textured based volume rendering. This would 

allow the data to be more perpendicular to the rays marching through.   

The final future task is to undergo a study on how well an application such as BVR performs 

in the real world. This includes observing veterinarian students and/or surgeons using the 

application and the effects grid view and the bread view slice has on their understanding of 

the datasets, how usable the interface is and whether or not it performs at adequate frame 

rates of their liking.   
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APPENDIX A – USEFUL RESOURCES 
 This section presents a collection of useful resources used for the development of 

this project.  

The Android Developer site – Giving good, step by step instructions on how to do various 

topics, ranging from creating your first app to how to pass along data from one screen of an 

application to the next.  

  http://developer.android.com/training/index.html 

LearnOpenGLES – This website gives a great, step-by-step introduction to how to set up 

OpenGL ES for an Android application. As of the writing of this report, the author only goes 

over OpenGL ES 2.0, not 3.0.  

  http://www.learnopengles.com/ 

OpenGL ES 3.0 Programming Guide – This book gives a good understanding of how 3D textures 

work and how it extends off of 2D textures. Good documentation on how functions work in 

OpenGL, as well.  
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APPENDIX B – RAY-CASTING ALGORITHM 
vec3 ray = vec3(texCoord.s, texCoord.t, texCoord.r); 

vec3 viewDir = vec3(viewDirection.x, viewDirection.y, viewDirection.z); 

 

float astar = 1; // when astar equals 0, we've hit the maximum opacity 

vec3 cstar = 0; // the accumulation of a color from multiple samples 

 

//For the amount of steps allowed, move the ray along the view direction 

for (int numSteps = 0; numSteps < MAX_STEPS; numSteps++, ray += viewDir) 

{ 

 // if the ray's position is outside of volume space, break out of the loop 

 if (ray.x > MAX_X || ray.x < MIN_X || 

  ray.y > MAX_Y || ray.y < MIN_Y || 

  ray.z > MAX_Z || ray.z < MIN_Z) 

 { 

  break; 

 } 

 

// sample the 3D texture at the position of where the ray is and extract the red component 

 float sample = 3DTex.Sample(ray).r; 

  

 if (sample <= MIN_COLOR || sample >= MAX_COLOR) 

 { 

  continue; // skip this sample since it is out of range 

 } 

 

 // Do any color transformations here 

 vec3 rgb = sampleToColor(sample); 

 

 // add to the accumulated color 

 cstar += astar * MAX_ALPHA * rgb; 

 

 // update the accumulated alpha. Note that this will also degrade 

 // the effect that later samples have to the overall color 

 astar *= (1.0 - MAX_ALPHA); 

 

 // if the accumulated alpha is less than a threshold, we've reached the 

 // maximum amount of color accumulation.  

 if (astar <= 0.001) 

 { 

  break; 

 } 

} 
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APPENDIX C – 512 X 512 X 894 IMAGES (FULL-RES) 
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APPENDIX D – 256 X 256 X 447 IMAGES (DOWNSCALED) 
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APPENDIX E – 256 X 256 X 447 IMAGES (GRID VIEW) 
 

 

 



63 
 

 
 

 

 

 

 

 

 



64 
 

 
 

 

 



65 
 

 
 

 

 



66 
 

 
 

APPENDIX F – 256 X 256 X 256 IMAGES (BREAD SLICE) 
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