

AN ABSTRACT OF THE PROJECT OF

Tez Deepthi Tammineni for the degree of Master of Science in Computer Science

presented on March, 10 2011.

Title: On Convex Dimensionality Reduction for Classification.

Abstract approved:

Raviv Raich

Dimensionality reduction (DR) is an efficient approach to reduce the size of

data by capturing the informative intrinsic features and discarding the noise. DR

methods can be grouped through a variety of categories, e.g. supervised/ unsuper-

vised, linear/non-linear or parametric/non-parametric. Objective function based

methods can be grouped into convex and non convex. Non convex methods have

the tendency to converge to local optimal solutions which may differ from the desired

global solution. To overcome this problem, one can frame a non convex problem

as a convex problem. A direct transformation of a non convex formulation into a

convex formulation is non trivial.

In this project, we chose a non convex, linear, supervised, multi-class, non

parametric DR method’s objective, which can be framed using convex formulation.

We present the process of convex formulation, different methods of implementation,

approaches to increase efficiency and numerical analysis results.

©Copyright by Tez Deepthi Tammineni

March, 10 2011

All Rights Reserved

On Convex Dimensionality Reduction for Classification

by

Tez Deepthi Tammineni

A PROJECT REPORT

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented March, 10 2011
Commencement June 2011

Master of Science project of Tez Deepthi Tammineni presented on March, 10 2011

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my project report will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of my

project report to any reader upon request.

Tez Deepthi Tammineni, Author

ACKNOWLEDGEMENTS

I thank my family for supporting my ambitions, constantly encouraging me and

being there for me during all the times I needed them. I express my sincere grati-

tude to my advisor Dr.Raviv Raich for his guidance, advice and encouragement in

research and academics. I thank almighty for his blessings.

Oregon State University has provided facilities and atmosphere that are re-

quired for the student to excel academically and professionally. I thank Dr. Bella

Bose, Ferne Simendinger, Tina Batten for giving me an opportunity to work as

EECS web developer during my masters.

I thank all my research group members for the valuable discussions. I ex-

tend my special thanks to Behrouz, Balaji and Madan who constantly supported,

encouraged and helped me in research and academics. I thank Aarti, Ali, Aniket,

Madhura, Nisha, Shalini and Vivek for discussions and combined effort on various

academic projects. Thanks to Partiban for encouraging, supporting me. I thank my

roommates Dung, Indu, Pratheeksha, Samina, Swetha for being cooperative and

helpful. I thank many others for all the fun and for being wonderful friends during

my stay at Oregon State University.

I would like to acknowledge contribution of the authors of [1], for providing

required framework for preprocessing different datasets and classification algorithms

which were used in numerical analysis in Chapter 8.

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

1.1. Dimensionality Reduction in Machine Learning . 1

1.2. Different Types of Dimensionality Reduction . 1

1.3. Convex and Non-Convex Methods in Dimensionality Reduction. . . . 2

1.4. Our Approach. 3

2. PROBLEM FORMULATION . 4

2.1. Non-Convex Approach to Supervised Dimensionality Reduction . . . 4

2.2. Convex Formulation. 6

2.2.1 Equivalent Formulation . 6

2.2.2 Relaxed Formulation . 9

3. IMPLEMENTATION . 13

3.1. Framework . 14

3.2. Log Barrier Method . 16

4. METHOD -1 . 18

4.1. Newton Method . 18

4.2. Newton Direction Calculation . 20

4.2.1 Landweber Iteration . 20

4.2.2 Two-Step Accelerated Landweber Method 21

4.2.3 Comparison between One-Step Landweber and the Acceler-
ated Two-Step Landweber . 23

4.3. Step Size using Backtracking . 24

4.4. Time Complexity Analysis . 26

TABLE OF CONTENTS (Continued)

Page

5. METHOD -2 . 29

5.1. L-BFGS Quasi Newton Method . 29

5.2. Quasi Newton Direction . 30

5.3. Step Size using Backtracking . 30

6. METHOD -3 . 31

6.1. Gradient Descent Method . 31

6.2. Descent Direction . 32

6.3. Step Size using Backtracking . 33

7. RANDOM SUBSET SELECTION METHOD . 34

7.1. Complexity Comparisons between Total and Random Subset Data

Points. 34

8. NUMERICAL STUDY . 36

8.1. Analysis of Accuracy across Different Dimensions. 36

8.1.1 Setup. 36

8.1.2 Observations. 37

8.1.3 Analysis . 37

8.2. Analysis of Run Time and Accuracy across Different Size of Random

Subsets of Data . 37

8.2.1 Setup. 37

8.2.2 Observations. 38

8.2.3 Analysis . 39

TABLE OF CONTENTS (Continued)

Page

8.3. Analysis of Test Error for Multiple Runs . 40

8.3.1 Setup. 40

8.3.2 Observations. 41

8.3.3 Analysis . 42

8.4. Analysis of Different Methods of Implementation 43

8.4.1 Setup. 44

8.4.2 Observation . 44

8.4.3 Analysis . 46

9. CONCLUSION . 48

9.1. Summary . 48

9.2. Future work . 48

BIBLIOGRAPHY . 49

APPENDICES . 52

A Appendix 1 . 53

B Appendix 2 . 55

C Appendix 3 . 60

LIST OF FIGURES

Figure Page

2.1 Representing non-convex curve. 6

2.2 Convex definition figure. 7

2.3 Representing convex curve. 8

2.4 Representing the equivalence between sets SA and SW 8

2.5 Representations of eigenvalues. 11

2.6 Representing the trace feasibility region for W . 12

3.1 Failed cvx screen shot. 14

3.2 Framework of our implementation . 15

4.1 Convergence rate versus no of iterations . 24

4.2 Representation of backtracking . 25

7.1 Successful execution of cvx screen shot . 35

8.1 Wine dataset KDE test error across different dimensions 38

8.2 Wine data set KNN test error across different dimensions 39

8.3 Wine dataset KDE test error across different dimensions for same
validation set . 40

8.4 Wine data set KNN test error across different dimensions for same
validation set . 41

8.5 Balance data set run time for various random P training points 42

8.6 Balance data set KDE test error various random P training points . 43

8.7 Balance data set KNN test error various random P training points . 44

LIST OF TABLES

Table Page

4.1 Time complexity . 27

8.1 Data sets used in simulations . 36

8.2 Test error for different runs of convex method . 45

8.3 Test error for different runs of non convex method 45

8.4 Test error and time for different implementations 46

8.5 Eigenvalues of solution for different implementations 47

1

1. INTRODUCTION

1.1. Dimensionality Reduction in Machine Learning

Dimensionality reduction (DR) is an effective approach to reduce the size

of data under consideration by capturing the intrinsic features and discarding the

noise. Dimension is the number of features which represent the object. As the

number of features increases, the amount of observations required for accurate anal-

ysis increases. Consequently, the memory required and time complexity increase as

well. DR solves this problem by capturing the most useful features. Most of the

machine learning algorithms and data mining techniques may be effective in the low

number of dimensions required. Hence, DR is used for data pre-processing in most

applications. DR is mainly used for better data visualization, data compression and

noise removal. DR has its applications in various fields such as text classification

[2], image retrieval [3], [4] and recommendation systems [5].

1.2. Different Types of Dimensionality Reduction

DR methods can be classified based on different categories such as the methods

of learning (supervised, unsupervised), type of transformation (linear, non linear)

used for DR, or the type of the data model (Gaussian, non Gaussian, non para-

metric) assumed. The examples of unsupervised DR methods are Principal Compo-

nent Analysis (PCA) [6], Independent Component Analysis (ICA) [7], unsupervised

Manifold learning algorithms [8], [9] and supervised DR methods include Linear Dis-

2

criminant Analysis (LDA) [10], Canonical Correleation Analysis (CCA) [11]. The

reader can refer to [12], for a detailed survey of DR methods. Based on transforma-

tion function used for DR; we can classify PCA, LDA, CCA into linear DR methods

and Laplacian Eigenmaps [9], multidimensional scaling (MDS) [13], Local Linear

Embedding [8] into non linear DR methods. A survey of linear and non linear DR

methods is found in [14]. Based on the data model assumption made i.e., either

implicit or explicit, DR methods like PCA, LDA can be grouped into methods that

assume Gaussian data structure and methods like [15], [16], [17], SEPCA [18] can

be grouped into methods that assume non Gaussian and use exponential family

models while methods NCA [19], [1] can be grouped into methods that assume non

parametric data model.

1.3. Convex and Non-Convex Methods in Dimensionality

Reduction

Among the types of DR methods mentioned in the previous section, we can

group PCA, CCA, LDA, [17], SEPCA [18] as methods having unique solution

through the eigen value decomposition or through convex optimization problem.

Methods like NCA, [1], [15], [16], are non convex in nature. Non convex problems

will have multiple local optima and iterative solutions may converge to local optima.

The problems with non convex methods are: they need multiple restarts with dif-

fernt initializations, the stopping criteria is not known, slow convergence rate and

the global solution is not guaranteed. The advantages of convex methods are unique

guaranteed solution and they do not require multiple restarts. Convex optimization

is a well studied field. Different problems like linear programming, quadratic pro-

3

gramming, Semi definite Programming (SDP) [20], Second Order Cone Program-

ming (SOCP) [21] are some of well-studied canonical convex optimization problems.

Methods such as interior point methods [22], ellipsoid method, sub-gradient meth-

ods are used to solve generic convex problems. Different softwares such as CVX

[23],YALMIP, CVXOPT, CVXMOD, MOSEK, solver.com, SeDuMi, SDPT3 and

OBOE are available to solve the convex problems efficiently. Convex optimization

has gained importance due to its advantages and extended its applications to various

fields such as communication, finance, signal processing and digital communication

[24]. Convex optimization can be applied to dynamic programming [25], metric

learning [26], dimensionality reduction [17], [18] problems.

Unique solution can be guaranteed if the DR method is using eigenvalue de-

composition as in PCA, LDA or if its objective function is convex like in [17], SEPCA

[18]. Framing a non convex method into convex function is one of the approaches

used to get unique solution. For example a non-convex formulation of PCA into

convex optimization method can be found in [17].

1.4. Our Approach

In our project, we have chosen a linear, supervised DR method whose objective

is non-convex. This objective function can be formulated as relaxed convex function.

In the subsequent chapters we will discuss about relaxed convex formulation of

chosen non-convex objective function. We will also discuss about different methods

we implemented in our project to solve the relaxed convex objective function, and

the various machinery we tried to reduce time and space complexity and improve

computational efficiency.

4

2. PROBLEM FORMULATION

2.1. Non-Convex Approach to Supervised Dimensionality

Reduction

In [1] a non-convex linear, supervised, non-parametric, multi-class dimension-

ality reduction method for classification has been proposed. This method uses prob-

ability of error bound as criterion to optimize.

The data setup is assumed as follows. The (Xi, ci) is a (observation, class)

pair where each observation or data point Xi ∈ RD and total N data points are

present. According to linear DR method proposed in [1], we need to find a low

dimension representation (AXi, ci) for each (Xi, ci) through linear transformation

of data points i.e., by multiplying with matrix A, which is d × D where d is the

required low dimension. The following was presented as an upper bound on the

error probability for the multi-class problem where the underlying distribution is

assumed to follow KDE (Kernel Density Estimation).

J(A) =
1

N

N∑

i=1

N∑

j=1

I(ci 6= cj)e
−

(Xi−Xj)
T ATA(Xi−Xj)

8σ2 . (2.1)

The objective is to minimize (2.1) with respect to A. To minimize the ijth term in

J(A) one needs to maximize the distance between AXi and AXj given by (Xi −

Xj)
TATA(Xi − Xj). Intuitively, J(A) gives priority to a close pair of points of

different classes. The reader can refer to [1] for details of derivation of (2.1).

For convenience, replace Xi =
√
8σ2X̃i in (2.1) and denote the difference be-

5

tween the normalized data points X̃i−X̃j by δX̃ij. Equation (2.1) is now transformed

to

J(A) =
1

N

N∑

i=1

N∑

j=1

I(ci 6= cj)e
−(δX̃T

ijA
TAδX̃ij). (2.2)

The minimization of (2.2) with respect to the orthogonal linear transformation A is

given by

min
A∈Rd×D

1

N

N∑

i=1

N∑

j=1

I(ci 6= cj)e
−δX̃T

ijA
TAδX̃ij (2.3)

subject to AAT = Id.

The solution A ∼ SA0 = {A | A = RA0} where R is a rotation matrix. Hence,

the solution to (2.3) can be any A in SA0 . For the problem (2.3) the objective and

orthogonality constraints are non-convex. To prove non-convexity of objective func-

tion, via a counter example, we consider a scalar version of the term e−δX̃T
ijA

TAδX̃ij

w.r.t A as e−δ2a2 by setting δX̃ij = δ and A = a. Taking the second derivative,

we obtain −2δ2e−δ2a2(1 − 2a2δ2) which can be negative when a = 0. Hence, the

objective function may be non-convex. For the function to be convex the double

differentiation of it should be always non-negative. The plot of a curve of the form

e−x2
is shown in Figure 2.1.

Similarly, the non-convexity of constraint ATA = I can be shown by assuming

a scalar version for A = a, which yields a = ±1 a non-convex set. Hence, the set
{
A | ATA = I

}
is a non-convex set.

6

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

A
e−

A
2

curve representing e−A
2

data1
convex
Non convex

(a) Non convex objective function

FIGURE 2.1: Representing non-convex curve.

2.2. Convex Formulation

In this section, we describe the step by step process of formulating the non

convex problem into equivalent relaxed convex problem. We subdivide the process

of convex conversion into equivalent formulation followed by relaxed formulation.

2.2.1 Equivalent Formulation

The equivalent formulation is done through change of variables. We replace

W = ATA in (2.3) and obtain a new formulation

J̃(W) =
1

N

N∑

i=1

N∑

j=1

I(ci 6= cj)e
−δX̃T

ijWδX̃ij . (2.4)

Note that (2.4) is convex in W. We can prove that (2.4) is convex by definition

f(λa+ (1− λ)b) ≤ λ(f(a)) + (1− λ)f(b) (2.5)

where λ ∈ [0, 1].

7

(a) Convexity basic definition

FIGURE 2.2: Convex definition figure.

Let us assume our objective function of the form

f(W) =
∑

i

e−δTi Wδi. (2.6)

Since the summation maintains convexity [27], it is enough to prove e−δTi Wδi is

convex. Consider two values W1 and W2 where W1 6= W2, 0 ≤ λ ≤ 1 and frame it

in the basic convex definition

e−δTi (λW1+(1−λ)W2)δi ≤ λe−δTi W1δi + (1− λ)e−δTi W2δi (2.7)

Let t1 = δTi λW1δi and t2 = δTi λW2δi. Since e−t is convex, e−λt1+(1−λ)t2 ≤ λe−t1 +

(1− λ)e−t2 and hence, (2.7) holds. The plot representing the curve of the form e−x

is shown in figure (2.3).

Substituting W in the constraint set of A yields a feasible set of W ’s where

the constraints set for W given by SW = {W | W = ATA,A ∈ Rd×D, AAT = I}

8

which is equivalent to SW = {W | W = W T ,W = W 2, Rank(W) = d,W ∈ RD×D}.

Let us define SA = {A | A ∈ Rd×D, AAT = Id×d} where A ∼ SA0 = {A | A = RA0}

−3 −2 −1 0 1 2 3
0

5

10

15

20

25

W

e−
W

curve representing e−W

curve representing convexity e−W

(a) Convex objective function

FIGURE 2.3: Representing convex curve.

and R is rotation matrix. There is one to one mapping between sets SA and SW

(see Figure (2.4)). This can be proved by showing that ∀A ∈ SA0 ⊂ SA is mapped

to unique W in SW and each W in SW is mapped to an equivalence class in set SA.

Reader can refer Appendix A for detailed proof.

(a) Equivalence between sets

FIGURE 2.4: Representing the equivalence between sets SA and SW

The objective function in (2.3) is transformed to

minW∈RD×D J̃(W) (2.8)

subject to : W 2 = W

W = W T

Rank(W) = d.

9

We say that (2.3) and (2.8) are equivalent formulations as one to one mapping exists

between SA and SW .

2.2.2 Relaxed Formulation

We notice that equation (2.8) is convex in the objective function but not in

constraints. The two constraints that contribute to non convexity are W = W 2

(since λl ∈ {0, 1}) and Rank(W) = d.

The first non convex constraint W = W 2 can be replaced with a convex

constraint by relaxing the eigenvalues to 0 ≤ λl ≤ 1. So λl ∈ {0, 1} and {W =

W 2, W = W T Rank(W) = d} is relaxed to 0 ≤ λl ≤ 1 and {W ≥ 0, I −W ≥

0, W = W T Rank(W) = d} (see Figure 2.5). We are guaranteed that proposed

relaxation (0 ≤ λl ≤ 1) to the problem will result in the same solution as the

original problem (λl ∈ {0, 1}). Our objective function is to minimize quantity of the

form e−δTWδ, i.e., we have to maximize the term δTWδ. If we express W in terms

of eigenvalue decomposition i.e., UΛUT , our objective is to maximize
∑D

l=1 λl |

(δi)
TUl |2. Suppose 0 < λl < 1, setting λl yields a smaller value to the objective

function. Solutions with 0 < λl < 1 are not optimal. Suppose we have 0 < λl < 1,

we can always set λl = 1 without affecting the rank constraint. Hence, we can say

that our first relaxation will not affect the solution. After the first relaxation the

10

problem (2.8) becomes

minW∈RD×D J̃(W) (2.9)

subject to: W ≥ 0

I −W ≥ 0

W = W T

Rank(W) = d.

And the problems (2.9) and (2.3) are equivalent. The similar relaxation is also

done in [17]. For the second non convex constraint Rank(W) = d, we propose a

heuristic relaxation, i.e., we replace Rank(W) = d with trace(W) ≤ γ where γ ≤ d

(see Figure 2.6). The trace is a linear operator in the space of matrix i.e., trace

is the sum of eigenvalues (the eigenvalues in our problem are always positive), the

linear combination of all positive values is convex set. This relaxation works in

the ideal case when λi ∈ {0, 1} the trace(W) = Rank(W) = d. And we relaxed

the constraint as trace(W) ≤ γ, as the problem with inequality constraints can

be framed into smooth unconstrained problem and solved effectively. After the

heuristic relaxation the problem (2.9) becomes

minW∈RD×D J̃(W) (2.10)

subject to: W ≥ 0

I −W ≥ 0

W = W T

trace(W) ≤ γ.

11

(a) First eigenvalue non zero

(b) second eigenvalue non zero

(c) Either of eigenvalues vary between 0 and 1

FIGURE 2.5: Representations of eigenvalues.

With this relaxation we are not guaranteed that solution to the problem (2.10) is

the solution to the original problem (2.3). So once we get the solution, we then

project the solution in to the feasible region of (2.3).

12

(a) Trace of W

FIGURE 2.6: Representing the trace feasibility region for W

13

3. IMPLEMENTATION

The canonical problems in convex optimization are, for example, linear pro-

gramming (LP), quadratic programming (QP), semi definite programming (SDP)

and second order cone programming (SOCP). Many years of research produced a

variety of methods to solve such problems. We have general solvers to solve any

convex problem. Some issues like memory requirement, time complexity exists with

general solvers. For instance in Newton descent method, if we calculate the Newton

direction (H−1l where H represents Hessian and l represents gradient) by explicitly

spelling out the Hessian, calculating the inverse and then the product with gradient.

The memory requirement is high and calculation of Hessian and inverse might be

difficult if the matrix is ill conditioned. But, these issues can be resolved by itera-

tively solving the linear equations (e.g., Landweber iterations). To solve the convex

problems we have softwares like YALMIP, CVX, CVXOPT, CVXMOD, MOSEK,

solver.com and OBOE. We have used CVX to solve our problem. CVX uses succes-

sive approximation method to solve functions like log, exp, log-sum-exp that cannot

be exactly represented by SOCP, SDP or LP. This technique can be slower. CVX

solves our convex relaxed problem (2.10) through successive approximation using

SDPT3 (a MATLAB software package for semidefinite-quadratic-linear program-

ming). This resulted in creating large number of variables and equality constraints.

We ran the experiment for ’Glass’ data set which is of 8 dimensions having 214 data

points. CVX created 93629 no of variables and 51066 equality constraints. The

large number of variables resulted in reaching memory limits. Refer to the screen

shot shown in Figure 3.1. We have designed an algorithm which handles the issues

14

related to time complexity and memory issues effectively. The framework of the

algorithm is described in Section 3.1. To overcome such problems and to increase

(a) cvx failure

FIGURE 3.1: Failed cvx screen shot

the computational efficiency consider a framework which is described in Section 3.1.

3.1. Framework

Our objective function (2.10) accompanied by inequality constraints is framed

as smooth unconstrained problem, using the log barrier approach. Then we solve

sequence of smooth unconstrained problems using descent methods such as Newton

[28], Gradient descent [27], L-BFGS (limited memory Broyden-Fletcher-Goldfrab-

Shanno) (a Quasi Newton method) [29] methods which involve calculating the di-

rection and a step size in that direction. This approach of solving the problems is

15

Smooth unconstrained problem

Solve using descent optimization

methods such as Newton,

L-BFGS, Gradient descent

Find optimal descent

direction

Use of backtracking,

line search

S
o
lv

e
 s

e
q
u
e
n
c
e
 o

f s
u
c
h
 p

ro
b
le

m
s

(a) Framework

FIGURE 3.2: Framework of our implementation

known as interior point method or also known as Sequential Unconstrained Mini-

mization Technique (SUMT) [30]. The framework is shown in the Figure 3.2.

16

3.2. Log Barrier Method

Log barrier is one of the interior point methods [22] which forces the solution to

be within the feasible set and frames the inequality constrained problem as smooth

unconstrained problem. The standard log barrier [31], [27] is defined as follows

For convex problem

minimize f(x) (3.1)

subject to fi(x) ≤ 0, i = 1, . . . , m.

Logarithmic barrier is defined as

φ(x) =





∑m
i=1−log(−fi(x)), if fi(x) ≤ 0, i = 1, . . . , m.

∞, otherwise.

The unconstrained approximation to (3.1) is

min
x

.f(x) +
1

t
φ(x), (3.2)

where φ is convex, smooth on interior of feasible set. As x approaches the boundary

of feasible set, φ → ∞. From [31] the barrier method is simple to implement and

shows good performance. Now the objective function (2.10) with log barrier method

17

is transformed as follows

J̃t(W) =
1

N

∑

i

∑

j

I(ci 6= cj)e
−δX̃T

ijWδX̃ij (3.3)

− 1

t

(
log(det(W)) + log(det(I −W)) + log(γ − tr(W))

)
.

The symmetric constraint is not explicitly incorporated into the objective function

but it is guaranteed to maintain symmetric structure, if we initialize with symmetric

matrix as the updates are always symmetric. We solve sequence of (3.3) by varying

the log barrier t and as t→ ∞ we are guaranteed that solution W (t) → W ∗ which

is the optimal solution.

In succeeding chapters, we will discuss in detail different optimization methods

to solve sequence of smooth unconstrained problems.

18

4. METHOD -1

To solve each problem of the form (3.3) in the sequence of problems in the log

barrier method we propose Newton method.

4.1. Newton Method

Newton method is one of the popular optimization methods. It is widely used

as its order of convergence is quadratic [27]. Though the per iteration computation

is expensive, the performance and convergence rate compensate it. The pseudo

algorithm of Newton method is described in algorithm 1.

Algorithm 1: General Newton Algorithm

Input : f(x)
Output: Optimal value of x that minimizes f(x)

begin

x(0) ← R
D×1

repeat

evaluate x(k+1) = xk + φ(k)∆
(k)
x

where ∆
(k)
x = −H(x(k))−1l(x(k)) is Newton direction and H(x) is

Hessian and l(x) is the gradient of x respectively and φ(k) is the
step size calculated using any line search algorithm.

until convergence criteria is met ;
end

The challenge in this method is the calculation of Newton direction which

involves Hessian. For low dimension, the Newton direction ∆x = −H(x)−1l(x)

can be calculated efficiently. For high dimension, the calculation of the Hessian

and its inverse are expensive. So, we introduce an iterative algorithm which cal-

culates the Newton direction. This process is shown in algorithm 2. During

19

each update of the value of x, the Newton direction ∆x is calculated through

iterative process. The process of finding Newton direction (in Algorithm 2)

Algorithm 2: Newton Algorithm with Calculation of Newton Direction

Input : f(x)
Output: Optimal value of x that minimizes f(x)

begin

x(0) ← R
D×1

repeat

evaluate x(k+1) = xk + φ(k)∆
(k)
x

find ∆
(k)
x

repeat

evaluate ∆
(k,l)
x = ∆

(k,l−1)
x − αkH(x(k),H(x(k),∆

(k,l−1)
x) + l(x(k)))

where H(x,∆) = H(x)∆ = d
dx
〈l(x),∆〉

until convergence criteria is met ;
update ∆

(k)
x = ∆

(k,l)
x

until convergence criteria is met ;
end

will be discussed in detail in Section 4.2. The bilinear operator H(x,∆) can also

be generalized to matrices H(W,∆). The detailed proof of the bilinear operator

H(x,∆) = H(x)∆ = d
dx
〈l(x),∆〉 and generalization from vector to matrix form i.e.,

H(W,∆) = d
dW
〈L(W),∆〉 can be found in Appendix B. Although the Algorithm 2

is shown for vectors, it can be easily generalized for matrices by replacing H(x,∆)

with H(W,∆) = d
dW
〈L(W),∆〉. This change allows for an efficient calculation in

terms ofW . In Algorithm 3 we expressed the process in terms of matrixW ∈ RD×D.

In Section 4.2., we will discuss different iterative methods used for calculating

Newton direction.

20

Algorithm 3: Newton Algorithm with Calculation of Newton Direction, in Matrix
Notation

Input : f(W)
Output: Optimal value of W that minimizes f(W)

begin

W (0) ← R
D×D repeat

evaluate W (k+1) = W (k) + φ(k)∆
(k)
W

find ∆
(k)
W

repeat

evaluate ∆
(k,l)
W = ∆

(k,l−1)
W − α(k)

H(W (k),H(W (k),∆
(k,l−1)
W) + l(W (k)))

where H(W,∆W) = d
dW
〈L(W),∆W 〉

until convergence criteria is met ;
update ∆

(k)
W = ∆

(k,l)
W

until convergence criteria is met ;
end

4.2. Newton Direction Calculation

The iterative methods such as one-step Landweber [32] and two-step acceler-

ated Landweber iterations like [33],[34] are used to solve Newton direction iteratively

when the matrix is of large size or ill conditioned.

4.2.1 Landweber Iteration

The Landweber method is an iterative approach to solve a set of linear equa-

tions of the form y = Ax. The solution x is calculated by the following iteration

x(k+1) = x(k) + α(k)AT (y − Ax(k)). (4.1)

21

An optimal step size is chosen to maximize reduction in the objective, i.e

α(k) = argmin
α
‖A(x(k) + α(k)AT (y − Ax(k)))− y‖2. (4.2)

Solving equation (4.2), by differentiating with respect to α and setting it to 0 yields

α(k) =
‖AT (y − Ax(k))‖2
‖AAT (y − Ax(k))‖2 . (4.3)

We apply iteration (4.1) to

H(W (k),∆W) = −L(W (k)) (4.4)

to solve for ∆k
W . We propose

∆
(k,l)
W = ∆

(k,l−1)
W − αkH(W (k),H(W (k),∆

(k,l−1)
W) + L(W (k))). (4.5)

Notice that since the Hessian is square symmetric, the adjoint of H(W,∆W) is

equivalent to H(W,∆W). Hence H(W,∆W) is applied twice in (4.5). Due to the

compact structure of the operator H(W,∆W) (refer Appendix B) we do not explic-

itly calculate the Hessian. This operation reduces the time complexity and space

requirement.

4.2.2 Two-Step Accelerated Landweber Method

To reduce computational complexity we consider the two-step accelerated

Landweber method (e.g., [33], [34]), which makes use of last two previous values

in update equation: xk and xk−1. This use of history speeds up convergence rate

[34]. If the equation is of the form y = Ax, then two step method increment will be

22

as follows

x(k+1) = (1− β(k))x(k) + β(k)x(k−1) + α(k)AT (y − Ax(k)). (4.6)

Note that this equation can be reduced to the first order Landweber iterations by

setting β = 0. The values of α(k) and β(k) are chosen such that there is maximum

decrease in per step iteration. We normalize the vectors in (C.1) in order to prevent

numerical issues during implementation (refer to Appendix C for details). Equation

(C.1) is now written as

x(k+1) = x(k) + β̃
(x(k−1) − x(k))

‖A(x(k−1) − x(k))‖ + α̃
AT (y − Ax(k))

‖AAT (y −Ax(k))‖ . (4.7)

The values of α̃(k) and β̃(k) are:

α̃(k) =
γ1 − ργ2

1− ρ2

β̃(k) =
γ2 − ργ1

1− ρ2

γ1 =
‖AT e(k)‖2
AAT e(k)‖

γ2 =
−e(k)(e(k−1) − e(k))

‖e(k−1) − e(k)‖

ρ = − (e(k−1) − e(k))

‖e(k−1) − e(k)‖
(AAT e(k))

‖AAT e(k)‖

e(k) = Ax(k) − y

refer to Appendix C for details.

23

4.2.3 Comparison between One-Step Landweber and the Accelerated

Two-Step Landweber

In two-step Landweber the convergence rate is faster compared to one-step

Landweber iterations since the two previous values are used. The discussion related

to convergence rate of two types (one-step and two-step) of Landweber iterations can

be found in [34]. The author describes that number of iterations required to converge

in one-step Landweber iterations are proportional to ρ a condition number, but in

accelerated two-step Landweber they are proportional to
√
ρ. We find the difference

in convergence rates of two methods in our experiments. Figure 4.1 demonstrates

the difference. Figure 4.1(a) represents the comparison between one-step and two-

step Landweber method when the log barrier t = 0.1 in (4.4) and the Figure 4.1(b)

when the log barrier t = 1012. The figures are plotted based on the convergence

rate of ‖H(W (k),∆
(k,l−1)
W)+L(W (k)))‖ (the error term) as a function of l (number of

iterations) for the two methods. In accelerated two-step Landweber method we use

the operator H(W,∆W) thrice as compared to using it twice in one-step Landweber

method. But the number of iterations required to reduce the error term by order of

104 takes less than 50 iterations in accelerated two-step Landweber method while it

takes atleast 250 iterations in one-step Landweber method (refer Figure 4.1(a)).

We used accelerated two-step Landweber iterations to calculate Newton di-

rection iteratively. The use of bilinear operator H(W,∆) = d
dW
〈L(W),∆〉 saves

computational complexity as we need not explicitly calculate Hessian to find prod-

uct of Hessian and a matrix, which is required in Landweber iterations.

24

0 50 100 150 200 250 300 350 400 450 500
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

newton 3 log barrier 0.1

Landweber runs

E
rr

or
 o

f t
w

o
an

d
no

rm
al

 r
es

pe
ct

iv
el

y

Two Point
Normal

(a) Two-point method and one-point Landweber conver-
gence

0 50 100 150 200 250 300 350 400 450 500
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

newton 5 log barrier 1000000000000

Landweber runs

E
rr

or
 o

f t
w

o
an

d
no

rm
al

 r
es

pe
ct

iv
el

y

Two Point
Normal

(b) Two point method and one-point Landweber conver-
gence

FIGURE 4.1: Convergence rate versus no of iterations

4.3. Step Size using Backtracking

The next stage in our framework of implementation (see Figure 3.2) is step

size calculation in optimal direction . This calculation can be done using various

methods such as exact line search or backtracking. It is important to know the

approximate step size, since small steps might take long time to reach the optimal

step while large steps might cause to jump out of the optimal region. We need to

choose a step size that gives sufficient decrease in function f without spending a lot

25

of time. We used the backtracking method in our implementation. The standard

form of backtracking is found in [27], [31]. The pictorial representation is shown

in figure (4.2) The step length is chosen to minimize function f along f(x+ φ∆x).

t = 0 t

(a) Backtracking

FIGURE 4.2: Representation of backtracking

The algorithm for backtracking is shown in algorithm 4. In backtracking method,

Algorithm 4: Backtracking Algorithm

Input : a descent direction ∆x for f
α ∈ (0, 0.5), β ∈ (0, 1)

Output: Optimal step size φ

begin
φ = 1
repeat

update φ← βφ

until f(x+ φ∆x) ≤ f(x) + αφl(x)T∆x ;
end

initially the step size is chosen to be 1 and it is reduced by a factor of β until the

stopping criteria

f(x+ φ∆x) ≤ f(x) + αφl(x)T∆x (4.8)

26

is met. Equation (4.8) measures the decrease in the objective function f . The term

αφl(x)T∆x has negative slope (since ∆x is the descent direction), but the small

positive value of α makes f(x) +αφl(x)T∆x lie above the curve f(x+ φ∆x). Hence

the step size calculated based on (4.8) will guarantee a decrease in objective function

f [27].

4.4. Time Complexity Analysis

In this section we describe the time complexity analysis of the operatorH(W,∆W)

which is used in Landweber iterations to find Newton direction. We compare it to

the time complexity involved in calculation of −H(vec(W))−1l(vec(W)) which is a

direct way of calculating Newton direction.

In our objective function Hessian multiplied by Newton step, is given by

H(W,∆W) =
1

N

N∑

i

N∑

j

I(ci 6= cj)e
−δX̃T

ijWδX̃ij (4.9)

(δX̃ijδX̃
T
ij)(δX̃

T
ij∆W δX̃ij)

− 1

t
(−(W−1∆WW−1)T − ((I −W)−1∆W)(I −W))T

− trace(∆W)

(γ − trace(W))2
I).

Let us split (4.9) into two parts:

1

N

N∑

i

N∑

j

I(ci 6= cj)e
−δX̃T

ijWδX̃ij (δX̃ijδX̃
T
ij)(δX̃

T
ij∆W δX̃ij) (4.10)

27

and

−1
t
(−(W−1∆WW−1)T − ((I −W)−1∆W)(I −W))T − trace(∆W)

(γ − trace(W))2
I). (4.11)

Equation (4.10) yields a D×D matrix which has three major calculations, they are

δX̃T
ij∆W δX̃ij (4.12a)

δX̃ijδX̃
T
ij (4.12b)

e−δX̃T
ijWδX̃ij . (4.12c)

In this the time complexity of the term (δX̃T
ij∆W δX̃ij) is O(D2) as δX̃T

ij is a vector

of 1×D and ∆W is a D×D matrix. The calculation of δX̃ijδX̃
T
ij is O(D2) and the

calculation of e−δX̃T
ijWδX̃ij also takes O(D2). The double summation runs over all N

elements so the total time complexity is O(N2(D2 +D2 + D2)) = O(N2D2). The

time complexity for the log barrier part (4.11) is O(D3). W is D ×D matrix, the

following table describes the time complexities for each of the operation. Hence the

Operation on D ×D matrix Time Complexity
Inverse of a matrix O(D3)
Trace of a matrix O(D)

Summation across all elements O(D2)

TABLE 4.1: Time complexity

total complexity of the whole equation is

O(D3) +O(N2D2) = O(N2D2) when N > D.

28

The time complexity of calculation of −H−1(vec(W))l(vec(W)) is O(N2D6). Since

time complexity of H−1 is O(D6) as H has D2 ×D2 elements (refer table 4.1) and

multiplication of H−1l is O(D4) as H is D2×D2 and l is D2×1 and this calculation

has to be done for all N ×N elements. Hence the total time complexity will be

O(N2(O(D4 +O(D6)) = O(N2D6)

which is far higher than O(N2D2) as D increases.

Hence the time complexity of Landweber iterations to solve Newton direction

is less compared to the direct calculation of Newton direction.

29

5. METHOD -2

To solve each problem of the form (3.3) in the sequence of problems in the log

barrier method we propose L-BFGS method.

5.1. L-BFGS Quasi Newton Method

Though Newton method has advantages like fast convergence, it requires sec-

ond order derivative and can be too expensive for large scale applications. The

alternate to this is quasi Newton method, where second order derivative Hessian

is calculated by approximation, which is based on corrections related to gradient

l(x) and position x. Broyden-Fletcher-Goldfrab-Shanno (BFGS) is an effective al-

gorithm, that calculates the inverse Hessian through approximation.For problems

with large variables storing approximate Hessian inverse will cause issue related to

space. L-BFGS (limited memory BFGS) addresses this problem by storing the ap-

proximate Hessian in compressed form that requires storing only constant m vectors.

We implemented L-BFGS (refer [29] [35]) method for optimization. The approxi-

mate Hessian inverse is calculate in the following way:

H−1
k =(V T

k−1 · · ·V T
k−m)(H

−1
k)0(V T

k−m · · ·V T
k−1)+ (5.1)

ρk−m(V
T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V

T
k−m+1 · · ·V T

k−1)+

· · ·+

ρk−2(V
T
k−1)sk−2s

T
k−2(Vk−1)+

ρk−1sk−1s
T
k−1.

30

where

sk = xk+1 − xk

yk = l(xk+1)− l(xk)

ρk =
1

yTk sk

Vk = I − ρkyks
T
k

(H−1
k)0 = initial inverse Hessian approximation

The pair {sk−m, yk−m} is the least recent pair and {sk−1, yk−1} is the most recent

pair. The matrix H−1
k is not formed explicitly but through m values of y and s.

5.2. Quasi Newton Direction

We have implemented L-BFGS two-loop recursion method in our project. The

reader can refer to [29] for detailed discussion about the algorithm that describes

the quasi-Newton direction calculation for L-BFGS efficiently.

5.3. Step Size using Backtracking

We calculate the appropriate step size in quasi -Newton direction using back-

tracking (refer Section 4.3.).

31

6. METHOD -3

To solve each problem of the form (3.3) in the sequence of problems in the log

barrier method we use gradient descent method.

6.1. Gradient Descent Method

Gradient descent method is one of the oldest methods which minimizes the

objective function along negative gradient. It has linear convergence rate. The

advantage of this method is that it is simple to calculate and easy to use. The

pseudo algorithm for gradient descent method is given in Algorithm 5. The gradient

Algorithm 5: General Gradient Descent Algorithm

Input : f(x)
Output: Optimal value of x that minimizes f(x)

begin

x(0) ← R
D×1

repeat

evaluate x(k+1) = xk + φ(k)∆
(k)
x

where ∆
(k)
x = −l(x(k)) is descent direction, l(x) is the gradient of x and φk is the

step size calculated using any line search algorithm.
until convergence criteria is met ;

end

descent algorithm in terms of D ×D matrix W can be represented as

32

Algorithm 6: Gradient Descent Algorithm in Terms of W

Input : f(W)
Output: Optimal value of W that minimizes f(W)

begin

W ← R
D×D

repeat

evaluate W (k+1) = W (k) + φ(k)∆W (k)

where ∆W (k) = −L(W (k)) is descent direction, L(W) is the gradient of W and φk is
the step size calculated using any line search algorithm.

until convergence criteria is met ;
end

6.2. Descent Direction

The descent direction is calculated by taking first order derivative of the ob-

jective function. For a D × D matrix the time and space complexity of Hessian

calculation (O(D4)) is greater than gradient (O(D2)) calculation. The gradient

calculation of our objective function (3.3) is O(N2D2). The time complexity of

Newton direction in Method -1 (refer chapter 4) of our implementation the time

complexity of Newton direction calculation through Landweber iterations using the

bilinear operator H(W,∆W) is O(N2D2), but it is calculated using constant number

of iterations. We implemented gradient descent method to reduce time complexity.

The convergence rate of gradient method is linear. The reader can refer to [36] for

details related to convergence.

33

6.3. Step Size using Backtracking

We calculate the step size using backtracking (see Section 4.3.) in the descent

direction obtained from the Section 6.2.

34

7. RANDOM SUBSET SELECTION METHOD

To overcome the time complexity and space complexity issues involved in the

implementation, we tried a random subset selection method. The major contribution

to time complexity is the distance calculation term in our objective function. To

overcome that issue we randomly select P data points out of total N data points

and calculate the distance between P and N points as opposed to calculating the

distance between N and N points.

J̃p(W) =
1

P

P∑

i=1

N∑

j=1

I(ci 6= cj))e
−∆X̃T

ijW∆X̃ij

where P ≪ N

(7.1)

The time complexity (7.1) is O(NPD2) as dimension in equation (2.4) is reduced

to N × P from N ×N .

We used CVX for solving (7.1). This method of selecting random subset of

data points resolves the space complexity issue and CVX is executed successfully.

The screen shot of it is present in Figure 7.1.

7.1. Complexity Comparisons between Total and Random

Subset Data Points

Minimization of objective function (7.1) also reduces the space complexity

significantly, as the space complexity of the distance matrix across all points of X

35

(a) cvx success

FIGURE 7.1: Successful execution of cvx screen shot

where X is D × N is O(N2) while the space complexity of distance matrix across

N points to P points is O(NP). This makes a huge difference when P ≪ N . The

classification accuracy calculated using K- Nearest Neighbours (KNN) classifier and

Kernely Density Estimator (KDE) classifier for the minimization of (7.1) is compa-

rable to that of original function (2.10). But we could find significant improvement

in the time required for calculation, as O(NPD2)≪ O(N2D2) when P ≪ N . This

is illustrated in chapter 8.

36

8. NUMERICAL STUDY

For numerical analysis we have considered datasets from the UCI machine

learning repository. Table 8.1 lists the datasets along with the following parameters:

data dimension, data size (total number of available points), and the number of

classes.

Name Dimension Size No:Classes
Wine 13 178 3
Glass 8 214 5

Balance 4 625 3

TABLE 8.1: Data sets used in simulations

8.1. Analysis of Accuracy across Different Dimensions

The aim of this experiment is to analyze how the classification test error varies

when we project the data from high dimension to different low dimensions.

8.1.1 Setup

We chose Method −2 (refer Chapter 5) framework of implementation with

random initializations of W . We ran experiment for the Wine dataset for 10 dif-

ferent cross validations by projecting data into different low dimensions (2 − 13).

Using KDE and KNN classifiers we calculated the classification test error for each

dimension (2− 13) across each of 10 validation sets. The Figure 8.1 and Figure 8.2

shows the mean and standard deviation of test error for each low dimension. We also

ran the experiment just for one validation set for 10 times for each low dimension

37

(2− 13). The Figure 8.3 and Figure 8.4 shows the mean and standard deviation in

classification test error calculated using KDE and KNN classifiers respectively.

8.1.2 Observations

We observe that there is not significant difference in the classification test

error which is calculated using KDE and KNN classifiers across varied dimenisons

for Wine dataset (refer Figure 8.1 and Figure 8.2).

8.1.3 Analysis

Based on the minimum value of classification test error in low dimensions

(refer Figure 8.1) we can say that as dimension increase the error decrease, but

based on the standard deviation we do not find significant difference in classification

error across different dimensions for Wine dataset (refer Figure 8.1 and Figure 8.2).

Figure 8.3 and Figure 8.4 represents classification test error for one validation set

across different low dimenisons for KDE and KNN classifiers respectively. We cannot

generalize the analysis based on one cross validation set.

8.2. Analysis of Run Time and Accuracy across Different

Size of Random Subsets of Data

In this experiment we analyze the relation between run time, classification test

error and number of training points.

8.2.1 Setup

We considered, the framework described in Chapter 7, i.e., we chose random

subset of P points from N points. We implemented Method -2(refer chapter 5, L-

38

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

10
WINE dataset KDE Error Vs Dimensions

T
es

t E
rr

or
 in

 p
er

ce
nt

ag
e

Dimensions

(a) Error versus Dimensions

FIGURE 8.1: Wine dataset KDE test error across different dimensions

BFGS optimization method) to solve (7.1) for random initializations of W . Analysis

is done for the Balance data set by ranging the random subset of points (P) from 6

to 126 with step size of 10 for 10 cross validations. The mean and standard deviation

of classification test error calculated by KDE and KNN classifiers for each random

subset for 10 cross validations is recorded.

8.2.2 Observations

• We observes that run time increases almost linearly as the size of random

subset of data points (P) increase (refer Figure 8.5).

• The classification test error calculated using KDE and KNN classifiers varies

39

2 4 6 8 10 12 14
1

2

3

4

5

6

7

8

9

10
WINE dataset KNN Error Vs Dimensions

T
es

t E
rr

or
 in

 p
er

ce
nt

ag
e

Dimensions

(a) Error versus Dimensions

FIGURE 8.2: Wine data set KNN test error across different dimensions

as the size of random subset data points vary (refer Figure 8.6 and Figure

8.7 respectively) and the standard deviation of classification test error is high

when size of random subset P is low.

8.2.3 Analysis

Though the run time decreases significantly when the size of random subset is

small, we need to be watchful for accuracy rate we are compromising. We observe

that standard deviation in the classification test error calculated using KDE and

KNN classifiers for low value of P is high when compared to large value of P . So

we need to chose the correct proportion of subset where we can have advantage of

40

0 2 4 6 8 10 12 14
1

2

3

4

5

6

7
WINE dataset KDE Error Vs Dimensions

T
es

t E
rr

or
 in

 p
er

ce
nt

ag
e

Dimensions

(a) Error versus Dimensions

FIGURE 8.3: Wine dataset KDE test error across different dimensions for same
validation set

reducing time complexity and not compromise a lot regarding accuracy.

8.3. Analysis of Test Error for Multiple Runs

We analyzed the variation in classification test error in low dimension for

different initializations.

8.3.1 Setup

We ran the experiment for convex problem (2.10) and non-convex problem

(2.1). For convex problem we implemented Method-2 (refer Chapter 6) with random

41

0 2 4 6 8 10 12 14
3.5

4

4.5

5

5.5

6

6.5

7
WINE dataset KNN Error Vs Dimensions

T
es

t E
rr

or
 in

 p
er

ce
nt

ag
e

Dimensions

(a) Error versus Dimensions

FIGURE 8.4: Wine data set KNN test error across different dimensions for same
validation set

initializations of W . In non-convex method we chose random initializations for A.

The setup of experiment is to choose 10 random initializations for a particular cross

validation set and the classification test error for different initialization across each

validation set is recorded.

8.3.2 Observations

• When we used the convex objective function in this setup we observed that

the classification test error calculated using KDE and KNN classifiers for each

cross validation, for different initializations was quite constant i.e., standard

deviation was very minimal which can be seen in Table 8.2.

42

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

25

30

35

No of points

T
im

e
in

 s
ec

s

Run time Vs Points

(a) Runtime Versus Training points

FIGURE 8.5: Balance data set run time for various random P training points

• In the same setup, when we used non convex objective function we find that

standard deviation in classification test error calculated using KDE and KNN

classifiers for each cross validation, for different initializations is high which is

seen in Table 8.3.

8.3.3 Analysis

The convex function always guarantees a unique solution with in small devi-

ation. The non-convex method is sensitive to initialization and often can converge

to local optimal values.

43

0 50 100 150 200 250 300 350 400 450
8

10

12

14

16

18

20

22

24

26

No of points

T
es

t e
rr

or
 in

 p
er

ce
nt

ag
e

KDE Test error Vs Points

(a) KDE Test error Versus Training points

FIGURE 8.6: Balance data set KDE test error various random P training points

8.4. Analysis of Different Methods of Implementation

In this experiment, we analyze and compare run time and classification test

error for different methods of implementation i.e., Method-1, Method-2, Method-3

(refer Chapter 4, Chapter 5, Chapter 6 respectively). We also analyze the relaxation

in the eigenvalues of W . The eigenvalues of the original problem are λ1 = λ2 =

· · ·λd = 1;λd+1 = λd+2 = · · ·λD = 0 where d is required low dimension, and D is

the original high dimension we relaxed them to be between 0 and 1 i.e.,0 ≤ λ1 =

λ2 = λ3 = · · ·λD ≤ 1.

44

0 50 100 150 200 250 300 350 400 450
5

10

15

20

25

30

35

No of points

T
es

t e
rr

or
 in

 p
er

ce
nt

ag
e

KNN Test error Vs Points

(a) KNN Test error Versus Training points

FIGURE 8.7: Balance data set KNN test error various random P training points

8.4.1 Setup

We ran the experiment for fixed cross validation set and same initialization of

W for fair comparison and recorded classification test error, run time and eigenvalues

of W . The low dimension projection we used is 2.

8.4.2 Observation

• The eigenvalues ofW obtained using Method -1 implementation (refer Chapter

4, i.e., Newton method is used for optimization of objective function) are close

to ideal solution (λ1 = λ2 = · · ·λd = 1;λd+1 = λd+2 = · · ·λD = 0) (refer Table

8.5). The run time is higher compared to Method -2 (L-BFGS) and Method

45

Cross Validation Set Data Set KDE Test Error KNN Test Error
1 WINE 3.7793±0 1.8896±2.34E-16
2 WINE 1.9274±0 3.8549±0
3 WINE 5.7067±0 3.85487±0
4 WINE 3.7793±0 1.9274±0
5 WINE 3.7793±0 5.7401±0
6 WINE 5.6689±0 3.7793±0
7 WINE 3.7793±0 3.7793±0
8 WINE 7.6675±0 5.7779±0
9 WINE 9.5905±0 9.5905±0
10 WINE 3.7793±0 3.7793±0

TABLE 8.2: Test error for different runs of convex method

Cross Validation Set Data Set KDE Test Error KNN Test Error
1 WINE 2.8701±4.0815 3.0519±4.3417
2 WINE 4.8382±1.0015 4.6492±1.6352
3 WINE 10.9742±5.1479 10.3969±3.9785
4 WINE 4.5423±1.5898 4.7312±1.6107
5 WINE 6.1231±5.1940 6.8752±6.6618
6 WINE 8.8955±3.7132 9.2806±4.0852
7 WINE 4.1572±2.1453 5.6878±2.9705
8 WINE 4.9471±2.3889 4.7581±2.0391
9 WINE 7.9939±3.1261 7.805±3.2206
10 WINE 4.535±1.5935 4.3462±1.7926

TABLE 8.3: Test error for different runs of non convex method

-3(Gradient descent) implementations (refer Table 8.4).

• The eigenvalues of W obtained using Method -2 (refer Chapter 5 ,i.e.,L-BFGS

method is used for optimization of objective function) are similar to that of

eigenvalues obtained by Method -1 (Newton method) (refer Table 8.5). The

run time of Method-2 (L-BFGS) method is lower compared to that of Method

-1 (Newton method) (refer Table 8.4).

46

• The eigenvalues obtained using Method -3 (refer Chapter 6, gradient descent

method is used for optimization of objective function) are not close to the

ideal solution (λ1 = λ2 = · · ·λd = 1;λd+1 = λd+2 = · · ·λD = 0) (refer Table

8.5). The run time of this method is lower compared to other two methods

(Newton and L-BFGS methods) (refer Table 8.4)

8.4.3 Analysis

This experiment reaffirms that Newtom methods are more computationally

more expensive compared to Gradient descent method. Gradient descent method

requires more number of iterations to reach to ideal solution (λ1 = λ2 = · · ·λd =

1;λd+1 = λd+2 = · · ·λD = 0) in our problem. We find that our relaxation works and

approximately gives the desired results (as d = 2 it makes top 2 eigenvalues almost

to 1 and tries to make the rest of eigenvalues close to 0) (refer Table 8.5).

Data Set Method KDE test error KNN test error Time in secs
WINE Gradient Descent 0.0574 0.0578 157.760127
WINE L-BFGS 0.0574 0.0385 289.64671
WINE Newton Method 0.0574 0.0578 2534.924443

TABLE 8.4: Test error and time for different implementations

47

Eigenvalues by Gradient descent Eigenvalues by L-BFGS Eigenvalues by Newton
0.889 0.9991 1
0.7402 0.829 0.8606
0.1802 0.1138 0.1165
0.1206 0.0492 0.0222
0.0359 0.0035 0.0002
0.0196 0.0015 0.0002
0.0145 0.0009 0.0001

0 0.0007 0.0001
0 0.0007 0
0 0.0007 0
0 0.0003 0
0 0.0003 0
0 0.0001 0

TABLE 8.5: Eigenvalues of solution for different implementations

48

9. CONCLUSION

9.1. Summary

In this project we provide a convex formulation for dimensionality reduction.

We discussed the various methods of implementations like Newton method, L-BFGS

method, gradient descent method. In Newton method we used Landweber iterations

to calculate the Newton direction which significantly reduces the time complexity

compared to direct Newton direction calculation. We also proposed another imple-

mentation method where we chose random subset of data points to reduce the time

and space complexity. We presented a detailed numerical analysis which demon-

strates the relations between the dimensions and accuracy, size of subset of data

points and run time, size of subset of data points and test error and run time for

different methods of implementation.

9.2. Future work

Currently in our implementation, the L-BFGS method is giving the desired

results but time and space complexity might increase for large data sets. The random

selection of subset of data points reduces the time and space complexity issues with

a compromise in accuracy, which is not desirable. Future work will be to reduce the

time complexity and space complexity issues without comprising in the solution.

49

BIBLIOGRAPHY

1. M.K. Thangavelu, “On error bounds for linear feature extraction,” M.S. thesis,
Oregon State University, 2009.

2. H. Kim, P. Howland, and H. Park, “Dimension reduction in text classification
with support vector machines,” The Journal of Machine Learning Research,
vol. 6, pp. 37–53, 2005.

3. E. Bingham and H. Mannila, “Random projection in dimensionality reduction:
applications to image and text data,” in Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2001, pp. 245–250.

4. J. Ye, R. Janardan, and Q. Li, “GPCA: an efficient dimension reduction
scheme for image compression and retrieval,” in Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2004, pp. 354–363.

5. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Analysis of recommendation
algorithms for e-commerce,” in Proceedings of the 2nd ACM conference on
Electronic commerce, 2000, pp. 158–167.

6. H. Hotelling, “Analysis of a complex of statistical variables into principal
components,” Journal of Educational Psychology, vol. 24, pp. 417–441., 1933.

7. A. Hyvärinen and E. Oja, “Independent component analysis: algorithms and
applications,” Neural networks, vol. 13, no. 4-5, pp. 411–430, 2000.

8. S.T. Roweis and L.K. Saul, “Nonlinear Dimensionality Reduction by Locally
Linear Embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

9. M. Belkin and P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction
and Data Representation,” Neural Computation, vol. 15, no. 6, pp. 1373–1396,
2003.

10. W. L. Poston and D. J. Marchette, “Recursive dimensionality reduction using
fisher’s linear discriminant - inference and applications to clustering,” Pattern
Recognition, vol. 31, pp. 881–888(8), 31 July 1998.

11. D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation anal-
ysis: An overview with application to learning methods,” Neural Computation,
vol. 16, no. 12, pp. 2639–2664, 2004.

50

12. I.K. Fodor, “A survey of dimension reduction techniques,” Livermore, CA:
US DOE Office of Scientific and Technical Information, vol. 18, 2002.

13. J.B. Kruskal, “Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27, 1964.

14. L.J.P Van der Maaten, E.O Postma, and H.J Van den Herik, “Dimensionality
reduction: A comparative review,” Published online, vol. 10, no. February, pp.
1–41, 2007.

15. M. Collins, S. Dasgupta, and R.E. Schapire, “A generalization of principal
component analysis to the exponential family,” Advances in neural information
processing systems, vol. 1, pp. 617–624, 2002.

16. O.A Sajama and A. Orlitsky, “Semi-parametric exponential family PCA,”
Advances in Neural Information Processing Systems, vol. 17, pp. 1177–1184,
2004.

17. Y. Guo and D. Schuurmans, “Efficient global optimization for exponential
family PCA and low-rank matrix factorization,” in Communication, Control,
and Computing, 2008 46th Annual Allerton Conference on. IEEE, 2009, pp.
1100–1107.

18. Y. Guo, “Supervised exponential family principal component analysis via con-
vex optimization,” in NIPS, 2009, vol. 21, pp. 569–576.

19. Jacob Goldberger, Sam T. Roweis, Geoffrey E. Hinton, and Ruslan Salakhut-
dinov, “Neighbourhood components analysis,” in NIPS, 2004.

20. L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM review,
vol. 38, no. 1, pp. 49–95, 1996.

21. M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of second-
order cone programming* 1,” Linear Algebra and its Applications, vol. 284,
no. 1-3, pp. 193–228, 1998.

22. Y. Nesterov and A. Nemirovskii, “Interior-point polynomial algorithms in
convex programming,” 1994.

23. M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-
gramming, version 1.21,” http://cvxr.com/cvx, Feb. 2011.

24. Z.Q. Luo, “Applications of convex optimization in signal processing and digital
communication,” Mathematical Programming, vol. 97, no. 1, pp. 177–207, 2003.

51

25. E.F. Arruda, M.D. Fragoso, and J.B.R. do Val, “An application of convex
optimization concepts to approximate dynamic programming,” in American
Control Conference, 2008. IEEE, 2008, pp. 4238–4243.

26. E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell, “Distance metric learning
with application to clustering with side-information,” Advances in neural in-
formation processing systems, pp. 521–528, 2003.

27. S.P. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ Pr,
2004.

28. T.J. Ypma, “Historical development of the Newton-Raphson method,” SIAM
review, vol. 37, no. 4, pp. 531–551, 1995.

29. S.J. Benson and J.J. Moré, “A Limited Memory Variable Metric Method in
Subspaces and Bound Constrained Optimization Problems,” mathematical,
Information and Computer Science Division, Argonne National Laboratory,
ANL/MCS- P, vol. 901, 2001.

30. A.V. Fiacco and G.P. McCormick, “The sequential unconstrained minimiza-
tion technique for nonlinear programing, a primal-dual method,” Management
Science, vol. 10, no. 2, pp. 360–366, 1964.

31. H. Hindi, “A tutorial on convex optimization II: Duality and interior point
methods,” in Proceedings of the 2006 American Control Conference, 2006, pp.
686–696.

32. L. Landweber, “An iteration formula for Fredholm integral equations of the
first kind,” American journal of mathematics, vol. 73, no. 3, pp. 615–624, 1951.

33. AS Nemirovski and BT Polyak, “Iterative methods for solving linear ill-posed
problems under precise information I, Moscow Univ,” Comput. Math. Cybern,
vol. 22, pp. 1–11, 1984.

34. M. Hanke, “Accelerated Landweber iterations for the solution of ill-posed
equations,” Numerische mathematik, vol. 60, no. 1, pp. 341–373, 1991.

35. D.C. Liu and J. Nocedal, “On the limited memory BFGS method for large
scale optimization,” Mathematical programming, vol. 45, no. 1, pp. 503–528,
1989.

36. J. Barzilai and J.M. Borwein, “Two-point step size gradient methods,” IMA
Journal of Numerical Analysis, vol. 8, no. 1, pp. 141–148, 1988.

52

APPENDIX

53

A Appendix 1

The following is a proof of one to one mapping between sets SA and SW ,

where SA = {A | A ∈ Rd×D, AAT = Id×d} and A ∼ SA0 = {A | A = RA0}

where R is rotation matrix. SW = {W | W T , W 2 = W, Rank(W) = d, W ∈

R
D×D, W = ATA}. We split the proof into two steps. In the first step, we show

mapping from SA to SW and in the second step we show mapping from SW to SA.

Step 1: We need to prove ∀A in SA0 are mapped to W in SW .

We know that ATA = W , substituting any equivalent member which is formed

by the rotation in place of A results (RA)T (RA) = ATRTRA = ATA = W . Hence

all A’s in the equivalence class are mapped to unique W and that W has properities

such as W = W 2,W = W T , Rank(W) = d. The proof of each property is show

below.

Property 1: W = W 2 when ATA = W

W 2 = (ATA)(ATA)

= ATAATA since AAT = I

= ATA

= W

Hence proved.

54

Property 2: W = W T when ATA = W

W T = (ATA)T

= AT (AT)T

= ATA

= W

Hence proved.

Property 3: Rank(W) = d when ATA = W

Let the Singular Value Decomposition (SVD) of A be V1SU
T
1 where V1 and U1

are orthogonal matrices and S = diag(σ1, · · ·σd). W = ATA = U1S
2UT

1 i.e., W has

an eigen value decomposition with d non zero eigen values. Hence Rank(W) = d.

Step 2:

We need to prove that W from SW is mapped to an equivalence class in SA.

Proof: SinceW = W T , eigen value decomposition exists forW i.e., EVD(W) =

UΛUT and as W = W 2 we get (Λ)2 = (Λ) ⇒ λi ∈ {0, 1} and also we know that

Rank(W) = d so based on Rank(W) = d and λi ∈ {0, 1}. The eigen value decom-

positon of W is expressed as

W = [U1, U2]




Id 0

0 0


 [U1U2]T (A.1)

W = U1U
T
1

55

We can see that even if U1 multiplied by any rotation matrix it will always yields

the same result. Hence W from SW is mapped to equivalence class of A.

Hence we proved the one to one mapping between SA and SW .

B Appendix 2

The value of by linear operator H(x,∆) = H(x)∆ is shown as follows.

[H(x)∆]i =
N∑

j=1

d2f(x)

dxidxj

∆j

d

dxi

N∑

j=1

df(x)

dxj

∆j

d

dxi

N∑

j=1

l(x)∆j

d

dxi

〈l(x),∆〉

Hence H(x,∆) = d
dx
〈l(x),∆〉. The operator mapping is RN → R

N , where N are the

number of elements in vectors l(x) and ∆ . This can be generalised for W ∈ RD×D

as

H(W,∆) =
d

dW
(trace(L(W)T∆) =

d

dW
〈L,∆〉 (B.1)

where H(W,∆), L,∆ ∈ RD×D and the mapping of operator H(W,∆) is RD×D →

R
D×D.

The detail formulation of vector to matrix generalization is discussed below.

56

Let

W =




w11 w12 w13 · · · w1n

w21 w22 w23 · · · w2n

...

wn1 wn2 wn3 · · · wnn




vectorizing a matrix is concatenating columns one below another.

vec(W) =




w11

w21

wn1

w12

w22

wn2

...

w1n

w2n

wnn




57

In the same way

vec(∆) =




∆11

∆21

∆n1

∆12

∆22

∆n2

...

∆1n

∆2n

∆nn




Then gradient matrix L is

L =




df

dw11

df

dw12

df

dw13
· · · df

dw1n

df

dw21

df

dw22

df

dw23
· · · df

dw2n

...

df

dwn1

df

dwn2

df

dwn3
· · · df

dwnn




58

vector form of gradient is l

vec(L) = l =
df

dvec(W)




df

dw11

df

dw21

df

dwn1

df

dw12

df

dw22

df

dwn2

...

df

dw1n

df

dw2n

df

dwnn




Original matrices are represented with capital letters and vectorised forms are rep-

resented with lower case letters.

lT∆w =

[
df

dw11

df

dw21
· · · df

dw1n
· · · df

dwnn

]




∆11

∆21

...

∆1n

...

∆nn




(B.2)

lT∆ =
df

dw11
∆11 + · · ·

df

dwnn

∆nn (B.3)

59

Now we need to find trace(LT∆). We know that

L =

[[
l1

] [
l2

]
· · ·

[
ln

]]
(B.4)

∆ =

[[
∆1

] [
∆2

]
· · ·

[
∆n

]]
(B.5)

In (B.4) and (B.5) each column in the matrix is represented as vector.

LT∆W =




lT1

lT2
...

lTn




[
∆1 ∆2 · · ·∆n

]
(B.6)

LTW =




lT1 ∆1 lT1 ∆2 · · · lT1 ∆n

lT2 ∆1 lT2 ∆2 · · · lT2 ∆n

...

lTn∆1 lTn∆2 · · · lTn∆n




where lTi = [df

dw1i

df

dw2i
· · · df

dwni
] and ∆i =




∆1i

∆2i

...

∆ni




. As we know the trace of a matrix

is sum of the diagonal elements we proved that

lT∆ = trace(LT∆)

Hence the vector to matrix generalization for the operator H(W,∆) is shown.

60

C Appendix 3

To solve an equation of the form y = Ax, we propose the following iteration

x(k+1) = (1− β(k))x(k) + β(k)x(k−1) + α(k)AT (y −Ax(k)) (C.1)

We are interested in reducing the norm of the error: e(k) = Ax(k) − y. We start by

evaluating the error. Multiply (C.1) with A and subtract y :

Ax(k+1) − y = Ax(k) − y + Aβ(k)(x(k−1) − x(k)) + α(k)AAT (y − Ax(k)). (C.2)

Representing equation (C.2) in terms of e(k):

e(k+1) = e(k) + β(k)(e(k−1) − e(k))− αAAT e(k). (C.3)

To minimize ‖e(k+1)‖2 w.r.t α and β one can minimize ‖e(k) + β(k)(e(k−1) − e(k)) −

αAAT e(k)‖2. To avoid numerical errors we propose the normalized reprsentation of

the error.

e(k+1) = e(k) + β̃(k) (e
(k−1) − e(k))

‖e(k−1) − e(k)‖ + α̃
−(AAT e(k))

‖AAT e(k)‖ . (C.4)

Now we have to

minimize|| ẽ(k)︸︷︷︸
y

−([V1V2]︸ ︷︷ ︸
H

[α̃(k)β̃(k)]T︸ ︷︷ ︸
θ

)||2 (C.5)

61

where V1 = (AAT e(k))

‖AAT e(k)‖
and V2 = − (e(k−1)−e(k))

‖e(k−1)−e(k)‖
. Using Least squares (i.e.,θ̂ls =

(HTH)−1HTy) we solve for α̃ and β̃ as:




α̃(k)

β̃(k)


 =







V T
1

V T
2



[
V1 V2

]



−1 


V T
1 e(k)

V T
2 e(k)


 (C.6)




α̃(k)

β̃(k)


 =







V T
1

V T
2



[
V1 V2

]



︸ ︷︷ ︸
M




V T
1 ek

V T
2 ek


 (C.7)

In the matrix M the elements M11 and M22 value will be 1 as they are normalized

and the value of M12 and M21 will be equal and the value is

ρ = − (e(k−1) − e(k))

‖e(k−1) − e(k)‖
(AAT e(k))

‖AAT e(k)‖ .

The values of α̃(k) and β̃(k) are




α̃(k)

β̃(k)


 =




1 ρ

ρ 1




−1 


γ1

γ2


 (C.8)

= 1
1−ρ2




1 −ρ

−ρ 1







γ1

γ2




= 1
1−ρ2




γ1 − ργ2

γ2 − ργ1




62

This implies α̃(k) = γ1−ργ2
1−ρ2

and β̃(k) = γ2−ργ1
1−ρ2

where γ1 =
‖AT e(k)‖2

AAT e(k)‖
and

γ2 =
−e(k)(e(k−1)−e(k))

‖e(k−1)−e(k)‖
. Hence the update is

x(k+1) = x(k) + β̃
(x(k−1) − x(k))

‖e(k−1) − e(k)‖ − α̃
AT (e(k))

‖AAT e(k)‖ . (C.9)

