Variations on ID3 for Text-to-Speech Conversion

Hermann Hild

June 21, 1989

Contents

1

2

Introduction

Description of the Data and the Learning Task

2.1 The Nettalk Dictionary
2.2 Decomposing the Dictionary Entries into Learning Examples.
2.3 Aggregating the Results o oL
2.4 Performance Evaluation 0oL

Neural Nets (NETtalk)

Nearest Neighbor Classification and MBRtalk
4.1 Simple NN Classification, the Shrink and Growth NN Classification
4.2 MBRtalk o

Variations on Decision Trees (ID3talk)

5.1 Introduction to ID3
5.2 Impact of the “Best Guess” Strategy
5.3 The Chi-Square Test
5.4 Learning the Stresses from the Phonemes
5.5 Learning Separate Trees for Each Letter
5.6 Multi-Level ID3 o
5.7 A Combined ID3/Nearest-Neighbor Approach
5.8 Converting Decision Trees to Rules
5.9 Learning Curves
5.10 Impact of the Selection of the Training Data
5.11 Other Variations
5.12 Learning and Data Compression

Boolean Concepts (k-DNF)
Conclusions

Appendix

8.1 About the Implementation
8.2 Inconsistencies in the NETtalk Dictionary
8.3 Top Features of the Decision Tress
8.4 Saturation Points for the Letter to Phoneme Mapping
8.5 An Example of a Decision Tree
8.6 The Mapping from Letters to Phonemes and Stresses
8.7 Frequently Appearing Letter Blocks
8.8 An Example of a Detailed Evaluation Statistic
8.9 Binary Representation of Phonemes and Stresses

N~ otw W

10

11
12
13

14
15
18
19
20
21
23
25
27
30
31
31
36

37

41

1 Introduction

Rules for the pronunciation of English words have been of interest for linguists for a long time.
With the development of hardware devices for voice synthesis, text-to-speech conversion
has found a wide field of applications and is employed in many situations where machine
generated “uncanned” speech is desirable.

A talking system must somehow generate English text which is then converted into a
symbolic representation of the pronunciation of the text; finally a voice synthesizer has to
translate the symbolic pronunciation to (actual) acoustic speech.

We are only interested in the mapping from English text to a phonetic representation.
This is not a trivial task, the English language has many pronunciation rules and probably
even more exceptions. In order to find the correct pronunciation for a given word, commercial
systems like the DECtalk machine use large dictionaries as lookup tables and hand-crafted
pronunciation rules to handle words not stored in the dictionary.

On the other hand, the machine learning approach is to automatically extract rules from a
learning set. In the ideal case, the learning set is only a small subset of all word-pronunciation
pairs and the extracted pronunciation rules are general enough to correctly predict the pro-
nunciation of most words in the language.

In 1986 T. Sejnowski and C.R. Rosenberg presented a Neural Network that could learn
to pronounce English text. In this so called NETtalk experiment the back-propagation
algorithm was used to train a network with one hidden layer. While the achieved results have
outperformed other inductive learning methods, a drawback is that the back-propagation
learning algorithm is extremely expensive.

As a response to NETtalk, Stanfill and Waltz presented a memory based reasoning ap-
proach (MBRtalk). They used a nearest neighbor classification with a sophisticated metric
of similarity in order to find representative examples in the data base.

The objective of this research was to apply another well known learning algorithm — ID3 —
to the pronunciation task. ID3 constructs a decision tree to explain the data given in the
learning set. ID3 is biased to prefer simple explanations, i.e. small decision trees. The
features selected as tests in the decisions trees determine the complexity of a tree; ID3
employs a heuristic to find “good” features and thus a simple tree.

A first goal was to implement ID3 and compare the results with those achieved by the
back-propagation algorithm. To allow a meaningful comparison, the data set and the en-
coding of the learning task were kept as close as possible to the conditions in Sejnowski’s
NETtalk experiment.

Further objectives were to achieve an improved performance by experimenting with dif-
ferent encodings of the problem such as learning groups of letters (instead of each letter
individually) or learning separate trees for different letters. Except for the variation of the
parameter “chi-square test” and the combined ID3/Nearest Neighbor approach, the ID3
algorithm itself was always used in its standard form by the “new” algorithms. The new ap-
proaches employed different encodings of the problem (e.g. separate trees for different letters)
or a more sophisticated postprocessing of ID3’s outcome (e.g. “best guess strategies”).

The impact of size and selection of the training set were also examined. Many of the

performed experiments could improve the performance and helped to gain a better under-
standing of the problem.

It turns out that one of the difficulties of this problem is the grain size of learning. On the
one hand, the task has to be decomposed into simple learning functions in order to achieve
a good performance in predicting unseen examples. On the other hand, when the results
of the relatively well performing simple functions are aggregated, the overall performance
suffers since it relies on the correctness of every single low level function.

Organization of this paper. The second chapter introduces the data set, the learning
task and its encoding in greater detail. Chapter Three briefly describes Sejnowski’s NETtalk
experiment. In Chapter Four the simple standard Nearest Neighbor algorithm is applied to
the NETtalk data and the more advanced MBRtalk experiment of Stanfill and Waltz is
introduced.

Most of the work done in the scope of this research project is summarized in Chapter
Five. After a short introduction to the ID3 algorithm, the various experiments and their
results are described and discussed.

In Chapter Six ID3 was applied to random boolean concepts. The purpose of this exercise
was to validate some of the algorithms and to compare their results on two different tasks.

The appendix contains additional statistical information about the data in the dictionary,
the decision trees and the performance evaluations as well as other results.

2 Description of the Data and the Learning Task

The learning task is to convert text to speech. The text consists of English words from a
dictionary. The speech is represented as a string of phonemes and stresses, which can be
pronounced by a hardware device, such as the DECtalk machine.

The following paragraphs give a description of the function we want to learn (the map-
ping from English words to phonemes and stresses) and of the data source — the NETtalk
dictionary — used to train and test the various learning algorithms. The encoding described
below is the same — or as close as possible to — the encoding used by Sejnowski for the
NETtalk experiment.

2.1 The Nettalk Dictionary

A dictionary of 20,008 English words and their pronunciation was made available to us by
T.Sejnowski.

The format of the dictionary can be seen by this excerpt of the first ten words of the
data:

aardvark a-rdvark 1<<<>2<< 0
aback xb0k- 0>1<< 0
abacus Obxkxs 1<0>0< 0
abaft xb@ft 0>1<< 0

abalone @bxloni 2<0>1>0 0
abandon xb@ndxn 0>1<>0< 0
abase xbes- 0>1<< 0
abash xb@S- 0>1<< 0
abate xbet- 0>1<< 0
abatis @bxti- 1<0>2< 2

The words in the dictionary contain four fields

1. A character string representing the English word.
2. A string of “phonemes”.
3. A string of “stresses”.

4. An integer € {0, 1,2}
98.8 % of the words are marked ’0’, which stands for “regular word” 0.4% fall into
category ‘1’, the irregular words and
0.8% are marked ‘2’ for “foreign words”.

Let
A={ABCDEFGHIJKXKLMNOPQRSTUVWXYZ_- .}
P={abcdefghiklmnoprstuvwzxyz

ACDEGIJKLMNOQRSTUWXYZ@!#x* "~ +-_.1}
S={012><-}

A contains 29 characters to represent the English text. ‘=" and .” are only needed for the
continuous speech ! experiments in NETtalk [Sejnowski87]; they do not occur in the Nettalk
dictionary but were kept in A to maintain compatible data formats.

P is the set of phonemes. The list of phonemes in appendix A of [Sejnowski87] is slightly
inconsistent with the data in the dictionary we obtained from Sejnowski. Appendix A in
[Sejnowski87] lists the phonemes P U {‘|'} \ {*+'}. The dictionary makes no use of ‘Q’, ‘|,
‘and ‘_’. The latter two are needed for continuous speech only.

S is the set of stresses. ‘1’) ‘2" and ‘0’ indicate the first vowel in a nucleus of a syllable
receiving primary, secondary or no stress, respectively. The arrows ‘<’ and ‘>’ indicate a
syllable boundary, ‘=’ stands for a word boundary and is not used in our case, since all words
are treated individually.

The dictionary was partitioned into a training set and a test set. The training set
consists of the 1000 ? most common English words as reported in [Kuchera67] * and is

!Sejnowski and Rosenberg [Sejnowski87] use both a dictionary and continuous speech for their NETtalk
experiment.

2For an unfortunate reason, the word “I” was excluded, leaving only 999 words in the training set.

30nly 808 of the first 1000 most common words in [Kuchera67] can be found in the NETtalk dictionary.
The gap was filled by taking more words from [Kuchera67] and the fact that some of the words in the
NETtalk Dictionary appear twice (as the same English word with two different pronunciations).

4

used by the algorithms for learning purposes. During training the algorithm can see both
the English word and its pronunciation. The remaining 19003 words from the NETtalk
Dictionary form the test set, * which is used for performance evaluation. During testing,
only the English word can be seen, the algorithm has to come up with its own answer, which
is compared with the pronunciation as given in the dictionary.

2.2 Decomposing the Dictionary Entries into Learning Examples.

Theoretically one has to understand the structure of the English text in order to determine
the correct pronunciation of a word. In the sentence “I have read that many people can’t
read.” the pronunciation of the word “read” depends on its grammatical context. However,
this is a difficult problem in the area of natural language understanding; we neglect it and
look at each word independently. The next section describes how the task of learning an
individual word is decomposed in two steps: First the word is broken down into text-windows,
so that every letter can be learned individually. Second, the text-window and the associated
phoneme and stress are represented in a binary format and each phoneme and stress bit is
learned individually. This encoding is adopted from Sejnowski’s NETtalk experiment.

Breaking the words into learning examples. The learning task is to map an English
word to a correct string of phonemes and stresses. Sejnowski’s NETtalk [Sejnowski87],
MBRtalk, and all algorithms described in this paper (with the exception of the Multi-level-
ID3) are learning each word letter by letter. Of course the pronunciation of a letter is highly
context dependent, therefore for each letter to learn, a window is used in which the letter to
learn is surrounded by its three pre- and succeeding neighbors. If not enough neighbors are
present, the character ‘_’ is used instead.

The learning function on letter level. The function we want to learn is the mapping
from a 7-letter window to a phoneme/stress pair:

f:AT P xS

Example: The center letter ‘a’ in the window *

the stress ‘1’:

aback” maps to the phoneme ‘@ and

f("_aback_") = ‘@1’

To convert a dictionary entry into learning examples, the following procedure is applied:
The English word (a k character string “I;...[;”, [; € A), the corresponding phonemes
(“p1...pt", pi € P) and stresses (“s;...s;”, s; € S) are broken down into k windows
wy, ... wg, where w; = (“li_g...l;... lixs” p; s;) and [is substituted by . if j & {1...k}.

Example: The dictionary entry

45 of the 19008 words had an inconsistent (e.g. different number of phonemes and stresses) representation
and were excluded from the test set.[Bakiri89]

("aback" "xb@k-" "0>1<<")

is converted to

("___abac" x 0)
("__aback" Db >)
("_aback_" @ 1)
("aback__" k <)
("back___" - <)

Each window is used as a learning example. The 1000 word training set consists of 5521
learning examples (i.e. letters), the 19003 word test set has 141392 learning examples.

Binary Representation of a Learning Example. All learning algorithms described
in this paper are using binary features and binary classes. The appendix contains a table
with the exact representations of the letters, phonemes and stresses.

Converting the letters. The feature vector (the 7-letter window) of a learning example
is converted into a binary feature vector by transforming each letter into a binary representa-
tion. Exactly the same representation as in the NETtalk experiment [Sejnowski87] is used:
Every letter of the 7-letter window is encoded as a 29-bit vector. The i-th letter in the
Alphabet A is represented by a bit-vector < b;..b;..bag > in which all but the i-th bit are set
to 0. By concatenating the seven 29-bit-vectors we obtain a 203-bit-vector which represents
the 7-letter window.

Converting the phonemes. [Sejnowski87] represents the phonemes in terms of 21
articulatory features. These features describe physical or physiological properties of the
phoneme (or the way it is articulated) such as “vowel height” or “position in the mouth”. In
the average three or four of the 21 features apply to a particular feature, so the bit-vectors
representing the phonemes contain mainly zeros. However, the appendix in [Sejnowski87]
lists 22 different articulatory features. ®> In the absence of a consistent 21 bit encoding, all
experiments in this paper use a 22 bit representation for the phonemes.

Converting the stresses. The stresses are encoded by a 5-bit vector 6 . The first two
bits represent the syllable boundaries, the third and fourth bit indicate primary, secondary
or tertiary emphasis, and the fifth bit stands for word boundaries, a feature which is only
needed for continuous speech. In the case of the dictionary data it is always set to 0 and
therefore irrelevant and easy to learn.

Example: The binary representation of
("___abac" x 0) is

(<00000000000000000000000000010 00000000000000000000000000010 00000000000000000000000000010

SThere is a feature “voiced” and “unvoiced”. One could interpret the latter one as the negation of the
first, but then it is unclear what the value of “voiced” should be when none of the two is listed.

5Implementation remark: For an unfortunate historical reason, the stresses are actually represented by a
6-bit-vector, where the first bit is always set to 0. Since this bit does not affect the results, it it ignored and
not mentioned further.

10000000000000000000000000000 01000000000000000000000000000 10000000000000000000000000000

00100000000000000000000000000>
<0000010000000000010000>
<000010>)

The learning function on the bit level. Having a binary representation for the
phonemes and the stresses, the learning function

f:AT P xS

can be decomposed into a set of learning functions where every function has to deal with
binary values only:

Tovs - fpus + {0,132 — {0, 1}
f517 "fss : {07 1}203 - {07 1}

Given a 203-bit input vector, each of the functions f,,..f,,, learns one of the phoneme
bits and f,,..fs, learn the stress bits.
Figure 1 gives an overview of the NETtalk data and their decomposition.

2.3 Aggregating the Results

After we learned each bit of the phoneme/stress pair individually, we face two problems: 1)
The found bit-vectors do not necessarily represent a legal phoneme or stress vector, a “best
match” has to be found. Several strategies are discussed in Chapter Five. 2) Even if we
achieve a high performance on the correctness for each single bit, there is still a good chance
that one of the bits is wrong; consequently the entire phoneme (or stress) will be wrong. If
we assume a uniform performance of 97% for each of the 27 bits, ” we can only expect 0.97%7
= 43.9% performance on the letter level. For an average word of length 5 or 6 the situation
becomes even worse, expected performance decreases to 0.439° = 1.6%.

2.4 Performance Evaluation

The evaluation of any learning algorithm in this paper follows the same scheme: The test
data, a subset of the words in the dictionary are presented to the algorithm such that only the
English word can be seen. The phonemes and stresses found by the algorithm are compared
to the correct answers as given in the dictionary and a statistic of the following format is
maintained:

"this is a good approximation of the real situation.

Figure 1: The NETtalk data. Every letter is learned individually in the context of a sur-
rounding text-window.

ID3-TREES

ID3 , no CHI-SQUARE WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH
best guess(3) TRAIN: 91.0 98.1 98.8 98.8 99.8 165.3 23.1
best guess(3) TEST: 12.9 67.2 79.9 78.0 96.2 165.3 23.1
best guess(3) ALL: 16.8 68.4 80.6 78.8 96.3 165.3 23.1
EXPLANATIONS:

ID3, no CHI-SQUARE, best guess(3) describe the learning method.

Unless otherwise indicated, the data on which an algoritm is evaluated is taken from one
of the three sources:

TRAIN The training set with the 1000 most common English words.
TEST The test set with the remaining 19003 words which are not in the training set.

ALL The entire dictionary.

Correctness is measured on the word-, letter-, phoneme-, stress- and bit-level and is
defined as:

BITS The average correctness of all phoneme and stress bits.

STRESS A stress is correct if all corresponding stress bits are correct.

PHON A phoneme is correct when all phoneme bits are correct.

LETTER A letter is correct when both the phoneme and the stress is correct.

WORD A word is correct when all its letters are correct.

NODES The average number of nodes contained in all phoneme and stress ID3-trees.
DEPTH The average maximum depth of all phoneme and stress ID3-trees.

Much more data was actually collected for each evaluation. See the appendix for full
statistics on a evaluation run.

The correctness on bit-level is somewhat misleading. Only 3 to 5 bits in the 22-bit
phoneme vector are set to ‘1’, therefore guessing constantly ‘0’ will already achieve a cor-
rectness higher than 85 %. The detailed statistic in the appendix additionally measures
bit-correctness by counting the bits which are ‘0’ but should be ‘1’ and vice verse.

Figure 2: Architecture used in the NETtalk experiment.

3 Neural Nets (NETtalk)

Sejnowski and Rosenberg were the first (to my knowledge) to apply a connectionist learning
method to the Text-to-Speech conversion problem. In fact, the data and its format as in-
troduced in Chapter Two is due to [Sejnowski87]. This chapter briefly describes the results
achieved by [Sejnowski87] with his NETtalk experiment. The neural net simulation was
recently repeated by [Mooney88| and [Dietterich89)].

Sejnowski’s NETtalk. The neural net used in the classic NETtalk experiment had
three layers, an input, hidden and output layer. The input layer is built from 203 processing
elements, one for each bit in the input vector (i.e. the binary representation of a 7-letter
word). The hidden layer has 120 processing elements and the output layer 26, one for each bit
of the phoneme and stress vector. The net is fully connected, thus requiring 27809 weights.®
Figure 2 depicts the architecture of the net.

The so called back-propagation algorithm is used to train the neural net. An input vector
is fed to the net and the actual outcome is compared with the desired outcome. Then the
weights of the connections are changed in a way to minimize the error, i.e. the difference

8There are 203+ 120+ 26 = 329 processing elements and 203 %120 = 24360 connections between input and
hidden layer and 120 % 26 = 3120 connections between the hidden and the output layer. With one additional
weight per node for the “bias term” this sums up to a total of 329 + 24360 + 3120 = 27809 weights.

10

between the actual and the desired outcome. The training process is extremely expensive,
since it requires many (up to 50) passes through the training set. All 27809 weights have to
be updated for every single example in every single pass.

Unfortunately, [Sejnowski87] is not very precise with the definition of the achieved perfor-
mance figures. An performance of 98% on the training data and 77% on the entire dictionary
is reported. The text suggests “performance on the letter level”, but similar experiments
with the same algorithm [Mooney88] [Dietterich89] achieve lower results which suggests that
the results should be interpreted as “performance on the phoneme level”.

NEURAL NET (BACK-PROPAGATION) WORDS LETTERS (PHON/STRESS) BITS
SEJNONWSKI TRAIN - 98.0 - -
ALL - 77.0 - -
DIETTERICH TRAIN: 75.4 94.6 96.8 97.3 99.6
TEST: 12.1 67.1 T77.6 79.6 96.1
MOONEY TEST: - 62.0 - - -

[Mooney88| uses only a 808 word training set, the intersection of the 1000 most common
words reported in [Kuchera67] and the NETtalk dictionary.

The neural nets have one clear advantage over the ID3 algorithm: They learn all phoneme
and stress bits in parallel. Therefore the outcome of a particular bit can be influenced by
the outcomes of other bits. In order to explore the effects of this potential mutual influences,
[Dietterich89] is currently experimenting with a back-propagation algorithm which learns
each bit independently (like ID3).

4 Nearest Neighbor Classification and MBRtalk

The Nearest Neighbor Classification uses different principles than inductive learning methods
such as ID3. No learning in the sense of generalizing the data in the training set by extracting
regularities (rules etc.) takes place. Instead the training examples are simply stored as
(hopefully) representative memories from the past. Generalization occurs at run time when
a new object is classified by directly referring to the memory and selecting the “most similar”
example to classify the new object.

The first part of this chapter describes the application of the straightforward “standard”
Nearest Neighbor Classification algorithm to the Nettalk data. The standard algorithm and
two variations were implemented not in expectation of a high performance but rather for
curiosity and to obtain some bench-marks.

Soon after Sejnowski presented his NETtalk experiment, Stanfill and Waltz [Stanfill86]
responded with a successful nearest neighbor approach that used a more sophisticated metric
of similarity. This experiment [MBRtalk] is briefly described in the second part of this
chapter.

11

4.1 Simple NN Classification, the Shrink and Growth NN Classi-
fication

A simple Nearest Neighbor (NN) version and two variants suggested by [Kibler87]| were
implemented. All three version have the same principles. During training, all or a subset
of the training examples are stored in the Nearest Neighbor Database, called NN-DB for
further reference. In order to determine the class of a new example x, the example y in
the NN-DB which is “closest” to x has to be found. The class of y is assigned to the new
example x. The idea behind the “shrink” and “growth” method is to reduce the number of
training examples stored in the NN-DB. Here is a brief description of the algorithms:

Simple NN Store all training examples in the NN-DB.

Shrink NIN Store all training examples in the NN-DB. Then repeat to remove an example
x if the NN-DB \{z} classifies x correctly. The order in which we look at the examples
will affect the outcome.

Growth NN Start with an empty NN-DB and insert an example x from the training set
only if the examples which are already in the NN-DB can not classify = correctly.
Again the order of the presentation of the examples will affect the outcome.

Training is very cheap, testing relatively expensive since the usually rather large data base
has to be searched in order to find the most similar example(s). The metric for similarity
is the Hamming distance. Fortunately not all phoneme and stress bits have to be learned
separately, since the entire phoneme and stress vector is defined once the best matching
example in the NN-DB is found. Due to the special binary representation of the characters
in the 7-letter windows (exactly one bit is set for each character), the Hamming distance of
two feature vectors corresponds to the number of different characters in the 7-letter window.
There is no need to store the windows as bit-vectors, we can compute the Hamming distance
on character-level, thereby gaining a significant improvement in efficiency.

However, using this simple NN method (with the Hamming distance as distance metric)
has some major deficiencies, for example:

e there is no notion of similarity between different letters. In terms of the pronunciation,
an ‘N’ should be closer to an ‘M’ than to a ‘Z’.

e No consideration is given to the position of the similarities in the two examples to be

compared. Let’s assume we want to classify the feature vector "__too__", i.e. we want
to find phoneme and stress for the first ‘o’ in “too”. Both "__the__" and "__tools"
have the same Hamming distance (2) to "__too__" , but it is obvious that "__the__"

would be a bad choice.

Here are the results for the three versions of the Nearest Neighbor Classification:

12

WORDS LETTERS (PHON/STRESS) BITS

simple NN (4822) TRAIN: 91.9 98.3 99.1 098.8 99.8
TEST: 3.3 53.1 61.1 74.0 92.6

SHRINK NN (2423) TRAIN: 49.9 87.6 89.6 94.4 98.2
TEST: 2.4 48.8 7.1 T71.2 91.8

GROWTH NN (2570) TRAIN: 56.3 89.9 91.7 95.3 98.5
TEST: 2.6 50.6 58.8 T71.9 92.1

The numbers in parenthesis indicate the size of the set which was stored as the data-base
of the exemplars. Shrinking or growing the NN-DB has a similar effect as pruning decision
trees with the CHI-SQUARE cutoff: the size of the concept representation can be reduced
to half. The price is a small decrease in performance.

4.2 MBRtalk

A very successful attempt to find a more meaningful metric of similarity was made with the
MBRtalk (Memory Based Reasoning) algorithm in [STANFILL86]. The simple Hamming
distance metric was modified by using two additional chunks of information :

e how useful is a particular letter (at a particular position in the window) to predict
phoneme and stress. In other words, how much can this letter constrain the possible
outcomes.

e how similar are two letters in terms of predicting phoneme and stress.

Stanfill and Waltz report quite impressive performance figures in their MBRtalk experi-
ment:

MBRtalk WORDS LETTERS (PHON/STRESS) BITS

TEST on 100 words: 43.0 86.0 - - -

However, these numbers are not very suitable to compare with the ID3 or Neural Net
results:

e MBRtalk uses 4438 words for training but only 100 words for testing. (versus 1000 for
training and 19000 for testing in NETtalk and ID3)

e While ID3 and NETtalk use only a seven letter window (the three preceding and
succeeding letters), MBRtalk utilizes the preceding four and the succeeding ten (!)
letters.

Of the many advantages listed in [STANFILLS86], the following seem to be the important
ones which the Neural Nets and ID3 don’t have:

13

e The system “knows” how good a guess was; it can even reject a classification and tell
the user that an example is not at all similar to any of the exemplars stored in the
data-base.

o A relatively straightforward explanation of the reasoning can be provided.

e Due to the data processing in ID3 or the Neural Net, information might be lost. In
the memory based system, all information is stored and potentially accessible.

A disadvantage of the nearest neighbor algorithms is that they are much more expensive
in terms of time and space. MBRtalk was implemented on a connection machine, the three
simple nearest neighbor versions were by at least one order of magnitude slower than the
ID3 algorithm (for classification).

5 Variations on Decision Trees (ID3talk)

ID3 is a learning algorithm that has been successfully applied to many learning task in the
past decade. For the experiments described in this Chapter, the ID3 algorithm was imple-
mented in its standard form with the information-driven criterion for selecting important
features in the decision tree and (optionally) the CHI-SQUARE test to rule out irrelevant
features.

The ID3 algorithm was applied to the NETtalk data and experiments of the following
nature were performed:

e Application of ID3 to the NETtalk data under conditions as similar as possible to those
in the NETtalk experiment.

e Variation of a parameter of the ID3 algorithm: the CHI-SQUARE test.

e Modification of the postprocessing of the phoneme and stress vectors found by ID3.
Since the vectors found by ID3 do not necessarily represent a legal phoneme or stress,
a “best guess” has to be made.

e Experimenting with new encodings for the problem, such as

— Learning the stresses from the phonemes.
— Learning separate trees for different letters.
— Learning groups of letters instead of each letter individually.

— Using a more compact binary representation for the 7-letter text-window.
e Using a combined ID3/Nearest Neighbor approach.
e Postprocessing the decision trees found by ID3. (Quinlan’s tree-to-rules conversion).

e Examination of the impact of size and selection of the training set.

14

5.1 Introduction to ID3

The ID3 Algorithm. ID3 is a learning algorithm of the TDIDT (Top-Down Induction of
Decision Trees) family [Quinlan86]. ID3 constructs a decision tree to classify a given set of
learning examples. A learning example is a pair (z,c), where x is a feature vector fi... f,
and c is the outcome associated with z. In the general case, the features f; and the outcome
¢ can be multivalued. All ID3-algorithms described in this paper use only binary feature
vectors and binary classes, therefore only the binary case is presented in this introduction.
The generalization is straightforward, the interested reader is referred to [Quinlan86].

Sketch of the ID3 algorithm:

INPUT: A set of m training examples C' = {ex;...ex,,}. ex; is a pair (z;,¢;), where
x; € {0,1}" is a n-dimensional binary feature vector and ¢; € {4, —} is the binary class
associated with z;.

OUTPUT: A decision tree to classify the examples in C'.

The decision tree is formed by the following recursive procedure:

e if all training examples have the same class, i.e. e € {+,—}:Vie {1...m}:¢; =¢,
then we are done: the tree is a single leaf of class c.

e if not, we chose a feature f; to partition the set C' into two sets Cy and C such that
Cy contains all examples in which feature f; = 0 and) the remaining ones, i.e. for
k=0,1:Cx={(z,c) € C |z = fi..fi..fu A fi = k}. The feature f; is stored as a test
in the current node, Cyy and C' are passed to the left and right son of the node and the
process is repeated recursively for each of the two subsets passed to the two subtrees.
Sometimes there is no good feature to select, although C' contains examples of both
classes. ? In this case, the majority-rule is applied: a leaf is formed and labeled with
the class of the more numerous examples.

Figure 3 shows how a decision tree is built from a simple training set.

A Decision tree can be built from any set of training examples, the objective is to keep
the tree as small as possible, since we prefer the simplest explanation (i.e. the smallest tree)
for the training set.

The choice of the features determines the size of the tree. Choosing irrelevant features
as the tests in the nodes of the tree will cause the tree to branch more or less randomly.
Testing all possible trees in order to find the smallest one is too expensive (“combinatorial
explosion”), ID3 uses a heuristic strategy to find important features. Lets assume we are at
some node at the tree and have to select which feature we want to use as test in this node.

9This can happen due to noise (i.e. inconsistencies) in the data or because it was decided that none of
the features is relevant enough to justify a partition

15

Figure 3: An example of a simple decision tree. The frames show how the tree grows when
the training examples are partitioned.

16

The effect of choosing feature f; to partition C' is depicted below:

C:
n,p
o
/\
/\
fi =0 / \ fi=1
/ \
/ \
[¢] o
CO: C1:
n0,p0 nl,pl
C = set of training examples
n,p = the number of negative and positive examples in C'
fi = selected feature
Cy,Cy = the sets of examples partitioned by f;.
ng,po = the number of negative and positive examples in ()
ny,p; = the number of negative and positive examples in C}

If all examples in (say) Cy are positive (ng = 0) or all are negative (py = 0), we have the
ideal case. If the distribution is half and half (py = ny), we can make no guess at all about
what class we should assign to the leave containing C\;. This suggests to use the entropy
function

n p p

n
entr(n,p) = — lo — lo
(. p) n+p g2n+p n+p g2n+p

as a measure for the uncertainty of a guess based on a partition with p positive and n negative
examples.
In order to take account of the different number of examples in the sets Cy and C, the

uncertainty associated with the feature f; is the weighted average of the entropies of Cjy and
Oli

no + ny +
0 poentr(ng,po)—i— LT

unc(f;) =
(f) n—+p n—+p

entr(ni, p1)

After computing this uncertainty value for every feature, we chose the feature f; with
the lowest uncertainty value unc(f;).

ID3 and the NETtalk Data. Since the ID3 algorithm described above can only learn
to discriminate between binary valued classes, we have to build a decision tree for each single
bit in the phoneme and stress vector. With 22 phoneme bits and 5 stress bits there are 27
decision trees to learn in order to to find a phoneme/stress pair for a given letter (7-letter
window). It should be noted that ID3 is not limited to learn binary concepts. [Bakiri89] ran
the NETtalk data with a ID3 version that processes multi-valued categories and achieved
results comparable to the one presented in the following Chapters.

17

5.2 Impact of the “Best Guess” Strategy

Finding the Best Match. This section describes the process of finding a legal phoneme/stress.
Two improvements to the standard method are suggested.

In the testing phase, the 7-letter window we want to classify is presented to the system
as a bit-vector bv € {0,1}?%. The system answers with two bit-vectors pv € {0,1}?* and
sv € {0,1}. pv / sv represent the phoneme/stress pair associated with the input vector bv.

Of course not all 222 (2°) potential answers for a phoneme (stress) bit-vector represent
one of the 54 legal phoneme (or 6 stress) vectors.

Let pv be the bit-vector found by the algorithm and LPYV the set of the 54 legal phonemes
vectors. To find a legal phoneme (stress) for an arbitrary phoneme (stress) bit-vector, one
of the following three “best guess” strategies can be applied:

(0) Do nothing. pv is considered wrong if pv ¢ LPV

(1) Find a legal phoneme vector ipv € LPV with the smallest Hamming or Euclidean
distance'® to pv.

(2) As before. Additionally, if there is more than one candidate for the smallest Hamming
distance, we choose the more likely one. In order to know the likelyhood of a particular
candidate, the following statistic is maintained. For every letter in the training set, we
count how often the letter is mapped to each phoneme. The relative frequency of the
pair (L, p;) is interpreted as the probability that the letter L maps to the phoneme p;.

(3) To find the best guess, we consider only the phonemes to which a particular letter is
potentially mapped. Again the more likely phoneme is used in the case of a tie.

The same scheme is applied to find the closest stress. Instead of finding the closest
phoneme and stress independently, one could treat the concatenated phoneme/stress vector
as an entity and try to find the closest legal phoneme/stress pair. This results in (potentially)
different answers.

In the remainder of the paper, the 4 strategies mentioned above will be referred to as
“best guess(0)” .. “best guess(3)”.

The following results show the effect of the different “best guess” strategies. ID3 without
CHI-Square cutoff (see next section) was applied:

ID3-TREES
ID3, no CHI-Square WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH
best guess (0) TEST: 6.0 57.0 69.9 73.3 96.0 165.3 23.1
best guess (1) TEST: 9.1 60.8 75.4 T74.4 95.8 165.3 23.1
best guess (2) TEST: 11.9 66.1 78.4 78.0 96.2 165.3 23.1
best guess (3) TEST: 12.9 67.2 79.9 78.0 96.2 165.3 23.1
best guess (3b) TEST: 13.1 67.2 79.9 78.0 96.2 165.3 23.1

0The Euclidean and Hamming distance is identical in the case of bit-vectors.

18

In the last line (3b) the information about the frequencies of the letter-phoneme/stress
mappings were not collected from the 1000 word training set but instead from the entire
dictionary. Of course this is “unfair”, because we are not supposed to extract information
from the test set. However, the bigger part of the errors is made one step earlier: about
47% of all letters are mapped to a phoneme vector which represents a legal phoneme but
not the correct one. The corresponding number for stresses is even higher: 79% of all letters
are mapped to legal but wrong stress vectors. This means that less than a fifth of the wrong
letters can be potentially corrected by using a clever best guess strategy. !

Since the neural net experiments do not employ any sophisticated “best guess” strate-
gies, their results have to be compared with the second line of the above table. The back-
propagation algorithm outperforms ID3 by several percent. It seems that especially the
stresses can be learned much better by the neural net.

5.3 The Chi-Square Test

[Quinlan86] suggests the CHI-SQUARE test as a measure for the irrelevance of a feature
to the class of the examples in C. As before, let C' be a set with n negative and p positive
training examples. The feature f; divides C into the two subsets Cy (with ng negative and
po positive examples) and C; (with n; negative and p; positive examples). If f; is irrelevant
to the class of an examples in C, we expect the two subsets Cy and C to have the same
ratio of positive and negative examples as C, i.e.

4 n' n
i __P and L = fori=0,1
ni+p; n+p ni+pi n+p

where pj, ng, p, n} are the expected values for pg, no, p1, n1, respectively.
The CHI-SQUARE statistic

0 ()’

Z (pi

p
i=0 p; n

can be used to test the hypothesis that pg, ng, p}, n| are stochastically dependent on py, ng, p1, 11,
which in turn means that the feature f; is irrelevant to the class of the examples in C.

To incorporate the CHI-SQUARE test into the ID3 algorithm, we do not consider a
feature f; unless the hypothesis that f; is irrelevant can be rejected with a high confidence
level. '2

I'Remember that both phoneme and stress have to be correct to make a correct letter.

12An efficient way to do this is to use the chi-square test as a filter. First the feature with the lowest
uncertainty value is considered. If the feature passes the CHi-Square test, we can select it, otherwise the
feature with the second-lowest uncertainity value is tested and so on. In most of the cases the first feature
will pass the chi-square test.

19

All ID3-chi-square versions described in this paper use either a 90% or a 99% confidence
level. With the restriction of the CHI-Square test, the following situation may occur: There
are no more eligible features but the set of examples at the corresponding leaf in the tree
still contains instances of both classes. In this case the majority rule is applied: The more
numerous class is selected.

In the results below three ID3 versions were used: 1) No CHI-SQUARE, 2) CHI-SQUARE
using a 90% confidence level and 3) CHI-SQUARE with a 99% confidence level. The “best
guess” strategy is “closest phoneme/stress without preference or constraints (method 1)”.

ID3-TREES
ID3, Best Guess(1l) WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH

no CHI-SQUARE TEST: 9.1 60.8 75.4 T74.4 95.8 165.3 23.1
CHI-SQUARE (90%) TEST: 9.1 59.8 74.4 73.9 95.7 129.2 18.7
CHI-SQUARE (99%) TEST: 8.6 59.0 74.0 73.6 95.6 75.5 14.4

The CHI-SQUARE tests prunes the tree size significantly. At the same time, the perfor-
mance decreases slightly. However, it is interesting to see that almost the same performance
can be achieved with trees which are less than half as big as the trees generated by ID3
without CHI-SQUARE cutoff.

The effect of cutting off leaves of the trees becomes more obvious if we look at the
performance on the training data:

ID3-TREES
ID3, Best Guess(1) WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH
no CHI-SQUARE TRAIN: 89.8 97.5 98.4 98.6 99.8 165.3 23.1
CHI-SQUARE (90%) TRAIN: 65.5 91.7 95.0 95.8 99.3 129.2 18.7
CHI-SQUARE (99%) TRAIN: 33.9 79.4 86.2 90.4 98.1 75.5 14.4

The CHI-SQUARE was designed to deal with noisy data [Quinlan86]. Although the
dictionary contains inconsistent data, it is questionable whether one should view these in-
consistencies as noise. The inconsistencies in the dictionary result either from too small
window sizes or because there are exceptions in the pronunciations. Noise on the other hand
usually affects all data by randomly corrupting the examples.

5.4 Learning the Stresses from the Phonemes

Tom Dietterich suggested learning the stresses from the phonemes instead of from the letter.
During the training phase, the 5 trees which learn the 5 stress bits are not presented the
7-letter window but instead the binary representation of the corresponding 7 phonemes is
used as input.

20

Two phases are involved during the classification of a k-letter word: First all £ phonemes
have to be classified. In the second phase a 7-phoneme window is shifted through the
phoneme string in the same fashion as the 7-letter windows are used. The binary represen-
tation of a 7-character phoneme window is used as input to the 5 stress trees, thus the stress
decision trees learn the mapping form phonemes to stresses.

ID3-TREES
ID3, no CHI-SQUARE WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

Stress from phonemes TRAIN: 92.1 98.0 98.8 98.5 99.8 1564.9 22.5
TEST: 13.8 67.7 79.9 76.3 96.1 154.9 22.5

Observations:

e Although the performance on the stress level degraded by 1.7 %, the letter level gained
0.5% and the word level almost 1% in performance.

e The trees which learned the stresses from the phonemes are smaller than the trees that
map the text directly to the stresses.

5.5 Learning Separate Trees for Each Letter

Since there seems to be no relationship between the pronunciation of (for example) an ‘a’
and ‘b’, there is no reason to force the mapping functions of all letters into the same decision
tree. Instead we could try to learn each letter separately.

For this experiment, the set C of training examples was partitioned into the 26 classes
Ca,..C7 such that class C.p~ contains only examples which have the letter < L > in the
center of their 7-letter window. For each of this 26 classes, a separate set of decision trees
was learned, with the following results:

ID3-TREES
Single Letter ID3 WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

no CHI-SQ, best guess(3) TEST: 12.5 66.7 80.1 77.4 96.1 - -

Observations:
e The phonemes were learned more accurately.

e The overall performance decreased. This is due to the bad results on the stresses.
The bad performance on the stresses is not unexpected since the relation between
a particular letter and a stress is weaker than the relation between the letter and a
phoneme. By partitioning the training examples every tree can only see a fraction of
the examples it saw before.

21

e The 26 sets of “single-letter-trees” need only 75 % of the space of the standard tree
set. An explanation could be following: Lets assume feature f, was found to be the
most important feature to determine a phoneme-bit for the letter A and feature f, is
the most important one for the letter B. In the big tree, these two features have to
compete for a top position in the tree. If (say) f, wins and goes to the top position,
feature f, will (most likely) appear somewhere down in either branch of the tree. If
separate trees are used, both features can go to the root of the tree, neither one has to
appear twice.

Since the stresses suffer from the partition and the phonemes are better than before, the
logical consequence is not to use the single letter trees for the stresses but instead to learn
them from the phonemes. The results are shown below:

Single Letter ID3 ID3-TREES
no CHI-SQ, best guess(3) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

stresses from phonemes TEST: 13.7 67.8 80.1 76.3 96.1 - -

Although the stress performance decreases again '* |the letter and word level performance
increases by more than 1 %.

A closer look on the performance of each single letter shows that some letters improve
their performance while others get worse.(see table below) Obviously the reason for getting
worse is that the corresponding trees can no longer see the whole training set but only the
subset defined by the partition.

To make more training examples available to the trees that performed worse, all those
partitions which caused a deteriorated performance where grouped together. 0.5% perfor-
mance over the results shown above could be gained:

Single Letter ID3 ID3-TREES
no CHI-SQ, best guess(3) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

stresses from phonemes, TEST: 14.3 68.2 80.5 76.5 96.2 - -
some letters grouped.

Here is a detailed report on the letter performance. Row 1 shows the results achieved by
the traditional ID3 algorithm (no CHI-SQUARE, best guess(3)). Row 2 is after learning each
letter separately. In Row 3, all the “loser” letters C,D,F.,I.K,M,Q,S,UW,Y,Z are grouped
together and are learned with a single tree (per bit).

Correctly classified LETTERS:

1: % 67.2 100.0 100.0 39.7 81.8 79.1 84.5 57.4 90.0 63.0

13They showed the same interesting behavior (decreasing stress by increasing overall performance) in the
original letter to phoneme mapping experiment

22

2: % 67.8 100.0 100.0 43.4 84.3 77.2 84.3 58.4 88.9 66.1

3: % 68.2 100.0 100.0 43.2 84.1 79.6 84.7 58.4 89.7 66.0
char H I J K L M N 0 P Q
1: % 78.4 49.2 90.4 T75.4 78.7 83.9 84.8 38.7 87.6 79

2: % 80.5 48.4 90.7 T73.5 79.0 83.2 85.2 41.7 88.0 78.1
3: % 80.5 49.6 91.1 73.0 79.8 83.2 85.4 41.7 87.9 78.4
char R S T U \ W X Y Z _
1: % 81.8 75.5 81.0 43.3 74.3 82.8 83.6 74.6 75.5 100.0
2: % 82.0 73.5 81.9 41.6 78.3 76 83.6 73.8 74.1 100.0
3: % 82.5 74.7 81.8 42.6 78.5 74.1 83.6 75.5 74.1 100.0

Letters which didn’t improve:

¢,b,F,I,K,M,Q,S,U,W,Y,Z

Note that both phoneme and stress have to be correct for a correct letter.

5.6 Multi-Level ID3

Learning each letter individually seems not a very natural way to solve the problem. !

If people look at the word example, it seems unlikely that they first try to figure out how
to pronounce the e and then, after they made their decision, take care of the character x.
Instead one recognizes ex as a block of letters (a prefix in this case) which belong together
and should be treated as an entity. Other examples are suffixes like ing or ed, or letter
combinations like st, ion, ous, ity and many more. The appendix contains statistics on
frequently appearing letter-blocks of length 2, 3, 4, and 5.

A Strategy for Learning Groups of Letters. In order to implement the idea of
learning frequently appearing letter blocks on a higher level, the following strategy was
implemented:

4

(1) Collecting the data. Select the n (e.g. n = 100 or n = 200) most frequently appearing
k-letter blocks (for k = 2 .. 5) from the 1000 word training set. Alternatively one can
select the blocks from the entire dictionary. 1 All possible phoneme/stress strings to
which a particular block is mapped are also recorded.

(2) Learning on a higher level. A separate set of decision trees is learned for each level
k (i.e. for blocks of size 2, 3, 4, and 5.) Only windows containing one of the “promis-
ing” blocks of length &k (the frequently appearing blocks are called “promising”) are

14Ghulum Bakiri brought this idea to my attention. His initial thought was that one should not look at a
single letter if this letter appears in a group of letters belonging together.

150f course this violates the rule not to extract information from the test data. On the other hand, if one
views the entire dictionary as the (complete) domain of the problem, one could declare this information as
domain-knowledge.

23

presented to the decision trees on level k. A block with k letters has k x (22 + 5)
phoneme and stress bits, therefore k& x 27 decision trees have to be learned on level
k. Like the single letters, the windows for the blocks contain the block and the three
adjacent letters on each side. Thus a window on level £ has the size k + 6.

(3) Classification. Every word to classify is first examined for a “promising” block. If
there is one, the block is classified using the decision trees on the corresponding level.
Every part of the word that contains no promising blocks of length £ is classified on
the next lower level £ — 1. The classification starts at the highest level (k = 5), the
last level (k = 1) is just the regular one-letter classification.

The next table shows the results after implementing the above mentioned strategy. Best
guess strategy (3) and no CHI-SQUARE cutoff were used. Additional decision trees were
constructed for the 100 most frequently appearing 2,3,4 and 5-letter blocks.

ID3-TREES
best guess(B), no CHI-SQ WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
No multilevels TEST: 12.9 67.2 79.9 78.0 96.2 165.3 23.1
a) Blocks from TRAINING set: 14.7 68.6 80.0 78.3 96.2 165.3 23.1
b) Blocks from ALL words : 14.9 69.9 81.3 79.1 96.4 165.3 23.1

An Effective Simplification. Building the relatively complex structure of four addi-
tional layers of decision trees was actually not necessary. A similar but much simpler method
achieved even slightly better results. As before, we start at the highest level and look for
promising blocks. Whenever such a k-letter block is found, we do not use the specially
trained trees on level k, instead the “regular” one-letter classification is used. The possible
outcome for the phoneme/stress string of this block is constrained to the outcomes that were
observed in the training data.

Example: the possible phoneme/stress strings found for the 3-letter block ION in the
training data are ION: -xn0<< .81 -xn0>> .11 yxn0<< .08

The numbers indicate the frequency of the mappings. If the block ION appears in a word
to classify, the algorithm might come up with the wrong phoneme/stress string Axni<<.
Since only one of the three above outcomes is allowed, the one closest to Axn1<< is selected.

Aside: if we look at the possible phoneme/stress strings in the entire dictionary, we get the following list
(which shows that there are quite a lot of things we do not see in the training data).

ION: -xn0<< .90 -xn0>> .04 yxn0<< .03 ixn00< .01
-xn0<> Axnl10< ian01< ixn00> Axn20> Axn20<
yxn0<> Axnl10> -xn>>> Aanl12< yxn0>> Aan01< x-n0<<

The next table shows the results when the blocks are only used to constrain possible
outcomes (no multi-level trees). The last two rows show the effect of choosing the most
frequently appearing 200 k-letter blocks. '

16200 blocks are only selected for 2- and 3-letter blocks. Bigger blocks are no longer very common: (0.12%)

24

ID3-TREES
WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

100 Blocks from TRAINING set: 14.8 68.3 79.8 78.0 96.1 165.3 23.1
200 Blocks from TRAINING set: 15.2 68.3 79.8 77.8 96.1 165.3 23.1

100 Blocks from ALL words : 15.6 69.8 81.2 79.0 96.4 165.3 23.1
200 Blocks from ALL words : 16.3 70.5 81.6 79.4 96.5 165.3 23.1

The method for constraining the possible outcomes used the standard letter-by-letter
classification to obtain a phoneme/stress string for a “promising” block. This string was
then mapped to a “legal” block string. Each single phoneme/stress vector was mapped to
the best legal phoneme/stress before the constraints on the block-level were applied. This
is not optimal since some information is lost when the bit-vectors are mapped to the legal
phoneme/stresses.

In another modification the phoneme/stress bit-vectors found for the corresponding block
are presented in their original binary form to the routine which finds the closest legal block.
One percent performance on the letter level is gained:

ID3-TREES
WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH

100 Blocks from TRAINING set: 15.3 69.2 80.3 78.7 96.2 165.3 23.1
200 Blocks from TRAINING set: 15.8 69.3 80.3 78.6 96.2 165.3 23.1

100 Blocks from ALL words : 17.1 70.9 81.9 79.8 96.5 165.3 23.1
200 Blocks from ALL words : 18.2 71.8 82.4 80.3 96.6 165.3 23.1

A reason why it was not helpful to learn the “promising blocks” with the multi-level trees
might be that the number of examples decreases with increasing level. While the standard
ID3 algorithm sees all training examples, only the small fraction of those examples which
contain a promising block are presented to the higher level trees.

The improvements are only marginal. The reason is probably that the most common
blocks are classified correctly anyway. The following observation supports this assumption: If
we classify all the frequently appearing blocks which are mapped to the same phoneme/stress
string with a high probability (> 90%) (with respect to the entire dictionary) by just selecting
this most likely phoneme/stress, the performance decreases. (Ezample: In the case of I0N
we would always answer with -xn0<<, since I0N is mapped to -xn0<< in 90% of all cases).
This means that these blocks are already classified on a correctness level higher than 90%.

Further improvement might be possible by using a technique that allows blocks to overlap.

5.7 A Combined ID3/Nearest-Neighbor Approach

Nearest Neighbor Classification stores all training examples as representative episodes. ID3
discriminates all examples by its features. The idea behind a combined approach is to use

25

only some features, preferably relevant or important ones, to discriminate between exam-
ples. Objects which can not be discriminated by those features are stored in the form of an
exception list in the leaves of the pruned decision tree. If the class of a new example can’t
be determined by just looking at its features (because descending in the decision tree did
not lead to a class but to an exception list), nearest neighbor classification is applied to the
exceptions list.

Strategy. To build decision trees with the described characteristics, the CHI-SQUARE
test was used to reject irrelevant features for discrimination. Whenever at a particular leaf
a set of examples (with instances of both classes) could not be partitioned further because
the selection of any features was rules out, the examples were stored in an exception list. *

The Hamming distance is used to find a most similar example in the exception lists.
Often there are many examples having the same smallest HD, in this case the class of the
more numerous (equally similar) examples is used.

Alternative methods such as rejecting features with a high uncertainty value could have
been used to reduce the number of features in favor for more exception lists.

For this experiment, no-, 90%- and 99%- CHI-SQUARE cutoff were used to build trees
which store exception lists in their leaves. Even when no CHI-SQUARE is applied, there
can be cases in which a leaf contains examples with instances of class negative and positive
(inconsistencies).

In the regular ID3 tree building procedure, when no exception lists are used and the
selection of further features in ruled out by the CHI-SQUARE test, the training examples
at that particular leaf are generalized by the majority rule. However, when the training
examples at this particular leaf are stored, all the information can be retrieved. Therefore
the ID3/NN approach shows the same performance on the training data regardless of how
much the tree was pruned:

ID3-TREES
best guess (3) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
ID3-NN no CHI-SQ TRAIN: 91.0 98.1 98.8 98.8 99.8 165.3 23.1

ID3-NN CHI-SQ (90%) TRAIN: 91.0 98.1 98.8 98.8 99.8 129.2 18.7
ID3-NN CHI-SQ (99%) TRAIN: 91.0 98.1 98.8 98.8 99.8 75.5 14.4

ID3 no CHI-SQ TRAIN: 91.0 98.1 98.8 98.8 99.8 165.3 23.1
ID3 CHI-SQ (90%) TRAIN: 74.6 94.2 97.1 96.5 99.5 129.2 18.7
ID3 CHI-SQ (99%) TRAIN: 39.4 83.1 89.2 91.9 98.3 75.5 14.4

Unfortunately, in terms of classifying new examples, the exception lists at the leaves of
the pruned tree performed slightly worse than the majority rule did when the regular method
was used.

"Implementation remark: for space efficiency, the 203-bit-vectors were kept in an array and only indices
to the array were stored in exception lists.

26

Only in the case where no CHI-SQUARE was applied and the exception lists were only
used for unresolvable inconsistencies, a 0.1% performance gain for the stresses and the word
level could be observed:

ID3-TREES
best guess (3) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
ID3-NN no CHI-SQ TEST: 13.0 67.2 79.9 78.1 96.2 165.3 23.1

ID3-NN CHI-SQ (90%) TEST: 12.7 66.6 79.4 T7.6 96.1 129.2 18.7
ID3-NN CHI-SQ (99%) TEST: 10.1 63.7 77.5 76.2 95.8 75.5 14.4

ID3 no CHI-SQ TEST: 12.9 67.2 79.9 78.0 96.2 165.3 23.1
ID3 CHI-SQ (90%) TEST: 13.1 66.9 79.6 77.8 96.2 129.2 18.7
ID3 CHI-SQ (99%) TEST: 11.7 65.8 78.7 T7.4 96.1 75.5 14.4

With the strong CHI-SQUARE cutoff, the exception lists became relatively large and
therefore classification was more expensive by approximately one order of magnitude.

5.8 Converting Decision Trees to Rules

[Quinlan87] reports a method to convert decision tress into a set of rules. The method makes
use of the data from which the decision tree was generated and tries to generalize the rules by
eliminating tests in individual rules or entire rules from the set of rules. In [Quinlan87] this
method is successfully applied to reduce error rate and size of the knowledge representation
of several problems. Quinlan’s algorithm was implemented and applied to the decision trees
found by ID3 for the NETtalk data. No performance enhancement could be achieved for the
NETtalk data. However, the method worked well for another learning task, random boolean
concepts (see Chapter Six).
The procedure has three steps:

(1) Convert the given decision tree to a set of rules. Every path from the root of the tree to a
leaf forms one rule, with the conjunction of the tests in the nodes as the left-hand-side
(lhs) of the rule and the class at the leave as the right-hand-side (rhs) or the rule.

(2) Examine each of the rules individually; check whether there are tests in the lhs a rule
that can be removed without affecting the performance of the rule (with regard to the
training set)

(3) After the rules are shrunk as individuals, try to shrink the rule set as a whole. A rule
R can be removed from the set if the set without R do not perform worse with regard
to the training set.

As before, let C' = {ex,...ex,}, the set of m training examples; ex; = (x;,¢;), where
x; € {0,1}" is a n-dimensional binary feature vector and ¢; € {4, —} is the binary class
associated with x;.

27

RSET ={Ry,... Ry}, the rules extracted from the given decision tree. A rule R € RSET
has the form (¢t A ...t ... At, — class), where t; is a test from a node in the decision tree,

e.g. tz = f155 =0

The algorithm in more detail:

(1) Extracting the Rules from the Tree. Straightforward as described above.

(2) Shrinking each Rule Individually. Let R = (t; A...t;... At, — ¢) be any rule
from the rule set. To determine whether a test ¢; can be removed from the rule body, we
compute the following contingency table:

Examples satisfying | class ¢ | not class c
[STTANPIRS 7 S sc sc
tl/_ltztp sc sc

sc is the number of examples that satisfy the left-hand-side (lhs) of rule R and are
classified correctly by R. sc is the number of incorrectly classified examples satisfying the
lhs of R. Unless the decision tree was trained on inconsistent examples, s¢ will always be
zZero.

Sc and S¢ are the corresponding numbers for those examples which satisfy the [hs of R
except test ;.

Adding the results from the first and second row has the effect of ignoring the impact of
test t;

Examples which satisfy | class ¢ | not class ¢
tl/\---ti—l/\ti—i—l---tp sc + sc sc + sc

A certainty-factor C'F' can be defined for the rule R by simply computing the ratio of
the examples that satisfy the rule-body of R and are correctly classified by R to the total
number of examples that satisfy the rule-body of R, i.e.

CF(sc,sc) = >

sc+ sc

Quinlan suggests computing the certainty factor as

SC—l

CF(sc,sc) = . 526 (%)

since the first way “can be rather optimistic, especially when the numbers are small”.

28

With the above, we can measure the effect of removing the test t;. C'F(sc,s¢) = 25

is the certainty-factor for the rule R including the test t; and C'F(sc + 3¢, s¢é + 5¢) is the
certainty-factor after removing test ¢;. If C'F(sc, s¢) < CF(sc+ 3¢, s¢ + 5¢) then test t; is a
candidate for removal, because removing ¢; will improve the C'F' of R.

[Quinlan87] calls the mysterious constant 5 in () “Yates’ correction for continuity”. The
correction does underestimate the C'F' of the rule, especially for small numbers. However, if
the numbers are small, there are cases for which I believe that the correction is a bad idea.
Consider the following example: There is only one object in the training set that satisfies
the lhs of R and it is classified correctly. Say there are 6 examples that satisfy the premise
of R if we negate the test t;. R classifies half of them right and the other half wrong. This
corresponds to the following contingency table:

sc=1|sc=0
sc=3|sc=3

Then CF(sc,s¢) = =22 =05 < CF(sc+ Sc,sc+ 5¢) = =22 =05
and therefore the test ¢; will be removed, which does not seem to be adequate. Since I was
suspicious about this correction factor, I also ran a version of the algorithm which didn’t
make use of it.

Here is the final procedure for shrinking rules individually:

For each rule R € RSET do:
repeat
Try to find irrelevant test in the lhs of R by computing
the contingency tables for each test and remove the test which
leads to the best improvement of the C'F" of R, if there is such a test.
until no more irrelevant tests can be found.

For every test t; to remove, the contingency-tables for all tests in the rule have to be
(re)computed . '8

(3) Shrinking the Set of Rules.
This last step tries to find rules which can be removed without harm. See [Quinlan87] for
more details.

repeat
For each rule R € RSET do:
Compute the performance of RSET \ {R} on the training data.
If RSET \ {R} performs better than RSET,
then R is a candidate for removal.
Remove the “best” candidate, if there is one.
until no more rules to remove can be found.

8Fortunately we do not have to scan the whole training set C for every test ¢;, one pass is sufficient. An
example either satisfies all tests ¢; or it violates exactly one test or it violates more than one test. We are
only interested in the first two cases and can keep a statistic for all tests in parallel in a single pass.

29

In order to verify the algorithm I additionally ran it on a set of 25 boolean concepts
(k-DNF). It worked perfectly on the k-DNF, but it didn’t for the NETtalk data. Actually,
the second step (shrinking the rule set as a whole) was too expensive for the NETtalk data,
it would have consumed several CPU days and was therefore omitted. For the k-DNF data
the second step was feasible. It could improve the results slightly, but the first step was more
effective.

Here are the unsuccessful results for the NETtalk data:

Rules from ID3 (CHI-SQ 90%) ID3-TREES
best guess(3) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
CONT-FACT 0.5 TEST: 6.7 63.0 74.3 T77.4 95.4 0.0 0.0
CONT-FACT 0.0 TEST: 11.6 66.5 79.1 77.9 96.1 0.0 0.0
CONT-FACT 0.5 TRAIN: 32.4 79.6 84.4 91.5 97.6 0.0 0.0
CONT-FACT 0.0 TRAIN: 63.3 91.1 94.7 95.6 99.2 0.0 0.0

5.9 Learning Curves

In this section the impact of the size of the training set is measured. Subsets of 25, 50, 100,
200, 400, and 800 words were generated by randomly selecting the corresponding number of
words from the 1000 word training set. Additionally sets of size 2000, 3000 and 4400 ' were
selected randomly from the entire dictionary.

Every training set was learned with three different ID3 versions: ID3 with no CHI-
SQUARE and ID3 with CHI-SQUARE using a 90% and 99% confidence level. The trees
built from the subsets of the 1000 word training set were tested on the 19000 word test
set. The big trees learned from the 2000, 3000 and 4400 word training set were tested on
the entire dictionary. Using the entire dictionary instead of the test set leads of course to
different results because some of the words were already seen during training. Therefore
corrected numbers were computed to neutralize this effect. 2° The best guess strategy was
switched at 1000 examples.

Figure 4 contains the tables of all results.

Figure 5 shows the learning curves for letters, phonemes and stresses up to training sets
of 1000 words. Observe how the CHI-SQUARE test hurts the performance.

Figure 6 depicts the learning curve for letters on training sets up to 4400 words. The
best guess strategy was switched at 1000 words. The lower graph shows how the number of
leaves in the trees is reduced by the CHI-SQUARE test. Clearly the number of leaves grows

19The number 4400 was selected because [Stanfill86] used the same number of training examples for the
MBRtalk experiment
20Gince the set used for testing is a superset of the training set the following adjustment was computed:

Ctest X Stest — Ctrain X Strain

Ccorrected =
Stest - St’r'ain

Ctest, Ctrain 1S the correctness on the test and training set and Siest, Strain s the size of the test and training
set.

30

linear with the size of the training set. This indicates that ID3 has a nice run time behavior
(for this data set), since the run time is linear to the number of nodes in the tree.
Figure 7 shows the learning curves for phonemes and stresses for the large training sets.

5.10 Impact of the Selection of the Training Data

Is it important or even adequate to choose the 1000 most frequent English words as the
training data?” How much is the performance dependent on the selection of the training
examples.

To answer this questions, ten different sets of 1000 words each were randomly selected
from the entire dictionary and used as the training set in the same way the 1000 most
common word set was used. The performance of the learned trees was tested on the entire
dictionary. No CHI-SQUARE cutoff was applied, the best guess strategy was (3), the let-
ter/phoneme and letter/stress mappings to constrain the best guess were selected from the
entire dictionary.

The table shows the results for the “classic” most common word training set and the ten
randomly chosen 1000 word sets:

ID3, no CHI-SQUARE, ID3-TREES

best guess(B) WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH
1000 most common words ALL: 17.0 68.4 80.6 78.8 96.3 165.3 23.1
1000 random words 1 ALL: 17.8 71.5 83.4 80.5 96.8 251.8 27.8
1000 random words 2 ALL: 17.6 71.5 83.8 80.0 96.8 250.6 27.6
1000 random words 3 ALL: 18.7 72.2 84.0 80.5 96.9 249.9 27.0
1000 random words 4 ALL: 19.5 72.2 84.2 80.6 96.9 239.0 26.9
1000 random words 5 ALL: 18.9 72.1 84.0 80.6 96.9 241.6 25.4
1000 random words 6 ALL 16.4 71.5 83.4 80.2 96.8 247.7 27.6
1000 random words 7 ALL: 18.6 71.8 84.0 80.5 96.9 250.4 27.7
1000 random words 8 ALL: 18.2 72.3 84.2 80.9 96.9 246.8 27.3
1000 random words 9 ALL: 18.4 72.0 83.9 80.7 96.9 249.7 27.9
1000 random words 10 ALL: 19.4 72.3 84.1 81.0 96.9 245.7 28.7

It is interesting to note that all of the 10 randomly chosen training sets produced better
trees than the most common 1000 word set. However, one reason for the better performance
of the randomly chosen sets are that they contain more training data, since the average
word length of a word in the entire dictionary is 7.34 letters while the most common 1000
words have only 5.53 letters in the average. Therefore a randomly chosen 1000 word set
is expected to contain about 7340 letters, 1700 more than the most common 1000 word
training set. While the better performance can be explained by the fact that the random
sets contain more examples as the 1000 most common word training set, the size of the trees
is overproportional.

5.11 Other Variations

Changing the binary representation of the 7-letter window. Every character in the
7-letter window is represented by 29 bits. Do we really need this huge 203-bit input vectors,
or can we use a more concise representation? For this experiment, the minimum number

31

ID3-TREES

ID3, no CHI-SQUARE WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
best guess(1) 25 TEST: 0.6 29.0 43.7 58.5 90.8 10.9 6.1
best guess(1) 50 TEST: 1.3 35.3 52.4 61.3 92.3 16.4 7.5
best guess(1) 100 TEST: 2.5 45.1 62.3 63.6 93.5 28.3 9.5
best guess(1) 200 TEST: 4.0 52.5 67.0 71.0 94.6 46.6 11.9
best guess(1) 400 TEST: 6.3 55.8 70.8 72.2 95.1 81.4 16.4
best guess(1) 800 TEST: 8.4 58.3 73.7 T72.1 95.5 138.1 19.7
best guess(1) 1000 TEST: 9.1 60.8 75.4 T74.4 95.8 165.3 23.1
best guess(2) 1000 TEST: 11.9 66.1 78.4 78.0 96.2 165.3 23.1
best guess(2) 2000 corr: 17.7 73.0 84.6 81.5 97.1 436.5 34.2
best guess(2) 3000 corr: 20.5 75.0 86.0 82.3 97.3 612.6 35.5
best guess(2) 4400 corr: 22.7 76.9 87.2 83.6 97.6 834.5 38.7
ID3-TREES
ID3, CHI-SQUARE (90%) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
best guess(1) 25 TEST: 0.4 26.8 39.1 59.4 90.7 9.1 5.6
best guess(1) 50 TEST: 1.3 35.1 51.9 61.3 92.0 14.2 6.8
best guess(1) 100 TEST: 1.8 42.8 61.5 63.0 93.4 23.7 8.7
best guess(1) 200 TEST: 3.8 51.3 65.4 70.2 94.5 39.6 10.7
best guess(1) 400 TEST: 5.8 54.7 69.7 T71.9 95.0 67.2 15.0
best guess(1) 800 TEST: 7.7 57.5 73.0 71.9 95.5 112.4 17.7
best guess(1) 1000 TEST: 9.1 59.8 74.4 73.9 95.7 129.2 18.7
best guess(2) 1000 TEST: 12.1 65.6 7.9 T77.8 96.1 129.2 18.7
best guess(2) 2000 corr: 17.7 72.7 84.3 81.8 96.7 325.1 26.9
best guess(2) 3000 corr: 19.9 74.6 85.9 82.3 97.4 443.5 30.6
best guess(2) 4400 corr: 22.8 76.7 87.2 83.6 97.5 532.5 31.2
ID3-TREES
ID3, CHI-SQUARE (99%) WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
best guess(1) 25 TEST: 0.3 24.9 40.4 b55.4 90.4 6.7 4.9
best guess(1) 50 TEST: 0.9 30.7 50.9 58.2 92.0 9.7 6.0
best guess(1) 100 TEST: 0.9 38.7 57.5 61.7 93.0 16.5 7.9
best guess(1) 200 TEST: 2.9 49.2 62.6 70.7 94.1 24.9 9.5
best guess(1) 400 TEST: 3.9 53.4 67.2 T71.8 94.9 40.4 11.5
best guess(1) 800 TEST: 6.9 56.0 71.7 T71.6 956.3 65.6 13.2
best guess(1) 1000 TEST: 8.6 59.0 74.0 73.6 95.6 75.5 14.4
best guess(2) 1000 TEST: 11.1 64.8 7.4 77.4 96.1 75.5 14.4
best guess(2) 2000 corr: 16.5 71.3 82.8 81.6 97.0 160.7 19.6
best guess(2) 3000 corr: 18.9 73.7 85.1 82.1 97.2 231.3 23.2
best guess(2) 4400 corr: 21.4 75.7 86.3 83.5 96.6 301.0 23.2

Figure 4: Tables for different CHI-SQUARE versions on training sets of increasing size.

32

Figure 5: Learning Curves for letters, phonemes and stresses.

33

Figure 6: Learning curve for letters (big training sets); the tree sizes for different CHI-
SQUARE versions and increasing number of training examples.

34

Figure 7: Learning curves for phonemes and stresses (big training sets).

35

ceiling(log,(29)) = 5 of bits necessary to represent the 29 characters was used to represent
the 7-letter window as a 7 x 5 = 35 bit-vector. However, the denser representation does not
work very well:

ID3-TREES
ID3, no CHI-SQUARE WORDS LETTERS (PHON/STRESS) BITS NODES DEPTH

5-bit representation TRAIN 89.0 97.3 98.2 98.6 99.8 246.0 14.1
TEST : 1.3 40.8 51.5 63.5 94.0 246.0 14.1

Note that the trees became almost twice as big as before. The problem with this approach
is that ID3 has to test up to five features in order to discriminate one letter from another
one, while there is exactly one bit per letter in the 29-bit-per-letter encoding.

5.12 Learning and Data Compression

Learning can be viewed as data compression. By finding regularities in the given training
examples we can obtain a more concise representation of the knowledge.

Information content of the dictionary. The plain NETtalk dictionary contains 20002
English words and a total of 146913 characters, phonemes and stresses. Since there are 29
different characters, 54 different phonemes and 6 different stresses, the information content
of a character, phoneme and stress is 5,6,and 3 bits respectively. 2! Therefore the total
information stored in the dictionary is 146914 % (5 + 6 + 3) = 2056796 bits.

Information content of the decision trees. A node or leaf of a decision tree is either
a feature (there are 203 features) or a class (+,-). Using (e.g.) postfix notation, we need
2n x 8 bits to encode a decision tree with n leaves and n — 1 nodes. The decision trees
constructed by ID3 without CHI-SQUARE have 165 leaves in the average, therefore all 27
decision trees have an information content of 27 x 2 x 165 x 8 = 71280 bits. The trees built
with a CHI-SQUARE cutoff of 99% have 76 leaves in the average which corresponds to 31616
bits total information content.

Information content of the neural net. The neural net described in Chapter Three
has 27809 connections, each represented by a real number. While it was very interesting
to see that the full precision of the real numbers are needed to ensure proper learning
[Dietterich89], the precision of the weights in the trained net are much more fault tolerant.
Experiments (testing the performance when the weights are corrupted with noise) suggest
that the precision actually needed can be guaranteed with 4 bits. [Sejnowski89]. Thus the
information stored in the neural net can be estimated as roughly 27809 x 4 = 111236 bits.

Conclusions. The learning methods described above can learn nearly 70% of the letters
in the dictionary correctly, but they need less than 4% (502222 in the case of ID3) of the

2056796
information stored in the dictionary to represent their knowledge.

21 Actually the information content is only logs(29 * 54 * 6) = 13.2 bits. If we exploit the different prob-
abilities of the characters (Huffman coding), we could reduce the number further, but this is already data
compression.

36

6 Boolean Concepts (k-DNF)

Since both the CHI-SQUARE version of ID3 and the Tree-to-Rules conversion algorithm
did not perform as well as expected on the NETtalk data, I ran both versions on another
learning task, random boolean k-DNF concepts.

The Boolean Concepts. For the following experiments 25 different randomly gener-
ated k-DNFs 22 over 30 boolean variables were used. There were 5 groups with increasing
complexity of the randomly chosen k-DNFs. The parameters for the k-DNFS were chosen
randomly within the following boundaries:

Number of variables = 30
tmin < number of disjuncts in k-DNF < ¢,,..
kmin < number of variables in disjuncts < k45

kmin kma:v tmin tma:v
group 1: 1) 3 6
group 2: 2 8 6 8
group 3: 3 10 10 14
group 4: 3 12 20 22
group 5: 4 151 30 40

For each single group, 5 k-DNF's were generated. The first 3 k-DNF's are different, the
last 2 are the same as the 3rd, but the feature vectors of the training and test data of the
4th and the 5th were corrupted with 5% and 20% noise, respectively.

Here is an example of a k-DNF of complexity group 4 (12-DNF):

(OR
(AND (NOT 2) 3 (NOT 5) 12 15 (NOT 18) 22 (NOT 26) 27 (NOT 29))
(AND 10 (NOT 12) (NOT 14) (NOT 29))
(AND 1 (NOT 2) (NOT 3) 13 (NOT 15) (NOT 17) (NOT 24) 25 (NOT 27) (NOT 29))
(AND (NOT 0) (NOT 1) 5 (NOT 9) (NOT 19) (NOT 20) (NOT 23) (NOT 28))
(AND 4 11 (NOT 16) 18 20 21 (NOT 22) 28 29)
(AND (NOT 6) 7 (NOT 20) (NOT 24) (NOT 27))
(AND (NOT 1) (NOT 15) 19 (NOT 24) 27)
(AND 0 2 (NOT 12))
(AND (NOT 0) 5 (NOT 10) (NOT 12) 16 (NOT 18) 20 (NOT 25))
(AND 1 3 (NOT 5) (NOT 11) 13 15 23 26 27 28)
(AND (NOT 2) 8 10 (NOT 19) 20 23)
(AND (NOT 0) (NOT 9) 11 17 (NOT 19) (NOT 21))
(AND (NOT 6) (NOT 7) 8 (NOT 9) (NOT 12) (NOT 13) 17 (NOT 19) 21 28)
(AND (NOT 0) 3 4 (NOT 7) (NOT 10) (NOT 20) 26 28)
(AND (NOT 9) 23 26)
(AND (NOT 8) 9 (NOT 12) (NOT 13) 16 (NOT 21) (NOT 25) (NOT 26) (NOT 29))
(AND (NOT 0) (NOT 1) (NOT 3) 4 5 (NOT 7) (NOT 11) 14 26)
(AND 14 (NOT 15) 18 19 (NOT 21) (NOT 24) 28)
(AND (NOT 2) (NOT 5) (NOT 20) (NOT 21) 23)
(AND (NOT 1) 6 11 12 15)
(AND (NOT 1) (NOT 3) (NOT 4) (NOT 5) 6 (NOT 15) (NOT 18) 25 (NOT 27))

)
21 terms (min average max) = (4 8.095238095238095 11)

22A k-DNF if a boolean function f with the following properties: 1) f is in Disjunctive Normal Form
(DNF) 2) Every disjunct of f has at most k boolean variables.

37

ID3 and the CHI-SQUARE TEST. Three different ID3 - versions were used:

1. NO CHI-SQUARE
2. CHI-SQUARE (90%)
3. CHI-SQUARE (99%)

Each version was run on 4 different training and test sets: 23
training test

1 5000 15000

2 10000 30000

3. 15000 25000

4 20000 20000

See the following page for the results of the 3 x 4 = 12 runs.

Observations:

e With very few exceptions, CHI-SQUARE cutoff generally improves the performance.
Especially on the noisy data there is a significant improvement.

e (As expected,) training on more examples increases performance. While the perfor-
mance of the less complex concepts is already relatively saturated with 5000 training
examples, the more complex concepts gain up to 8% in performance with the increasing
number of training examples.

e There are 23 = 10° different vectors. ID3 could see only 0.001 % of all possible
examples.

23The selection of the high numbers of training and test examples is unfortunate, because the curves are
already highly saturated with so many examples. The original idea behind this numbers was to use data
sets of similar size to a set of 1000, 2000, 3000, and 4000 word from the dictionary.

38

ID3 on random k-DNFs

NO CHI-SQUARE | CHI-SQUARE (90%) | CHI-SQUARE (99%)
5 10 15 20 | 5 10 15 20 | 5 10 15 20

1: 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
2: 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0 | 100.0 100.0 100.0 100.0
3: 99.9 100.0 100.0 100.0 | 99.9 100.0 100.0 100.0 | 99.7 100.0 100.0 99.9
4: 87.5 88.0 88.0 88.4 | 92.8 92.9 93.1 93.6 | 94.9 95.2 95.4 95.3
5: 70.6 71.1 71.0 70.9 | 76.9 76.8 78.1 78.8 | 82.7 83.0 83.3 83.5
6: 98.4 99.1 99.5 99.7 | 98.8 99.4 99.6 99.7 | 98.6 99.5 99.6 99.8
7: 98.3 99.5 99.8 99.8 | 98.5 99.5 99.8 99.9 | 98.8 99.6 99.8 99.9
8: 97.9 98.6 99.0 99.2 | 98.2 99.0 99.3 99.4 | 99.0 99.3 99.4 99.6
9: 87.4 89.1 89.4 89.2 | 91.5 93.7 93.9 94.4 | 94.4 95.1 95.2 95.8
10: 74.1 75.1 75.4 75.6 | 80.4 80.8 81.7 81.7 | 84.4 86.0 86.4 86.5
11: 91.4 93.2 94.1 94.6 | 92.6 94.6 95.3 95.5 | 94.1 95.8 96.1 96.4
12: 94.2 95.1 96.1 96.7 | 95.3 96.1 96.9 97.7 | 95.9 97.0 97.4 98.0
13: 88.6 91.1 92.1 92.9 | 90.0 92.8 93.8 94.3 | 90.6 94.0 94.8 94.9
14: 79.4 81.2 82.2 82.6 | 83.2 86.2 87.3 87.8 | 86.2 88.7 89.9 90.6
15: 64.0 65.7 66.0 66.1 | 69.6 69.6 71.4 72.3 | 75.6 76.7 78.1 78.0
16: 89.0 90.2 90.1 92.3 | 90.0 92.0 91.8 93.9 | 91.6 93.0 93.4 94.6
17: 83.6 85.6 88.3 88.9 | 84.9 87.5 89.6 90.4 | 86.9 89.4 91.0 91.4
18: 87.0 89.1 91.3 93.2 | 88.0 89.8 92.2 94.2 | 89.1 90.0 92.5 93.8
19: 77.5 80.0 80.4 82.0 | 80.7 83.1 84.8 86.0 | 83.5 85.4 86.9 87.7
20: 65.5 66.0 66.0 66.4 | 68.4 69.5 71.0 71.1 | 73.5 75.0 75.8 75.8
21: 75.3 79.8 81.3 83.3 | 78.1 81.0 82.6 85.1 | 78.9 82.7 83.9 85.6
22: T74.6 79.6 80.8 82.2 | 76.4 81.1 82.4 84.2 | 78.1 82.8 84.2 86.1
23: 78.2 82.7 84.6 85.9 | 81.1 85.2 86.5 87.6 | 82.3 86.8 87.9 88.8
24: 72.5 74.5 76.1 75.5 | 75.1 78.6 80.0 79.9 | 78.8 82.4 83.6 83.6
256: 64.0 64.4 64.4 64.9 | 67.9 68.5 68.4 69.4 | 73.5 73.8 75.0 74.7

(Recall that there is 5% feature noise in 4,9,..24 and 20% feature noise
in 5,10,..25)

Converting Decision Trees to Rules. The same 5 groups of kDNF as above are used for

this experiment. The “tree-to-rules-conversion” is applied to the decision trees which were

learned from the 25 k-DNFs. ID3 with CHI-SQUARE(99%) ?* was used to build the trees.
The table below show the results off three runs:

1. The ID3-tree (CHI-SQUARE 99%), trained on 5000 vectors
2. The set of Rules from the ID3-tree. Each Rule is shrunk individually.
3. The set of Rules, additionally the the rules are shrunk as a set.

24The high CHI-SQUARE cutoff was necessary in order to keep the trees (i.e. the number of rules) small,
since shrinking the rules is very expensive.

39

The number of rules is the same in (1) and (2) but reduced in (3). The number of tests
(average for all rules) is reduced from (1) to (2).

TRAIN | TEST NUMBER OF NUMBER 0Of
| RULES TESTS
1 2 3 | 1 2 3 1,2 | 3 1 | 2
1: 100.0 100.0 100.0 | 100.0 100.0 100.0 9 9 4.3 2.6
2: 100.0 100.0 100.0 | 100.0 100.0 100.0 15 14 4.3 2.5
3 99.7 100.0 100.0 | 99.7 100.0 99.9 57 41 7.0 3.8
4 94.7 95.2 95.2 | 94.9 95.5 95.4 49 36 6.4 4.6
5 82.9 82.9 83.1 | 82.7 83.3 83.3 47 28 6.1 4.1
6 98.7 99.9 99.9 | 98.6 99.9 99.7 59 40 7.1 4.4
7 99.4 100.0 100.0 | 98.8 99.5 99.8 56 34 7.3 4.0
8 99.0 99.2 99.2 | 99.0 99.2 99.2 56 36 6.9 4.0
9 94.5 94.6 94.6 | 94.4 94.5 94.5 44 28 6.3 4.5
10 86.4 85.8 86.2 | 84.4 84.1 84.3 44 34 6.3 4.7
11 94.9 98.8 98.9 | 94.1 98.3 98.3 90 60 7.3 5.2
12 96.5 98.3 98.3 | 95.9 97.9 98.1 83 58 7.2 5.3
13 93.5 97.0 97.4 | 90.6 95.3 96.7 122 71 7.8 5.3
14 88.2 89.9 90.0 | 86.2 88.2 88.9 97 57 7.1 5.5
15 78.1 77.2 78.1 | T75.6 75.6 76.2 57 39 6.5 4.8
16 93.4 97.0 97.3 | 91.6 95.7 96.3 107 73 7.5 5.6
17 90.0 93.6 93.6 | 86.9 91.5 92.0 112 75 7.5 5.7
18 92.4 94.8 95.5 | 89.1 93.2 93.6 122 T4 7.8 5.6
19: 87.1 87.5 89.3 | 83.5 85.2 86.7 105 66 7.5 5.6
20: 77.8 78.0 78.3 | 73.5 75.1 75.3 67 48 6.5 4.8
21: 82.9 87.7 89.0 | 78.9 84.9 86.3 128 82 7.5 5.6
22: 82.2 87.3 87.7 | 78.1 85.9 86.3 101 73 7.1 5.5
23: 84.0 93.7 93.8 | 82.3 92.3 92.6 98 47 7.2 5.7
24: 80.0 84.0 84.1 | 78.8 83.3 84.0 84 44 6.8 5.2
256: 74.9 75.2 75.2 | 73.5 73.8 73.8 46 26 5.8 4.2
Observations:

e With one exception in the noisy kDNF-data, shrinking the individual rules generally
improved the performance on the test data (roughly) by 3 to 5%. (The improvements
on the less complex kDNF's are not so good, since their high performance percentage
is already saturated)

e Shrinking the rule set achieves another small gain in performance.

e Note how the average number of tests in a rule is reduced from step 1 to step 2 and
the number of rules is reduced from step 2 to 3.

40

7 Conclusions

Summary of results. After implementing the plain ID3 algorithm, I experimented with
various modifications. Two improvements of the process of finding a legal phoneme/stress
could be made by using statistical information about the letter to phoneme/stress-mapping
in the training set.

Adding the CHI-SQUARE test to the ID3 algorithm was successful in terms of reducing
the size of the trees, but could not enhance the performance. However, on the random
k-DNF concepts the CHI-SQUARE test was very effective.

Learning the stresses from the phonemes instead of from the English text showed the
interesting characteristic that the overall performance improved, although the stresses got
worse.

When a separate set of trees was learned for each letter, some letters improved and others
didn’t, while the stress performance suffered generally. By staying with separate trees only
for the “winner letters” and learning the stresses from the phonemes allowed for further gains
in performance.

In the “multi-level-ID3” experiment the goal was to learn on a higher level in some cases.
Common letter combinations such as er or ion were extracted from the data and treated
as an entity during the learning phase. Trying to learn on this level was not as successful
as expected, probably because the number of training examples became too small. In fact,
it turned out that using the common letter-blocks just to constrain the outcome found with
the standard letter-by-letter classification was even more successful.

A combined ID3/NN-approach kept subsets of the training examples as exceptions lists
in some of the leaves of the tree. This method was not as successful as the regular way of
generalizing such leaves with the majority rule.

The postprocessing of rules extracted from the decision trees as suggested by [Quin-
1an87] enhanced performance for the boolean k-DNF concepts but was not successful on the
NETtalk data.

The selection of examples for the training set seems not to have a big influence on the
performance. Trees trained on ten randomly selected 1000 word training sets show only
minor deviations in their performance. However, all ten randomly selected training sets

result in much bigger trees then the most common thousand word training set.
Here is a summary of the achieved improvements:

ID3-TREES
WORDS LETTERS (PHON/STRESS) BITS LEAVES DEPTH
(0) Neural Net TEST: 12.1 67.1 77.6 79.6 96.1 - -
(1) ID3, plain TEST: 9.1 60.8 75.4 74.4 95.8 165.3 23.1
(2) ID3, b.g.(3) TEST: 12.9 67.2 79.9 78.0 96.2 165.3 23.1
(3) 1D3 TEST: 14.3 68.2 80.5 76.5 96.2 - -
(4) 1D3 TEST: 15.8 69.3 80.3 78.6 96.2 165.3 23.1

(0) Neural Net, back-propagation [Dietterich89].
(1) Plain ID3, with the straightforward "best guess" strategy.
(2) ID3, with an improved "best guess" strategy.

41

(3) Combined method of learning some letters individually and
classifying the stresses from the phonemes
(4) Learning on a higher level with common letter blocks

The neural net (0) outperforms the comparable ID3 result (1). None of the ID3 versions
can learn the stresses as well as the back-propagation algorithm. It would be interesting to
see how much performance one could gain if the methods used to improve ID3 were applied
to the neural net.

One reason for the better performance of the neural nets might be fact that they learn
all bits simultaneously.

Grain-size of Learning. The task of learning a word is decomposed in two steps:
First each letter of the word is learned individually. Furthermore, the task of learning the
pronunciation of a letter is broken down into learning 27 properties of the phoneme and the
stress. This low level representation was chosen to break the complexity of the high level
learning task. The mapping from a 203-bit-vector to a boolean value is easier to handle than
the mapping from a English word to its phoneme and stress string. The problem with this
approach is the aggregation of the results. Although each of the low level functions could
be learned with about 97% correctness, less than 15% correctness remains when it comes to
the word level.

On the other hand, if we try to learn on a higher level, we face the problem that the
algorithm can not see as many examples for a particular concept as before. When we tried
to learn blocks instead of single letters, there were only a few examples for each block versus
the entire dictionary for each letter. In the extreme case, when we try to learn entire words
at a time, there is only one example for each different mapping.

Further improvements. ID3, the neural net (back-propagation) and the nearest neigh-
bor classification are general purpose learning algorithms and can be applied to any learning
problem. One way to improve the performance of any of these algorithms might be to make
use of the specific domain knowledge of the pronunciation task.

The general algorithms allow any phoneme/stress - string as outcome. The solution space
could be reduced by using constraints such as

e There has to be at least one vowel(-sound) in each phoneme string.
e There are many sequences of phonemes which are illegal or even “unpronounceable”.

e Many stress combinations are illegal, e.g. any subsequence ’><’ is undefined. No stress
string can start with <’ or end with ’>’. This may be a better way to find a stress
string: First find all letters which are emphasized (indicated by the stresses 1, 2, 0 and
then determine the syllable boundaries.

42

8 Appendix

8.1 About the Implementation

All algorithms were implemented in Common LISP. The code ran on SUN 4 workstations
with 32 MByte main memory. Unix and the X-Window system provided an efficient envi-
ronment for developing and debugging the code.

Computing the 27 decision trees for the 5521 letters in the training set consumed about
50 CPU minutes. The 141392 letters in the test set could be classified in approximately 35
CPU minutes.

8.2 Inconsistencies in the NETtalk Dictionary

Even the perfect learning algorithm could not achieve a 100% performance on the Nettalk
DATA, because there are inconsistencies in the dictionary. One reason for inconsistencies
is the size of the text windows used. To know how to pronounce the "th" in the word
"thought", a 7-letter window "___thou" is not enough, we need a look-ahead up to the last
letter to tell the difference between "thought" and (e.g.) "though". However, there are
words that are inherently inconsistent because they are listed twice as the same word with a
different pronunciation. The following paragraph describes the inconsistencies on bit-, letter-
and word-level.

Since all phoneme and stress bits are learned separately, we have a separate set of training
examples for each phoneme and stress bit. A learning example ex on the bit-level has the
format ex = x.¢, where x € {0,1}?% and ¢ € {0,1}.

Let S be the set of all learning examples ex; = x.c, for a particular phoneme or stress
bit. We say that the example exj is inconsistent on the bit-level if there is another l.e.
ex; = zj.c; € S (ex; # exy) such that z; # x; but ¢, = ¢;.

For the training and the test set we get the following average rate of bit-level inconsistency
for phoneme and stress bits:

PHONEME-BIT STRESS-BIT
average total incons. % incons. %
TRAIN: 5521 7.9 0.14 13.2 0.24
TEST : 141392 264.0 0.19 779.8 0.55

A learning example on the letter-level has the format exy = (wypgsk) where wy is a 7
letter window, p is a phoneme s is a stress

An example is defined to be inconsistent on letter-level, if there are two l.e. exy =
(wiprsk) and ex; = (w;p;s;) which have the same 7 letter window (w, = w;) but map to a
different phoneme or stress py, # p; or s, # s,

the average rate of letter-level inconsistency is:

43

LETTERS total incons. %

TEST : 141392 4239 3.
TRAIN: 5521 90 1

An entire word is considered inconsistent, if one of its letters are inconsistent. The
inconsistency rate on word level is

WORDS total incons. %
TEST : 19003 3358 17.7
TRAIN: 999 66 6.5

The most obvious case of inconsistency occurs when one word is represented twice in the
dictionary (with two different phonetic or stress strings). There are 35 double words in the
training set and 206 in the whole dictionary (i.e. 171 in the test set).

Ezample:
that ID-et| >>1<
that ID-xt| >>0<

Summarized percentages of inconsistencies:

double
Inconsistencies WORDS WORD LETTER BIT(PHONEME/STRESS)
TEST 0.8 17.7 3.0 0.19 0.55
TRAIN 3.5 6.5 1.6 0.14 0.24

44

8.3 Top Features of the Decision Tress

At each node in the tree, ID3 heuristically tries to find the “best” feature in order to build a
compact decision tree. Therefore the feature at the root of the tree is the one considered to be
most important. In the case of the NETtalk data a feature stands for a particular letter at a
particular position in the 7-letter window. The table below shows the letters and their window
positions selected by ID3 for first three levels of the decision trees. As we would have expected,
the center letter of the window is selected as the top feature for all except two of the stress trees.

Decision Tree | Features of topmost three levels
PHON-DT 0 | (Ty (Co So C 1) (Hy Ty E2))
PHON-DT 1 | (Ny (So To S_1) (G4 N_ E»))
PHON-DT 2 | (Lo (Ag Eo E_1) (#2 L_1 #1))
PHON-DT 3 | (Oy (Hy Uy # 1) (Nl #1 Ly))
PHON-DT 4 | (My (Py Iy P1) (M1 S -))
PHON-DT 5 | (Ry (Og Ao I 1) (E_1 # 2 #1))
PHON-DT 6 | (Cy (Ry Og E_1) (E1 I -))
PHON-DT 7 | (Xo (Jo Go +) +)

PHON-DT 8 | (So (Fo VO F_1) (S Ly -))
PHON-DT 9 | (Wy (Ho Q1 # 1) (#_1 Y2 0y))
PHON-DT 10 | (R, (LU R L) (R 1 A3-))
PHON-DT 11 | (Ny (M, - M 1) (N1 +-))
PHON-DT 12 | (Ty (Do Py D_1) (H; O3 -))
PHON-DT 13 | (Og (Yo Ag A_1) (N1 Ry #2))
PHON-DT 14 | (Ry (No Loy N_1) (R4 A 3-))
PHON-DT 15 | (L (Ey Yo #_3) (N2 E2 D _4))
PHON-DT 16 | (Ag (Oo Uy Ry) (# 3 P41 E 1))
PHON-DT 17 | (Og (A¢ Ey E_1) (I_; O_1 Ry))
PHON-DT 18 | (Eo (Ho #-2 #-1) (#1 R #-3))
PHON-DT 19 | -

PHON-DT 20 | -

PHON-DT 21 | (Ey (Ho # 2 # 1) (#1 R1 #_3))
STRESS-DT 1 | (#2 (#-1 O-1 -) (#-2 R1 A1)
STRESS-DT 2 | (#_1 (42 Ey 1) (A N -)
STRESS-DT 3 | (O (AO Iy E_y) (I_1 O_1 #4))
STRESS-DT 4 | (I (A Ey E_1) (A1 E_1-))
STRESS-DT 5

Features of the three topmost levels of the Decision trees.
The letters
stand for the actual letter selected as the feature (the test) at the particular node in the tree. To enhance

The parentheses represent the tree-structure of the highest three levels in the decision trees.

readability, the character ’_’ (beyond word boundary) is represented by a ’#’. The subscripts indicate the
position of the letter in the 7-letter window.

Example: (4og (X_; ..) (C3 ..)) means that the root feature of the tree is the test for a letter A in the
center position of the 7-letter window. The two tests on the second level of the tree check for a letter X one
position to the left of the center and for a C at the rightmost position.

45

8.4 Saturation Points for the Letter to Phoneme Mapping

How much do we know about the 20000 words in the dictionary when we look at a subset of 1000
words? Is it as good as looking at 500 words, or as 2007 How many data do we have to see before
we know all the phonemes to which a letter can be mapped? To answer this kind of questions, the
entire dictionary was randomly partitioned into 16 sets of 1250 words each. Then the number of
phonemes to which a letter is mapped was counted for the words in the first set, in the first and
second set and so on. This is like increasing our horizon by 1250 words in each measurement. A
saturation point was computed for each letter. For example, after looking at 5000 words, the
letter E reached the point where it was mapped to 13 different phonemes. This is the maximum
number of phonemes to which E is mapped. The graph below shows the saturation point for
each letter. The curve indicates the average number of different phonemes to which all letters are
mapped to after looking at the corresponding number of examples. Of course the outcome of this
results are highly dependent on the chosen subsets and the order in which we look at them.

- - - - picture - - - -

46

8.5 An Example of a Decision Tree

The decision tree for phoneme bit 0, learned with ID3 and CHI-SQUARE cutoff (90%). All nodes
on the same tree level have the same horizontal indentation. +, - show the class of a leave. A
number behind the class indicates that the majority rule was applied, e.g. - (62) means that
class negative was assigned to a leave containing 62 examples with no unique class. This is a rather
small tree with 62 leaves, in the non CHI-SQUARE version trees grow as big as 394 leaves.

(160=1) +
(166=1) +
(80=1)
(130=0)
(130=1)
(85=1)
(165=0) +
(165=1)
(192=0)
(192=1)

+ 1

+

(92=1)
(63=0)
(72=0) +
(72=1)
(143=0) +
(143=1) -
(63=1) -
(102=1)
(73=0)
(134=0) +
(134=1)
(75=0) +
(75=1)
(73=1) -
(105=1)

47

(85=0)
(76=0)
(135=0)
(134=0)
(71=0)
(123=0)
(179=0)
(131=0)
(187=0)
(46=0)
(0=0)
(82=0)
(62=0)
(8=0) -(62)
(8=1) +
(62=1)
(53=0) -
(563=1) +
(82=1) -
(0=1) +
(46=1)
(191=0) -
(191=1) +
(187=1) -
(131=1) +
(179=1) +
(123=1) +
(71=1) +
(134=1) +
(135=1) +
(76=1) -
(85=1) +
(89=1)
(80=0)
(76=0)
(76=1) -(4)
(60=1)
(193=0) -
(193=1) +
(106=1)
(123=0)
(77=0)
(152=0) +
(152=1) -
(77=1) -
(123=1)
(149=0)
(27=0)
(12=0) +
(12=1) +(3)
(27=1)
(192=0)
(66=0)
(193=0)
(194=0)
(145=0) +
(145=1) -(2)
(194=1) -(3)
(193=1) -
(66=1) -
(192=1) -
(149=1)
(188=0) -(23)
(188=1) +

Nodes : 62
Max. Depth : 17

48

8.6 The Mapping from Letters to Phonemes and Stresses

Letter | Phonemes to which a letter is mapped
A @30 x2¢4 e19 -3 a.or c.04 Eo2 To1 oWyi
B b .96 - .04
C k71 sa6 Cor —.03 S03 gztx
D do -4 Jo1 tD
E -4 E2 x.12 1.0 T8 eor YAuaoyU
F for -9 v
G gst Jo2r —20 ZfGok
H -7 hao2r Ew
I T4 x20 -6 Aa2 i0 yY@a
J Jo hZ-yi
K k 66 - .34
L 170 L2t - .09
M mo3 —.04 Mo3 nG
N n.s G.or N.o4a - .02
0] X3 02 a.a19 —.08 c.07 Woa w4 002 Ut “01 +IwAyeRQY
P p.ss f.or - .04
Q k 97 - .03
R r72 Ra2s —02 Y
S s.73 za1 —.07 Swor Z.o1 C
T ts S.08 T.o4 —.04 Cuo2 Dot Z
U -3 ~21 Yuas x.14 u.o7r w.os U3 yIEoARDO
Vv vio f -
\%\% W .53 — .38 * .09
X X8 #.10 K.o4 z.03
Y ies —.a1 Aar I8 y.3 x.02 Y
Z z87 —.08 s.03 .02 Z

Statistic on the letter-phoneme mapping

The numbers indicate the relative frequency of a mapping. No numbers are given if the
relative frequency is below 1 %.

Ezample: In 97% of all cases, the letter Q is mapped to the phoneme k and in 3% of the
cases Q is mapped to the phoneme -.

49

The picture below is a graphical representation of the letter to phonemes mapping. A
vertical bar at position (L, p;) indicates that there is a mapping from letter L to phoneme
pi- The likelyhood (frequency) of a particular mapping is expressed by the thickness of the
vertical bars. The fat bars in the diagonal show that most of the letters have a “preferred”
phoneme. Tt is also interesting that all letters except ‘X’ can be silent (‘-’).

- picture -

20

Letter

Stress to which a letter is mapped

NKXES<LORnTOUWOZECD Ru~=IQHEOQW»> -

.43
.81
.61
.52
.36
77
.54
.72
.54
.94
.62
.55
.55
.81
.40
.75
.80
.52
.52
.53
41
.62
.71
.97
.71
.55

NO ANV VFE ANANANANVVEFP,EFAVVAVOVVYVVOANAVYVLE

V ANV ANANOVVVAANOVAANVAPRLRANNANNNVANNANDCO

.34
.19
.39
.48
.29
.23
.46
.28
.29
.06
.38
.45
41
.19
31
.25
.20
.48
.48
A7
.25
.38
.26
.03
.10
.45

O N O O

N O O O

N O =~ O

.14

.26

A1

.03

.14

N N

.02

.10

.07

.07

.05

.14

.10

.01

.06

Statistic on the letter-stress mapping

ol

8.7 Frequently Appearing Letter Blocks

no || 2 % 3 % 4 % 5 %

1 ER 2.06 | ION 0.99 | TION 1.02 | ATION 0.96
2 ON 1.81 | TIO 0.85 | ATIO 0.75 | ILITY 0.16
3 AT 1.81 | ATI 0.83 | ABLE 0.28 | INTER 0.14
4 TI 1.79 | ATE 0.66 | LITY 0.21 | RATIO 0.14
5 IN 1.76 | ENT 0.57 | MENT 0.20 | TATIO 0.14
6 TE 158 | TER 0.52 | TIVE 0.17 | CATIO 0.14
7 AN 1.41 | OUS 0.40 | RATI 0.17 | BILIT 0.13
8 RE 1.41 | BLE 0.40 | RATE 0.16 | ATIVE 0.12
9 LE 1.36 | ITY 0.40 | IOUS 0.16 | CTION 0.11
10 || EN 1.35 | CON 0.37 | INTE 0.15 | NATIO 0.11
11 || AL 1.31 | TIC 0.34 | NTER 0.15 | ITION 0.11
12 || AR 1.27 | ING 0.34 | STIC 0.14 | UNDER 0.11
13 || RA 126 | RAT 0.34 | ATOR 0.14 | ISTIC 0.10
14 || ST 1.20 | ANT 0.32 | ILIT 0.14 | ICATI 0.10
15 || NT 1.11 | IST 0.31 | ANCE 0.14 | ALITY 0.10
16 || OR 1.10 | TRA 0.28 | NDER 0.14 | IZATI 0.09
17 || RI 1.08 | TOR 0.28 | STER 0.14 | ZATIO 0.09
18 || IC 1.08 | INE 0.28 | ICAT 0.13 | LATIO 0.09
19 || IT 1.06 | PER 0.28 | TATI 0.13 | TABLE 0.09
20 || IO 1.05 | VER 0.28 | ICAL 0.12 | GRAPH 0.08
21 || LI 1.01 | NCE 0.27 | BILI 0.12 | ABILI 0.08
22 || IS 0.97 | ICA 0.26 | ENCE 0.12 | TRANS 0.08
23 || CO 093 | LIT 0.25 | OLOG 0.12 | ERATE 0.08
24 || RO 0.85 | ABL 0.25 | CATI 0.11 | ATORY 0.08
25 || DE 0.83 | PRO 0.25 | SION 0.11 | OLOGY 0.08
26 || LA 0.83 | STI 0.25 | OVER 0.11 | IFICA 0.07
27 || CA 0.79 | IVE 0.25 | LATE 0.11 | MENTA 0.07
28 || TA 0.77 | ALI 0.24 | ENTI 0.10 | RABLE 0.07
29 || NE 0.72 | STR 0.23 | THER 0.10 | FICAT 0.07
30 || OU 0.72 | INT 0.23 | STRA 0.10 | OGRAP 0.07
31 || VE 0.71 | PRE 0.22 | CONT 0.10 | OLOGI 0.06
32 || MA 0.70 | NTE 0.22 | LATI 0.10 | ALIZE 0.06
33 || ES 0.69 | EST 0.22 | TORY 0.10 | INATE 0.06
34 | TR 069 | MEN 0.22 | ERAT 0.10 | MINAT 0.06
35 || US 0.66 | RES 0.22 | IGHT 0.10 | RIOUS 0.06
36 || SE 0.66 | LAT 0.22 | MATI 0.10 | STRAT 0.06
37 || CE 0.63 | TRI 0.21 | COMP 0.10 | CIOUS 0.05
38 || IL 0.62 | CAT 0.21 | ATIV 0.10 | ICATE 0.05
39 || ET 0.62 | ESS 0.21 | ISTI 0.09 | MATIC 0.05
40 || DI 0.60 | MAN 0.21 | CONS 0.09 | SSION 0.05

The 40 most frequently appearing 2-, 3-, 4- and 5-letter blocks in the NETtalk dictionary

52

8.8 An Example of a Detailed Evaluation Statistic

The listing below is the full amount of information collected with every evaluation.

> (print-eval-data "data/c.test.stat.12" :full t)

CLASSIFICATION - RESULTS:

Data from file: "“haya/expr/3/corpus.test"
DT from file: "data/corpus.train.id.1"

COMMENTS :

Evaluation Data form file: ~haya/expr/3/corpus.test
ID3 Tree from file : data/corpus.train.id.1
Data saved to file : data/c.test.stat.12
EVALUATION: ID3

WITH closest P/S + MOST FREQ

Most-Freq-Phon from: inconsist/corpus.train.letmap
ID3 NO CHI-SQUARE

WORDS TOTAL:

0 : 18778 (98.8)
1 : 67 (0.4
2 : 168 (0.8)
sum : 19003 (100.0)

CORRECTLY CLASSIFIED WORDS:

0 1 2256 (11.9)
1 : 0 (0.0)
2 : 2 (0.0)
sum : 2258 (11.9)
LETTERS TOTAL:

0 : 139738 (98.8)
1 : 526 (0.4)
2 : 1128 (0.8)
sum : 141392 (100.0)

CORRECTLY CLASSIFIED LETTERS:

0 : 92650 (65.5)
1 : 268 (0.2
2 : 518 (0.4)
sum : 93436 (66.1)

0 3806954 (96.2)
1 0 (0.0)
2 : 0 (0.0)
sum : 3806954 (96.2)

DECISION-TREES:

93

nodes 165.3
depth 23.1

Correctly classified PHONEME BITS:

sum 3007432 139248 135128

A 96.7 98.5 95.6
nodes 158.5 97 248
depth 24.3 41 36

10 11 12
cum 140701 141204 141355
pA 99.5 99.9 100.0
nodes 36 16 5
depth 10 7 3

20 21 22
cum 141392 141392 135513
pA 100.0 100.0 95.8
nodes 1 1 251
depth 0 0 32

131555 138356 134054 127578 137126 140316 140773

93.0 97.9 94.8 90.2 97.0 99.2 99.6

286 102 219 423 186 33 30
30 22 35 35 17 10 10
13 14 15 16 17 18 19

139521 130705 138796 134142 134732 128242 135513

98.7 92.4 98.2 94.9 95.3 90.7 95.8

53 301 125 241 188 394 251
12 34 44 33 34 57 32

Correctly classified STRESS BITS:

all 1 2
sun 799522 141392 128367
A 94.2 100.0 90.8
nodes 190.2 1 304
depth 19.0 0 24

129707 126745 131929 141392

91.7 89.6 93.3 100.0

PHON BIT is O and classified O0:

’0° 2682135 109286 103339
sum 2726416 110102 106103

256 361 218 1
35 34 21 0
3 4 5 6 7 8 9

117936 136465 105747 109123 126743 138577 127063
122200 137572 109858 114824 128722 139131 127306

o4

99.3 97.4 96.5

99.6

99.8

10
’0? 139018
sum 139290
% 99.8

20
’0’ 141392
sum 141392
% 100.0

123911 127564 113924
123944 127581 114577
100.0 100.0 99.4

141392 118372
141392 120710
100.0 98.1

PHON BIT is 1 and classified 1:

121544
125353
97.0

95038
96177
98.8

1242
1277
97

41
60
.2

130909
133479
98.1

112179
118233
94.9

118372
120710
98.1

29962 31789 13619
31290 35289 19192
95.8 90.1 71.0

28307
31534
89.8

184
265
69

55
68
.5

10383
12670
81.9

all

’1? 325297
sum 384208
% 84.7
10

’1? 1683
sum 2102
% 80.1
20

’1? 0
sum 0
% 100.0

STRESS BITS is

17383 13791 25597
17448 13811 26815
99.6 99.9 95.5

0 and classified 0:

43758
45215
96.8

99
136
72

01
32
.6

all
’0’ 661951
sum 687572
% 96.3

STRESS BITS is

141392 85024 93131
141392 92762 97702
100.0 91.7 95.3

1 and classified 1:

108880
115633
94.2

92132
98691
93.4

1413
1413
100

92
92
.0

all
’1? 137571
sum 160780
% 85.6

0 43333 36576
0 48630 43690
100.0 89.1 83.7

Correctly classified PHONEMES:

17
41
41.5

87
97
89.7

0
21
0.0

17141
20682
82.9

1566
3818
41.0

447
1750
25.5

526
678
77.6

141
13.5

163
27.0

89.6

classified STRESS:

211
45.0

sum 110806
all 141392
% 78.4
Phon D
sum 86
all 114
% 75.4
Phon Q
sum 0
all 0
% 100.0
Phon _
sum 0
all 0
% 100.0
Phon k
sum 5476
all 5771
% 94.9
Phon v
sum 1745
all 1747
% 99.9
Correctly

str all
sum 110346
all 141392
% 78.0

Correctly classified LETTERS:

(el elNe)

100.

13408
19388
69.2

883
6371
13.9

43333
48630
89.1

36576
43690
83.7

5007

2404

5184

3410

26

8824

1754

1663

12711
39.4

2048
81.5

6641
78.1

4115
82.9

15463
57.1

1949
90.0

3028

54.

9

all 141392 0 0
% 66.1 100.0 100.0
char H I J
sum 2557 5864 244
all 3263 12492 270
% 78.4 46.9 90.4
char R S T
sum 8515 5636 8695
all 10606 7492 10839
% 80.3 75.2 80.2

PHONEMES correct per LETTERS:

1173
82.6

3927
4115
95.4

10695
15463
69.2

char all -

sum 110806 0 0
all 141392 0 0
% 78.4 100.0 100.0
char H I J
sum 2941 7811 263
all 3263 12492 270
% 90.1 62.5 97.4
char R S T
sum 9214 6370 10135
all 10606 7492 10839
% 86.9 85.0 93.5

451
45.5

Letters which mapped directly into a legal but wrong phoneme:

14505 (47.42 %)

Letters which mapped directly into a legal but wrong stress:

24808 (79.91 %)

57

8.9 Binary Representation of Phonemes and Stresses

The following LISP code shows the binary encoding of phonemes and stresses.

;3 PHONEMES: The different bits represent the
;; following properties of a phoneme.

;33 Alveolar = Centrall 1
;33 Dental = Front2 2

;33 Glottal = Back2 3

;33 Labial = Frontl 4

;33 Palatal = Central2 5
;33 Velar = Backl 6

;33 Affricative 7
;33 Fricative 8
;33 Glide 9

;35 Liquid 10

;33 Nasal 11

;53 Stop 12

;33 Tensed 13

;33 Voiced 14

;5 High 15
;33 Low 16
;33 Medium 17

;33 Elide 18
;35 FullStop 19
;33 Pause 20
;33 Silent 21

(setq *PHONEME-BOOLEAN-LIST*

;55 01234567890123456789012

> ((#\a #22x0000010000000100100000)
(#\b #22x0000100000001010000000)
(#\c #22x0000001000000000010000)
(#\d #22x0100000000001010000000)
(#\e #22x0010000000000100010000)
(#\f #22%x1000100010000000000000)
(#\g #22x0000001000001010000000)
(#\h #22x1001000001000000000000)
(#\i #22x0000100000000101000000)
(#\k #22x1000001000001000000000)
(#\1 #22x0010000000100010000000)
;55 01234567890123456789012

(#\m #22x0000100000010010000000)
(#\n #22x0100000000010010000000)
(#\o #22x0001000000000100010000)
(#\p #22%x1000100000001000000000)
(#\r #22x0000010000100010000000)
(#\s #22%x1100000010000000000000)

28

(#\t
(#\u
(#\v
(#\w
(#\x
(#\y
(#\z

(#\A
(#\C
(#\D
(#\E
(#\G
(#\I
(#\J
(#\K
(#\L
(#\M
(#\N
(#\0
(#\Q
(#\R
(#\S
(#\T

(#\U
(#\W
(#\X
(#\Y
(#\Z
(#\o
#\!
(#\#
(#*
(#\"
(#\+
(#\-
(#_
(#\.
))

#22x1100000000001000000000)
#22%0001000000000101000000)
#22%0000100010000010000000)
#22%0000100001000010000000)
#22x0000010000000000010000)
#22x0000010001000010000000)
#22%0100000010000010000000)
;35 01234567890123456789012
#22%0110000000000100010000)
#22x1000010100000000000000)
#22x0010000010000010000000)
#22x0010100000000000010000)
#22%0000001000010010000000)
#22%0000100000000001000000)
#22x0000010100000010000000)
#22x1000011110000000000000)
#22x0100000000100010000000)
#22%0010000000010010000000)
#22%0000010000010010000000)
#22%0100010000000100010000)
#22x0000101100001010000000)
#22x0000001000100010000000)
#22%1000010010000000000000)
#22%1010000010000000000000)
;35 01234567890123456789012
#22x0000001000000001000000)
#22x0000011000000101010000)
#22x1110000100000000000000)
#22%0110100000000101000000)
#22%0000010010000010000000)
#22x0010000000000000100000)
#22x1010100100000000000000)
#22x0000011100000010000000)
#22%0100100001000010100000)
#22%0100000000000000100000)
#22x0000000000000000000000)
#22x0000000000000000001001)
#22x0000000000000000001010)
#22%0000000000000000000110)

(setq *STRESS-BOOLEAN-LIST*

P ((#\<
(#\>
(#\1
(#\2
(#\0
(#\-

#6%010000)
#6%001000)
#6%000110)
#6%000100)
#6%000010)
#6%x011001)))

; corrected ’J’, Sejnowski’s is wrong !

29

References

[Bakiri89] Personal Communication with Ghulum Bakiri, Spring 1989
[Dietterich89] Personal Communication with T.G.Dietterich, Spring 1989

[Kibler87] Kibler, D. and David, W.A. (1987), Learning Representative Exemplars of Con-
cepts: An Initial Case Study, Proceeding of the Fourth International Workshop on
Machine Learning (24-30), Irvine, CA. Los Altos, CA: Morgan-Kaufmann

[Kuchera67] Kuchera, H. and Francis, W.N. (1967), Computational Analyses of Modern-
Day American English , (Providence, Rhode-Island: Brown University Press, 1967)

[Mooney88] Mooney, R. , Shavlik, J. , Towell, G. , Gove, A. (1988), An Ezperimental
Comparison of Symbolic and Connectionist Learning Algorithms, submitted (12/88) to
the Eleventh International Joint Conference on Artificial Intelligence.

[Sejnowski87] Sejnowski, T.J. and Rosenberg, C.R. (1987), Parallel Networks that Learn
to Pronounce English Text, Complex Systems Publications 1 (1987) 145-168

[Stanfill86] Stanfill, C. and Waltz, D. (1986), Toward Memory-based Reasoning, Commu-
nications of the ACM, Dec 1986, Vol 29, Number 12, 1213-1228

[Quinlan86]| Quinlan, J.R. (1986), Induction of Decision Trees, Machine Learning, 1(1),
82-106

[Quinlan87] Quinlan, J.R. (1987), Generating Production Rules From Decision Trees, Pro-
ceedings of [JCAI-87, Los Altos: Morgan-Kaufman. 304-307.

60

