
SAOSDB:

A Structural Active-Object System

Debugger

Pornsiri M uenchaisri

Dept. of Computer Science

Oregon State University

Structural Active-Object System Debugger

Pornsiri Muenchaisri
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-4602
muenchp@research .cs.orst.edu

Abstract

Structural act ive-obj ect systems (SAOSs) are transition-based object -oriented systems

suitable for various concurrent applications. A SAOS consists of a collection of int eract ing

active objects that can be structura lly and hierarchically composed. The SAOS framework

enab les SAOS app lication programs to be developed rapidly. However , nond eterministic

behaviors of active objects sometimes make debugging SAOS app lication programs difficult.

To overcom e this problem , Structural Acitve-Object System Debugger (SAOSDB) was

designed and implemented as an object-based visual debugging tool. SAOSDB allows a

programmer to see direct ly the states of the active objects and to control interactively the

executions of the behavior specification statements of active objects. SAOSDB itself is

implemented as a SAOS .

I(ey Words and Phrases: object -oriented programming, object -based debugger, visual

debugger , active-object system , structural composition, hiera rchical composition

1

)

Contents

1 Introduction

2 Overview of SAOSDB

2.1 User Operations

2.2 SAOSDB Configuration

3 The SAOS approach

3.1

3.2

Active Behavior Description

Component Hierarchy ...

4 The Active-Object User Interface Management System

4.1

4.2

Control Variables and State Variables

Basic Classes

4.2.1

4 .2.2

Class VObject

Class VCObject

5 Implementation

5.1 Implementation of SAOSDB Graphical User Interface

5.2

5.3

5.4

Displaying a Component Hierarchy .

Printing Active Object Information .

Program Tracing

5.4 .1

5.4 .2

Implementation of Global Pause and Global Next .

Implementation of Obj ect Pause and Object Next

6 Conclusion

2

4

6

8

9

11

11

12

13

14

15

15

16

17

17

17

20

21

22

24

25

7 Acknowledgements 25

r

)

)

3

1 Introduction

A structural active-object system (SAOS) is an object-oriented concurrent system that is struc

turally and hierarchically constructed from a collection of active objects. The behaviors of the

active objects are defined by transition statements, which are transition rules, always state

ments, future calls, or future assignments [MIN093b]. A unique feature of the SAOS approach

is that we can obtain a fully functional program by specifying only the structural relationships

among its components.

For a new SAOS programmer, however, debugging a complex SAOS application program is

not trivial since it is organized in a different way from conventional programs. The programmer

must understand what active objects are created, how they interact with each other, and

how transition rules, event routines, and equational assignment statements work. Especially,

nondeterministic executions of transition statements make debugging a SAOS program difficult

and time-consuming. In order to ease the burden of debugging SAOS application programs,

Structural Active Object System Debugger (SAOSDB) was developed. SAOSDB is a debugger

that maximizes the benefits of the SAOS approach.

) Traditional debuggers are statement -based, with their focus on sequentially executable state-

)

ments. The executions of sequential statements can be suspended by breakpoints, or they can

be performed one at a time by single-stepping. Statement -based debuggers have the following

problems.

• A statement-based debugger does not provide an overall picture of the program being de

bugged, thus it is not easy to know what objects are created and how they are interrelated

with each other.

• A traditional debugger does not provide an easy way for a programmer to retrieve infor

mation for a particular object and switch to another object.

• It is impossible to set a breakpoint for a method of a particular object.

Purchase states that an object -oriented software debugger should support debugging at the

object level [PURS91]. The SAOSDB, an obj~ct-based debugger, was designed and developed

to support object-based debugging of SAOS programs.

By using SAOSDB, a programmer can display the SAOS program being debugged as a

hierarchy of active objects. Displaying an overall picture of the program being debugged

4

makes comprehension of the overall structure of the program easier. The state of each active

) object can be inspected during debugging. Activated transitions can be executed one at a time

by single-stepping. Furthermore, it allows the user to view the sequence of actions that occur

to any particular object.

)

)

Section 2 introduces the SAOS approach . Section 3 describes the Active-Object User In

terface Management System (AOUIMS) , whose functionalities are utilized by SAOSDB. The

major features of SAOSDB are summarized in Section 4. Section 5 discusses the implementa

tion details of SAOSDB. Section 6 concludes this report.

5

I

)

2 Overview of SAOSDB

The major objective of SAOSDB is to provide an object-based debugging environment for SAOS

programs, exploiting the unique features of the SAOS approach.

1. In order to help the programmer to comprehend the overall structure of a SAOS program

being debugged, the active objects created by the program are displayed as a hierarchical

tree structure as organized in the SAOS program.

2. An execution of the program being debugged can be suspended at any transition state

ment boundary, and the states of any selected active objects can be printed.

3. The transition statements can be executed one at a time (single-stepping). Single

stepping can be performed for the whole program or for a particular active object selected

by the user.

Figure 1: Graphical Interface of the Tank-System Simulator.

Fig. 1 shows the graphical user interface of the tank-system simulator, which is a SAOS

application program. This program is described in [MINO93c].

Fig. 2 shows the graphical user interface of SAOSDB while the tank-system simulator is

being debugged. Each active object is represented by a rectangle with the name of the active

object in it. The TopLevel active object is named 3tankSys, which is the whole tank-system

simulator program, and it s descendants are displayed on the canvas as a tree structure. The

6

component active objects of 3tankSys are vTank0, vTank1, vTank2, lastManBtn, lastValve,

) manControl,and exitButton.

)

)

Each component may consist of subcomponets. For example, the component vTank2, which

1s the third valve-tank-controller subsystem in Fig. 1, has two subcomponents valveSubsys

. and tank. The val veSubsys has six subcomponents manAuto, manBtn, autoBtn, ref Arrow,

vPipe, and manControl. The vPipe has 4 subcomponents opening, val veElem, pipeA, and

pipeB, and so on.

The programmer can interact with SAOSDB by pressing the buttons provided above the

canvas. The buttons Model and View are used to select the active objects to be displayed. The

active objects must be either in model or view. The second group of buttons (Run, GPause,

GNext, ... , and Print) are used to control an execution of the program being debugged and

to inspect the active objects created by the program being debugged.

R~ II GPouse II GNext IFJPou•4l~jNextlPI Print II

lastllanBtn tn oonBtn

JostVolve outoBtn

..,.,Control refArrow

exltButton vPlpe opening

aonControl volveEJ .. frangeA

plpeA frongeB

plpeB

hondleln

hondleArc

Figure 2: SAOSDB Graphical User Interface for the Tank-System Simulator.

7

)

2.1 User Operations

A SA0S application program can be run in the debugging mode, if the debugging option -d

is provided in the command line as tank3 -d . The application program need not be modified.

SA0SDB supports the following debugging operations .

1. The SA0SDB allows the active objects either in model or in view to be displayed, while

the Model (View) button is selected , objects in model (view) are displayed. When the

program contains only one of model or view , whichever exists is selected. When the

program contains both model and view, model is selected by default.

2. When the Tree button is pressed, SA0SDB enters the tree-structure-display mode. In

this mode , when an object node on the canvas is selected by a mouse click, the nodes

for its children objects are displayed. This process can be continued to display all the

objects of a particular lineage. When an object node is deselected, the subtrees of its

descendant nodes are removed from the canvas.

3. When the GPause (global pause) button is pressed, the executions of all user transition

statements are suspended.

4. When the GNext (global next) button is pressed, while executions of user transition state

ments are suspended , one activated transition statement is executed as single-stepping.

5. When the Obj Pause (object pause) button is pressed, SA0SDB enters the object-pause

mode. In this mode, when an object node on the canvas is selected by a mouse click, the

executions of the transition statements applicable to the selected object are suspended.

Executions of transition statements for other objects are not suspended.

6. When the Obj Next (object next) button is pressed, one activated transition statement Ti

of the selected object 0, together with all the activated transition statements enqueued

after Ti and before another activated transition statement Ti+l of 0, is executed.

7. When the Print button is pressed, SA0SDB enters the print mode. In this mode, when

an object node on the canvas is selected by a mouse click, the data of the selected object

are printed.

Fig. 3 shows the graphical interface of the Queueing System simulator. Fig. 4 shows the

8

)

SAOSDB with the Queueing System Simulation being debugged in the Model mode, and Fig. 5

in the View mode .

Generator Processor 1 Processor 2

EJ
Figure 3: Graphical Interface of the Queueing System Simulator.

J 4 sqS\jste• ~ rJ gen J

H que<Jel I
H p,-ol I
H queue2 I
H p,-02 I
y queue3 I

Figure 4: SAOSDB Graphical Interface for the Model of the Queueing System Simulator.

9

Figure 5: SAOSDB Graphical Interface for the View of the Queueing System Simulator.

) 2.2 SAOSDB Configuration

The SAOS applicat ion program with SAOSDB consists of the following components:

1. Active Object System (AOS) kernel,

2. Active-Object User-Interface Management System (AOUIMS),

3. SAOSDB code, and

4. User SAOS application code.

Developing a SAOS application program using the SAOS framework is not too compli

cated. Since the AOS kernel, AOUIMS, and SAOSDB code are embedded in the framework,

a programmer needs to provide only user application code. The programmer does not need to

modify the application code to activate the debugger, but to allow the user data of an object

instanti ated from a user-defined class to be inspected during debugging, it is necessary for the

programmer to provide the print O method for the user-defined class.

10

)

3 The SAOS approach

Structural active-object systems (SAOSs) are constructed as a collection of structurally and

hierarchically composed active objects . The behaviors of these active objects are defined by

'transition statement, which are transition rules, always statements, future calls , or future

assignments. The active objects in a SAOS program are organized in a tree structure similar

to that usd by the Unix file system.

In this section, we first describe the mechanisms for active behavior specifications for SAOs,

and we then explain a component hierarchy of SAOS.

3.1 Active Behavior Description

Objects in Smalltalk or C++ are passive in the sense that they only respond to the messages

sent to them . Besides event routines that respond to messages, a SAOS uses transition rules,

which are condition -action pairs, always statements, which are equational assignment state

ments, and event routines for behavior descriptions of active objects. We refer to transition

rules , always statements, and event routines as transition statements .

Each transition rule is a condition-action pair, whose action part is executed when its

condition part is satisfied. An execution of a transition rule should be atomic . A transition

rule is activated whenever the value of any condition variable, which is often called an active

value, used in its condition part changes.

A simple mechanism for describing a behavior of an object is an equational assignment

statement that maintains an invariant relationship (constraint) among the states of objects.

Our always statements are used for this purpose. An always statement can be implemented

like a transition rule. The execution of the always statement should be triggered whenever

any of the variables used in the express ion of the always statement changes. Triggered always

statements are executed immediately at the points where they are activated, their executions

being embedded within those of the transition statements .

The activations of transition rules and always statements are, at least conceptually, state

driven , and SAOs can communicate with each other by directly accessing the states of other

objects through their interface variables rather than by sending messages to them . Although

this mechanism mostly eliminates the necessity of activating functions (or methods) by explicit

11

)

events (or messages), some actions can be more efficiently handled by event routines, which

are activated by synchronous function calls, future calls, or future assignments. Activated

future calls and future assignments are executed one at a time like triggered transition rules.

Synchronous function calls are supported by SAOS, but SAOSDB does not utilize this feature.

3.2 Component Hierarchy

A SAOS program maintains the component hierarchy on its component A0bj ect s, which are

usually constructed by structural and hierarchical object composition . If an A0bj ect x is

inserted into another A Db j ect y, x becomes a child of y in the component hierarchy. Point

ers children, sibling, and parent provided in A□bj ects are used to define the component

hierarchy. If the names assigned to the A Object s are unique among the children of their respec

tive parents , the function pathN ame () returns the unique path name of each A Object. This

mechanism is similar to the file-naming mechanism of Unix.

After writ ing many SAOS programs in various application areas, we obtained the following

insights on the relative usefulness among the behavior specificat ion methods listed above. In

most cases, control logic of simulation can be best described by transition rules. always

statements are useful to update the attributes of graphical objects automatically. Inter-object

synchronous function calls are rarely needed by application SAOS programs. Future calls and

assignments are convenient to schedule delayed act ion s, although they are used less frequently

compared to transition rules or always statements. On the other hand, such SAOS programs

as AOUIMS and SAOS graphical editors use inter-object synchronous function calls in about

50% of their behavior specifications, and hence they look more similar to conventional 00

programs.

12

)

4 The Active-Object User Interface Management System

The Active-Object User Interface Management System(AOUIMS) is a graphical user-interface

management system (GUIMS) for structura l active-object systems (SAOSs). Many application

programs with dynamic (animated) graphical user interfaces have been created as SAOS pro

grams. Active user-interface objects (AUIOs) supported by AOUIMS can be structurally and

hierarchically composed from their component AUIOs, allowing graphical user interfaces to be

constructed quickly. The impl ementati on of AOUIMS itself follows the SAOS approach. In

this section, we describe the principles and the structure of the Active-Object User-Interface

Management System (AOUIMS). AOUIMS has th e following unique features.

l. Behaviors of active user-interface objects (A UIOs) are mostly specified by transition rules

and always statements, which allow concise descriptions and encapsulation of control.

2. A user interface is constructed by structural and hierarchical composition of AUIOs. Any

AUIO can be a component of another AUIO. Thus, there is no special class for composite

graphical objects.

3. The location and appearance of an AUIO is mostly specified by its control variables,

whereas the results of user interaction s are stored in state variables. Control and state

variables can often replace complex procedural interfaces.

4. The above features in combination promote a declarative style of programming, and

hence simplify the design and implementation of a graphical editor used to construct

user-int erfaces by pick-and-place operations.

5. Each AUIO can integr ate the model, view and control. In this case, a graphical user

interface can be obtained with minimal extra effort.

6. It is possible to separate the model from the view and control. In this case, the same

binary code of the model can be shared by the SAOS program with a graphical user

interface and the one without it.

Fig. 6 shows a part of the AOUIMS class hierarchy . Every AObj ect has a printable name

and can be organized into a component hierarchy. A Moni tor 1 is needed for each X server. It

accept s X-events from the server and distrib ut es them to appropriate TopLevels and Popups,

1 From now on, when x is an instance of class X or one of its subclass, we simply say that x is an X.

13

I

)

which are windows. All the AUIOs are instances of the subclasses of class V□bj ect and can

be directly or indirectly used as building blocks of AOUIMS user-interfaces.

Class V□bj ect provides the features needed to support views, and class VC□bj ect additional

features required to support control, such as the handling of mouse events. Lines and Texts

are V□bj ects , and Circle s, Rectangles , Polygons, and Buttons are VC □bj ects. A top-level

user-defined class shou ld be derived from Toplevel , and others from other AOUIMS classes.

AObject

Monitor

Line Text

Arc

Popup VButtonGroup Polygon

ExitButton HButtonGroup MxButtonGroup

Figure 6: AOUIMS class hierarchy.

The hierarchy maintained on V□b j ects plays critica l roles, as we explain later, in displaying

or hiding groups of V□bjects simultaneou sly and in processing mouse events. Any V□bject

can have children and become a composite AUIO. Any V□bj ect other than a TopLevel can

become a component of another V□bj ect.

4.1 Control Variables and State Variables

We can activate some operations on V□bj ects by manipulating the values of their control

variab les, which are condition variables whose value changes can activate transition rules or

always statements that perform the requested operations. The locations, sizes, and visibility

J of V□bj ects, for instance, are determined by control variables.

14

I
r

The location of the top-left corner of a V0bj ect is defined by its attributes xAbs and yAbs ,

) which are abso lute coor dinate values with respect to the top -level window. The locat ion of a

V0bj ect , however, must be specified in terms of xRel and yRel , which are relative coordinates

with respect to its parent V0bject . When a user defines or changes the values of xRel and/or

yRel , AOUIMS automatically computes its corresponding abso lute coordinate values by using

the funct ion alwaysCoord() .

Control variables myVisible , sysVisible , groupedVisible , and visible are used to

contro l the visibility of V0bject . Variable visible ult imate ly determ ines t he visibili ty of

a V0bj ec t . If visible is TRUE, the V0bject is disp layed . Otherwise, it is not displayed. If a

SAOS program wants to change the visibility of a V0bj ect , it should man ipu late its myVisible .

Varia ble sys Vi sible is used by AOUIMS. The visibility of a V0bj ect is further affected by

the control variab le groupedVisible.

In a graphical app lication , the parent -child relationship plays an important role, since many

operat ions on a child object depend on the state of its pa rent object. For examp le, whether

a child V0bj ect should be displayed or not often depen ds on the visibility state of its parent

V0bj ect . AOUIMS provides control var iables that determine whet her the operat ions on each

) child object shou ld depend on t he state of its parent object.

4. 2 Basi c C la sses

The most important bas ic AOUIMS classes relevant to the implementat ion of SAOSDB are

V0bj ect and VC0bj ect . We now give brief descriptions of these classes .

4 .2 .1 C lass V Object

Class V0bject defines the view-related common behaviors of AUIOs. It is the superclass of

such view-only classes as Text and Line . It is also the superclass of VC0bj ect , which adds

contro l to V0b j ect . A V0b j ect has the following interface variab les.

In t x R el, y R el, w idth , height , xAb s, yA b s

These attributes determine the location and size of a V0bject.

Int v isibl e, my V isible , sys V isibl e, gr ou pe d Visi bl e

These attributes contro l the visibility of a V0bj ect .

15

Int inverse, my Inverse, groupedinverse

) These attributes dictate whether a V0bject will be displayed in reverse video or not.

4.2.2 Class VCObject

Class VCDbj ect defines the control aspects of AUIOs . It is the superclass of such classes as

Button, Rectangle , and Polygon. It is also the superclass of TopLevel and Popup , which are

the classes for windows. Since VC0bj ect is a subclass of VDbj ect, the capabilities provided

for V0bj ects are applicable to VC0bj ect s. For example , we can show or hide a Popup window

simply by toggling its rnyVisible attribute.

Mouse events are passed along the component hierarchy of VCDbj ects. They are first passed

from the top-most window (TopLevel or Popup) to lower-level VC0bj ects. A VC0bj ect can

catch , pass , or discard a mouse event. Furthermore , it can catch the event once passed if it is

not caught by any lower-level VCDbj ects . This event pass mode is called Pass □rCatch. We

designed this event-passing mechanism by taking into consideration that a VC0bj ect that must

catch a mouse event often contains V0bj ect s that may or may not catch mouse events.

) When the user clicks a mouse button inside a TopLevel window, the AOUIMS receives a

mouse event and sends it to the target VC0bj ect. Although the default action for a mouse

event is no action, it is possible to let the mouse event toggle the state of the control variable

selected of the VC0bj ect. This state change of selected causes function _whenSelected()

to be activated. When selected becomes TRUE, _whenSelected() fills the area occupied by

th e VCDb j ect and activates another function rnyWhenSelected () . Additional user-specified

operations can be provided in this function, whose default operation is null.

16

f

)

)

5 Implementation

In this section, we describe the details of the implementation of SAOSDB. We first describe

how the SaosDebugger graphical user interface is implemented. We then explain how the

hierarchical structure of active objects are displayed and how the information in active objects is

printed. Finally, the mechanism for tracing the executions of transition statements is explained.

5.1 Implementation of SAOSDB Graphical User Interface

Object saosDebugger , which is an instance of class SaosDebugger , is the top-level wm-

dow for the debugger. Class SaosDebugger , shown in Fig. 7, contains viewModelButtonG ,

saosdbButtonG, and saosdbWindow as its member objects. Obj ects viewModelButtonG and

saosdbButtonG are instances of class HButtonGroup (horizontal button group). Object saosdbWindow ,

which is an instance of class ADRectangle , is used as the canvas where boxes representing ac-

tive objects in the SAOS application program being debugged are displayed as a hierarchical

tree.

Object saosdbWindow in SaosDebugger contains pointer root0bj ect that points to the

A0bjectView representing the root A0bject in the SAOS application program. The root

object is pointed to either by view or by model. The A0bj ect pointed to by view is the

TopLevel window of the application program.

Class definition of ADbj ectView is shown in Fig 8. An A0bj ectView is a box with addi

tional lines inLine , outLine and vLine. The inLine is a line coming into the box from left.

The outLine is a line coming out of the box from right. The vLine is a vertical line that

connects the inLine s of all the children A0bj ectView s to the outLine. The key component

of an A0bj ectView is the pointer subject that points to the A0bj ect in the SAOS application

program. That ADbj ect is associated with the ADbj ectView.

5.2 Displaying a Component Hierarchy

In this section, we describe how the active objects in the SAOS application program being

debugged are displayed in a hierarchical tree structure .

Method whenButtonSelected() of class SaosDebugger is associated with saosdbButtonG

) so that when one of the buttons in saosdbButtonG is selected or deselected, whenButtonSelected ()

17

r

)

class SaosDebugger: public TopLevel {

};

public:
Saosdebugger(char* title);
~saosDebugger();
virtual void initialize();
void whenButtonSelected();

void viewModelSelected();

A0Rectangle saosdbWindow;
HButtonGroup* saosdbButtonG;
HButtonGroup* viewModelButtonG;

A0bjectView* rootDbject;
ExitButton exitButton;

private:
void setLabels();

// invoked when one of the main
// button group is selected
// invoked when a view/model button
// group is selected

// active objects display area
// a matrix group button
// point to a view/model
// button group
// a view for a root active object
// to exit program

Figure 7: Class SaosDebugger.

is activated. When the Tree button is selected , method whenButtonSelected() is activated,

and SAOSDB enters the mode to display object structure. In this mode, if the box for an

A Obj ectView is selected, function onBoxSelected() of class ADbj ectView is activated. After

the descendants of the other siblings of the selected object are removed, the component hier

archy tree of the selected object is displayed . If the box for an A0bj ectView is deselected , the

descendants of the selected object are removed.

Function onBoxSelected() will invoke only function drawChildren() if the selected object

has no sub-tree and the sibling of the selected object has no sub-tree. Function onBoxSelected()

will invoke both function destroyChildren() if the sibling of the selected object has a sub-tree

and function drawChildren() if the selected object has no sub-tree. Function onBoxSelected()

will invoke only destroyChildren() if the selected object already has its descendants dis

played. Function drawChildren() which is shown in Fig. 9 is responsible for creating all

the children views of the selected object. Function destroyChildren(), which is shown in

Fig. 10, is responsible for removing all the subtrees of the selected object or all the subtrees of

the sibling of the selected object from the canvas .

) The two dimensional array of pointer s A0bjectViewPtr[depth] [position] is used to keep

18

J

class AObjectView: public VCObject {

};

public :
AObj ectView() ;
-A□bjectView();

virtual void initialize() ;
virtual void onBoxSelected() ;
int countChildren()

void destroyChildren(int);

AObj ect*
Line
Button
Line
Line
int
int

int

private:

subject;
inLine ;
box;
outLine;
vLine;
level;
number;

numberOfChildren();

// which active object view is selected
// number children used to calculate
// the length of vertical line
// erase all children of this object

// its corresponce active object
// line to left of A□bject box
// a rectangle represent A□bject view
// line out of A□bject box
// vertical lines connect all children
// the level of this object
// the position of this object
// in this level
// number of children are displayed

void drawChildren(int , int, int , int , A□bject*, int, int);
// draw children of this object

Figure 8: Class A□bj ectView .

19

)

)

track of the ADbj ectView created on the canvas. Array element A0bj ectViewPtr [depth] [position]

point s to the A0bjectViews located at locat ion (depth, position) in saosdbWindow. For ex

ample, the root Db j ect is pointed to by ADbj ectViewPtr [1] [1]. If the root Object has four

childr en, each child is point ed to by AObjectViewPtr[2l[i] where i = 1, .. ,4. The ADbj ectViewPtr [] []

is used in drawChildrenO and destroyChildren() .

void A0bjectView : :drawChildren(int xRel, int yRel, int width,
int height , A0bject * subject , int level, int number) {

if (subject) {
A0bjectView* saosdb □bject = new A0bjectView ; // create a view
saosdb□bject->subject = subject ;
saosdb□bj ect->name = "saosdb □bj ect" ;
saosdb0bject->xRel = xRel + 1 ;
saosdb0bject->yRel = yRel ;
saosdb□bject->width = width
saosdb□bject->height = height
saosdbWindowPtr->insert(saosdb0bject) ;
saosdb0bject->level = level;
saosdb□bject->number = number;
ADbjectViewPtr[level] [number]= saosdb □bject;

} ;

if (subject->sibling) {

// object know its level
II and its number
II keep track of a view

yRel = yRel +height* 5 / 4 ;
subject= subject->sibling;
drawChildren(xRel,yRel , width,

// create its sibling views
height, subject, level, number+1);

} ;
} ; .

Figure 9: Function drawChildrenO defined for class A0bjectView.

5.3 Printing Active Object Information

Every act ive object is an instance of class A0bj ect or its derived class. Virtual function print()

is declared in class A Db j ect so that print() can be called for any instance of A Object and

its derived classes. Since print() method for ADUIMS objects is supported by AOUIMS, the

data of an ADUIMS object (application view) can be retrieved easily. However, in order for a

programmer to have access to all the inform ation in a user object in the application model,

the print () method must be redefined for each user-defined class . When the Print button is

selected , SAOSDB enters the print mode . In the print mode, if an A0bj ectView is selected ,

20

r

void AObjectView: :destroyChildren(int level) {
int i;

};

if (level< MaxAObjectLevel - 1) {
for(i=1; i < MaxAObjectChildren;i++)

{

if (AObjectViewPtr[level +1] [i] != NULL)
{

delete AObjectViewPtr[level +1] [i]; // destroy its view
AObjectViewPtr[level +1] [i] = NULL;
};

};

outLine.visible = FALSE;
vLine.visible = FALSE;
destroyChildren(level+1) ;
}

else
return

// destroy all its children view

Figure 10: Function destroyChildren() defined for class AObj ectView.

function onBoxSelected () of class AObj ectView is activated, and it prints all the information

) of the selected object on the standard output.

J

5.4 Program Tracing

SAOSDB supports two types of application program tracing. The tracing mode Global Pause

allows the programmer to control the execution of every activated transition statement regard

less to which object it is applied. The tracing mode Object Pause allows the programmer to

control the execution of every activated transition statement applied to a particular object.

We first describe the normal executions of activated transition statements and then explain

the executions of transition statements when the programmer suspends the normal executions

globally (Global Pause) or for a particular object (Object Pause).

The SAOS system maintains two main lists of activated transitions, one for activated trigger

elements (ATEs) and the other for future events (FEEs). Activated transitions are either system

activated transitions or user activated transitions. System activated transitions are mostly for

graphical user interface manipulation. User activated transitions are those provided in the

application programs. When a transition statement is activated, the activated transition is

21

enqueued either in an ATE or a FEE list . Activated transitions are executed on a first-come

first-serve basis.

The main purpose of the debugger is to allow the programmer to control the executions

of the user activated transitions . The system activated transitions are always required to be

executed, but the execut ion s of the user activated transitions must be able to be controlled

by the programmer. Hence, they must be enqueued in the lists differently from those for

the system activated transitions. We provide two lists for ATEs, one for the system activated

transitions and the other for the user activated transitions. We do the same for FEEs.

5.4.1 Implementation of Global Pause and Global Next

Global Pause is a key feature provided for a programmer to suspend the execution of the user

activated transitions . In this section, we describe the mechanism for suspending the executions

of activated transitions globally.

When the GPause button is selected, whenButtonSelected() of class SaosDebugger is acti

vated. The user execut ions of activated transition statements in functions executeATLs () and

) executeFELs () are suspended immediately, and only system ATEs and FEEs activated transi

tion statements are executed. The next user ATE activated transition statement is suspended

from execution. The next user FEE activated transition statement is suspended as well. There

is one important difference between executions of ATEs and FEEs activated transitions. All

ATEs activated transition statements are executed without any condition, but FEEs activated

transition statements are executed only when its outTime is greater than or equal to the ADS

time . When the GPause button is selected, in order for SAOSDB to execute all system FEE acti

vated transition statements, their outTimes are reducted by one if there are user ATEs activated

transition statements in the list . Resuming of executions could be done when the programmer

presses the GNext button. When GNext button is selected, function executeATE() is activated.

The next activated transition statement in the list is the only activated transition statement to

be executed. When the Run button is selected, the suspending of executions which is requested

by the programmer is abandoned. All user ATEs activated transition statements and user FEEs

act ivated transition statements are executed in executeATLs () and executeFELs () without

suspending. The normal executions of the whole program are resumed at that point.

Code fragments for the executions of system and user ATEs and FEEs activated transitions

are shown in Fig. 11, Fig. 13, and Fig. 12.

22

void executeATLs() { // execution of ATEs

} ;

if((debugPause == 0) && (debug0bjectPause == 0) &&
aosATLs[teLevel] .execute()) //execute all ATEs action

else {
if((debugPause == 1) I I (debug0bjectPause == 1)){

aosATLs[AosSystem] . execute() ; // execute only system ATEs

if((debugPause == 1) && (debugNext == 1)) {
aosATLs[teLevel] . executeATE() ; // execute one ATE in ATL

} // end if debugPause
if((debug0bjectPause == 1) && (debug0bject !=NULL)) {

ATEPtr = (ATE*) aosATLs[teLevel] .next1 ; // a current ATE
while ((ATEPtr->obj != NULL) && (ATEPtr->obj != debug0bject))

// execute the unselected objects
aosATLs[teLevel] . executeATE() ;

if(debug0bjectNext == TRUE) {
aosATLs[teLevel] .executeATE() ;

debug0bjectNext = FALSE;
teLevel++; // to terminate this loop after execute one ATE

}; // end if debug0bjectNext
}; // end if debug0bjectPause

) } ;

)

Figure 11: Funct ion executeATLs () defined for the Global Pause comman d.

void ATL: : exe cuteATE() { // execute one ATE in ATL
ATEPtr = (ATE*) next1; // a current ATE
register ATE* ATEPtrTemp = ATEPtr ;
if (ATEPtrTemp && (ATEPtrTemp != (ATE*) this)) {

ATEPtrTemp->unlink() ;
((ATEPtrTemp->obj)->*(ATEPtrTemp->pf))() ;
if (debugLevel > 3) {
cout << "my teLevel "<< ATEPtr- >teLevel <<"my ATE"

<< ATEPtr->seqNumber <<"executed : 11

« ATEPtr->obj->pathName () « " ·" « ATEPtr->text « endl;
cout. flush() ;

};

} ;

delete ATEPtrTemp;
ATEPtr = (ATE*) next1;
};

// will be used if debug0bjectPause is on

Figure 12: Funct ion executeATE() defined for class ATL.

23

)

)

)

int executeFELs() { II execution of future events (FEEs)

for (int level=O; level< NTELevels ; level++) {
temp= aosFELs[level] .execute(); II execute all FEEs

} ;

Figure 13: Function executeFELs () definited for the Global Pause command.

5.4.2 Implementation of Object Pause and Object Next

The Object Pause option is used to control the executions of activated transitions of one

particular object. The programmer can control the execution of a particular object after

pressing the ObjPause button to enter the object-pause mode. In the object-pause mode,

the programmer is responsible to select an object whose executions of user ATEs are suspended.

In this section , we detail how suspending of executions of activated transition statements on a

particular object is implemented.

When the Object Pause button is selected, whenButtonSelected() of class SaosDebugger

is activated. If an AObj ectView is selected , onBoxSelected() of class AObj ectView is acti

vated. All system ATEs and FEEs activated transition statements and user ATEs and FEEs ac

t ivated transition sta tements of other objects are executed. The executions will be suspended

eventually when the user activated transition statement for the selected object is encountered.

Executions can be resumed when the programmer presses the ObjNext button. When the

ObjNext button is selected, function executeATLs() , which is shown in Fig. 11, is activated

which in turn activates function executeATE(), shown in Fig. 12. The activated transition

statement of the selected object is suspended, but all other user activated transitions for the

other objects will be executed until the next activated transition is for the selected object.

When the Run button is pressed , the normal executions of the whole program is resumed.

24

)

)

j

6 Conclusion

SAOSDB is an object-based debugger for SAOS programs . It allows object-based, not statement

based, debugging for active objects. SAOSDB displays the overall structure of the application

program as a hierarchical tree structure, and the user can use this structure to interact with

active objects. One funtionality supported by SAOSDB is controlled executions of transition

statements on active objects. The programmer can suspend and resume executions of transition

statements . With this feature, the programmer can see the data of any active object as she

single steps through the program . SAOSDB itself is constructed also as a SAOS on top of the

SAOS kernel and AOUIMS.

7 Acknowledgements

I would like to extend my sincere gratitude to my major professor, Dr. Toshimi Min our a.

Without his help and support, this work would not have been completed.

25

)

)

)

References

[BOOC91] Booch , G. Object Oriented Software Design, Benjamin/Cummings, 1991

[BUDD91] Budd, T. An Introduction to Object-Oriented Programming, Addison-Wesley, 1991

[CHOI91] Choi, S. and Minoura, T. Active object system for discrete system simulation, Proc.
Western Simulation Multiconference, 1991, pp. 209-215.

[CHOI92] Choi, S. and Minoura, T. User interface system based on active objects, Proc. 2nd
Symp. on Environments and Tools for Ada, Jan . 1992.

[GOLD80] Goldberg, A. and Robson, D. Smalltalk-BO: The language and its implementation,
Addison-Wesley, 1983

[KLEY88] Kleyn F . Minchael and Gingrich C. Paul. GraphTrace - Understanding Object
Oriented Systems Using Concurrently Animated Views, OOPSLA :191-205, 1988

[LIPP89] Lippman, S. B. C++ Primer, Addison-Wesley, 1989

[MINO93a] Minoura, T. and Choi, S. and Robinson, R. Structural Active-Object Systems
for Manufacturing Control, Integrated Computer-Aided Engineering 1(2):121-136,
1993

[MINO93b]

[MINO93c]

[MINO93d]

[MINO93e]

[MEYE 88]

[PURS91]

Minoura, T. and Pargaonkar, S. S. and Rehfuss, K. Structural Active-Object Sys
tems for Simulation, OOPSLA:338-345 , 1993

Minoura, T. and Choi, Sungoon . Active-Object User Interface Management Sys
tem , Proc. Tools USA 93, Prentice Hall:303-317, 1993

Minoura, T. and Choi, Sungoon. Structural Active -Object Systems Fundamentals,
Dept. of CS, Oregon State University, 93-40-04, 1993

Minoura, T. and Choi, Sungoon and Pareddy, Raghava Environments for Active
Object Systems, Dept . of CS, Oregon State University, 93-40-04, 1993

Meyer, B. Object-Oriented Software Construction, Pr entice- Hall, 1988

Purchase A. Jan and Winder L. Russel Debugging tools for object-oriented pro
gramming, Journal of object-oriented programming :10-27, Jun e 1991

[RUMB91] Rumbaugh, J., et al. Object-oriented modeling and design, Prentice-Hall:10-27,
1991

[STRO86] Stroustrup, B. The C++ Programming Language, Addison-Wesley, 1986.

26

