

Towards helping end-user programmers’ information foraging by

manipulating information features in a patch

AN ABSTRACT OF THE PROJECT OF

Balaji Athreya for the degree of Master of Science in Computer Science presented on

December 16, 2013.

Title: Towards helping end-user programmers’ information foraging by manipulating

information features in a patch

Abstract approved:

__

Christopher Scaffidi

Software maintenance tasks often require finding information within existing

code, which is time-consuming and difficult even for professional programmers

[1,55]. For example, programmers may need to know what code implements certain

functionality or what is the purpose of certain code [3,2]. In response, researchers have

developed tools to help programmers find information during programming tasks

[5,6,7,8]. The empirical success of these tools can be explained by Information

Foraging Theory (IFT) [9], which predicts how people will seek information by

navigating through virtual patches in an information system. In the case of

programming, these patches are often chunks of code (e.g., functions), with navigable

links for moving among methods. IFT predicts people will perceive cues (such as

words or symbols) associated with navigable links, select links that seem relevant to

their information needs, and attempt to obtain the needed information by maximizing

the rate of information gained relative to the cost of navigating and understanding

patches. Many existing tools accelerate foraging by decreasing the cost associated

with navigating from one patch to another.

IFT suggests that the visual weight of the information features in a patch can

have a strong effect on a predator’s foraging choices and, consequently, on how well

the predator succeeds in maximizing the rate of information gain. In an ideal situation,

visual weight will efficiently lead the predator to the needed information; on the other

hand, if visual weight leads the predator astray, then this could lead the predator to

process more patches than necessary (increasing cost and reducing the rate of

information gain). Therefore, it is anticipated that increasing the relative weight of

important information features with respect to unimportant information features will

aid an end-user programmer’s foraging effort. Towards this end, two prototypes were

implemented: each of these uses an existing algorithm [10] to identify the most

important lines of code in a function. One prototype increases the relative weight of

important information features by highlighting important lines of code; the other

prototype decreases the relative weight of unimportant information features by hiding

unimportant lines of code. This research's focus is end-user programmers, who have

received minimal attention in prior work.

An empirical study evaluated the effectiveness of the prototypes relative to the

baseline (no information feature modification). These results indicate that increasing

the relative weight of important information features by highlighting important

statements had a significant effect on the amount of information foraged and the rate

of information gained; on the other hand, decreasing the relative weight of

unimportant information features by hiding unimportant statements had a significant

effect on the rate of information gained, but not on the amount of information foraged.

Neither approaches seemed to have any effect on the amount of time spent on

information foraging or patch-to-patch navigation.

©Copyright by Balaji Athreya

December 16, 2013

All Rights Reserved

Towards helping end-user programmers’ information foraging by

manipulating information features in a patch

by

Balaji Athreya

A PROJECT

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented December 16, 2013

Commencement June 2014

Master of Science project of Balaji Athreya presented on December 16, 2013

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Balaji Athreya, Author

ACKNOWLEDGEMENTS

First and foremost, I'm very grateful to my advisor, Dr. Christopher Scaffidi

for his constant motivation, guidance and patience. Working with him has helped me

learn a lot about how to approach and solve problems. His course on mobile and cloud

computing not only helped prepare well for industry, but also opened up several new

opportunities.

I'd like to thank my committee member, Dr. Margaret Burnett, whose classes

were the most interesting and challenging. Her courses were very helpful in learning

the HCI aspects of programming and in writing this work. Interacting with both of

them have inspired me and taught me so much, both inside the classroom and outside

it. I'd like to thank my committee member, Dr.Pankaj Jaiswal for his support, guidance

and the opportunity to hone my programming skills through his lab.

I'd like to thank Chris Chambers for helping me write my project report. I'd

like to thank Amin, Iftekar, Faezah and Sheela for providing moral support through

the years. I'd like to thank Dr. Bella Bose, Colisse, Justin Elser, Justin Preece, Joseph

Jess, Laurel, Nicole, Padma, Palitha, Rajani, Tina, Tracey, Vindhya and the members

of the EECS office who were so kind to me during the past two years. Finally, I'd like

to thank my parents and my family for their love and support.

TABLE OF CONTENTS
 Page

1 Introduction .. 1

2 Literature Review... 7

2.1 Program comprehension strategies .. 7

2.2 Concepts in information foraging theory ... 11

2.3 An IFT perspective on existing SE tools ... 14

3 Approach .. 18

3.1 Identifying important statements within a function ... 18

 3.1.1 Void-return s_units.. 21

 3.1.2 Same-action s_units .. 22

 3.1.3 Ending s_units ... 23

 3.1.4 Data-facilitating s_units .. 26

 3.1.5 Controlling s_units .. 26

 3.1.6 Procedure to identify important s_units .. 26

3.2 Tool design ... 26

4 Experiment ... 32

4.1 Research questions ... 32

4.2 Design overview... 34

4.3 Participants and recruitment ... 37

4.4 Tutorial ... 37

4.5 Experiment scripts .. 39

4.6 Program comprehension questions .. 40

TABLE OF CONTENTS (Continued)
 Page

4.7 Measures and analysis... 41

5 Results and Discussion .. 44

5.1 Results .. 44

5.2 Discussion .. 51

5.3 Threats to validity .. 53

6 Conclusion and Future research opportunities ... 55

Bibliography ... 58

Appendix A - List of program comprehension questions ... 67

LIST OF TABLES

Table Page

1. IFT Terminology (adapted from [30]) .. 12

2. Color scheme used in prototype 1 ... 31

3. Summary of measures used to answer the research questions 43

4. Mean performance of participants on each measure for each script size 49

5. Summary of results from the six statistical tests, with shading to indicate differences

that were significant at p < 0.05 .. 51

LIST OF FIGURES

Figure Page

1. A new understanding of program understanding [1] based on Information Foraging

Theory ... 9

2. control s_unit example in Java (code taken from Java Oracle docs [53]) 19

3. A simple Java s_unit (adapted from [10]) ... 20

4. A simple TouchDevelop s_unit .. 21

5. void-return s_unit example ... 22

6. same-action s_unit example .. 23

7. data-facilitating s_unit example .. 25

8. Design of the tool .. 27

9. Prototype 1 .. 29

10. Prototype 2 .. 29

11. Experiment design .. 36

12. Comparing groups on program comprehension score for Script 1, 2 and 3 respectively

... 45

13. Comparing groups on rate of information gain for Script 1, 2 and 3 respectively (in

units of “points per 10000 seconds”). ... 46

14. Image used in the study... 67

file:///C:/Users/Balaji%20Athreya/Documents/project-report/commnets%20Balaji_Athreya_project_5.docx%23_Toc374019940

1

1 Introduction

The number of end-user programmers is increasing every year and has long since

surpassed the number of professional programmers [12]. End-user programmers come

from a variety of backgrounds ranging from secretaries, accountants, secondary school

students [13], teachers [14] to scientists [15]. These varied users write programs on many

types of platforms including spreadsheets, web mash-ups [16,17], web scripting [18] and

animations [21,22]. Recently, end-user programmers have begun programming on smart-

phones [19, 20].

Many of these end-user programming environments provide a central code

repository to allow users to share code [18,19,22,23,17]. In some cases, certain groups of

end-user programmers write programs specifically to be used by others [24]. In the

absence of repositories, end-user programmers tend to share code informally by passing

on the source file [14,15,24]. Reusing existing code is crucial for end-user programmers

because it enables them to save time by making use of code that already works,

potentially reducing the risk of writing new code that might have new bugs. However,

this also poses a new challenge: in order to be able to reuse, maintain or modify existing

code, the end-user programmer needs to understand a program that may not have been

written with reuse in mind. Thus, program comprehension is important for reusing and

maintaining existing code.

There have been several studies on program comprehension over the years.

Studies have discovered three strategies used by programmers during program

2

comprehension - top-down model [25], bottom-up model [26] and integrated meta-model

[27]. All of these program-comprehension strategies, in turn, require finding information

within the code that the end-user programmer can combine into a working

comprehension of the code.

To better understand how people look for information in code, new models of

program comprehension are being developed based on information foraging theory

(IFT), which predicts and explains how people navigate through an information system,

by maximizing the ratio of information gained to interaction cost [9]. Models based on

IFT (e.g., [1,41]) are more powerful than the older models [25,26,27] because they can

predict and explain the lower level navigation actions of a programmer.

Separately, apart from efforts at modeling foraging, several tools [4,5,6] have

been developed to help programmers effectively search, relate and collect relevant and

useful information during programming tasks. For example, Hipikat [5] helps a

programmer by providing navigable links to relevant non-code artifacts (bug reports,

emails, version control logs) based on lexical similarity with the search term. Whyline [4]

helps a programmer by enabling him/her to ask questions about a program’s runtime

behavior and providing navigable links that map the program’s output with the piece of

code that is responsible for that output. Codefinder [6] helps a programmer by providing

navigable links to directly reusable code based on the search term and by suggesting

suitable alternate search terms. A recent literature survey argued that the success of these

3

tools can be explained in terms of IFT by noting that the tools essentially reduce the cost

of patch-to-patch navigation [30].

To date, only a smaller number of tools have been aimed at reducing the other

main cost of foraging, which is the cost of extracting useful information efficiently from

a patch of code after a programmer has navigated to it. There have been a few attempts at

summarizing the source code in order to reduce the cost of reading and understanding it.

For example, Haiduc et al [47] used text retrieval techniques [49,50] and structural

information to summarize source code files. Sridhara et al developed a technique [10] to

identify important statements within a Java method and generate natural language

summaries for Java methods. Rastkar et al developed a technique [48] that produces

natural language summaries to help programmers understand code (that are relevant to

the task at hand) that crosscut multiple modules of a source code. All of these efforts are

targeted towards professional programmers.

One approach to reduce the cost of understanding (and subsequently the cost of

foraging) is highlighting important information features within a patch of code so that the

programmers can focus on those important parts [30]. For example, syntax highlighting

in Integrated Development Environments (IDEs) decreases the cost of reading and

understanding a chunk of code. Fleming et al reviewed other more sophisticated forms of

code highlighting (that emphasize cues) used in tools for professional programmers in

[30]. For example, Jigsaw [40] uses code highlighting with colors to alert professional

programmers about overlooked chunks of code and illustrate how reusable code was

4

integrated with existing source code. Duplac [43], a tool to identify code clones during

refactoring tasks, uses code highlighting with colors to indicate similarities and

differences between code clones.

Highlighting does not appear to be used as widely among end-user programmers.

Spreadsheets are often used as reporting tools (for storage rather than computation) [51]

and contain a significant amount (~ 40%) [52] of non-numeric and textual data. A plug-

in for Microsoft Excel based on Topes [54] by Scaffidi et al uses color-highlighting (red

colored triangles) to help end-user programmers find and fix typo errors in textual data.

A fault localization technique [44] by Ruthruff et al uses color-highlighting to aid end-

user programmers in finding incorrect formulas in spreadsheets during debugging tasks.

Both the two tools highlight areas of the program that appear to contain problems - while

this information can be very useful during debugging, they do not identify important lines

of code which can be very useful during other software maintenance tasks such as adding

new features, refactoring and code re-use.

No empirical research appears to have been done to investigate whether end-user

programmers working on maintenance tasks obtain benefits from highlighting inside of

code patches or from the removal of unimportant information features . Also, it is not

clear that increasing relative weight of important information features will be as helpful

for end-user programmers as for professional programmers. One reason is that end-user

programmers’ code may not be designed for reuse and is often hard to understand during

maintenance tasks—Nardi even writes, “It is not clear whether users who modify existing

5

example programs could ever really come to understand the programs they modify” [24].

So maybe such code does not have many information features that would be important

enough to highlight, or maybe the important information features are not as identifiable in

end-user code as they are in professional programmers’ code, meaning that highlighting

might not help end-user programmers very much. On the other hand though, end-user

programmers only write code as a secondary task in their work, rather than their main

task [12], so they might be relatively unfamiliar with programming and/or with the

programming tool, This could make them all the more dependent on tool assistance with

understanding patches of code, which could make highlighting important statements or

hiding unimportant statements even more beneficial to end-user programmers than to

professionals. Further investigation is needed of the relationship between the visual

weights of information features and foraging costs for end-user programmers.

Therefore, this work investigates the effects of visual weights of important and

unimportant information features on an end-user programmer’s foraging cost.

Specifically, this work investigates if visual weights of important and unimportant

information features affect the amount of information foraged, foraging time and the rate

of information gained of an end-user programmer working on real-world maintenance

tasks using TouchDevelop [31] - a mobile application creation environment. Using an

existing algorithm [10] that identifies important lines of code within a patch (function),

two prototypes were developed - one prototype highlights these important lines of code

at the cost of unimportant lines; the other prototype hides the unimportant lines of code.

6

An empirical study was conducted to evaluate the effectiveness of the prototypes relative

to the baseline and analyzed the data using non-parametric statistical tools.

The results of this study will be useful for understanding how best to design tools

that help end-user programmers to understand patches of code. Especially, the study

results will reveal whether highlighting or eliminating lines of code can help people to

understand code more effectively during maintenance tasks. The study results will

discover opportunities for further research, such as investigations about when different

kinds of cue enhancement do or do not help end-user programmers.

This document is organized as follows: In Section 2, the existing literature on

program comprehension strategies, information foraging theory and existing software

engineering tools for information-intensive activities are reviewed; Section 3 reviews the

prototypes and how important lines within a function are identified. Section 4 details the

experiment and evaluation procedure. Section 5 discusses the results of the empirical

study and possible explanations to the results. Finally, Section 6 concludes by stating the

contributions of this study and discuss future research opportunities.

7

2 Literature Review

This section reviews previous research in the field of program comprehension

strategies, concepts in IFT, and existing software engineering tools that help

programmers with information foraging during programming tasks. Reviewing previous

work shows that existing tools offer little help to professional and end-user programmers

to efficiently extract useful information from a patch of code during information foraging

and that end-user programmers face impassable barriers during information foraging. So,

efforts aimed at reducing the cost of extracting information from a patch could be very

beneficial to end-user programmers.

2.1 Program comprehension strategies

Program comprehension is the process of assigning meaning to program text; it

involves understanding the meaning of each program statement, control flow, data flow

and the purpose of groups of statements [33]. Studies have discovered three common

strategies used by programmers during program comprehension - top-down model [25],

bottom-up model [26] and integrated meta-model [27]. In the top-down model, program

comprehension is a hypothesis-driven process, in which a programmer begins with a

vague hypothesis about the entire program. Then, the programmer refines it to a tree of

secondary hypotheses which are verified or rejected [27]. Top-down model requires the

programmer to be familiar with the program domain and/or to have programming

expertise - hence this model is mostly common among experienced programmers.

8

On the other hand, the bottom-up model is common among novice programmers.

In this model, the novice programmer first understands the control flow of the program

by grouping pieces of code into higher-level abstractions known as “procedural episodes”

[28]. Then the novice programmer investigates data objects and functions that connect

these procedural episodes to gain an understanding about the data flow of the program

[27]. Finally, the integrated meta-model which was proposed by von Maryhauser and

Vans suggests that programmers often choose one of these two models as their dominant

strategy depending on their domain knowledge and switch between the two models as

more information is presented to them while they try to understand a program.

Programmers may switch their strategy to adapt to external stimuli, becoming what has

been referred to as “opportunistic processors” [29].

In all of these strategies, programmers rely on beacons, “cues that index into

knowledge, [which] can be text or a component of other knowledge. For example, a swap

statement inside a loop or a procedure can be a beacon for a sorting function; so can the

procedure name Sort” [27]. So a beacon is a kind of cue that helps a programmer to

associate code with meaning.

Recently, a new model of program comprehension has emerged based on IFT,

which offers a more complete perspective not only on the role of just beacon cues, but

also the relationship between cues and programmer navigation throughout the code base.

While being consistent with the earlier program understanding research above, this new

line of work can also explain and predict lower level actions of a programmer. From this

9

IFT-based standpoint, program comprehension is a “process of searching, relating, and

collecting relevant information in a graph and forming perceptions of relevance from

cues in the programming environment” [1]. In the aforementioned graph, each node is an

individual patch that appears on-screen (such as a chunk of code, documentation,

comments, other metadata, etc.) connected by an edge between the nodes (such as calls,

declaration, definition, or any other relationship represented as a navigable link between

patches). This new model of program comprehension can be illustrated in the following

figure below. (taken from [1]).

Figure 1. A new understanding of program understanding [1] based on

Information Foraging Theory

As the figure illustrates, a programmer begins by looking (searching) for a node

in the graph that is relevant to the task at hand. After finding a relevant (perceived) node,

potentially based on the presence of certain cues, he/she tries to understand (relate) the

node. The programmer understands the node by processing the information features

located within the node or by investigating the sub-graph it is a part of, choosing the most

relevant (perceived) neighbor node in the sub-graph, navigate to it and understand the

new node and so on. If the programmer deems the new node not useful, he/she may trace

10

back to the previous node to pick another relevant node or may completely abandon the

relate phase returning back to the search phase. This searching and relating will continue

until the programmer decides that he has collected all relevant information needed for the

task at hand. At this point, he/she stops the program comprehension process and starts

focusing on implementing a solution, which may further warrant more search, relate and

collect activities.

The new model suggests that there are three important factors that determine the

success of a programmer - first, the programming environment must provide adequate

and representative cues to guide searches; secondly, the programming environment must

provide useful cues so that a programmer can determine the relevance/usefulness of a

node in the graph; thirdly, the environment must help the programmer in effectively

collecting relevant information within the graph.

Given the aforementioned factors relevant to helping programmers, several

software engineering tools assist programmers in effectively searching, relating and

collecting relevant information while working on programming tasks. They are discussed

in section 2.3. In order to explain why these tools appear to help professional

programmers, it is first necessary to explain more of the details about IFT, which are

covered in section 2.2.

11

2.2 Concepts in Information Foraging Theory

This work is informed by the new model of program comprehension described

above and information foraging theory (IFT). This section describes IFT and its

terminology.

IFT is a theory about how people navigate through an information system,

foraging for information while maximizing the value of information gained and

minimizing the interaction cost. It can “explain and predict how people best shape

themselves for their information environments and how information environments can be

best shaped for people” [34].

IFT likens a person looking for information in an information environment to a

predator looking for its prey. The information environment consists of a topology which

is made up of information patches. Each information patch is made up of several units of

information features (words, phrases, figures) and the predator is in search of its

information goal, a specific set of information features (each of which is a prey). The

predator moves from one information patch to another by processing special information

features known as links (menus, hyperlinks). Each link possesses cues, which are

indicators of the information available at the other end of the link. In addition, cues

embedded within a patch may carry additional information. The predator processes these

cues to determine the likelihood (known as information scent) of the presence of some

prey at the other end of the link. The cost associated with processing cues is the cost of

12

the link. The effort the predator spends on processing the information features in a patch

is known as the cost of the information patch. The definitions are tabulated below.

IFT Term Definition

Predator The person looking for information

Information patch A set of information features

Information features Units of information in a patch that the predator can process

Links Information features connecting two information patch

Topology Collection of information patches and the links between them

Information goal A set of information features that the predator is looking for

Prey Elements of information goal

Cue Indicators that signal information present at the other end of

a link

Cost of an information

patch

Measure of the effort required to process the information in

an information patch

Cost of a link Measure of the effort required to process the cues of a link

Information scent

associated with a link

The predator’s estimation of the likelihood of some prey at

the other of a link

Table 1. IFT Terminology (adapted from [30])

13

IFT suggests that the predator may perform one of the following three actions

while searching for its information goal:

 process the information features present in the current patch

 navigate to a nearby patch

 add new patches to the topology (known as enrichment)

IFT predicts that the predator will choose the action that has the highest expected

benefit-to-cost ratio. That is, it will choose the action that maximizes the expected value

of information gained per expected processing cost. This is given by the formula, where

the argmax expression iterates over all the available choices:

 Predator’s choice of action =

 , where

Exp (V) = expected value of the information that can be gained through an action

Exp (C) = expected processing cost associated with the action

IFT also suggests that given an information patch containing many links each of

which leading to different information patches, the predator will choose the link with the

highest factor given by the formula, [30]

 where Wj is the amount of attention the

predator pays to the cue j and Sji is the information scent the predator associates with the

14

link because of the cue j. In prior work [57], Wj has been treated as a direct function of a

cue’s visual weight. In contrast to efforts aimed at clarifying how predators choose links

for navigation (above), there has been much less effort aimed at clarifying how predators

evaluate the other terms above, particularly expected cost of processing cues within a

patch.

2.3 An IFT perspective on existing SE tools

Research in end-user software engineering [3] identifies six learning barriers

faced by end-user programmers trying to learn a new programming system. One of the

six learning barriers is information barrier. The study [3] by Ko et al defines information

barrier as “properties of an environment that make it difficult to acquire information

about a program’s internal behavior (i.e., a variable’s value, what calls what). ”

According to this study, information barriers occur when an end-user programmer is not

able to verify his/her hypothesis about the program’s internal behavior. Ko et al reported

that end-user programmers did not overcome 71% of the information barriers they faced.

The remaining were overcome by assuming something about the program’s internal

behavior. Ko et al also observed that, the remaining barriers (design, selection, use, co-

ordination and understanding) often led to information barriers. Clearly, end-user

programmers often struggle with information barriers!

In IFT terms, information barriers can be viewed as instances where the

programmer has navigated to a particular information patch, but he/she

15

 is unable to extract useful information about the patch and form/confirm/reject a

hypothesis, or

 is unable to pick a relevant link and navigate to another information patch to

further his/her information foraging.

 Thus, end-user programmers can be helped to overcome information barriers by

providing them

 tools to aid in efficiently extract useful information within an information patch

 tools to aid in efficiently navigating between information patches in the

neighborhood

Prior research on tools to efficiently extract useful information from a patch of

code is very minimal(the tools for professional programmers mentioned in section 1).

However, several tools have been developed to help both end-user programmers and

professional programmers identify and navigate between relevant patches. Fleming et al,

in their comprehensive study [30] of software engineering tools from an IFT-perspective

also arrive at the same conclusion. Some of these tools are reviewed here.

Hipikat [5] is a plug-in for Eclipse integrated development environment platform.

It helps a professional programmer find relevant non-code artifacts (such as bug reports,

emails and version control logs) for a given search query. The plug-in interface provides

clickable links to non-code artifacts annotated with the reason they were selected and a

16

vote of confidence. Non-code artifacts can be particularly useful because they contain

information that is not available in the source code. For example, bug reports often

contain instructions to reproduce a particular bug; emails between developers might

contain documentation about special cases in the code that is not available elsewhere [5];

version control logs can pinpoint to exact changes that introduced new bugs. In essence,

Hipikat identifies relevant information patches that was previously hidden to the

programmer.

Whyline [4] allows end-user and professional programmers to ask “why did” and

“why didn’t” questions about a program’s output. It allows an end-user programmer to

reason about some error in the program’s output by providing links to all lines of code

responsible for the program’s incorrect output. It annotates the links with “why”

questions that are answered by the corresponding line of code. Study [4] revealed that

programmers using Whyline spent considerable very less time (by a factor of 8) than

programmers without Whyline. Programmers with Whyline also had a higher success rate

than programmers without Whyline during debugging tasks.

One common approach to help programmers find reusable code is by reducing the

cost of “searching” for relevant code. For example, Contextual Search tool [39]

automatically generates natural language phrases from the source code and uses it to

identify new code that can augment the existing source code. Other tools are based on

monitoring program behavior to develop a model about the relationship among different

code patches [37]. The relationships among pieces of code can also be clarified through

17

specifications and tools to aid in creating and using formal specifications [36], such as by

using contracts, security constraints and test-cases to search for a particular program

behavior for re-use [38]. Integrating reusable code with an existing codebase can be an

expensive process, because the programmer has to identify dependencies of the reusable

code and decide if the dependencies are required. In some cases, the dependencies can be

removed with some modifications and in some cases the dependencies are required

(which might require further foraging). Gilligan [7] generates a list of links to the

dependencies of a reusable code during the search phase and allows programmers to label

each link with information about their decision to add/remove each dependency. It also

automatically color-codes each link so that programmers can focus only on the most

relevant links during integration phase. From an IFT perspective, this serves to enhance

cues and help programmers decide which links to navigate.

A common motif among all these tools is that they enable a programmer to enrich

their topology with new relevant information patches, and/or to navigate more effectively

among existing patches. Since the vast majority of these tools are developed for

professional programmers, the applicability and usefulness of the principles behind these

tools to end-user programmers should be further investigated. Having showed that end-

user programmers face barriers while finding information about program behavior and

existing tools offer little help in overcoming these information barriers, the next section

describes a new approach that is intended to help end-user programmers extract useful

information from an information patch (which in turn lowers foraging cost).

18

3 Approach

This section details a solution that is intended to help end-user programmers

efficiently extract useful information from information patches. Section 3.1 describes the

algorithm from related work that identifies important statements within a Java method, as

well as the manner in which this existing algorithm has been adapted in order to apply it

to finding important statements in the TouchDevelop programming language. Section 3.2

describes the new tool and the html output generated by this tool, which can highlight

important statements in TouchDevelop and/or hide unimportant statements. Later

sections will discuss this tool was used to investigate how the highlighting of important

information features or hiding of supposedly unimportant information features were able

to affect how end-user programmers foraged for information in TouchDevelop code.

3.1 Identifying important statements within a function

Previous work [10] by Sridhara et al presents a technique to generate summary

comments for a Java method. Summary comments can be described as “descriptive

comments that summarize major algorithmic actions of a method ” [10]. One

contribution of that work is a set of rules for identifying when a particular Java s_unit

(statement) within a method is “important” enough that it should be included in the

method’s summary comments. That work also describes a procedure that applies these set

of rules to identify important s_units (statements) within a function. These s_units are

then converted into natural language text and the text is concatenated together to form a

summary.

19

An s_unit is “a Java statement, except when the statement is a control flow

statement; then, the s_unit is the control flow expression with one of the if, while, for or

switch keywords” [10]. That is, in control statements, s_unit refers to the conditional

expression within the control statement. For example, in the Java code snippet in Figure 2

the control s_unit is highlighted.

Figure 2. control s_unit example in Java (code taken from Java Oracle docs [53])

Sridhara et al developed the rules for identifying s_units that ought to be included

in a summary by studying comments from popular open source Java programs and

surveying experienced Java programmers about which statements they felt should be

included in a method’s summary comments [10]. They identified five types of s_units

that should be included in a Java method’s summary comment.

Three terms introduced by Sridhara et al - action, theme and secondary arguments

of a method signature – will help with explaining the rules. All method signatures contain

an ‘action’ term, consisting of the method name. The ‘theme’ consists of the parameters,

and the ‘secondary arguments’ are the object(s) operated upon. Consider the Java code

snippet in Figure 3 that appends an object - ‘item’ to the end of a list referred by the

20

variable ‘list’. In this example, item is the theme, append is the action and list is the

secondary argument.

Figure 3. A simple Java s_unit (adapted from [10])

While the concept of action, theme and secondary arguments and the set of rules

for identifying s_units were originally defined for Java, they can also be applied for

TouchDevelop language.

The TouchDevelop language is a mix of imperative, object-oriented, and

functional features and is statically typed[31]. It doesn’t allow defining custom data-

types or user interface (UI) elements [19]. The language is primarily textual with a few

non-ASCII graphical characters to represent some elements of the syntax [19]. For

example, a → indicates a dereference of an object member (which might be object

property or a method). A TouchDevelop script may contain several actions (functions),

event-listeners (e.g., button clicked, text changed), global variables and UI elements.

Global variables are truly global - that is, these variables are stored on the cloud and are

accessible by programs on other phones [19]. The UI elements can have various

21

properties (e.g., position, color, content, gravity) [31]. Consider the simple

TouchDevelop statement in Figure 4, that picks the color of the application background

and applies it to the color of a button element referred by the variable slideButton.

Figure 4. A simple TouchDevelop s_unit

In this example, set_color is the action, colors→background is the theme and

slideButton is the secondary argument. Theme and secondary arguments themselves can

be individual s_units. Below, the five s_unit types identified by [10] are discussed. In

each case, although the previous work introduced these s_unit types in the situation of

Java programming, the discussion below explains these concepts were used for

TouchDevelop programming.

3.1.1 Void-return s_units

An s_unit containing a call to another method but does not return a value or

whose return value is not saved in a variable is a void-return s_unit. The rationale behind

why such s_units are important is that a method that doesn’t return any value must be

22

purely invoked for its side effects; in contrast, methods returning values act as data

facilitators [10]. In the code snippet in Fig 5, lines 003 and 005 are void-return s_units.

Figure 5. void-return s_unit example

3.1.2 Same-action s_units

Same-action s_units are those s_units that contain a method invocation whose

action term is lexically similar to the action term of the method’s signature. In the

TouchDevelop code snippet in Figure 6, lines 256 to 260 are same-action s_units because

the action of the method invoked in these lines - showPreviewPic has camel case words

in common with the method’s action - showPreview. The rationale behind why same-

action s_units are important is that the similarity of words implies that the code’s purpose

may be similar to the overall purpose of the method, as reflected in its name.

23

Figure 6. same-action s_unit example

3.1.3 Ending s_units

Ending s_units of a method refer to those s_units after which control exits a

method. In case of methods that return some value, ending s_units refer to the return

statements themselves. In case of methods that don’t return any value, ending s_unit

refers to the line of code that was executed just before the control exited the method. The

rationale behind why such s_units are important is the observation “that methods often

perform a set of actions to accomplish a final action, which is often the main purpose of

the method” [10].

24

3.1.4 Data-facilitating s_units

Data facilitating s_units are those s_units that assign or update the variables used

in the previously identified s_units. In the TouchDevelop script in Figure 7, lines 34 - 38

are void-return s_units. Particularly, in line 36 the variable ‘attempt’ is the theme. Hence,

those s_units that assign value to the variable ‘attempt’ are good candidates for the

method’s summary. In this case, lines 8 and 18 are data-facilitating s_units.

25

Figure 7. data-facilitating s_unit example

26

3.1.5 Controlling s_units

Finally, a controlling s_unit is a control statement, recognizable in TouchDevelop

as an s_unit with one of the following keyword: if, for, while or foreach. The rationale

behind why controlling s_units are important is that these s_units often contain important

information about when a major action occurs [10]. In particular, a controlling s_unit is

identified as important only if any of the variables used in the control statement is also

used in a previously identified s_unit within the block. For example, the controlling

s_unit in line 005 in the Figure 7 would be identified as important, only if the variable

“not_guessed” was used in any of the previously identified s_unit in lines 006 - 032.

3.1.6 Procedure to identify important statements

The procedure to identify important statements in a method contains three phases.

In the first phase, same-action, ending and void-return s_units are identified; in the

second phase, data-facilitating s_units that correspond to the variables used in the

previously identified s_units are identified; in the final phase, the controlling s_units are

identified. At the end of each phase, a few s_units are filtered out, according to the

procedure specified in [10]. This filtering removes s_units responsible for exception

handling, object creation, variable initialization, and controlling s_units that contain an

empty ‘else’ part from the final set of important s_units for a given function.

For example, assume that the controlling s_units in lines 006, 016 and 026 in

Figure 7 are identified as important at the end of third phase (and before final filtering).

The filtering operation following the thrid phase would filter out these controlling s_units

27

(lines 006, 016 and 026) from the final set because the “else” part of these controlling

s_units are empty.

3.2 Tool design

This section reviews the design of the tool for analyzing TouchDevelop scripts.

The tool outputs two html files for each input TouchDevelop script. The first html file

(Prototype-1) contains a modified version of the code of the input TouchDevelop script

with important statements within each function highlighted using different colors; the

second html file (Prototype-2) contains a modified version of the same code with

unimportant statements within each function hidden.

Figure 8. Design of the tool

The tool, as Figure 8 illustrates consists of three separate modules. The scripts

downloader module downloads abstract syntax trees representation of TouchDevelop

scripts from TouchDevelop’s central repository through a REST API [46] and saves them

as text files on the local disk. The second module, “Statement identifier” is basically an

implementation of the procedure described in section 3.1.6. This module takes the

Scripts
downloader

Statement
identifier

Text printer

28

downloaded text files from the previous stage as input, loops through each function inside

a script, and identifies important statements using the rules described in sections 3.1.1 -

3.1.5. The third module, “Text Printer” takes the output of “Statement identifier” as input

and generates two html files. The first file is the concatenation of all lines in each

method, with highlighting on important lines of code. The second file is the

concatenation of all lines of code, along with JavaScript and CSS to hide the unimportant

lines of code unless the user toggles them visible (as discussed below).

Figures 9 and 10 show sample html outputs for the TouchDevelop script shown in

Figure 7.

29

Figure 9. Prototype 1

30

Figure 10. Prototype 2

31

The following color scheme was used for prototype 1.

Type of s_unit Color used

Ending s_units Green-yellow

Void-return s_units Blue

Same-action s_units Red

Data-facilitating s_units Yellow

Table 2. Color scheme used in prototype 1

The line numbers in prototype 2 act as toggle switches - the subjects can see/hide

unimportant lines by clicking on them; by default, the unimportant lines are hidden.

During the experiment, discussed by Section 4, subjects were explained that they could

recognize a hidden line by a line number with no text after it. Future versions of the

prototype could include a special icon of some type to show that a line can be clicked to

toggle more information.

32

4 Experiment

This section focuses on the controlled experiment conducted in a laboratory

setting to evaluate the performance of the prototypes relative to the baseline (without

information features modification). This section reviews the research questions, the

design of the experiment, how the subjects were recruited, the tutorial used in the study,

how the TouchDevelop scripts used in the study were selected, the design of the program

comprehension questions used in the study, and how performance was measured.

4.1 Research questions

The main objective of this research is to investigate the effect of manipulating

visual weight of information features in a patch on an end-user programmer’s information

foraging and patch comprehension during maintenance tasks. It is not clear if increasing

relative weight of important information features will be as helpful for end-user

programmers as for professional programmers. On one hand, end-user programmers write

code as a secondary task in their work, rather than their main task [12] - as a result, they

might be relatively unfamiliar with programming and programming tools making them

heavily dependent on tool assistance with information foraging and understanding

patches of code. On the other hand, end-user code is often not written with reuse in mind

and may not have many information features important enough to highlight or easily

identifiable - as a result, highlighting important information features may not help end-

user programmers very much.

33

Modifying the presentation of information features not only affects how the

information patch is processed, but also navigation among patches. So, in addition to

investigating the effects of manipulating relative weights of information features on

within-patch comprehension, it is also important to investigate its effect on an end-user

programmer’s patch-to-patch navigation. A tool that helps end-user programmers to

effectively extract information from a patch, but hinders patch-to-patch navigation is not

really useful!

With these objectives in mind, the following research questions were formulated:

RQ1: Does increasing the relative weight of important information features affect

how much information an end-user programmer could find during a maintenance task?

RQ2: Does increasing the relative weight of important information features affect

how quickly an end-user programmer could find information during a maintenance task?

RQ3: Does increasing the relative weight of important information features affect

how efficiently an end-user programmer could find information during a maintenance

task?

RQ4: Does decreasing the relative weight of unimportant information features

affect how much information an end-user programmer could find for a maintenance task?

34

RQ5: Does decreasing the relative weight of unimportant information features

affect how quickly an end-user programmer could find information during a maintenance

task?

RQ6: Does decreasing the relative weight of unimportant information features

affect how efficiently an end-user programmer could find information during a

maintenance task?

4.2 Design Overview

The experiment was a random-assignment, between-subject user study consisting

of 3 distinct groups - one test group for each prototype and one control group as the

baseline. All three groups were given the same TouchDevelop scripts and were asked the

same set of program comprehension questions. The order of the scripts and program

comprehension questions were randomized to account for learning effect. In order to

ensure that the groups were reasonably well balanced, tickets were placed into a bowl,

and participants randomly chose a ticket to indicate group assignment and task ordering.

During the tutorial, subjects were taught about the APIs in TouchDevelop, how to

run scripts in the TouchDevelop app on a Windows smart-phone and how to use the web

tool that contained the prototype-generated code and program comprehension questions.

The subjects then studied a sample TouchDevelop script and answered two program

comprehension questions which were not used in the evaluation. The purpose of this

35

activity was to give the subjects some familiarity with the language, the web tool and the

Windows smart-phone.

Following the sample task, subjects studied 3 TouchDevelop scripts and answered

program comprehension questions about each script. The web tool recorded the subject’s

response to the comprehension questions in the background. Each subject received $10

for their participation. Figure 11 illustrates the experimental design.

36

Introduction and Consent Form

Group 1 Group 2 Group 3

Random assignment

Prototype 1 Prototype 2

Baseline

Common Tutorial

+

Prototype 1 Tutorial

+

Sample Task

Common Tutorial

+

Prototype 2 Tutorial

+

 Sample Task

Common Tutorial

+

Sample Task

Tasks: random

order

Tasks: random

order

Tasks: random

order

Figure 11. Experiment design

37

4.3 Participants and recruitment

A total of 31 Oregon State University undergraduate and masters’ students who

take programming classes were recruited in two ways: by sending emails to teachers of

the college’s programming classes, inviting them to forward the recruitment text to their

students, and by emailing the recruitment text directly to relevant people who had

previously indicated interest in being notified when an experiment is run. The recruitment

email pointed students to a website where they were able to read the consent form,

including the inclusion criteria, and to sign up for a timeslot to visit the laboratory. The

inclusion criteria were that participants must be able to understand the consent form

written in English, must indicate that they are adults, and must indicate that they are not

professional programmers. One participant ended up not actually knowing English as

well as he thought that he did, so his data was removed from further consideration. This

left 30 participants evenly divided among the 3 groups. The subjects were predominantly

male (87% of the subjects) and were pre-CS majors. We chose subjects from this

population in order to avoid teaching how to program.

4.4 Tutorial

The tutorial used in this study consisted of 3 segments - a segment on

TouchDevelop’s language features, a segment on how to use the TouchDevelop

application to run scripts on the Windows smart-phones and a segment on how to use the

web tool which contained both the prototype-generated TouchDevelop script code as well

as the program comprehension questions.

38

While the tutorial on language features and TouchDevelop application was the

same for all subjects, the segment on the web tool was different based on the group the

subject belonged to. The tutorial on TouchDevelop’s language included the following:

 the concept of sprites

 APIs provided by TouchDevelop

 Event listeners provided by TouchDevelop

 Global variables

 organization of code in TouchDevelop scripts

 data-types provided by TouchDevelop

The tutorial on how to use the TouchDevelop app dealt with how to open and

access scripts in TouchDevelop app and how to run a script in TouchDevelop app.

The tutorial on how to use the web tool dealt with how to read the code generated

by the prototypes. The subjects who belonged to group-1 were taught about the difference

between the highlighted and normal lines of code and the meaning of different colors of

text in the prototype-generated frame. The subjects who belonged to group-2 were taught

about the difference between hidden and unhidden lines of code and how to view the

hidden lines of code within the prototype-generated frame. The interface of the web tool

39

was kept uniform for all three treatments except for the frame that contained the

prototype-generated script code.

4.5 Experiment scripts

In order to cover a range of patch comprehension and patch-to-patch navigation

situations, 3 different TouchDevelop scripts with different sizes were selected. The three

scripts were chosen from a pool of hundred scripts that were previously studied [19].

Script-1 (https://www.touchdevelop.com/somi) , which was small, contained only one

function and 38 lines of code - hence all information foraging was within one patch.

Script-3 (https://www.touchdevelop.com/ujqx), which was large, contained 18 functions,

6 event-listeners and 326 lines of code that included 35 function calls – hence,

understanding Script-3 required much more patch-to-patch navigation compared to

Script-1. The other script, Script-2 (https://www.touchdevelop.com/ujqx), achieved a

middle-ground between Script-1 and Script-3. It contained 4 functions, 1 event-listener

and 122 lines of code.

 The size of these scripts were fairly representative of the range of script sizes in

TouchDevelop repository. According to a recent study on TouchDevelop scripts [32],

72.6% of the scripts in TouchDevelop repository are less than 100 lines of code (Script-1)

and 24.8% of the scripts are between 100 and 500 lines of code (Script-2 and Script-3)

The scripts’ functionality was also representative several important functional

categories demonstrated by scripts in the repository. Script-1 was a game where the user

https://www.touchdevelop.com/somi
https://www.touchdevelop.com/ujqx
https://www.touchdevelop.com/ujqx

40

guesses a number between 1 and 100 randomly chosen by the application. Script-2 was a

non-entertainment utility application that acted as a timer. Script-3 was an application

that lets the user build and save image sprites on a 16*16 grid. According to previous

research [19], scripts related to games, utility functions, and image manipulation are

fairly common in the TouchDevelop platform.

4.6 Program comprehension questions

The objective of this study is to investigate the effect of manipulating the

presentation of information features in a patch on real-world maintenance tasks. Hence,

the program comprehension questions were designed around actual changes made by

TouchDevelop users over the life of the scripts in the repository. Two different

researchers studied and agreed upon what these changes involved in previous research

[19]. Previous research on questions that programmers ask during software evolution

tasks [2] was used to inform the design of the program comprehension questions. All of

the program comprehension questions required the subjects to find specific information

(often a line of code) in the script as would be the case prior to accomplishing the

maintenance changes that was investigated in the previous study [19]. The list of

questions used in the study can be found in Appendix A. (There was 1 question for the

small script, 2 for the medium script, and 6 for the large script.) The questions were

reviewed and it was informally verified that the users theoretically could find the correct

answers primarily by looking at the “important” statements identified by the prototypes,

indicating that the existing algorithm that was adapted for the prototypes did have a

41

plausible chance of helping participants. Note that, the program comprehension questions

did not test the control flow of the tasks.

4.7 Measures and analysis

To compare the performance of the subjects from the 3 different groups, three

measures were used – program comprehension correctness, foraging time, and

information gained per total time. Program comprehension correctness was determined

by comparing subjects’ answer with the answer key. One point was given to a correct

answer and zero to an incorrect answer. Some answers contained two parts and if a

subject got only one of them correct, 0.5 points was rewarded. The time taken for the

tasks was also considered as a measure of success. For the measure of foraging time, the

web tool recorded the time taken for the tasks in the background in seconds. The ratio of

these two measures, correctness and time taken was used as the third measure of success

– rate of information gained per time. (This third measure was scaled by 10000 so that it

generally fell in the range of 100-10000.)

Due to the fairly small sample and likelihood that data would not be normally

distributed, a Kruskal-Wallis nonparametric statistical test was implemented with a two-

tailed ANOVA of each measure rank versus two factors: treatment and task (script size).

Even though ANOVA is a parametric test, rank transformation is shown to add

robustness against non-normality, outliers and unequal variance to ANOVA [58]. This

analysis was used to see if there were any statistically significant differences among the 3

treatment groups while controlling for script size. (The sample size was insufficient to

42

test for an interaction term between treatment and script size.) For each measure and each

combination of treatment and script size, the mean of the measurements was computed so

that these averages could be reported if statistically significant differences are found.

Table 3 summarizes the research questions and measures.

43

Research Question Measure used to answer
the research question

RQ1: Does increasing the relative weight of important

information features affect how much information an

end-user programmer could find during a maintenance

task? Program comprehension

correctness
RQ4: Does decreasing the relative weight of unimportant

information features affect how much information an

end-user programmer could find for a maintenance task?

RQ2: Does increasing the relative weight of important

information features affect how quickly an end-user

programmer could find information during a maintenance

task?
Foraging time

RQ5: Does decreasing the relative weight of unimportant

information features affect how quickly an end-user

programmer could find information during a maintenance

task?

RQ3: Does decreasing the relative weight of unimportant

information features affect how efficiently an end-user

programmer could find information during a maintenance

task?
Rate of information gain

RQ6: Does decreasing the relative weight of unimportant

information features affect how efficiently an end-user

programmer could find information during a maintenance

task?

Table 3. Summary of measures used to answer the research questions

44

5 Results and Discussion

This section discusses the results for each question, possible explanations for the

results, and threats to validity.

5.1 Results

RQ1: Does increasing the relative weight of important information features affect

how much information an end-user programmer could find during a maintenance task?

There was a strong evidence (p-value = 0.01, F-value = 7.35) for a significant

difference between Group 1 (highlighting important statements) and Group 3 (baseline)

on program comprehension correctness. There was no evidence (p-value = 0.89, F-value

= 0.1217) that script size had a statistically significant effect. This indicates that, across

the range of script sizes that was investigated, increasing the relative weight of important

information features did influence the amount of information an end-user programmer

could find. Below, Figure 12 summarizes the mean and range of scores that subjects got

for the small, medium, and large scripts.

Summing across all script sizes, the subjects in Group 1, who had the highlighting

version of the prototype, scored a total of 5.1 points (with subscores of 0.9/1.1/3.1 for

small/medium/large scripts, respectively). In contrast, subjects in Group 3, who had the

baseline prototype, scored a total of only 3.45 points (with subscores of 0.65/0.7/2.1).

45

Figure 12. Comparing groups on program comprehension score for Script 1, 2 and

3 respectively

RQ2: Does increasing the relative weight of important information features affect

how quickly an end-user programmer could find information during a maintenance task?

There was no evidence (p-value = 0.7, F-value = 0.12) for a significant difference

between Group 1 (highlighting important statements) and Group 3 (baseline) on foraging

time. There was also no evidence (p-value = 0.98, F-value = 0.0182) for a significant

difference between the two groups across script size. This indicates that these two factors

did not influence an end-user programmer’s foraging time.

RQ 3: Does decreasing the relative weight of unimportant information features

affect how efficiently an end-user programmer could find information during a

maintenance task?

46

There was some evidence (p-value = 0.03, F-value = 5.06) for a significant

difference between Group 1 (highlighting important statements) and Group 3 (baseline)

on rate of information gain. This indicates that increasing the relative weight of important

information features did influence the efficiency of an end-user programmer’s

information foraging. As Figure 13 shows, the mean rate of information gain for subjects

from Group 1 (859.4/842.9/444.78 for small/medium/large scripts) was greater than the

mean rate of information gain for Group 3 (637.2/361.7/248) for scripts 1,2 and 3

respectively. There was no evidence (p-value = 0.88, F-value = 0.13) for a significant

difference between the two groups across script size.

Figure 13. Comparing groups on rate of information gain for Script 1, 2 and 3

respectively (in units of “points per 10000 seconds”).

47

RQ4: Does decreasing the relative weight of unimportant information features

affect how much information an end-user programmer could find during a maintenance

task?

There was weak/suggestive evidence (p-value = 0.08, F-value = 3.15) for a

significant difference between Group 2 (hiding unimportant statements) and Group 3

(baseline) on program comprehension correctness. This indicates that decreasing the

relative weight of unimportant information features has a weak but inconclusive influence

on the amount of information an end-user programmer could find. Figure 12, above,

compares the groups. There was no evidence (p-value = 0.9, F-value = 0.11) for any

significant difference between the two groups across script size.

RQ5: Does decreasing the relative weight of unimportant information features

affect how quickly an end-user programmer could find information during a maintenance

task?

There was no evidence (p-value = 0.28, F-value = 1.14) for a significant

difference between Group 2 (hiding unimportant statements) and Group 3 (baseline) on

foraging time. This indicates that decreasing the relative weight of unimportant

information features did not influence an end-user programmer’s foraging time. There

was also no evidence (p-value = 0.94, F-value = 0.06) for a significant difference

between the two groups across scripts.

48

RQ 6: Does decreasing the relative weight of unimportant information features

affect how efficiently an end-user programmer could find information during a

maintenance task?

There was no evidence (p-value = 0.04, F-value = 4.33) for a significant

difference between Group 2 (hiding unimportant statements) and Group 3 (baseline) on

rate of information gain. This indicates that decreasing the relative weight of unimportant

information features did influence the efficiency of an end-user programmer’s

information foraging. As Figure 13 shows, above, the mean rate of information gain for

subjects from Group 1 (368.8/112.8/215.6 for small/medium/large scripts) was

consistently lesser than the mean rate of information gain for Group 3

(859.4/842.9/444.78). There was no evidence (p-value = 0.99, F-value = 0.006) for a

significant difference between the two groups across scripts.

Tables 4 and 5 summarize all of the results that were obtained. Note that each

value in the third row of Table 4 differs from the ratio of the corresponding values in the

first two rows because the third row shows the average of individual subjects’ ratios

rather than the ratio of the averages.

49

Comparing
measure
between
groups

Highlighting
important
statements

(N = 10)

Hiding
unimportant
statements

 (N = 10)

Baseline

(N = 10)

Script 1 2 3 1 2 3 1 2 3

Score (points) 0.9 1.1 3.1 0.45 0.2 1.9 0.65 0.7 2.1

Time (seconds) 117.7 192.1 769.8 128.1 196.1 862.6 129.7 178.2 802.3

Gain rate

(points/seconds)

859.4 842.9 444.78 368.8 112.8 215.6 637.2 361.7 248

Table 4. Mean performance of participants on each measure for each script size

50

 P values

Research Question Measure
Treatment

groups
Treatment

Script
size

RQ1: Does increasing the

relative weight of important

information features affect how

much information an end-user

programmer could find during a

maintenance task?

Comprehension

score
1 vs 3 0.01 0.89

RQ2: Does increasing the

relative weight of important

information features affect how

quickly an end-user

programmer could find

information during a

maintenance task?

Time taken 1 vs 3 0.70 0.98

RQ3: Does increasing the

relative weight of important

information features affect how

efficiently an end-user

programmer could find

information during a

maintenance task?

Rate of

information gain
1 vs 3 0.03 0.80

RQ4: Does decreasing the

relative weight of unimportant

information features affect how

much information an end-user

programmer could find for a

maintenance task?

Comprehension

score
2 vs 3 0.08 0.90

RQ5: Does decreasing the

relative weight of unimportant

information features affect how

quickly an end-user

programmer could find

information during a

maintenance task?

Time taken 2 vs 3 0.28 0.94

RQ6: Does decreasing the

relative weight of unimportant

information features affect how

efficiently an end-user

programmer could find

information during a

maintenance task?

Rate of

information gain
2 vs 3 0.04 0.99

51

Table 5. Summary of results from the six statistical tests, with shading to indicate

differences that were significant at p < 0.05

5.2 Discussion

As discussed in Section 2, researchers have already proposed tools based on

highlighting and code summarization to help professional programmers. Highlighting had

also been shown to be helpful to end-user programmers during debugging. Based on the

success of these tools, it might be expected that highlighting important statements and

removing unimportant statements could possibly help end-user programmers. On the

other hand, highlighting could overwhelm users, and hiding code statements could reduce

their ability to understand the program.

Results from this research indicate that highlighting important statements did help

end-user programmers to reduce foraging cost in the study. It helped end-user

programmers find more information, though not in significantly less time, leading to an

overall faster rate. This may indicate that highlighting increases the benefit-to-cost ratio

of processing an information patch not by reducing the cost of processing the patch, but

by increasing the benefit of processing the patch (that is, by returning more value per unit

effort). Future research is needed to investigate this interpretation of the results and to

investigate why highlighting seemed to help subjects get more information out of visiting

patches.

Unlike highlighting important statements, hiding unimportant statements didn’t

seem to help to reduce foraging cost. In fact, hiding unimportant statements reduced the

52

rate of information gain, even though a review of the questions confirmed that users

theoretically could find the correct answers mainly by looking at only the unhidden (i.e.,

important) statements. The mean comprehension score for the baseline group was

marginally though not significantly better than the mean score for the group with hidden

unimportant statements; the mean time taken was nearly identical for the two groups. So

although there was not a statistically significant effect on either of the first two measures,

the ratios of these did a slightly statistically significant difference (at p=0.04, as shown in

Table 4). This result might be explained by previous research [56] on sense-making in

end-user programmers’ debugging strategies. This work suggests that male end-user

programmers (87% of the subjects) exhibit a “selective information processing” style,

where they tend to gather information depth-first rather than comprehensively reviewing

all available information breadth-first before proceeding. Perhaps the subjects did not

take the time to unhide unimportant statements even when doing so would have been

slightly helpful for making sense of the important statements where the true answers to

the questions were located. So perhaps, because less important portions within the patch

were not immediately visible, they could not acquire all of the information from

unimportant statements that might be needed to fully comprehend the program as a

whole, resulting in poor performance. These results suggest that even unimportant

statements might be needed to help end-user programmers understand the important

statements. This hypothesis would need to be investigated by future studies.

53

5.3 Threats to validity

One strength of the study is that the specific scripts and tasks that were chosen

were based on prior work investigating what kinds of scripts and maintenance tasks are

common in the TouchDevelop environment. However, this experiment was a controlled

lab study with artificial limitations and the subjects may not be representative of actual

TouchDevelop users in the real world. It is also possible that the results might not

generalize to other kinds of programming tools, particularly visual programming tools

rather than scripting tools, since information foraging in visual programming

environments is not nearly as well-investigated as foraging in textual programming

environments. Further studies could investigate whether results apply to other users and

other programming environments.

This study investigated the effect of manipulating the visual weights of

information features on information foraging. The subject’s information foraging was

tested by asking program comprehension questions that reflect the amount of information

the subject has foraged and understood. To help ensure construct validity, two different

researchers studied and agreed upon the meaning of code changes in a previous study

[19] to develop the program comprehension questions, which were also informed by

previous research on questions that programmers ask during software evolution tasks [2].

However, the experiment did not actually ask users to complete the actual maintenance

tasks, so although the results reveal the effects of highlighting and cue-removal on

information foraging, it cannot be claimed that the results imply anything about the

54

effects of highlighting and cue-removal on actual programming task completion. Finally,

the program comprehension questions didn't test any tasks that involved large external

data structures (such as databases). Future studies can investigate if the results apply to

such tasks.

55

6 Conclusion and Future research opportunities

This work investigated how highlighting important information features and

hiding unimportant information features would affect an end-user programmer’s foraging

during real-world maintenance tasks. Particularly, this research focused on end-user

programmers because their information foraging has received minimal attention in prior

work. Conclusions of this work are:

 highlighting important information features is beneficial to end-user

programmers during foraging tasks.

 highlighting important information features affects the amount of

information foraged and the rate of information gain.

 removing unimportant features is detrimental to an end-user programmer’s

rate of information gain.

Integrating the proposed technique into code editors could be beneficial to end-

user programmers. Identifying and highlighting important information features as the

end-user programmer types his program in the code editor may help them verify design

specifications and prevent bugs at an early stage; automatically highlighting these

important statements in the code editor may benefit during later maintenance tasks.

Future works may investigate how well the proposed technique helps to prevent bugs and

to reduce the time needed for maintenance.

56

As a second example of how these results could help guide tool improvements,

highlighting important statements could also be beneficial during debugging tasks.

During a debugging session, when an end-user programmer is stepping through an

execution, the debugging tool could highlight important lines of code that were either just

executed or that might be executed soon, in order to help the programmer focus attention

on the lines of code that might matter most for recognizing and understanding a bug.

Future work can investigate if highlighting important statements like this within an end-

user program helps in debugging tasks.

Also, these results might be used to improve existing end-user programming tools

for code reuse. For example, end-user programmers often depend on adapting existing

code during reuse, called white-box reuse. Many end-user programming environments

provide recommendations for reusable code based on a search query. After the

environment has returned several recommendations, the end-user programmer still has to

evaluate one or few returned end-user programs and decide if any of them is suitable for

white-box reuse. Evaluating a few unfamiliar end-user programs and choosing one

among many can be a time consuming process for the end-user programmer. While there

has been some previous research on identifying reusable end-user programs [59,60], there

are no prior research that investigate how these returned end-user programs can be

effectively presented to the end-user for further evaluation. Results from this work

suggests that future work should investigate if identifying and highlighting important

statements within the returned end-user programs can help end-user programmers

57

effectively and efficiently evaluate the returned results. Many subjects using prototype 1

(highlighting) indicated that the statements highlighted in blue - the void return s_units

(function calls with side effects) were useful in answering the program comprehension

questions after completing the experiment. Future work can further investigate the reason

behind this and how it can be used to improve end-user programming tools.

Finally, it would also be interesting to investigate if the results can be generalized

to visual programming environments for end-user programmers such as Scratch [22]

where important information features would be symbols, code magnets rather textual

statements. The research could try to discover what kinds of highlighting make most

sense to end-user programmers in a visual language, and whether this highlighting helps

with program comprehension.

58

Bibliography

1. Ko, A., Myers, B., Coblenz, M., & Aung, H. (2006, Dec.). An Exploratory Study

of How Developers Seek, Relate, and Collect Relevant Information during

Software Maintenance Tasks. Software Engineering, IEEE Transactions, 32, 971 -

987.

2. Sillito, J., Murphy, G., & De Volder, K. (2006). Questions programmers ask

during software evolution tasks. Proceedings of the 14th ACM SIGSOFT

international symposium on Foundations of software engineering, 23 - 24.

3. Ko, A., Myers, B., & Aung, H. (2004). Six Learning Barriers in End-User

Programming Systems. Visual Languages and Human Centric Computing, 2004

IEEE Symposium , 199 - 206.

4. Ko, A., Myers, B. (2004). Designing the whyline: a debugging interface for

asking questions about program behavior. Proceedings of the SIGCHI conference

on Human factors in computing systems, 151-158.

5. Cubranic, D., Murphy, G., Singer, J., & Booth, K. (2005, June). Hipikat: a

project memory for software development. Software Engineering, IEEE

Transactions on, 31 (6), 446 - 465.

6. Henninger, S. (1994). Using iterative refinement to find reusable software.

Software, IEEE, 11 (5), 48 - 59.

59

7. Holmes, R., & Walker, R. (2007). Supporting the investigation and planning of

pragmatic reuse tasks. Proceedings of the ACM/IEEE International Conference on

Software Engineering, 447–457.

8. Simon, F., Steinbruckner, F., & Lewerentz, C. (2001). Metrics based refactoring.

Software Maintenance and Reengineering, 2001. Fifth European Conference on,

30 - 38.

9. Pirolli, P., & Card, S. (1999). Information foraging models of browsers for very

large document spaces. In Proceedings of the Working Conference on Advanced

Visual Interfaces, 83–93

10. G., Sridhara; E., Hill; D., Muppaneni; L., Pollock; K., Vijay-Shanker (2010).

Towards Automatically Generating Summary Comments for Java Methods.

Proceedings of the IEEE/ACM international conference on Automated software

engineering, 43-52.

11. Ko, A., Myers, B., & Aung, H. (2004). Six Learning Barriers in End-User

Programming Systems. Visual Languages and Human Centric Computing, 2004

IEEE Symposium , 199 - 206.

12. Scaffidi, C., Shaw, M., & Myers, B. (2005). Estimating the numbers of end users

and end user programmers. Visual Languages and Human-Centric Computing,

2005 IEEE Symposium , 207 - 214.

60

13. Petre, M., & Blackwell, A. (2007). Children as unwitting end-user programmers.

Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing , 239–242.

14. Wiedenbeck, S. (2005). Facilitators and inhibitors of end-user development by

teachers in a school environment. IEEE Symposium on Visual Languages and

Human-Centric Computing , 215-222.

15. Segal, J. (2005). When Software Engineers Met Research Scientists: A Case

Study. Empirical Software Engineering , 517-536.

16. Wang, G. Y. (2009). Mashroom: end-user mashup programming using nested

tables. Proceedings of the 18th international conference on World wide web ,

861-870.

17. Wong, J. a. (2007). Making mashups with marmite: towards end-user

programming for the web. Proceedings of the SIGCHI conference on human

factors in computing systems , 1435-1444.

18. G. Little, T. L. (2007). Koala: Capture, share, automate, personalize. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems , 943-946.

19. Athreya, B., Bahmani, F., Diede, A., & Scaffidi, C. (2012). End-user

programmers on the loose: A study of programming on the phone for the phone.

61

Visual Languages and Human-Centric Computing (VL/HCC), 2012 IEEE

Symposium , 75 - 82.

20. Magnuson, B. (2010). Building blocks for mobile games: a multiplayer

framework for App inventor for Android. master thesis, Massachusetts Institute of

Technology .

21. Cooper, S. D. (2000). Developing algorithmic thinking with Alice. Information

Systems Educators Conference , 506-539.

22. Resnick, M. (2009). Scratch: Programming for all. Communications of the ACM

, 60-67.

23. http://pipes.yahoo.com/pipes/pipes.popular

24. Nardi., B. (1993). A Small Matter of Programming:Perspectives on End User

Computing. MIT Press.

25. Brooks, R. (1983). Towards a theory of the comprehension of computer

programs. International Journal of Man-Machine Studies , 543-554.

26. Shneiderman, B. a. (1979). Syntactic/semantic interactions in programmer

behavior: A model and experimental results. International Journal of Parallel

Programming , 219-238.

http://pipes.yahoo.com/pipes/pipes.popular

62

27. Von Mayrhauser, A. a. (1995). Program comprehension during software

maintenance and evolution. Computer, IEEE , 44-55.

28. Pennington, N. (1987). Stimulus structures and mental representations in expert

comprehension of computer programs. Cognitive Psychology , 295-341

29. Letovsky, S. (1996). Cognitive Processes in Program Comprehension. Empirical

Studies of Programmers: 1st Workshop , 58.

30. Fleming, S. D., Scaffidi, C., Piorkowski, D., Burnett, M., Bellamy, R., Lawrance,

J., et al. (2007). An Information Foraging Theory Perspective on Tools for

Debugging, Refactoring, and Reuse Tasks. ACM Transactions on Software

Engineering and Methodology (TOSEM) .

31. Tillmann, N. M. (2011). TouchDevelop: Programming cloud-connected mobile

devices via touchscreen. Symp on New Ideas, New Paradigms, Reflections on

Programming and Software , 49-60.

32. S. Li, T. X. (2013). A Comprehensive Field Study of End-User Programming on

Mobile Devices. VL/HCC.

33. Pennington, N., & Grabowski, B. (1990). The tasks of programming. Psychology

of Programming , 45-61.

34. Pirolli, P. (2007). Information Foraging Theory: Adaptive Interaction with

Information. Oxford University Press.

63

35. Aula, A., Jhaveri, N., & Kaki, M. (2005). Information search and re-access

strategies of experienced Web. Proceedings of the International Conference on

World Wide Web , 583–592.

36. Jeng, J.-J., & Cheng, B. H. (1995). Specification matching for software reuse: a

foundation. SSR ‘95 Proceedings of the 1995 Symposium on Software reusability ,

97-105.

37. Podgurski, A., & Pierce, L. (1993). Retrieving reusable software by sampling

behavior. ACM Transactions on Software Engineering and Methodology

(TOSEM) , 286 - 303.

38. Reiss, S. (2009). Semantics-based code search. In Proceedings of the 31st

International Conference on Software Engineering , 243 - 253.

39. Hill, E., Pollock, L., & Vijay-Shanker, K. (2009). Automatically capturing source

code context of NL-queries for software maintenance and reuse. ICSE ‘09

Proceedings of the 31st International Conference on Software Engineering , 232-

242.

40. Cottrell, R. W. (2008). Semi-automating small-scale source code reuse via

structural correspondence. In Proceedings of the ACM/IEEE International

Symposium on Foundations of Software Engineering , 214–225.

64

41. Piorkowski, D. F. (2013). Reactive information foraging: an empirical

investigation of theory-based recommender systems for programmers.

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems

, 3063-3072.

42. Piorkowski, D., Fleming, S., Scaffidi, C., John, L., Bogart, C., John, B., et al.

(2011). Modeling programmer navigation: A head-to-head empirical evaluation of

predictive models. Visual Languages and Human-Centric Computing (VL/HCC) ,

109-116.

43. Ducasse, S. R. (1999). A language independent approach for detecting duplicated

code. International Conference on Software Maintenance , 109–118.

44. Prabhakararao, S., Cook, C., Ruthruff, J., Creswick, E., Main, M., Durham, M.,

et al. (2003). Strategies and behaviors of end-user programmers with interactive

fault localization. Human Centric Computing Languages and Environments,

2003. Proceedings. 2003 IEEE Symposium , 15-22

45. Hill, E., Pollock, L., & Vijay-Shanker, K. (2009). Automatically capturing source

code context of NL-queries for software maintenance and reuse. ICSE ‘09

Proceedings of the 31st International Conference on Software Engineering , 232-

242.

46. https://www.touchdevelop.com/help/cloudservices

https://www.touchdevelop.com/help/cloudservices

65

47. Haiduc S., A. J. (2010). Supporting Program Comprehension with Source Code

Summarization. Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering , 223-226.

48. S. Rastkar, G. M. (2011). Generating Natural Language Summaries for

Crosscutting Source Code Concerns. IEEE International Conference on Software

Maintenance (ICSM) , 103 - 112.

49. Kireyev, K. (2008). Using Latent Semantic Analysis for Extractive

Summarization. In Proceedings of Text Analysis Conference .

50. Steinberger, J. a. (2009). Update Summarization Based on Latent Semantic

Analysis. In Proceedings of 12th International Conference - Text, Speech and

Dialogue .

51. Fisher II, M. R. (2005). The EUSES Spreadsheet Corpus: A Shared Resource for

Supporting Experimentation with Spreadsheet Dependability Mechanisms. In 1st

Workshop on End-User Software Engineering .

52. Jean, M., Hall, J. (1996). A Risk and Control-Oriented Study of the Practices of

Spreadsheet Application Developers. Proc. 29th Hawaii Intl. Conf. System

Sciences , 364-373.

53. http://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/if.html

66

54. Scaffidi C., C. A. (2008). Using topes to validate and reformat data in end-user

programming tools. Proceedings of the 4th international workshop on End-user

software engineering , 11-15.

55. Biggerstaff T. J., R. C. (1989). Reusability framework, assessment, and

directions. Software reusability: vol. 1, concepts and models , 1-17.

56. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., & Kwan, I.

(2012). End-User Debugging Strategies: A Sensemaking Perspective.

Transactions on Computer-Human Interaction (TOCHI) .

57. Olston, C., & Chi, E. (2003). ScentTrails: Integrating browsing and searching on

the Web. ACM Transactions on Computer-Human Interaction (TOCHI) , 177-

197.

58. Conover, W. J., & Iman, R. L. (1981). Rank Transformations as a Bridge between

Parametric and Nonparametric Statistics. The American Statistician , 124-129.

59. Scaffidi, C., & Shaw, M. (2009). Inferring reusability of end-user programmers’

code from low-ceremony evidence. End User Programming for the Web

Workshop.

60. Scaffidi, C., Bogart, C., Burnett, M., Cypher, A., Myers, B., & Shaw, M. (2008).

Characterizing reusability of end-user web macro scripts. International Workshop

on Recommendation Systems for Software Engineering .

67

Appendix A - List of program comprehension questions

Small script

1. Suppose you decide to modify the program (source code displayed

onscreen) such that the final score of a player is given by the formula:

(1000 - time spent playing the game). Please write down the line numbers

after which you would insert code to accurately save the time at which the

game starts and the time at which the game ends.

Large Script

Figure 14. Image used in the study

68

2. What is the line number where a global variable is defined for the UI

element marked as #1 (in yellow) in the screenshot (see Figure 14)?

3. What is the line number where a global variable is defined for the UI

element marked as #2 (in yellow) in the screenshot (see Figure 14)?

4. What is the line number where a global variable is defined for the UI

element marked as #3 (in yellow) in the screenshot (see Figure 14)?

5. Note that the ‘Options’ screen (on the phone) has buttons for picking a

color and previewing. Write down the line number you would modify so

that the distance between the top of the screen and each of the buttons is

given by the following formula (height of the button * (index of the button

+ 25))

6. Note that the ‘Options’ screen (on the phone) has buttons for picking a

color and previewing. Suppose you want to add a third button to this

screen. Enter the line number after which you would insert code to add

the third button to the end of the Options

7. Write down the line number after which you would insert code to handle

the functionality of a third button.

69

Medium Script

8. Where (line number or value) does the sound stored in the global variable

s-main come from? (program source code displayed onscreen)

9. Please write down the line number that is responsible for playing the

sound when the timer finishes (program source code displayed onscreen)

