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A TM-BASED HARDWOOD-CONIFER MIXTURE INDEX

FOR CLOSED CANOPY FORESTS IN THE OREGON COAST RANGE

ABSTRACT

The purpose of this study was to develop, implement, and test methods for

quantifiing the relative proportion of hardwood and conifer cover from Thematic Mapper

(TM) imagery. The research was focused on closed canopy forests in the Oregon Coast

Range, where hardwood, conifer, and mixed stand conditions are prevalent. Based on an

understanding of the patterns of spectral variation expressed by these forests in TM data

space, it was hypothesized that a vegetation index could be developed to measure hardwood-

conifer mixing proportions. An approach based on the Gramm-Schmidt orthogonalization

process was used to derive three slightly different hardwood-conifer mixture indices (HCMIs).

Using correlation and regression techniques, the effectiveness of these indices as a measure of

closed canopy hardwood proportion was compared with three other groups of spectral

variables: (1) the untransformed TM reflectance bands, (2) the tasseled cap indices of

brightness, greenness, and wetness, and (3) the first three principal components of closed

canopy forest pixels. Results indicate that the Gramm-Schmidt process was an effective

method for deriving an index that was strongly correlated with closed canopy hardwood

proportion (r = 0.82).



1. INTRODUCTION

Patterns of land cover in the Pacific Northwest have undergone significant changes

due to natural and anthropogenic disturbances. An important forest management issue in the

region is how these temporal alterations of landscape structure affect biological diversity. The

work presented here supports regional scale modeling of the presence and abundance of

several vertebrate species using remotely-sensed measures of forest structure and composition

derived from Thematic Mapper (TM) data. Recent studies in western Oregon have established

techniques for quantifying several structural attributes of closed canopy conifer forests from

TM data (Cohen etal. 1995, Cohen and Spies 1992). However, the relative amount of

hardwood and conifer cover occurring within the forest is a particularly important explanatory

variable for biodiversity modeling, and methods for measuring this attribute in the region are

less well developed. Based on an understanding of spectral variation in closed canopy forests,

it was hypothesized that a vegetation index could be developed from TM reflectance data to

measure continuous hardwood-conifer mixtures in a simple and effective manner.

Vegetation indices are produced by transforming the original multiband data into a

lesser number of image variables that are strongly related to the physical phenomena of

interest. Several kinds of continuous phenomena have been remotely sensed using vegetation

indices. Examples of crop information measured by indices include density (Kauth and

Thomas 1976), biomass, leaf water content, and chlorophyll content (Tucker 1979), and leaf

area (Weigand and Richardson 1982). In forest systems, multispectral indices have been used

to estimate attributes such as the basal area and biomass of conifer stands (Franldin 1986), the

size, density, and age of conifer stands (Cohen and Spies 1992), and conifer mortality (Collins
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and Woodcock 1994). The goal of this study was to extend the development and application

of vegetation indices to the problem of measuring hardwood-conifer compositional mixtures.

Spectral indices may be calculated in many ways, including band ratios, band

differences, and linear band combinations. In this research, the Gramm-Schmidt

orthogonalization process (Jackson 1983) was used to derive a hardwood-conifer mixture

index (HCMI). The Gramm-Schmidt process is a mathematically simple method for

calculating the coefficients of one or more linear combinations of multiband data using the

spectral response of a few suitable reference points. The coefficients represent an axis of

spectral variation between reference endpoints in the multiband data space. If the physical

phenomenon of interest produces a continuum of spectral response between two distinct

points in the data space, the coefficients should yield a useful index.

It was expected that the Gramm-Schmidt process would be a suitable approach for

deriving an HCMI based on exploratory analyses of closed canopy forest response. Using

graphical representations of the TM data space, two main directions of spectral variation in

closed canopy conditions were observed. The primary direction occurred within pure conifer

conditions, and corresponded to the increasing development of canopy structure with age

(e.g., multiple layers, large number of gaps, tree size variability, and overall canopy

roughness). The secondary direction of spectral variation occurred between conifer and pure

hardwood conditions, and appeared to correspond to the relative mixing proportions between

the two composition types. Pure hardwood conditions exhibited a relatively small amount of

spectral variation. This observation is supported by previous studies that suggest that the



3

simple structure of dense hardwood canopies do not show significant spectral change with age

(Horler and Ahern 1986, Spanner el al. 1984).

Based on these observations, a two-step strategy emerged to separate compositional

information from structural information using two independent indices. First, the spectral

variation associated with closed canopy forest structure was addressed by establishing an

initial axis through young conifer and old conifer reference points. This axis is termed the

canopy structure index (C SI). Subsequently, a second axis was defined orthogonal to the first

toward a pure hardwood reference point to produce coefficients of the hardwood-conifer

mixture index (HCMJ). Reference points for index formulation were selected using methods

of spectral space visualization and analysis (Esbensen and Geladi 1989, Johnson et al. 1985).

The effectiveness of the HCMII as a measure of closed canopy hardwood proportion

was examined relative to three other groups of spectral variables: (1) the untransformed TM

reflectance bands, (2) the TM tasseled cap indices of brightness, greenness, and wetness (Crist

et al. 1986), and (3) the first three principal components of closed canopy forest pixels. The

association between hardwood proportion and each of the spectral variables was determined

using correlation techniques. In addition, regression models were generated and assessed for

each group of spectral variables to determine the relative predictive strength of the HCMI for

quantifying hardwood proportion. Cosine of the solar incidence angle (COSI) (Smith et al.

1980) was also included in the analyses to provide information about the sensitivity of the

spectral variables to topographically-induced variation in illumination conditions.



2. METHODS

2.1 Study Area

The study area for this project was an 800,000 hectare section of the Oregon Coast

Range (figure 1). The region was defined by the intersection of TM scene 46/29 with the

Willamette Valley margin on the east and the Pacific coast on the west. A maritime climate

prevails in this area, with mild, wet winters and warm, dry summers (Franklin and Dyrness

1988). These seasonal conditions are largely responsible for the natural dominance of conifer

species over deciduous hardwood species in the coastal forests (Franklin and Dyrness 1988).

The study area is composed of two major vegetation zones: the Ficea sitchensis Zone and the

Tsuga heterophylla Zone (Franklin and Dyrness 1988). The Picea sitchensis Zone, a narrow

strip adjacent to the ocean, is characterized by slightly wetter and milder conditions than the

remainder of the study area that falls in the Tsuga heterophylla Zone (Franklin and Dyrness

1988).

The most important conifer species in the study area are Douglas fir and western

hemlock, while red alder is the most common hardwood species (table 1). Conifer species are

dominant in the region, but hardwoods proliferate in specialized habitats (e.g., riparian zones)

and rapidly colonize disturbed sites (Franldin and Dyrness 1988). Because of extensive

historical disturbances from fire and timber extraction, hardwood and mixed hardwood-

conifer forests are significant features of the central Oregon Coast Range.



5

Figure 1. Location of the study area in Oregon. The gray area on the Oregon state map

corresponds to the Siuslaw National Forest. The enlargement shows a shaded relief image

bounded by the study area. County boundaries are also shown.



Table 1. Relative Importance of Hardwood and Conifer Species by Vegetation Zone (after

Franklin and Dyrness 1988).

Picea Tsuga
Species Common Name sitchensis Zone heterophylla Zone

Abies amabilis Pacific silver fir minor minor
Abies grandis grand fir minor minor
Picea sitchensis Sitka spruce major minor
Pinus contorta lodgepole pine minor minor

Pseudotsuga menziesii Douglas fir major major
Tsuga heterophylla western hemlock major major

Alnus rubra red alder major major
Acer macrophyllum bigleaf maple minor minor
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2.2 Image and DEM Data

A Landsat Thematic Mapper (TM) scene (Landsat 5, Path 46, Row 29) dating from

August 29, 1988 was used in this study. Preprocessing yielded 25 meter resolution data

georeferenced to the Universal Transverse Mercator (UTM) grid coordinate system. In

addition, 1:250,000 scale digital elevation models (DEM) from the USGS were used. The

DEM data were mosaicked, converted to UTM, and clipped to the study area. The resulting

pixel resolution was 63.3 meters in the x direction and 92.5 meters in the y direction.

2.3 Reference Data

Reference data for the project were selected from a database of 913 photointerpreted

polygons distributed throughout the Coast Range and registered to the satellite imagery. This

database was compiled cooperatively by Oregon State University, the USDA Forest Service

and the USD1 Bureau of Land Management. A team of experienced photointerpreters used

1:12,000 aerial photos from the summer months of 1988 and 1989 to estimate the proportion

of the following stand components for each polygon: conifer tree cover, hardwood tree cover,

brush cover, and open (i.e., non-vegetated or dead vegetation). Additionally, many of the

stands had supporting ground survey data associated with them. The ground data were

important for ascertaining the age-related structure of certain stands during the analysis. A

total of 330 closed canopy forest stands (100% tree cover with various proportions of

hardwood and conifer cover) fell within the study area and were used in this study.



2.4 Data Analysis

Data analysis was comprised of three main objectives: (1) to generate the HCMI,

tasseled cap, principal component, and cosine of the solar incidence angle variables for closed

canopy forest conditions, (2) to conduct correlation and regression analyses, and (3) to assess

the error of the regression models. These objectives were met in several steps using image

processing and statistical software (ERDAS Imagine Version 8.2, SAS/STAT Version 6.10).

2.4.1 Data Strat/ication by Closed Canopy Forest Conditions

This study was concerned only with closed canopy forest (CCF) conditions, so it was

necessary to exclude any image or reference data containing non-forest elements (e.g., soil,

water, cloud) from the analysis. Both the image and reference data were stratified using a

single approach based on the visual selection of relevant classes in spectral space (Cetin et al.

1993, Esbensen and Geladi 1989). The procedure had three phases: data reduction and

enhancement, data visualization, and analyst-based classification.

The purpose of data reduction and enhancement was to transform the six band data

into two image variables that provided the best visualization of spectral space for the CCF

class. For this, the brightness (BRT) and greenness (GRN) indices were used because

previous studies (Crist et al. 1986, Cohen et al. 1995) have shown that a distinct region

corresponding to dense forest conditions occurs in the "Plane of Vegetation" (i.e., BRT-GRN

space). Wetness (WET) was also calculated because all three tasseled cap indices were

required for the subsequent correlation and regression analyses.



Data visualization was accomplished by plotting the locations of every reference data

pixel on top of the distribution of every image pixel in BRT-GRN space. This technique

allowed the relationship between the reference and image data distributions to be quickly

interpreted. As expected, the reference data formed an elliptical cloud along a diagonal axis

within BRT-GRN space (figure 2). Apart from the heavy concentration of reference data

pixels in this closed canopy forest region, several pixels were scattered across other locations

in BRT-GRN space. These pixels were generally much brighter than those falling within the

main concentration of reference data. These outliers were noted, and the stands to which they

belonged were examined in the imagery. Each of these stands exhibited properties consistent

with small areas of non-green vegetation (e.g., road, soil, dead vegetation). Subsequently,

sixty-four stands having such outliers were removed from the analysis, leaving a total of 266

reference stands.

The classification of closed canopy forest involved digitizing an elliptical boundary to

enclose the dense cloud of remaining CCF reference pixels in BRT-GRN space (figure 2). The

ellipse was used by the computer as a decision region to classify the imagery on a per-pixel

basis. The resulting CCF class was used to mask the six band TM data, the tasseled cap

indices, and the DEM data.
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Figure 2. Spectral space classification. The frequency distribution of all the image pixels in

BRT-GRN space is shown by the continuum between shades of darker gray (low frequency)

and lighter gray (high frequency). The cloud of black points represents the distribution of all

the closed canopy forest (CCF) reference pixels in BRT-GRN space after the removal of

outliers. The ellipse was digitized to enclose the reference data and used as a decision region

to produce a CCF mask.
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2.4.2 Cosine of the Solar Incidence Angle Calculation

The Oregon Coast Range is a topographically complex landscape, and variable

illumination conditions were identified as a potential confounding factor in the modeling of

hardwood-conifer proportions. In an effort to address this problem, cosine of the solar

incidence angle (COSI) (Smith etal. 1980) was calculated as an additional image variable.

Slope and aspect were derived from the DEM data and used in the formula to calculate COSI

along with the solar elevation and azimuth from the time of TM image acquisition.

2.4.3 Principal Component Analysis

After masking the six band TM image with the CCF class, a standardized principal

component (PC) analysis was run to capture the major directions of spectral variation in CCF

pixels. The PC analysis provided a purely statistical approach for seeking potentially useflul

variables for quantifying hardwood-conifer proportions from the imagery. The analysis also

provided a technique for data reduction and enhancement for use in the HCMI development

process. The coefficients of each component (eigenvectors) were applied to the six band CCF

image to produce a three component CCF image.

2.4.4 Development of Canopy Structure and Hardwood-Confer Mixture Indices

In this study, vegetation indices were derived using an algebraic formulation of the

Gramm-Schmidt process (Jackson 1983). The spectral response of young conifer, old conifer,

and pure hardwood reference points were required as inputs to the Gramm-Schmidt

calculations. The young and old conifer points were needed to define a canopy structure index
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(CSI) in the TM data space, while the hardwood point was needed to define a hardwood-

conifer mixture index (HCMI) orthogonal to the CS!. These reference points were selected in

principal component space using an extension of the methods described by Johnson et al.

(1985) to identify the response of pure materials for a mixture modeling application.

The first and second principal components of the six band CCF image (as described in

section 2.4.3) were used to construct a PC1-PC2 plot (figure 3). These two components

accounted for 97.8% of the six band spectral variation in CCF pixels, and therefore provided a

concise visualization of the TM data structure for that forest condition. Ten stands, including

the youngest and oldest conifer samples, were chosen from the photointerpreted reference

data to represent pure hardwood conditions and a range of pure conifer age conditions (table

2). The mean response of these stands (the crosses labeled one through ten in figure 3), and

the response of each pixel in the stands (not shown in the interest of clarity) were plotted in

PC 1 -PC2 space. As expected, old conifer, young conifer, and pure hardwood conditions

occupied distinct regions near the edges of the data space. Consequently, pixels occupying

these extreme regions were considered candidates for use as index reference points.

While the general location of candidate pixels for young conifer, old conifer, and

hardwood reference points was obvious (figure 3), it was unclear which of many possible

selections would produce the best HCMI. This problem was addressed by collecting three

separate groups of pixels so that three slightly different sets of coefficients could be derived

and compared. The first and second group (OC1, YC1, HD1 and 0C2, YC2, HD2 in figure 3)

corresponded to actual reference stand pixels that were near the old conifer, young conifer,

and hardwood edges ofPCl-PC2 space. The third set (0C3, YC3, HD3) corresponded to
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Table 2. Characteristics of Reference Stands Plotted into PC1-PC2 Space. Age Data was not

Available for All Stands.

Sample Cover Type Age

1 Conifer 400

2 Conifer 115

3 Conifer 110

4 Conifer -

5 Conifer 80

6 Conifer 78

7 Conifer 18

8 Hardwood -

9 Hardwood -

10 Hardwood -
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Figure 3. Selection of index reference points in PCi -PC2 space. The frequency distribution of

all the CCF pixels in PCi -PC2 space is shown by the continuum between shades of darker

gray (low frequency) and lighter gray (high frequency). The crosses labeled 1-10 indicate the

mean PCi-PC2 response of the reference stands in table 2. Three sets of reference points

representing old conifer, young conifer, and pure hardwood conditions (OC1/ YC1/ HD1,

0C2/YC2/HD2, and 0C31 YC3/HD3) were selected visually from pixels in the PC1-PC2 plot.

The six band TM spectral response was determined for each endpoint (table 3). The Gramm-

Schmidt process was applied to the digital numbers in table 3 to calculate the coefficients for

three slightly different canopy structure and hardwood-conifer mixture indices (CSI 1-3 and

HCMI 1-3).
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pixels that were at the very extremes of the image data envelope. The six band spectral

response of the index endpoints (table 3) was found by locating the pixels of interest in the

original TM imagery. The Gramm-Schmidt process was applied to the digital numbers in table

3 to produce the coefficients of three different canopy structure indices and three different

hardwood-conifer mixture indices.

2.4.5 Correlation and Regression Analyses

The photointerpreted reference stands (n=266) were randomly partitioned into two

equal groups, one for the correlation analysis and regression model building, and one for

regression model validation. The correlation analysis was used to quantify the relationship

between stand hardwood proportion (as interpreted from aerial photography) and the mean

stand response of each image variable in the following groups: (1) the TM reflectance bands

(TM1, TM2, TM3, TM4, TM5, TM7), (2) brightness, greenness, and wetness (BRT, GRN,

WET), (3) principal components one, two, and three (PCi, PC2, PC3), and (4) the three

hardwood-conifer mixture indices (HCMI1, HCMI2, HCMII3). In addition, the correlation

between cosine of the solar incidence angle (COST) and each of the aforementioned image

variables was calculated. Scatter plots were examined, and the relationship between the image

variables and hardwood proportion appeared linear. This observation was supported by the

fact that no data transformations were found to improve the correlations (e.g., log, square

root, square, arcsin-square root).

A simple regression of hardwood proportion on the best HCMI (i.e., the index most

highly correlated with hardwood proportion) was performed. For each of the other image
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Table 3. Spectral Response (Digital Number) of Pixels Selected as Index Reference Points.

Point Cover Type TM1 TM2 TM3 TM4 TM5 TM7

OC1 Old Conifer 60 17 14 20 9 2

YC1 Young Conifer 66 24 21 118 46 10

HD1 Hardwood 72 28 33 178 95 25

0C2 Old Conifer 59 17 16 21 7 2

YC2 Young Conifer 67 25 21 114 42 9

HD2 Hardwood 72 28 24 180 95 22

0C3 Old Conifer 59 18 14 14 6 1

YC3 Young Conifer 69 25 21 120 39 9

11D3 Hardwood 72 33 27 183 101 29
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variable groups (i.e., original bands, tasseled cap indices, principal components), a forward

stepwise multiple regression approach was used to generate predictive models. For any given

stepwise model, the criteria for accepting or dropping an explanatory variable was significance

at the 0.05 level, and variables entered the model in order of highest significance. Stepwise

modeling was performed again after adding the COST variable as a potential predictor to the

HCMI and other variable groups. Inclusion of COST allowed for the comparison of models

with and without explicit information related to topographically-induced variations in spectral

response.

2.4.6 Error Assessment

The error of each regression model was assessed using the independent group of

validation stands (n= 133) set aside earlier. For any given model, the predicted hardwood

proportion for each stand was calculated by applying the parameter estimates to the mean

response of the appropriate image variables. The coefficient of determination (R-square) was

calculated for each model based on the fit of predicted (modeled) versus observed

(photointerpreted) hardwood proportion values. The root-mean-square error (RMSE) was

also calculated to provide a measure of average prediction error.

Since thematic maps are often needed by the end user of satellite data, a discrete

accuracy assessment was conducted to determine the percentage of stands correctly classified

by each model. Three different class structures were created so that the overall accuracies

could be compared in terms of potentially useful sets of hardwood proportion classes. The

different class structures were: five classes (0-20%, 21-40%, 41-60%, 61-80%, 81-100%),



four classes (0-25%, 26-50%, 51-75%, 76-100%), and three classes (0-30%, 31-70%, 71-

100%). The predicted and observed hardwood proportion were used to determine class

membership for each validation stand for each set of classes. In any given instance, if the

predicted value was less than zero, the stand was placed into the smallest proportion class.

Conversely, if the predicted value was greater than 100%, the stand was assigned to the

largest class. Subsequently, the overall percent correctly classified was calculated for each set

of classes for each of the predictive models (Congalton 1991).

2.4.7 Evaluation of CSJ-HCMI Information Content

While the primary emphasis of this research concerned the development and testing of

a hardwood-conifer mixture index, the general characteristics of the transformed (C SI-HCMI)

data space was also evaluated. From the full set of reference plots (n266), a number of

samples was selected at random from each of the six following categories: hardwood stands

(0-25% conifer cover, n=7), hardwood-dominated mixed stands (26-50% conifer cover, n=7),

conifer-dominated mixed stands (51-75% conifer cover, n=7), young conifer stands (76-100%

conifer cover, <100 years old, n=3), medium aged conifer stands (76-100% conifer cover,

100-200 years old, n=3), and old conifer stands (76-100% conifer, >200 years old, n3). The

mean spectral response of each stand (total n30) was plotted into CSI-HCMT space to

visualize forest information trends in the transformed data structure.
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3. RESULTS

3.1 Index Coefficients

The coefficients of the tasseled cap, principal component, CSI, and HCMI

transformations are shown in table 4. Although the tasseled cap coefficients were not derived

in this study, they are presented for comparative purposes. Examination of these coefficients

provides insight into the relative importance of each TM band in the various transformations.

Brightness, the first tasseled cap index, has positive loadings in all reflectance bands,

and corresponds to overall scene brightness (Crist and Cicone 1984). Greenness, like many

other correlates of vegetation amount (e.g., NDVI) is a contrast between the visible bands

(especially TM3) and the near-infrared (TM4). Wetness presents a contrast of the visible and

near-IR bands (weak positive loadings) with the mid-JR bands (strong negative loadings).

The first three principal components contained 98.1% of the six band spectral variation

in closed canopy forest pixels. PC 1 (92%) appears to be a measure of greenness, with a strong

contrast between TM3 and TM4. PC2 (5.8%) is a contrast of TM3 and TM4 with the mid-JR

bands. The weights and loadings for PC3 (0.3%) are irregular and inconsistent across the

visible, near-IR, and mid-JR bandwidth categories.

Using three slightly different sets of reference points, three canopy structure indices

(CSI 1-3) and three hardwood-conifer mixture indices (HCMI 1-3) were derived. The

coefficients of the CSIs are reported but not examined further. Not surprisingly, HCMTs 1-3

have similar TM band loadings. The most important band was TM5, with strong positive

loadings in each index. Moderately strong loadings were also found for TM bands 4 (negative)
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Table 4. Coefficients of the Tasseled Cap, Principal Component, Canopy Structure, and

Hardwood-Conifer Mixture Indices.

Index TMJ TM2 TM3 TM4 TM5 TM7

BRT 0.2909 0.2493 0.4806 0.5568 0.4438 0.1706
GR[V -0.2728 -0.2174 -0.5508 0.7221 0.0733 -0.1648
WET 0.1446 0.1761 0.3322 0.3396 -0.6210 -0.4186

PCi 0.0687 -0.0953 -0.8570 0.4569 -0.1846 -0.0940
PC2 0.0701 -0.0554 -0.3114 -0.3347 0.2383 0.8522
PC3 0.0699 -0.1124 -0.3621 -0.6641 0.3831 -0.5134

CSIJ 0.0568 0.0662 0.0662 0.9272 0.3501 0.0757
CSI2 0.0797 0.0797 0.0498 0.9265 0.3487 0.0697
CSI3 0.0891 0.0624 0.0624 0.9448 0.2941 0.0713

HCMIJ 0.0630 -0.0361 0.2563 -0.3596 0.8272 0.3399
HCMI2 -0.0536 -0. 1260 -0.0380 -0.3381 0.8917 0.2652
HCMI3 -0.0962 0.0691 0.0229 -0.2982 0.8875 0.3301
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and 7 (positive). The visible bands were generally less important than the infrared portion of

the electromagnetic spectrum, with weak loadings of variable weights. The HCMIs appear

similar to an inverse of the tasseled cap wetness feature. However, the visible bands are even

less important than in wetness, and these indices may best be interpreted as a contrast between

the near-JR and mid-JR wavelengths with particular emphasis on TM5.

3.2 Correlation and Regression Analyses

Table 5 shows the correlations between stand hardwood proportion, COST, and the

image variables. All correlations with hardwood proportion were positive except for wetness

and the second principal component. TM bands 5 and 7 were both highly correlated with

stand hardwood proportion (r 0.80). The tasseled cap and principal component variables did

not yield stronger correlations, with brightness (r = 0.69) and PCi (r = 0.68) having the best

association with hardwood proportion. HCMI3 produced the highest correlation coefficient of

any image variable (r 0.82). The other two HCMIs were not as highly correlated with

hardwood proportion. Based on these results, HCMIT3 was selected for the regression

modeling phase.

All correlations with the COST variable were positive. Overall, the transformed image

variables exhibited weaker relationships with COST than the original TM band data. The

WET, PC2, and PC3 variables showed extremely low, non-significant correlations with COSI.

The HCMT1, HCMI2, HCMT3, and TM1 variables exhibited moderately weak associations

with COST, with correlation coefficients ranging between 0.32 and 0.40. The remaining image

variables produced higher correlations, ranging between 0.49 and 0.56.
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Table 5. Correlation (r) of Image Variables with Hardwood Proportion and COSI for 133

Reference Stands.

Image
Variable

Hardwood
Proportion COSJ

TMJ 0.21* 0.32**

TM2 0.50** 0.56**

TM3 0.52** 0.55**

TM4 O.63** 0.52**

TM5 0.80** 0.52**

TM7 0.80** 0.5lK

BRT 0.69** 0.54**

GRN 0.60** 0.49**

WET 0.46** 0.00

PCi 0.68** 0.53**

PC2 0.19* 0.11

PC3 0.37** 0.01

HCMI1 0.73** 0.32**

HCMI2 0.79** 0.33**

HCMJ3 0.82** 0.40**

* p-value < 0.05, ** p-value < 0.01
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The results of regressing stand hardwood proportion on HCMI3 and each group of

image variables (both with and without COSI) appear in table 6. The COSI variable was a

statistically significant predictor when added to each model, except when coupled with

HCMI3. However, COST did not improve the R-square value of any model by more than 2%.

The untransformed band data explained the highest amount of variance in hardwood

proportion (75%, 76% with COST). The tasseled cap and principal component models

explained similar, but slightly less amounts of the variance. Sixty-seven percent of the variance

in stand hardwood proportion was explained by the simple regression on HCMT3 response.

3.3 Error Assessment

Due to the difficulty in collecting accurate reference data at the pixel scale, regression

models are often generated and tested using stand level data (e.g., Cohen and Spies 1992,

Ripple et al. 1991, Butera 1986). To test whether the stand level models were valid when

applied at the pixel level, the correlations between stand and pixel level estimates of

hardwood proportion from each regression model were calculated. First, the mean spectral

response per image variable per stand was calculated and the appropriate model parameters

were applied to derive an estimate of hardwood proportion. Then the regression models were

applied to the imagery on a per-pixel basis, and the mean hardwood proportion was calculated

for each stand for each model. The correlation between the stand and pixel level estimates

were very high for all models, ranging between 0.988 and 0.996. This result supports the

validity of using mean stand response to develop models applied at the pixel level for this

problem.
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Table 6. Regression Model Statistics.

Image
Variable

Parameter
Estimate

Standard
Error

Partial
R-square

Model
R-square

Intercept 57.64

TM7 -13.11 4.89 0.65

TM2 -4.13 1.42 0.05

TM4 -1.11 0.25 0.04

TM5 7.37 1.49 0.01 0.75

Intercept 53.23

TM7 -12.29 4.83 0.65

TM2 -3.40 1.44 0.05

TM4 -1.05 0.25 0.04

COSI -25.09 11.25 0.01

TM5 7.15 1.47 0.01 0.76

Intercept 34.51

BRT 0.34 0.34 0.48

WET -4.42 0.49 0.23

GRIST 1.04 0.48 0.01 0.72

Intercept -24.78

BRT 1.19 0.08 0.48

WET -3.74 0.35 0.23

COSI -36.04 11.30 0.02 0.73

Intercept 55.90

PCi 0.91 0.06 0.47

PC2 -2.67 0.29 0.21

PC3 1.95 0.52 0.03 0.71

Intercept 54.19

PCi 1.01 0.07 0.47

PC2 -2.75 0.28 0.21

PC3 1.72 0.51 0.03

COSI -33.40 11.48 0.02 0.73

Intercept -10.87

HCMI3 3.77 0.23 0.67 0.67
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Results of the continuous error assessment are shown in table 7. The R-square values

were moderately high for all models, ranging from 0.72 to 0.78. These values were similar to,

and reflected the same trends as the model R-squares (table 6). The average prediction error

(as measured by the RMSE) ranged between 14% and 16% hardwood cover. Including COST

in the models increased the R-square and decreased the RMSE values slightly.

Table 8 shows the results of the discrete (class) accuracy assessment. As expected,

overall accuracy increased as the number of classes was reduced (Cohen et al. 1995). The

overall accuracy ranged from 60% to 70% for five hardwood proportion classes (0-20%, 21-

40%, 41-60%, 61-80%, 81-100%). Reducing the number of classes to four (0-25%, 26-50%,

5 1-75%, 76-100%) increased the overall accuracy by between 7% and 16%. The best overall

accuracies were achieved with three proportion classes (0-30%, 3 1-70%, 71-100%). The

models achieved accuracies differing by only 2% and 3% within the four and three class

layouts respectively. While COST was found to improve the model R-squares (table 6), and

the predicted versus observed R-squares and RMSEs (table 7), this variable tended to degrade

the overall classification accuracy slightly for the predictive models.
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Table 7. Regression Model Error Assessment (Predicted vs. Observed Stand Hardwood

Proportion, n=133).

Model R-square RMSE

TM 7245 0.77 14.42

TM7245&COSI 0.78 14.01

BGW 0.76 14.84

BW&COSI 0.78 14.29

PC123 0.75 15.19

PC123&COSI 0.77 14.59

HCMI3 0.72 16.04

Table 8. Regression Model Error Assessment (Overall Percent Correctly Classified for Three

Class Structures, n=133).

Model 5 Classes 4 Classes 3 Classes

TM 7245 70 77 84

TM7245&COSI 69 76 83

BGW 64 78 83

BW&COSI 63 77 83

PC 123 63 78 83

PC123&COSI 65 77 83

HCMI3 60 76 81
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3.4 Evaluation of CSI-HCMI Information Content

Because HC3 was the strongest hardwood-conifer mixture index, this variable

along with CSI3 (the canopy structure index associated with HCMI3) were selected for

further evaluation of combined information content. The location of the six selected forest

types in CSI-HCMI space is shown in figure 4. It is important to note that low values of the

CSI correspond to more complex canopies, while higher CSI values coincide with simpler

canopies. This counter-intuitive relationship is a function of the process used to define the CSI

spectral axis (i.e., the index originates at an old conifer reference point and extends toward a

young conifer reference point). The shape of the transformed data envelope is narrow at low

values of CSI and HCMII (complex canopy structure, high proportion of conifer cover), and

tapers out toward higher values of CSI and HCMI (simple canopy structure, high proportion

of hardwood cover). The continuum between conifer and hardwood cover is captured by the

HCMI axis, while separation between the conifer age classes is apparent along the CSI.
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Figure 4. Evaluation of CSI-HCMI information content. The frequency distribution of all the

CCF pixels in CSI-HCMI space is shown by the continuum between shades of darker gray

(low frequency) and lighter gray (high frequency). Symbols indicate the mean response from

samples of six categories of reference stands (total n=3 0).
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4. DISCUSSION AND CONCLUSIONS

The results of this study support the hypothesis that a vegetation index can be

developed from TM imagery to measure hardwood-conifer mixture proportions. This is

evidenced by the strong correlation of HCMT3 with stand hardwood proportion (r = 0.82).

The Gramm-Schmidt process was an effective method for deriving the index, and only a very

few data points were required for the computation. The results of this study also show that

moderately strong regression models can be developed to quantify hardwood-conifer

proportions in the Oregon Coast Range from either the raw or transformed TM data.

The strength of the HCMI and regression models are most likely a function of the

clear differences exhibited by conifer and hardwood cover in the infrared wavelengths (e.g.,

table 3). While a complex assortment of internal and external factors influence the reflectance

of forest canopies, the divergence of hardwood and conifer response in the infrared is thought

to be caused primarily by differences in leaf structure, leaf water content, and canopy

geometry (Guyot etal. 1989, Knipling 1970). The importance of the infrared bands was

evident in several parts of this research. The near-JR band (TM4) was moderately correlated

with hardwood proportion (r = 0.63), and the mid-JR bands (TM5 and TM7) were strongly

correlated (r = 0.80). The infrared bands produced the most significant HCMI coefficients

(table 4), and were also important variables in the multiple regression model using

untransformed TM data (table 6).

Although HCMI3 produced the strongest correlation with hardwood proportion of

any single image variable (table 5), it did not produce the best regression model (table 6). The
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untransformed data produced the best fit, the tasseled cap and principal component

transformations performed slightly worse, and the single HCMI3 variable produced the

weakest model. The progressively weaker fit of the models is not surprising considering the

potential for information loss as data dimensionality was reduced during successive

transformations. However, the error assessments show that practical differences between the

models were small (tables 7 and 8). These results indicate that much of the hardwood-conifer

mixture information in TM data was captured with the single HCMT.

A detailed assessment of topographic effects was beyond the scope of this study, but

inclusion of the COST variable provided an indication of the sensitivity of the spectral variables

to terrain-induced differences in illumination. The COSI variable was only weakly associated

with HCMI3, and was not a statistically significant predictor when combined with HCM13 in a

stepwise regression model. This suggests that HCJVII3 is less sensitive to topographic effects

than the original image variables. However, the significance of these results is limited by the

coarse resolution of the available DEM data. The generally small contribution of COST to the

regression analysis may be due in part to the cell size mismatch between DEM and satellite

data.

The development of an HCMI is directly applicable to bio diversity modeling in the

Pacific Northwest. However, an evaluation of information contained in CST-HCMT space

suggests the results of this research may have broader significance. The CSI-HCMII

transformation provides a direct linkage between important physical properties and patterns of

variation in multispectral space (figure 4). The distribution of reference stands in CST-HCMI

space suggests that significant information about forest canopy structure and composition is
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captured and separated by this transformation of TM data. The connection between physical

space and the transformed data space is also apparent from the 11111 distribution of closed

canopy forest pixels in the CSI-HCMI plot (figure 4). There is an absence of CCF pixels in

both the complex canopy, hardwood dominated region and simple canopy, conifer dominated

region of CSI-HCMIE space. This may be attributed to the smooth, simple structure of

hardwood canopies relative to the rougher, more complex, and more variable canopy

structures exhibited by conifer forests. Based on these preliminary observations, it appears

that the CSI-HCMT transformation may provide a potentially useful compression and

enhancement of TM data for applications in dense forest conditions. Further study is required

to ascertain the value of the C SI-HCMI transformation for forests in the Pacific Northwest as

well as for closed canopy forest systems in other geographic regions.
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