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Abstract 

 
A five year study of file-system medadata shows that the number of files increases by 200% and only a 

select few file-types contribute for over 35% of the files that exist on a file-system.
1
 It is difficult to point 

out a permanent selection of files that a user really cares about. This project uses reinforcement 

learning (RL
12

) to exploit the correlation between file-types, their usage patterns, multiple revisions etc., 

to extract out a selection of files which are “important” for an individual user. In this project, we 

integrate this file-selection approach with an open-source P2P backup application called 

CommunityBackup. With this approach, such a backup application can auto-configure its file selection 

without the user having to update the selection every time s/he relocates his/her folders. 

The survey also points out that most file-systems are only half-full on average, independent of the user 

job category.
2
 A P2P

10
 backup application allows peers to share this average half-empty file-system to 

maintain redundancy over a backup network. This project collects features that CommunityBackup can 

utilize for its peer selection
14

 using Q-learning algorithm to find out the geographically sparse, safe and 

consistent backup peers over a high-latency network. Another model presented in this project shows 

the use of an RL approach to improve the data-transfer throughput by adaptively raising the 

concurrency index to get around the ISP bottlenecks during backup application runtime. 

Background & Applications 

CommunityBackup 

 
This project is a part of CommunityBackup, which is an open-source initiative by Zest Softech Pvt. India 

Ltd.; it allows peers to share their space and form a large virtual file-system. The peer network (as in 

theory) automatically decides what to backup, where to backup, how much to backup using information 

available from the target machine,  for example, its location, capacity, bad-sectors etc. This project seeks 

to increase the overall probability of "recovery" in case of data-loss at any peer. 

Data Backup & Security 

 
Data backup is a crucial part of enterprise security. It needs to be a reliable source of recovery in case of 

a system breakdown. Data is generally backed up in external/tape drives or even on remote locations to 

make them geographically secure. This also involves maintaining redundancy across multiple locations. 

Various commercial applications are available which provide data backups on remote locations
16

, for 

example, Mozy (by EMC) is an encrypted online storage, Amazon S3, Carbonite, SpiderOak (zero-

knowledge security) etc. 

  

metadata



Goal 

 
There are three main goals of the project, to design and develop, 

1. An agent that can find all the important files inside a computer. 

2. A system that can match a suitable backup peer for all the data segments that a source peer has. 

3. An agent that can efficiently utilize concurrency during I/O to retrieve data segments from chosen 

backup peers. 

 
Backup peer: Machines in the network which are CommunityBackup (CBK, REF: 1) servers. 

Source Peer: Machines in the network which are CommunityBackup (CBK, REF: 1) clients. 

Data Segments: Piecewise data generated by CBK from “important” (REF: 2) files kept in a machine. 

Network: Large virtual high-latency distributed backup network prepared by CBK. 

 

Every peer is a CBK server and a CBK client. 

 

Background and challenge 

 
Due to the exponential increase in the number of files, it is not possible today to enumerate all the files 

inside a hard-disk and point out the most important ones. There is no single criteria to distinguish between 

files which are important to the user and ones which are not. The user might not be able to point out a 

permanent selection of files which s/he really cares about. Similar increase in the number of 

interconnected networks makes it impossible today to enumerate all the possible backup peers on this 

planet and point out the healthy ones. There is no single criteria to distinguish between peers which are a 

reliable backup node for the user and ones which are not. The user might not be able to point out a 

permanent selection of peers worldwide which s/he trusts and could rely upon for keeping backups safe. 

 

The intuition behind Important Files 

 
Files which are generally in use, occasionally modified and accessed, transferred/moved/relocated a 

number of times, showing a definite size change pattern and which are not system or “well known” files, 

are called “important” files. Like: Billing receipts, Banking credentials, Project reports, Code-work, 

Presentations etc. Some not necessarily our important files might be Backups, Logs, Temporary files, 

Configuration files. 

 

Well known files: Files which have a strong web presence. 

System files: Files related to the Operating System. 

Generally in use and occasionally modified/accessed: Depends upon the users computing style. 

 

The intuition behind Suitable Backup Peers 

 

 Peers which are generally online, occasionally receiving backups and contributing in recoveries, having 

transferred/moved/relocated to different networks a number of times, showing an acceptable data loss 

pattern, are responsive (good network), holding a good geographical dispersion index, have enough 

storage space, and which are low on crash counts are called “good” peers. So, a “suitable” peer is one 

which is the best deal available for particular kind of a data segment. Note that not every “good” peer is 

“suitable” for a data segment. Like: storage servers (good for very important data segments, which do not 

care much about network speed), home computers (good for regular backups), personal laptops (good for 



data backups which need to explore new networks), dedicated backup peers (good for all kinds of 

backups), storage clusters (best for data segments which might need quick recoveries) etc. Some peers, 

not necessarily, are “suitable” peers for a particular type of a data segment, for example: Honeypot 

servers, peers located nearby, peers in the same network, peers with good network access but cheap 

hardware etc. 

 

Geographical dispersion index: A measure of how spread the backup peers are on the globe, takes into 

account of “windowed data” of known coordinates of a subpopulation of peers. So, it is an approximate 

measure. 

Crash counts: Number of times a CBK engine has crashed, to an extent that it loses any data it ever 

backed up. 

Online availability: Depends upon the users computing style. 

 

The main aim of the third of this project is to design and develop a data retrieval mechanism that 

can adapt to the continuous contraction and expansion of the network bottleneck so that an 

optimal concurrency index can be maintained at any time during the data retrieval process. 

 

The intuition behind I/O concurrency 

 

The data transfer mechanisms typically employed in web-browsers, dedicated download 

managers, servers, etc are typically meant to utilize a single socket over the network. The 

diagram below illustrates how the network channel is utilized during a data retrieval on a single 

socket. 

 

 
Figure 1: Single socket data retrieval 

A receiver connects to network server(s) and initiates a data transfer stream. In the above 

diagram, ACK stands for acknowledgment, which is sent by a client after a segment of data has 

been received successfully. This traditional request-send-acknowledge policy is very 

conservative and hampers the performance of highly data-intensive applications. The underlying 

network usually maintains a transfer window (TCP Protocol
5
) which has a fixed maximum size. 

As a data transfer initiates, the window size is continuously incremented till it starts noticing data 

overflow, after which the window size is reduced to its half and the process is continued again. 
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Problem is that the data loss/overflow can be due to various reasons and, so, the network is never 

able to utilize the full available bandwidth. 

 

The downgrade in performance due to data transfer window resize process can be overcome 

using parallel data streams.
3,4

 An illustration of such a transfer is shown below: 

 

 
Figure 2: Multi-socket data retrieval 

Concurrent I/O is initialed by dividing the entire data stream into smaller segments, then, each 

segment is retrieved on its own network (TCP) connection. However, if we strain the socket too 

much by initiating more than optimal number of current I/O, then, the overall performance of the 
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mechanism starts reducing. This happens because each I/O request adds a considerable amount 

of overhead to the retrieval process. 

 

Some advanced multi-threaded file downloaders utilize this scheme by transferring data in 

smaller concurrent streams. This works much better than single socket data transfer mechanisms. 

Still a problem which this approach is that the concurrency index is never adjusted according to 

the current network conditions, instead, they are set to a static constant value throughout the 

retrieval process. This project demonstrates a mechanism by which the concurrency index can be 

adaptively changed on-the-fly during the file-retrieval process, according to the current network 

performance. This in-turn maximizes the network throughput. 

Designing the MDPs 

 
Before starting the description of the MDP

21
 there is a need to define the two concepts I’ve used in the 

project: 

• Scan Window 

• Intelligent Data 

 

These approaches have been selected so as to convert the POMDPs into fully observable MDPs. 

 

Scan Window 

 

It is a list of file selection using FIFO sorting based on the entry time in the change log. The agent talks to 

the environment simulator and gets a list of files and their feature scores. These scores are generated after 

an initial screening done by the simulation engine upon the file system statistics. This selection of files is 

called the “Scan Window”. Each location in the scan window is an object containing a file along with its 

feature values. 

 

Intelligent Data 

 

The “travelling data” has been used as an intelligent agent for this project. The backup source not only 

selects and generates an important data segment, but, it also wraps it up into an intelligent packet which is 

aware of the backup network and is an RL agent itself. This packet then moves around in the network in 

search of a “better” host for itself. The agent talks to the environment simulator and gets the next 

available peer and its feature scores. These scores are generated after an initial screening done by the 

simulation engine upon the network and peer statistics. The project calls this agent, as “Intelligent Data”. 

Each such agent in the network is an object containing the actual binary data along with its own feature 

values. (Data features are different from that of peer, REF 2) 

 



 
Figure 3, An RL Agent taking "move" action in a backup network. 

 
Figure 4, Pictorial representation of single RL agent carrying binary data 

 

File Selection 

State 

 
A state is defined by window location, status of the selection engine, backup status of the file in 

the current window location. Every state is a unique combination of the following parameters: 

 

Selection status of the selection engine (SS) 

• When the agent has selected any file, this parameter is True. 

• When the agent has NOT selected any file, this parameter is False. 

 

Backup status of the file (BS) 

• If the file was backed up previously then this parameter is True. 

• If the file was NOT backed up previously then this parameter is False. 

 

Window object location (WL) 

• Location of the object at which the selection agent is currently concentrating upon. 

 



Actions 

 
Action Skip: Skip the current file and move on to the next file in the current window. 

Action Backup: Select the current file and do a backup call to the simulator. 
 

Rewards 

 
Skip cost: Incurs a negative reward for moving on to the next file (-100). 

Backup Reward: The reward function for the backup action is dynamic. We used several online APIs to 

generate reward for each backup action 

 

Reward for backing up “well known” files 

 

The simulator looks for the web presence of the file, and if it finds out that the file is a common entity 

over the internet then associates a negative reward factor with the file or else there is a positive factor. 

• If file is a system/system-generated file, negative reward factor, else positive. 

• If file is an ad-ware, negative reward factor, else positive. 

• If file is spy-ware, negative reward factor, else positive. 

• If file is a virus, negative reward factor, else positive. 

• If file is a PUP or Trojan, negative reward factor, else positive. 

• If file is a common executable, script or binary content then a negative reward factor, else 

positive. 

• If file is a web-downloadable content then a negative reward factor, else positive. 

 

Reward for backing up a possible system file 

 

• If the location of the file is within one of the system folders, then a small negative factor 

or else positive. 

• If the location of the file is within one of the home folders, then a small positive factor or 

else negative. 

 

Reward for backing up a file Nth time 

 

Depending upon the value of the reward factor, if it is > 0: 

• Starting from +600 linearly reducing backup reward till a max negative value. 

Example, for increasing N values: 600, 480, 320, 120, -10, -120, -320, -480, -600, -720.....  max –

ve. 

• Starting from -200 exponentially reducing backup reward till a max negative value. 

Example, for increasing N values: -200, -400, -800, -1600, -3200, -6400..... max –ve. 

 

 

 

 

 



Peer Selection 

 

State 

 
A state is defined by agent’s current host, status of the selection engine, response of the currently 

selected peer. Every state is a unique combination of the following parameters: 

 

Selection status of the selection engine (SS) 

• When the agent has selected any peer, this parameter is True. 

• When the agent has NOT selected any peer, this parameter is False. 

 

Response status of the peer (RS) 

• If the peer has denied the backup proposal this parameter is True. 

• If the file was NOT backed up previously then this parameter is False. 

Backup Network (location) 

• Network at which the selection agent is currently concentrating upon. This depends upon 

the current host. 

Actions 

 
Action Skip: Skip the current peer and move on to the next peer in the current network. 

Action Backup: Select the current peer and call “move” using the simulator. 

 

Reward 

 
Skip cost: Incurs a negative reward for moving on to the next peer (-7). 

 

Move reward: The reward function for the “move” action is dynamic. I have also used several online 

APIs as well to generate the reward for each “move” action. 

 

Reward for moving to “well known” peers 

 
The simulator looks for the web and network presence of the peer, and if it finds out that the peer is a 

common entity over the internet then associates a negative or positive reward factor with the peer 

depending upon the review it gets. Please note that some terminologies and text here have been lifted 

from an internet resource
13,20

: 

• If peer is a known Anti-Infringement agency node, negative reward factor, else positive. 

• If peer is a part of government, military, law enforcement, & intelligence agency networks, 

negative reward factor, else positive. 

• If peer is a known P2P client or a tracker, big positive reward factor, else negative. 

• If peer is a spammer, negative reward factor, else positive. 

• If peer is / belongs to one of the following: 

o Level 1 (very high negative reward) 



� Companies or organizations who are clearly involved with trying to stop file 

sharing. 

� Companies which anti-p2p activity has been seen from. 

� Companies that produce or have a strong financial interest in copyrighted 

material. 

� Government ranges or companies that have a strong financial interest in doing 

work for governments. 

� Legal industry ranges. 

� IPs or ranges of ISPs from which anti-p2p activity has been observed. 

o Level 2 (reasonable negative reward) 

� General corporate ranges. 

� Ranges used by labs or researchers. 

� Proxies. 

o Level 3 (this is a paranoid list of peers, so, very small but a positive reward) 

� Many portal-type websites. 

� ISP ranges that may be dodgy for some reason. 

� Ranges that belong to an individual, but which have not been determined to be 

used by a particular company. 

� Ranges for things that are unusual in some way. 

• If peer is / belongs to a known Educational Institution, small positive reward, else big positive. 

• If peer is marked suspicious and is under investigation, very small positive reward, else big 

positive. 

• If peer is an advertising tracker then a negative reward factor, else positive. 

• If peer has been reported for bad deeds in p2p then negative reward, else positive. 

• If peer is a known web-spider then negative reward else positive. 

• If peer is a known hijacked node (used to deliver spam), then negative reward else positive. 

• If peer is a known hacker and belong to such people, then negative reward else positive. 

• If peer is a bad proxy (known for SEO hijacks, unauthorized site mirroring, harvesting, scraping, 

snooping and data mining / spy bot / security & copyright enforcement companies that target and 

continuously scan webservers) then negative reward else positive. 

• If peer is a / belongs to a node of the following types, then strong positive rewards else regular 

positive rewards: 

o Dedicated CBK servers 

o Dedicated CBK clusters 

o Dedicated CBK organizations 

 

Reward for moving to a known local peer 

 

• If the location of the peer is within the current “local” network, then a small negative factor or 

else positive. 

• If the peer has not been recently seen into the “local” network, then a small positive factor or else 

negative. 

 

Reward for moving Nth time 

 

• Depending upon the value of the reward factor, if it is > 0: 

o Starting from +600 linearly reducing backup reward till a max negative value. Example, 

for increasing N values: 600, 480, 320, 120, -10, -120, -320, -480, -600, -720..... max –ve. 



• If reward factor is < 0 

o Starting from -200 exponentially reducing backup reward till a max negative value. 

Example, for increasing N values: -200, -400, -800, -1600, -3200, -6400..... max –ve. 

 

Data Retrieval 

States 

 

Number of states are practically infinite, but for demonstration purposes there is a way to limit them. A 

state is defined by the current concurrency index and a success/failure indicator: 

 

State parameters: 

• Concurrency index 

• Improved/deprecated boolean 

 

Concurrency index indicates the number of concurrent I/O streams and “improved/deprecated” boolean 

value indicates whether after coming to this state there was a performance gain or not. 

 

Actions 

Add Segment 

 

Before the data retrieval mechanism begins, the data is split into smaller segments as shown in the 

diagram below: 

 

 

 

 

____ 



 
Figure 5: Adding a new segment 

 

Adding a segment uses the following approach: 

1. Find out the biggest segment that an I/O thread is downloading currently (segment 1 from 

illustration 3) 

2. Split that segment into half (1,1 and 1,2 from illustration 3) 

3. Shrink the segment of the original I/O thread to the dimensions of the first half. (R1,1) 

4. Start a new I/O thread whose job is to download the second half segment. (R1,2) 

 

Essentially, we pick up the largest existing segment and split it into half to create another I/O thread, 

which means increasing the concurrency index. 

 

Remove Segment 

 

Removing a segment calls for finding the smallest existing segment (target segment) and merging it with 

its left adjacent segment in-turn stopping the I/O thread which was downloading the target segment. This 

process is illustrated in the diagram below: 

 

1,1 1,2 2 3 4

R1 R2 R3 R4

R1,1 R1,2

Data segments

I/O threads (receivers)
Concurrency Index + 1



 
Figure 6: Removing an existing segment 

 

Removing a segment uses the following approach: 

1. Find out the smallest download segment and call it target segment (segment 4 in illustration 4) 

2. Merge the target segment into the left adjacent segment 

3. Stop the I/O thread corresponding to the target segment, in-turn reducing the concurrency index 

by 1. (R4 is removed) 

 

Essentially, this action picks up the smallest segment and merges it with the left-adjacent segment. Note 

that it is not possible to merge into the right segment because each data segment is downloaded 

sequentially from left to right, and merging with the right segment means extending the left boundary of 

the data segment. Unfortunately, due to technical limitations, a thread cannot be restarted to download 

from the new segment beginning, unless we want it to download the entire segment again. Some 

improvements are possible here, but, it is a topic out of the scope of this project. Also, note that since 

removing a segment requires an existing left-adjacent segment to merge with, the first segment can never 

be removed because it doesn't have a left-segment available. 

 

No Action 

 

This action does nothing but waits for the next iteration. 

 

Reward 

 

Rewards are dynamic depending under what conditions any action is performed. If we enter into an 

improved state, there is a sure positive reward with varying amount, otherwise a sure negative reward 

with varying amount. 

1 2 3 4

R2 R3 R4

Data segments

I/O threads (receivers)
Concurrency Index - 1

R1



 

Improved state 

 

A state is called “improved” if after taking an action the system shows a positive change in network 

throughput. This can happen in the following two ways: 

1. Adding a new segment to utilize an expanded network bottleneck. 

2. Removing an existing segment to stop straining the network socket which in-turn results in 

improved utilization (low overhead). 

 

The magnitude of reward is dynamic and is directly proportional to the observed change in throughput. 

Transitions 

 
For file selection, it depends upon the selection and backup status of the file. The Agent starts from the 

first object in the scan window list. Skip action will can only be taken on files where the Selection Status 

(SS) value is False and will change the state where Backup Status (BS) value do not change .If current 

object is the last element in the scan window agent jumps to the first element in the scan window or else 

agent moves to the next element in the scan window. Backup action will change the state to a terminal 

state where the Selection Status (SS) is true. 

 

Transition to a new state in peer selection always depends upon the selection status and response of the 

peer
15

. The Agent retrieves the first peer from the network. Skip action can only be taken in a state where 

the Selection Status (SS) value is False and will change the state where Response Status (RS) value do 

not change .If current object is the last remaining peer in the network then agent jumps to the first peer in 

the network. Select action will change the state to a terminal state where the Response Status (SS) is 

positive and the agent starts all over again. 

 

The following events trigger transitioning into a new state for data retrieval mechanism: 

• Add a new segment (concurrency index + 1) 

• Remove a new segment (concurrency index - 1) 

• I/O Thread stops (finishes downloading, concurrency index - 1) 

 

Essentially, any change into the system that alters the concurrency index causes the state to change. 

Q-Learning for file selector agent 

 
The first method we tried is the use of Q-learning on a small state space with files ranging from 10 to 20 

and Q-Learning with GLIE Policy II (Boltzmann Exploration) explore/exploit was implemented for this 

part. Learning performance or different number of training epochs is shown in Figure 3. The maximum 

reward for any file was up to 600 and would reduce linearly with each repetitive backup. To evaluate the 

average reward the agent was tested on a new set of files after training. 

 

 



 
Figure 7, Average reward on small state space over training epochs 

 

The agent starts with a negative average reward with small number of iterations and reaches the optimal 

performance with about 70 training epochs in a state space of made from 10 files. 

Q-Learning for Intelligent Data agent 

 
The first method I tried is the use of Q-learning on a small state space with peers ranging from 50 to 70 

and Q-Learning with GLIE Policy I (eGreedy) explore/exploit was implemented for this part. Learning 

performance of different number of training epochs is shown in Figure 4. The maximum reward for any 

peer was up to 600 and would reduce linearly with each “move” action. To evaluate the average reward 

the agent was tested on a new network simulator after training. 

 

 
Figure 8, Q-Learning on small state space 



 

The agent starts with a negative average reward with small number of iterations and reaches the optimal 

performance with about 85 training epochs in a state space made from 60 peers. 

 

Q-function Approximation 

 
While the above technique works for small state space with small numbers of peers (50-70) in the entire 

network, it is obvious that for a large number of peers in the network the state space would be very large 

(for every peer we need to know all the sixteen features of the peer and for data) and maintaining Q-value 

for each state would be extremely difficult. That leads to the implementation of Q-function 

Approximation for both peer selection and file selection agents. 

 

Data Features for Function Approximation 

 

Below are the features used for this file selection. The detailed justification for our selection is provided at 

the end of the report in appendix II. 

 

We rank every feature value and scale down to some max value to take control the number of 

states. 
 

1. File size / Average change in file size. 

o Assumptions: 

� Zero length files usually are of no importance. 

� Large files ( > 100MB) usually are media, installation or database files and might 

not be of much importance. 

2. File Type 
o Assumptions: 

� All system/executable file types score lower when compared to document, music, 

image or text types. 

3. Average modification interval: 
o Assumptions: 

� We assume that files which have been modified most number of times, recently, 

are the ones important to the user. 

4. Average File Usage: Number of times, a file has been found loaded inside RAM. 

o Assumptions: 

� We do not want to backup files which have never been opened by the user. 

5. Backup Times: Number of times, a file has been backed up. 

o Assumptions: 

� We do not want to backup same files again and again. 

 

While with q-learning even in very small state space it took about 50 training epochs before the agent 

started gaining average high reward, approximate function learning converges in 20~30 iterations. 

 

 

 

 

 



The below table contains the Ѳ values for Q function approximation at 40 iterations. 

 

Ѳ1 Bias 0.8 

Ѳ2 File Type Popularity 2.4221 

Ѳ3 Average modification interval 23.0529 

Ѳ4 Average File Usage 1.2439 

Ѳ5 Average File Size Change 40.0322 

Ѳ6 Number of duplicate backups 48.9141 

 

From the above table we can conclude that features like Average modification interval, Average File Size 

Change, Number of duplicate backups contribute more in the final file selection. This configuration of 

feature weights solely depends upon individual user track. 

 

 
Figure 9, Average reward on large state space over training epochs 

 

 

 

____  



Peer Features for Function Approximation 

 
Below are the features used for this peer selection. The detailed justification for our selection is provided 

at the end of the report in appendix II. 

 
We rank every feature value and scale down to some max value to take control of the number of states. 

 

1. Recovered Important Data 
o Assumptions: 

� Recovering any amount of useless data shouldn’t impact a decision. 

� We use the product of data importance measure received from file selection 

engine in data features (REF: 2) and data size to calculate this peer feature 

2. Geographical dispersion index 
o Assumptions: 

� Backing up to nearby peers doesn’t help in case of a natural disaster. 

� This is measure of how spread the backup peers are on the globe, takes into 

account of “windowed data” of known coordinates of a subpopulation of peers. 

So, it is an approximate measure. 

 

3. Data hop count 
o Assumptions 

� We want a stable matching solution of peer and data combinations, but, we also 

want to put a restrain on the number of “move” actions an agent takes. 

� Gets incremented by one with every hop the “intelligent data” makes in the 

network. 

4. Data size 

o Assumptions 

� Even if an “intelligent data” is important, a peer might not be able to accept its 

backup proposal because of lack of available space. 

5. Data importance 
o Assumptions 

� We prefer backing up important data than regular backups. 

� A sum of all the features of the “intelligent data” 

6. Target peer network latency 

o Assumptions 

� Peer with high access time would be troublesome and should be avoided 

whenever possible. 

7. Data redundancy index 
o Assumptions 

� The system prefers data backups which are less redundant. 

� With every “move” action, the previous host can choose to retain the copy and 

improve redundancy. (this feature is included, but not used, as there is no 

implementation to control data redundancy yet) 

8. Target peer availability (relative to the source) 

o Assumptions 

� Even if a peer is available mostly, but, both the source and target peer should 

have consistent schedules of their online presence. 

� This feature measures the relative presence of the current host and target peer. 

� This also covers “time-zone effect” (problems caused due to peers residing in 

different time zones) 



9. Target peer's free storage space 
o Assumptions 

� If the storage space of the target peer is not enough, there is no point in making a 

backup proposal as it will ultimately get rejected. 

� This is not an exact measure, only shows a percentage value. 

10. Target peer's used storage space 
o Assumptions 

� This feature helps giving low preference to fresh/blank peers, because they might 

not have been tested yet. 

11. Target peer activation time-stamp 
o Assumptions 

� This depicts a relative index on how old the current peer is. 

� The system should prefer an old peer over new ones. 

12. Target peer data loss index 

o Assumptions 

� Depending upon data importance, losing a very importance data segment will 

raise the index much higher than that when losing a segment of low importance. 

� A peer which has high loss index should be avoided. 

13. Peer acceptance rate (of backup proposal) 

o Assumptions 

� There can be various reasons to why a backup peer is not accepting backups, this 

feature help evaluate all such reasons into a single measure. 

14. Environmental feature 1: Lightning patterns at target peer 
o This feature is collected from a third party resource. 

o Assumptions 

� It is not recommended to use a backup peer which resides at a location where 

there is expected lightning disaster. 

15. Environmental feature 2: Wind speed measure at target peer 
o This feature is collected from a third party resource. 

o Assumptions 

� It is not recommended to use a backup peer which resides at a location where 

there is expected cyclone disaster. 

16. Environmental feature 3: System temperature at target peer 
o This feature is calculated from the system hardware. 

o Assumptions 

� It is not recommended to use a backup peer which has poor heat sink and is 

bound to crash very soon due to system hardware failure. 

 

 

While with q-learning even in very small state space it took about 85 training epochs before the agent 

started gaining average high reward, approximate function learning converges in 40~50 iterations. 

 

  



The below table contains the Ѳ values for Q function approximation at 60 iterations: 

 

Ѳ1 Bias 0.8 

Ѳ2 System temperature at target peer -8.73549 

Ѳ3 Data size -0.59676 

Ѳ4 Lightning patterns at target peer -8.13568 

Ѳ5 Geographical dispersion index 6.032791 

Ѳ6 Target peer availability 1.241027 

Ѳ7 Data redundancy index -1.10085 

Ѳ8 Peer acceptance rate 6.862445 

Ѳ9 Target peer network latency -9.70861 

Ѳ10 Target peer free storage space 10.0713 

Ѳ11 Target peer activation time-stamp 1.101388 

Ѳ12 Data importance 14.09615 

Ѳ13 Target peer data loss index -8.14309 

Ѳ14 Data hop count -3.47902 

Ѳ15 Recovered Important Data 3.588342 

Ѳ16 Peer acceptance rate 1.404046 

Ѳ17 Wind speed measure at target peer -5.52948 

 

From the above table we can conclude that features like Data importance, Target peer free storage space, 

Recovered Important Data, etc. contribute more in the final peer selection. This configuration of feature 

weights solely depends upon individual data track. 

 

 

Figure 10, Average reward on large state space over training epochs (Q-Learning on large state space) 

 

 

 



Comparison with Greedy Agent 

 
The Q-learning agent was compared against a greedy agent. A greedy agent picks the backup peer 

greedily at any state while q-learning agent uses q-learning to pick an action. Figure 7 & 8 show an 

average reward accumulated by both the Greedy agents. Notice that the accumulated reward for the Q 

learning agent is less than the greedy agent, this is because of the fact that during the initial iterations the 

data moved quite a lot and the greedy agent did not take skip actions which has a negative reward and as a 

result the greedy agent was accumulating higher rewards than the Q learning agent. However, in both the 

cases, with increased number of iterations the greedy agent ends up in a suboptimal solution and hence 

the rewards were moving towards negative. 

 

 

Figure 11, Average reward on small state space over training epochs for Peer Selection Greedy agent 

(Greedy-Learning on small state space) 



 

Figure 12, Average reward on small state space over training epochs for File Selection Greedy agent 

Data Retrieval Features for Function Approximation 

 
There is only one feature (sensor) required for the third part of the project. It is called network-

throughput. Any action that the system takes, directly affects the overall performance of the data transfer. 

This feature has a last 60 seconds averaging window which is used to calculate the change in data 

retrieved over the last one minute. 

Learning Agent 

The learning agent implements an active reinforcement learning
11

 mechanism using Q-learning. Initially, 

the agent has no policy and so, the Boltzmann GLIE policy picks up a random action until at a later stage 

with low temperature values where the agent takes more “informed” decisions. The 

exploration/exploitation policy is to select an action with probability: 

 
Figure 13: Boltzmann explore/exploit policy 

Where, T is the temperature. Larger T leads to greater exploitation. We start with value of 100 for T and 

reduce by 0.03% in each iteration until it is 1. 

The environment is uncertain as the network bottleneck keeps on changing continuously. There is no one 

optimal concurrency index for all scenarios. The graph below shows the change in network bottleneck 

over time. 

P (a | s) =
e

Q (s ,a )
T

∑
a ' ∈A

e

Q( s , a ' )
T



 

As the graph shows there are sharp changes in network bottleneck over time. The above graph is averaged 

and null-cycled over 50 seconds, which shows that even after every 50 seconds the network bottleneck 

either gets increased or decreased. An upward trend means that it got increased whereas a downward 

trend means that it got decreased over the last 50 seconds. 

The agent learns an optimal Q function which is the expected value of taking one of the actions (add or 

remove segment and, no-action) in any state and then following an optimal policy thereafter. We perform 

TD updates after each action: 

 

Where α is the learning rate and β is the discount factor. Note that for this project we particularly need a 

high learning rate, because, as shown above, the network bottleneck keeps on changing very frequently 

and so, in order to exploit the changes, the agent will have to respond quickly to them. For all experiments 

conducted, we've used a static discount factor which is 0.8. 

Note that we do not require a transition function as we are learning the model directly, similar to updates 

in temporal difference learning mechanism. Also, note that there is not terminal state, so, the problem is 

basically infinite-horizon and the agent is sent an exclusive stop signal by the system that terminates its 

execution. This happens when concurrency index drops down to zero, meaning that there are no I/O 

threads alive, which in-turn means that there are no segments left to download. 

As this is not a goal based problem, there is no need to speed up or back-propagate the rewards. The 

environment is not dangerous as we are only manipulating the concurrency index and the actions never 

cross the I/O thread limits (min and max allowed concurrent I/O). 
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Memory Usage 

Each state action pair has a unique optimal Q-value, so, for an environment with limits of “m” minimum 

threads, “x” maximum threads and “n” actions, we can have (x – m)n number of Q values. So, the space 

complexity is O(xn) assuming “m” to be always equal to 1. 

Adaptive Sockets (Model Free Q-Learning) vs Single Socket performance: 

The graphs below show how the network throughput and concurrency index change over time. Notice that 

there is a sudden “burst” in throughput initially. This is a very common behavior shown by all Internet 

Service Providers (ISPs) today. An ISP tries to boost initial data transfer because that helps in caching 

over audio/video streaming. At the later stage the throughput stabilizes to its actual value. 
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The above graph shows change in concurrency index over time, which is basically the number of parallel 

I/O streams retrieving data at any instance. Note that the Q-learning agent responds to the initial burst in 

throughput given by the ISP with over 25 concurrent I/O threads and then reduces down to 17 threads 

where-after it picks up slowly and stabilizes to 27 threads. There is still some disturbance towards the end 

because of the high learning rate. 

Comparing this with the single socket performance (concurrency index is always 1), we notice that the Q-

Learning throughput performance is much smoother and reacts to changes in the bottleneck. 

 

As can be seen from the above performance graph for single I/O thread data retrieval, it's overall 

performance gets hampered by the ISPs attempt to curb the transfer rate multiple times during the 

experiment. This can happen due to various other reasons as well, for example, sudden increase of data 

usage by other applications or increased number of clients over the network. The average throughput for 

single socket was 5.2 Mbps whereas it was 7.3 Mbps for adaptive sockets delivering a sheer 42% 

increase in performance. 

 

Adaptive Sockets (Model Free Q-Learning) vs Fixed Parallel Sockets performance 

Here, we compare the performance of Q-Learning with a static concurrency index value. In static 

concurrency scenario there is no scope for adding or removing a segment, so, we start with a fixed 

number of parallel I/O threads
8
 for this experiment. Whereas, for the adaptive sockets, Q-Learning will 

decide the optimal number of sockets on the fly. The performance graphs for Q-Learning agent is shown 

if previous sections. The performance graphs for fixed parallel sockets is shown below: 
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As can be seen from the above graph, the parallel sockets do resolve the problem with single sockets and 

respond in a much better way to bottleneck changes around 464th second. Still, there can be a better 

concurrency index value for this experiment. According to Q-Learning 27 is the optimal concurrency 

index for this experiment. The overall throughput static concurrency with five I/O threads was slightly 

above than single socket, 5.7 Mbps compared to 7.3 Mbps with adaptive sockets, which makes it a 

significant 28% increase in performance with adaptive sockets. 

 

Q-Table and Impacts of Learning Rate 

The Q-Table is attached along with this report, and it shows the value for each state (concurrency index, 

improved) and action (add, remove, no-action) pair. The only noticeable impact with learning rate is that 

if we keep it too low (~0.1) then the agent starts behaving like a fixed-concurrency index agent as it 

responds (if it does) very slowly to the change in network bottleneck size. A too high value (>=0.8) 

reduces the performance drastically, even lower than the single-socket performance because of the added 

overhead of taking quick add/remove segment actions. Adding a segment initiates a new request and 

dropping a segment closes the request, so, both of these actions consume some network. This overhead 

causes a lot of bandwidth to get wasted away. For the experiments done in this project, learning rate was 

0.5 which seemed optimal based upon empirical data not covered in this report. 
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Observations 

 
1. While the Q-learning seemed to perform very good once it is trained for an appropriate number of 

training epochs, we found the most difficult part is to tune it to the right parameters (e.g. discount, 

learning rate, rewards) to get the learning algorithm to work. 

2. I tried to increase the network size to 1000 peers for learning with feature approximation but the 

average reward collection was not as I had expected, this might be to various causes like the 

features selection was either too simple or not completely accurate which could also be 

anticipated from the feature weights of some of the features like Peer acceptance rate. Another 

reason for this might be the parameters need to be tuned more effectively. 

3. While working upon the file selection part, I noticed the same behavior (as in 2), except that 

learning was for a window size of 500 files. 

4. Up to 30-40% increase in performance compared to single socket data retrieval and in some cases 

even higher than that. 

 

Data Retrieval 

 

1. Up to 28% increase in performance compared to fixed-five parallel sockets data retrieval. 

2. Too high learning rate degrades the performance even lower than single socket agent 

3. While the Q-learning adaptive socket agent seemed to perform very good once it is trained for an 

appropriate number of training epochs (at high temperatures), it was apparent that the most 

difficult part is to tune it to the right parameters (e.g. discount, learning rate, rewards) to get the 

learning algorithm to work.  

4. In an attempt to explore the corner cases the thread limits (concurrency index limits) were set to 

as low as 1 to 2 and also as high as 70 to 100, but the average reward collection was not as 

expected because optimal value picked up in 70-100 range was 75 whereas it should have be only 

70 because the actual optimal value is just 27 when we set the range from 1 to 100. It might be 

because of the temperature of Boltzmann exploration function picking up too much randomness 

due to slow decrease in temperature. (0.03% every iteration). A better algorithm to control the 

temperature was needed. 
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APPENDIX I 

Code-work used in this project 

 
Please note that several modules have been lifted from the existing implementations of CBK. 

 

Common modules: 
1. Qfunctionapprx.m: This file implements the function approximation based q learning agent. 

2. Greedy.m: This file implements the greedy agent. 
3. Common.py: contains common code work, shared as a library. 

4. Config.py: contains necessary configurations. 

5. EnvironmentSimulator: Contains the asynchronous simulation server. 

6. Setup.py: Contains the compilation script. 

7. scan_db.sqlite: database file. Can be viewed by SQLite manager addon of firefox. 

8. ScanDB.py: Contains the database interface. 

 

Peer Selector: 
1. auto_peer_selection.py: Q-Learning implementation of the Intelligent Data Agent 

2. auto_peer_selection_greedy.py: Greedy implementation of the Data Agent 

3. PeerSelectionAgent.py: Contains an abstract representation of the required units. 

4. Network.py: Contains the network simulator used in the project. 

5. Mdp.py: Contains a generic MDP process which is used in this project. 

 

File Selector: (required from a previous implementation) 
1. mainmodule.m: The mainmodule.m file contains the construction parameters of MDP(S,A,R,T). 

2. modelfreeqleaaarning.m: This file implements the model free q learning agent. 

3. Backup.m: Implements the backup action. 

4. Skip.m: Implements the skip action. 

5. Scanfiles.m: This file communicates with the simulator. 

6. StatRecorder.py: Contains the file system statistics recorder. 

7. Agents.py: Contains Value-Iteration algorithm. 

8. AutoFileSelection.py: Contains the python code that uses value iteration to select files. 

 

Adaptive Data Retrieval: 
1. iget.py: Model Free Q-Learning implementation of the Adaptive Data Retrieval Agent 

2. iget_fixed_parallel_sockets.py: Fixed-concurrency implementation of the Data Retrieval Agent 

3. iget_single_socket.py: Single I/O thread implementation of the Data Retrieval Agent 

4. mdp.py: Contains a generic MDP process which is used in this project. 
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APPENDIX III 
Live-project working demo 

 

Window Screenshots 

 

Startup flash screen. New/Existing 
account options.

New account creation

Existing account. Forgot password, 
recovery wizard

New account verification screen



 

Front tab
Backup configuration options. Server 

optons

Password renewal screen Email address renewal screen



 

Scheduler help text File selection engine

Backup engine log About tab



 

References, credits and feedback window

Data recovery tab



APPENDIX IV 
Usage instructions 

 

Running Intelligent Peer Selector (first start the file selection engine) 

 
Greedy: 

 
Command: python auto_peer_selection_greedy.py <output file> 

 
RL Agent: 

 
Command: python auto_peer_selection.py <output file> 

 

 

Running Intelligent File Selector 
 

Starting the statistics collector: 

 
Command: statRecorder.exe target location (ex: statRecorder C:\) 

 

Starting the simulator: 

 

Command: environmentSimulator.exe 

 

Starting Value iteration: 

 
Command: autoFileSelection.exe 

 

Starting q-Learning: 

 

Command: matlab -nojvm -nodesktop -r "mainmodule;quit;” 

 

Using Adaptive Data Retrieval to download a file from internet: 

RL Agent: 

Command: python iget.py <source-url> <output file> 

Single socket Agent: 

Command: python iget_single_socket.py <source-url> <output file> 

Fixed-Parallel Sockets Agent 

Command: python get_fixed_parallel_sockets.py <source-url> <output file> 


