
Structural Active Object Systems for Mixed-Mode Simulation

Shirish S. Pargaonkar
Department of Computer Science

Oregon State University
Corvallis, Oregon 97331-4602

shirish@mist.cs.orst.edu

Abstract

A structural active-object system (SAOS) is a transition-based object-or.iented system

suitable for the design of various concurrent systems. A SAOS consists of a collection of

interacting structural active objects (SAOs) whose behaviors are determined by the transi

tion statements provided in their class definitions. Furthermore, SAOs can be structurally

and hierarchically composed from their component SAOs like hardware components. These

features allow SAOs to model components for circuit simulation more naturally than pas

sive objects used in ordinary object-oriented programming, including digital, analog, and

mixed-mode simulation. Each hardware object such as an AND gate or an integrator can

be represented as a SAO. In addition, structural and hierarchical composition allows us to

build complex components from elementary components. Prototype simulation programs

with graphical user int~rfaces have been developed as SAOS programs for digital, analog,

and mixed-mode circuit simulation.

I(ey Words and Phrases: digital simulation, analog simulation, mixed-mode simulation,

active-object system, concurrent object-oriented programming, structural composition, hi

erarchical composition, software IC, graphical user interface

1 Introduction

Object-oriented programming (OOP) [GOLD80, MEYE88, STRO86) is making fundamen

tal changes in software development. Such features as encapsulated classes, inheritance, and

polymorphism provided by OOP allow us to implement highly modular reusable software com

ponents. Furthermore, since objects which embody state and behavior resemble to real-world

objects better than traditional software modules, object-orientation provides a suitable frame

work for software development [BOOC91, RUMB91).

A structural active-object system (SAOS) is an object-oriented concurrent system using

transition (production) rules, equational assignment statements, and event routines for its be

havior description. Production systems have been known to be suitable for various concurrent

systems that require flexible synchronization [ZISM78). The SAOS approach integrates object

orientation and production rules. The key mechanism used by SAOSs is structural and hier

archical composition of structural active objects (SA Os). Structural/hierarchical composition

allows SAOs to be constructed from their component SAOs like hardware objects. Note that

hardware objects are active autonomous objects. Structural and hierarchical composition is

universally used in the design and implementation of such complex electronic and mechanical

devices as VLSI chips and automobiles.

The behavior of each SAO is determined in the transition statements provided in the class

definition of that SAO. Each transition statement is a transition rule, which is a condition

action pair, an equational assignment statement, or an event routine. Equational assignment

statements maintain simple invariant relationships among SAO states. Event routines are

activated by messages. Since the behaviors of SAOs are determined by user-programmed

transition statements, classes for new types of components can be easily implemented. Even

such devices as recorders can be constructed as SAOs.

One key feature of SAOs is that the transition statements provided for each SAO can

access, besides the state of that SAO, the states of the other SAOs known to the SAO through

its interface variables, thus realizing inter-object communication. We can establish desired

connections among SAOs by binding proper SAOs to interface variables. Interface variables

1

L

are like terminals of hardware components, and they are crucial for structural composition. The

SAOS approach primarily uses structural composition of SAOs whereas conventional OOP uses

procedural interfaces provided for passive objects . SAOs can be structurally and hierarchically

composed through interface variables since each SAO encapsulates its portion of control.

The idea of active objects originated with the first object-oriented language SIMULA

[BIRT73], where active objects were simulated by coroutines. Several object-oriented con

current systems have been designed since then. Actors introduced active computational agents

that carry out their actions in response to incoming messages [AGHA86]. ABCL objects

[YONE87] and Emerald objects [BLAC86] may be sequential processes that exchange mes

sages among them.

The major goal of the SAOS approach is to provide a single framework that can be used

throughout a software lifecycle. For this purpose, SAOSs are graphically represented by SAGS

diagrams. SAOS diagrams can be used as design documents from which executable code can

be generated and as user interfaces.

The SAOSs are written in a description language called Structural Active Object System

Descriptive Language (SAOSDL). This language can be compared with VHDL which is an

existing description language for digital circuits.

In VHDL , each operation of a discrete system is referred as a process. In SAOSDL, an

operation is represented by a transition statement. In VHDL, a signal is used to handle

communication between processes. Signals define data pathways between processes on which

values are passed. VHDL provides means for a process to express sensitivity to the value of a

data pathway. These data pathways are called sensitivity channels. There is a type associated

with every signal. Thus processes with different signals or data pathways can not communicate.

In SAOSDL, communication takes place between objects. Communication between two objects

is achieved when an object shows an interest in a state variable of another object by adding

an trigger element to the trigger list of that state variable. This is similar to the VHDL which

provides means to a process to express sensitivity to the value of a data pathway.

VHDL is not an object-oriented language. Although a hardware component is represented

2

as an entity in VHDL, we can not derive a subclass from an entity to define a new entity.

SAOSDL is an objet-oriented language. Thus it allows users to define a new component by

subclassing an existing component. A common feature between VHDL and SAOSDL is that

they both support structural composition which enables user to create new components from

existing subcomponents.

In VHDL a process is activated only when the value on the sensitivity channel changes.

Similarly in SAOSDL, a transition statement within an object is executed when the value of

the state variable to which an object has added a trigger element changes.

An object in SAOSDL is referred to as an entity in VHDL. An entity consists of an en

tity declaration and architecture body. Entity declaration provides the external view of the

component. It describes what can be seen from the outside, including the component's ports.

Architecture body provides the internal view. It describes the behavior of the structure of the

component. Similarly in SAOSDL, the class definition of an object consists of interface part and

body part. Interface part consists of member variables in the class definition of a component

and body part consists of the functions provided to define behavior of the component.

Another significant difference between the two is that VHDL is a purely textual language

whereas SAOSDL comes with graphical representations of components[LIPS90).

Design automation tools have become essential to current engineering activities. In the area

of digital systems design, a host of tools have been developed for schematic capture, layout,

design-rule checking, and simulation[BLOO87, DAVE86). The SAOS approach can integrate

all of these activities. A SAOS graphical editor can be used to create SAOS diagrams at the

schematic capture stage. Design-rules can be enforced by transition statements. Furthermore,

SAOS diagrams can be used as user-interfaces during simulation. In fact, our prototype SAOS

graphical editor allows the user to activate a system being layed out or being modified before

the design is complete.

Blending analog and digital simulation is generally believed to be diffi.cult[GOER88), and

the analog and digital portions of a system are often designed separately. Since both analog and

digital components such as logic gates, flip-flops, and integrators can be represented as SAOs,

3

l

t

I

mixed-mode simulators can be easily implemented as SAOSs. Besides modeling functionalities

of components, SAOSs provide dynamic (animated) graphical user-interfaces. SAOS user

interfaces are supported by the Active Object User-Interface Management System (AOUIMS)

[CHOl92b]. In fact, a SAOS program can be constructed by pick-and-place operations with a

graphical editor.

Section 2 introduces the SAOS approach for digital-circuit simulation by using simple D

latch and D-flipflop circuits as examples. An analog circuit simulator as a SAOS is described

in Section 3. Section 4 discusses the details of mixed-mode simulation. Finally, Section 5

concludes the report.

4

2 Digital Circuit Simulation

In this section, we first discuss how a DLatch can be implemented as a SAOS program and

explain its translated c++ code. We then show an edge-triggered D flip-flop implemented as

a SAOS program.

. .

q

elk

ond2
[I -q

•

0 fi7 135

Figure 1: D Latch.

Fig. 1 shows a DLatch. The circuit consists of an SR latch composed of two Nor gates nor1

and nor2, and a clock gating circuit composed of two And gates and1 and and2. The clock

signal elk and the data signal d are input signals, and the complementary signals q and q are

output signals. If, at some time, d = 0 and elk is high, we haver= l, s = O, q = 0, and q = l.

Similarly, if d =land elk is high, we haver= 0,s = 1,q = 1, and q = 0. If elk is low, the SR

latch is disconnected from d.

Fig. 2 gives the SAOS class definition for a DLatch. In general, a SAOS class definition

consists of the following three parts:

1. An interface part preceded by the keyword public: as in c++ specifies the input ports

and the output ports. An input port can be connected to an output port of another

component as an input pin of a hardware component can be connected to an output pin

of another hardware component.

5

I

I ...

class DLatch { // class definition for a D-latch

}

public:
Int* elk;
Int* d;
alias q = nor1.output;
alias qNot = nor2.output;

private:

// input port for clock
// input port for D-latch input
// output port for D-latch output
// output port for negated D-latch output

Not not
And and1

and2
Nor nor1

nor2

with {input= d};
with {input! = &:not.output, input2 = elk};
with {input! = elk, input2 = d};
with {input! = &:and1.output, input2 = &nor2.output};
with {input! = &:nor1.output, input2 = &and2.output};

Figure 2: SAOS class DLatch.

2. A class body contains a set of instance variables. These instance variables represent the

subcomponents of an instance of the class.

3. A behavior description specifies the functionality added at this class level.

The interface part of class DLatch specifies that a DLatch has input ports cl and d, and

that instance variables output of gate nor1 and nor2 become the output ports q and qNot,

respectively .

The body of class DLatch consists of one instance not1 of class Not, two instances and1

and and2 of class And, and two instance nor1 and nor2 of class Nor. These components

are statically interconnected by with clauses. For example, input port input of gate not is

connected to an input port d. Input ports input! and input2 of gate and1 are bound to

output of gate not and to the elk, respectively, and so on.

In the case of class DLatch, the behavior description is empty. Its behavior is determined

completely by its interconnected subcomponents. In general, a SAOS class can include a

behavior description as we see in later examples.

We now show the definitions of the classes used by class DLatch. The class Gate shown in

Fig. 3 is the base class for such gate classes as And, Nor, and Not. It defines the output value

of a gate as the output port output.

6
::

I

class Gate {
public :

Int output;
}

class And: public Gate {
public:

Int *input1, *input2;
private:

// base class for classes And, Nor, Not, etc.

// gate output value, output port

Figure 3: SAOS base class Gate.

// class for AND gates

// input ports for input values

always output= (input1->output && input2->output);
}

Figure 4: SAOS class And.

The class And in Fig. 4 is derived from class Gate. It inherits output port output from

class Gate. In addition, it has input ports input1 and input2 as interface variables, which

can be bound to the output ports ouptut of other gates. This SAOS class does not use any

subcomponents. The always statement defines the behavior (functionality) of an And gate.

Whenever any one of the input values changes, the always statement updates the value of

output to the outcome of logical AND operation on the two input values.

class Nor : public Gate {
public:

// class for NOR gates

Int *input1, *input2; // input ports for input values
private :

always output= not (input1->output I I input2->output)
}

Figure 5: SAOS class Nor.

The class Nor shown in the Fig. 5 is defined in a similar way. Class Nor differs from class

And only in its behavior specification defined by its always statement. The definition of the

class Not is shown in Fig. 6.

A SAOS program discussed above is translated into a c++ program. Our prototype SAOS

translator can perform this translation. However the c++ code we show here was hand-coded.

7

l

class Not : public Gate {
public:

// class for NOT gates

Int *input; // input port for input value
private:

alvays output= not (input->output);
}

Figure 6: SAOS class Not.

In order to illustrate the operation of a structural active-object (SAO), we explain the details

of the class And translated into C++.

class Gate: public
public :

Segments { // base class for classes And, Nor, Not, etc.

Int output;
Gate(int n) :

// output value, output port
Segments(n) {};//constructor

};

Figure 7: c++ class definition of Gate.

Fig. 7 shows the c++ definition of class Gate. Its parent class Segments provides graphical

representation for gates. The shape of each gate type is formed by a set of line segments.

class And : public Gate {
public:

Int* input1;
Int* input2;
And() : Gate(4) {};
virtual void initialize();

void vheninputChanged();
}

// class for AND gates

// input port 1
// input port 2
// constructor
// initialization routine
// functionality

Figure 8: C++ class definition of And.

Class And shown in Fig. 8 is derived from class Gate. The type Int designates a condition

variable for an integer. A condition variable maintains a list of pointers to functions, called

a trigger list. Whenever the value of a condition variable is updated, the functions pointed

to by the elements of the trigger list are executed. In the case of class And, the function

vheninputChanged() shown in Fig. 9 is activated whenever any of the input values changes.

8

void And::wheninputChanged() {
output= (int) *inputl && (int) *input2 ; II compute output

}

Figure 9: Functionality definition of an And gate.

In this way, the behavior specified by the always statement is implemented.

void And::initialize() {
Gate::initialize(); II base class initialization
II trigger setups
PROC pf= PROC (&And::wheninputChanged)) ;
inputl->tl. addTE(this, pf, "wheninputChanged() 11);

input2->tl. addTE(this, pf, "wheninputChanged() 11);

}

Figure 10: Initialization function of an And gate.

The major task of function initialize () shown in Fig. 10 is to set up triggers for function

activations. Since function wheninputChanged () must be activated whenever any of the input

values changes, a trigger is added to each of the inputs by an addTE() function .

class DLatch: public Segments {

}

public :
Int* elk;
Int* d;
Int q;
Int qNot;
DLatch() : Segments(O) {};
void initialize();

private :
VNot notl;
And andl , and2;
Nor norl, nor2;

II input port for the clock

II input port for the signal
II output value at Q
II output value at Q
II constructor

II initialization

II Not gate with vertical orientation
II And gates used for gating circuit
II Nor gates used for SR flip-flop

Figure 11: c++ class definition of a DLatch.

We now show the C++ definition of class DLatch in Fig. 11. First, interface variables such

as elk, d, q and qNot are provided. Thus, an external clock can be connected to elk, an input

external signal can be connected to d, and output q of DLatch can be connected as an input of

9

another external component. Then the subcomponents that comprise a DLatch are declared.

The class definition also includes the declaration of function initialize (). Its major function

is to interconnect subcomponents as shown in Fig. 12.

void DLatch::initialize() {
Segments::initialize();

not1. input = d;
and1.input1 = &mot 1 . output;
and1. input2 = elk;
and2.input1 = d;
and2.input2 = elk;
nor1.input1 = &and1. output;
nor1. input2 = &nor2.output;
nor2.input1 = &and2.output;
nor2.input2 = &nor1.output;

}

// parent class initialization

// provide connections

Figure 12: Initialization of a DLatch.

class DLatchSys : public
public:

DigiClock clk1;
SigGen
DLatch

sgn1;
dlch1;

TopLevel {

DigiRecorder recrd1, recrd2, recrd3;

}

DLatchSys(char* n)
void initialize();

TopLevel(n) {};

// a clock
// a signal generator
// a DLatch
// various recorders

Figure 13: c++ class definition of circuit containing a DLatch.

Fig. 13 shows the definition of a circuit that was used to test a DLatch. In order to

construct this SAOS program, we have defined three additional classes DigiClock, SigGen,

and Recorder. A signal generator that generates square wave with the user-specified duty

cycle is defined by c++ class SigGen. Class DigiClock is identical to class SigGen. To plot a

signal of type Int, a DigiRecorder can be used. If an analog signal, which is of type Float,

is to be plotted, a Recorder must be used. Fig. 14 specifies the interconnections among these

components as shown in Fig. 1.

10

// external clock output is connected clock input port
dlch1.clk = &clk1.output;
// signal generator output is connected to signal input port
dlch1.d = &sgn1.output;
// external clock output is connected to the clock input port
recrd1.input = &clk1.output;
// signal generator output is connected to recorder input
recrd2.input = &sgnl.output;
// output of the D latch connected to recorder input
recrd3 . input = &dlch1.q;

Figure 14: Interconnections among the components in DLatchSys.

It is important to emphasize that we have constructed a recorder also as a SAO. To connect

a component to a recorder, its output is equated to the input of a recorder. Its behavior is

implemented by a function aosTimeChanged() which is executed for every SAOS time change .

After a wave form reaches the end of a recorder time span, the time span is shifted halfway

and plotting starts from the middle of the recorder .

. ' .

E] ~1:
0 fi1 135

~1:
0 fi1 135

~1:
0 fi1 135

Figure 15: D Flip-Flop.

We have also implemented a negative-edge-triggered D flip-flop as shown in Fig. 15.

The C++ class definition of DFlipFlop is shown in Fig. 16. It consists of six NAND gates

and ports elk for external clock input, d for external signal input, and output for the output.

ANAND gate is defined by the class Nand. An user can define a NAND gate with any number

11

class DFlipFlop public Segments {

}

public:
Int* elk;
Int* d;
Int output;

DFlipFlop() : Segments(O),

void initialize();
void wheninputChanged();

private:

II input port for clock
II input port for signal
II D flip-flop output
II constructor
n1a(2), n1b(2), n2a(3), n2b(2),
n3a(2), n3b(2) {};
II initialization routine
II functionality

II various NANO gates used to build a D flip-flop
Nand n1a, nib, n2a, n2b, n3a, n3b;

Figure 16: c++ class definition of a D flip-flop.

of input ports by specifying it in its constructor. For example, as shown in Fig. 16, we have

defined a NAND gates n1a with two input ports and n2a with three input ports. Although,

we have defined a C++ class And shown in Fig. 8 with two input ports, it can be redefined or

sub classed to accept variable number of inputs similar to the class Nand. The D flip-flop works

as follows: The data present when clock is high is transferred to the output of the flip-flop

when clock becomes low. When clock makes a transition from 1 to O, the output becomes O if

input signal is 0, and output becomes 1 if input signal is 1.

class DFFCircuit : public TopLevel {

}

public:
DigiClock
SigGen
DFlipFlop

clock;
siggen;
dff;

II clock
II
II
II

signal generator
D flip-flop
recorders to plot timing diagrams

Recorder recorder1, recorder2, recorder3;

void setWindowSize();
DFFCircuit(char *n) (n);
void initialize();

Figure 17: c++ class definition for a circuit containing D flip-flop.

Fig. 17 shows the definition of a circuit which has a D flip-flop.

12

// external clock output is connected clock input port
dff . clk = &clock .output;
// signal generator output is connected to signal input port
dff .d = &siggen.output;
// external clock output is connected to the clock input port
recorder1 . input = &clock.output ;
// signal generator output is connected to recorder input
recorder2.input = &siggen . output ;
// output of the D flip - flop connected to recorder input
recorder3 . input = &dff . output ;

Figure 18: Interconnections among the components of a circuit containing a D flip-flop.

Fig. 18 shows how these components are connected to construct the circuit. Similar to the

DLatch, the clock input of the D flip-flop is connected to the digital clock and signal input is

connected to the signal generator. Also, the three recorders are connected to the clock, signal

generator, and output of the D flip-flop.

Structural composition, a key feature of SAOS, proves very useful in building complex

components and circuits. This was demonstrated by building components such as D latch and

D flip-flop from subcomponents and using them to construct circuits.

13

l

3 Analog Circuit Simulation

We now discuss how an analog simulator can be implemented as a SAOS. The major difference

between an analog simulator and a digital simulator is that integrators used by an analog

simulator must recompute their output values when system time changes as well as their input

values change . The circuit shown in Fig. 19 simulates a system represented by the differential

equation: y = 2 * (5 - y - 0.5y).

~ Analog Circuit Simulation •

E]
10.00

s.oo

o.oo

-5.00

-10.00
108

Figure 19: Analog simulator.

class AnalogSim: public TopLevel { II analog simulator class
public :

}

FloatSource src; II source providing reference value 5.0
Adder adr; II an adder to add three input values
RScaler scl1, scl2; II reverse coefficient scalers
Scaler scl3;
Integrator integ1,
Recorder recrdr;

AnalogSim(char* n)
void initialize();

II coefficient scaler
integ2; II integrators

II analog signal recorder

TopLevel(n), adr(3) {}; II constructor

Figure 20: Analog simulator.

Fig. 20 gives the SAOS class description of the analog simulator. It uses a reference-value

14

source src, an analog signal adder adr, three scalers scl1, scl2, and scl3, two ingegrators

integ1 and integ2, and an analog signal recorder recrdr. These components are connected as

specified in Fig. 21. The output of a component is connected to the input of another component

by assigning the address of the output to the pointer variable pointing to the input. The initial

values of the Integrators are assigned as integ1. ini tVal = 0 and integ2. ini tVal = 0.

adr. input [O] = &:src.output; II source output connected to inputO of adder
adr. input [1] = &:scl2.output; II scaler2 output connected to input! of adder
adr. input [2] = &:scl3.output; II scaler3 output connected to input2 of adder
scl1. input = &:adr.output; II adder output connected to scaler 1
integ1. input = &scl1.output; II scaler! output connected to integrator input
integ2.input = &integ1.output; II integ1 output connected to integ2 input
scl2.input = &:integ1.output; II integrator! output connected to scaler2 input
scl3.input = &integ2.output; II integrator2 output connected to scaler3 input
recrdr.input = &:integ2.output; II integrator2 output connected to recorder

Figure 21: Interconnections among the components.

When the output value v of a component changes, all the components to which it is con

nected receive triggers to recompute their output values immediately by using the new value v.

These components may further send triggers to other components to recompute their output

values, propagating the changes. This is accomplished by making the output of each component

a variable of type Float. A Float variable maintains a float value and a list of the pointers

to the functions to be executed when that value changes. In the case of an Integrator, its

output is recomputed whenever system time aosTime changes as well as when its input value

changes.

We now describe how vanous components used by analog simulators are implemented.

Fig. 22 gives the definition of C++ class Integrator. Variable input is a pointer to output

of another analog component, and variable output is the output of an Integrator. An

Integrator maintains two successive input values to be used by the trapezoidal integra

tion method. Variable newinVal maintains the input value at time inputTirne, and variable

oldinVal maintains the input value at time inputTirne -1. Similarly, variable sum maintains

the integrated value at time inputTirne, and variable oldSum maintains the integrated value

at time inputTirne -1.

15

class Integrator public Segments {
public:

}

Float* input;
int inputTime;
float newinVal;
float oldinVal;
float
float

sum;
oldSum;

Float output;
Float initVal;
Integrator();
void initialize();
void integrate();

II input port pointer
II sampling time of newinVal
II
II
II
II
II
II
II
II
II

input value at inputTime
input value at inputTime - 1
integrated value
integrated value at inputTime - 1
output port
initial value
constructor
initialization routine
performs integrations

Figure 22: c++ class Integrator.

void Integrator::integrate() { II integrator functionality definition

};

if (aosTime && aosTime -- inputTime + 1) { II new system time
oldSum = sum; II save integrated value at aosTime - 1
oldinVal = newlnVal; II move old new input value to old input value
inputTime = aosTime; II update input time

}

newlnVal = *input;
if (aosTime) {

II read current input value
II not initiation time

float del ta0ut = (oldinVal + newinVal) I 2.0 * DELTA; II compute delta
sum= oldSum + delta0ut; II perform integration
if (absf(sum - output)> EPSILON) II propagate output value

output= sum; II if change is significant
}

Figure 23: Functionality definition of an Integrator.

16

Fig. 23 shows the implementation of the integration algorithm based on the trapezoidal

method. The function integrate() is activated either when aosTime is incremented or when

the input value of the Integrator changes. The amount of change to the integrated value is

computed by the line:

float deltaOut = (oldinVal + newinVal) I 2.0 * DELTA;

At any given aosTime, function integrate() may be activated more than once. In each suc

cessive activation, presumably, a more accurate integrated value sum will be recomputed. Note

that the incremental integrated value del taOut is added to oldSum, which is the integrated

value at aosTime -1, and not to sum.

If the computed integrated value sum is always set to output, integrate() may be acti

vated too many times at each aosTime if a simulated circuit has a feedback loop. In order to

prevent this problem, if the difference between sum and output is within the specified limit

EPSILON, output of Integrator, is not set to sum. Thus the value of EPS!tON, set by the user,

controls the time for convergence and the accuracy of the integrated value of an Integrator.

class Adder : public VCObject {
public :

Float** input;
Float output;
int ninputs;

Adder(int);
void initialize();
void wheninputChanged();

II array of input ports
II output value
II number of inputs, specified by user

II constructor
II initialization routine
II perform addition

Figure 24: c++ class definition Adder.

The class Adder shown in Fig . 24 is used to create Adders, each of which computes the sum

of its multiple input values. The number of the inputs must be specified by the user as the

parameter of the constructor . The function wheninputChanged() shown in Fig. 25 performs

the addition of the input values. Therefore, it must be added to the trigger list of the Float

variable pointed to by each input and act ivated whenever the value of that variable changes.

17

void Adder::wheninputChanged() { II functionality of an Adder
float sum= O;

};

for (inti= O; i < ninputs; ++i)
sum+= ((float) *input[i]);

output= sum;

Figure 25: Functionality definition of an Adder.

A Scaler provides a multiplication factor multFactor whose value can be set by the user.

The value can be positive or negative. The value of output is a product of mulFactor and the

value of the Float variable pointed to by input. As in the class Adder, the value of output, is

recomputed whenever the input value changes. Class RScaler is a subclass of the Scaler. The

only difference between these two classes is their graphical representations. In the example

shown in Fig. 19, the multiplication factors of the scalers are set as scl1.multFactor = - 1. O,

scl2.multFactor = - 0.5, and scl3.multFactor = 2.0.

The class FloatSource supplies a constant float value. It is derived from the parent class

Source. A FloatSource does not have an input port. The user can specify the value supplied

by the FloatSource as src. output = 5 . 0.

A Recorder is used to plot the output value generated by Integrator integ2. It is also

implemented as a SAO in the same way as a DigiRecorder.

18

4 l\1ixed-Mode Circuit Simulation

In the preceding sections, we discussed how digital and analog simulators can be implemented

as SAOS programs. As we explained in the implementation of analog components, transition

statements defining the behaviors of SAOs can be activated both by events and system time

changes . Therefore, it is straightforward to implement mixed-mode simulators as SAOSs, where

digital components are triggered by events, and analog components primarily by changes of

the system time.

In this section we show an example of a mixed-mode simulator . The circuit shown in

Fig. 26 consists of an analog part, a digital part, and an interface between these two parts .

The analog part consists of a sine-wave generator, and the digital part consists of a modulo-16

ripple counter . A comparator is used as the interface between the analog and digital parts.

~ Mix-Mode Simulation • r
c:ooparotcr lrf)Ut

E] 2. 00

1.00

~ o.oo

I ~ -1.00

-2.00
0 40 80

-•tor output

0

Figure 26: Mixed-mode simulation circuit.

Fig. 27 gives the description of the circuit. The analog part uses instances of the classes

Integrator, Scalar, and Inverter. The digital part uses instances of the classes JKFlipFlop

and IntSource, and the interface part uses instance of the class Comparator.

The comparator used as the interface between the analog and digital parts functions as

follows. A comparator provides its output value at two fixed levels, logical O and 1, depending

on whether its input value Vi is larger or smaller than the reference value Vr, In our example ,

19

r
I

class MixSimSys : public TopLevel {
public:

I I analog part
Integrator
Scaler

integ1, integ2;
sell, scl2;

Inverter inv;
// interface between analog and digital part
Comparator comp;
// digital part
IntSource src;
JKFlipFlop jkf1, jkf2, jkf3, jkf4;
// recorders
Recorder recrd1;
DigiRecorder recrd2;
MixSimSys(char *n) TopLevel(n) {};
void initialize();

}

Figure 27: Class definition for a mixed-mode simulation circuit.

when the output value of the sine wave generator crosses 0 and becomes positive, the output

of the comparator changes from 0 to 1. When the transition occurs in the opposite direction,

the output value changes from 1 to 0. Since we assume that the Comparator is ideal, the range

of uncertainty is null.

class Comparator: public Segments {
public:

Float* input;
Int output;
Float refVal;
Comparator(): Segments(0) {};
void initialize();
void wheninputChanged();

};

// input port
// output value
// reference value for comparison
// constructor
// initialization
// functionality

Figure 28: C++ class Comparator.

As you can see in the definition of c++ class Comparator, its input port is a pointer to a

variable of type Float, and its output port is a variable of type Int. Therefore, the output of

an analog component can be connected to the input port, and the output port to an input port

of a digital component. The variable refVal stores the reference value Vr of a Comparator ,

20

f

whose behavior is shown in Fig. 29. The reference value of a Comparator can be set by the

user as comp. refVal = 0

void Cornparator::vhenSignalChanged() {
if (*input> refVal)

output= 1; II output is high vhen Vi is above Vr
else

output= 0; II output is lov vhen Vi is belov Vr
}

Figure 29: Functionalit y of a comparator .

Before we discuss how the digital part of this circuit works, let us look at the JK flip-flop

and how its behavior is implemented. Class JKFlipFlop defines a JK flip-flop. Fig. 30 shows

the implementation of the behavior of the JK flip-flop in the function vhenClockChanged().

void JKFlipFlop::vhenClockChanged() {

};

if (*elk) { II outputs change only vhen clock is lov
switch (*inputJ) {

}

}

case 0:
switch (*inputK) {

case 0:
break;

case 1:
outputQ = 0;
outputQNot = !(outputQ);

}

case 1:
switch (*inputK) {

case 0 :
outputQ = 1;
outputQNot = !(outputQ);
break;

case 1:
outputQ = !(outputQ);
outputQNot = !(outputQ);

}

II J = o, K = o
II so Q and QNot do not change

II J = o. K = 1
II so Q = o and QNot = 1

II J = 1. K = o
II so Q = 1 and QNot = o

II J = 1, K = 1
II so Q and QNot inverse

Figure 30: Functionality definition of a JK flip-flop.

21

The modulo-16 ripple counter forms the digital part of the circuit . Four JK flip-flops are

connected in the toggling mode with J = I(= 1. The input signal whose cycles are to be

counted is applied to the clock input elk of the first flip-flop. The output ij of the first flip-flop

is connected to the clock input elk of the second flip-flop, the output ij of the second flip-flop

is connected to the clock input elk of the third flip-flop and so on. The JK flip-flop changes

its state when and only when the its clock input value changes from 1 to 0. During the initial

state of the counter, output values q of all JK flip-flops are 0. The sequence of input pulses

takes the counter through all possible 24 = 16 states so that after the sixteenth clock pulse,

counter returns to its initial state.

The class IntSource supplies a constant value of O or 1 specified by the user. It is derived

from the parent class Source. A IntSource does not have an input port.

The analog part consisting of Integrators integ1 and integ2 generates a sine wave of

amplitude 1. It is possible to change the amplitude of the wave form by changing the initial

conditions of the Integrators and the frequency of the wave form by changing the mul tFactors

of the Scalers.

The class Inverter inverts the polarity of analog signal. This is implemented by multiply

ing its input value by -1 to generate an inverted output value.

Fig. 26 shows two recorders. The top recorder plots the sine wave and the bottom recorder

plots the output of a comparator. It is possible to observe and compare the outputs of each

JK flip-flop by connecting them to respective recorders.

22

l

J

I

5 Conclusions

The structural active-object system (SAOS) approach provides a new framework for developing

digital, analog, and mixed-mode simulation programs. A SAOS can be constructed from its

component structural active objects (SA Os) by structural and hierarchical composition. SA Os

are self-contained and active, and their behaviors are defined by the transition rules, always

statements, and event routines provided in their class definitions. They interact with other

SAOs connected through their interface variables, which correspond to terminals of hardware

components.

We have successfully implemented simulators for digital, analog, and mixed-mode circuits

as SAOS programs, building such basic digital circuit components as AND, OR, NOT, NOR,

EXOR, NAND gates, D flip-flops and JK flip-flops and such analog components as integrators

and comparators. Although the components we have designed are ideal, future versions can

be made more realistic by including such features as gate delays.

We have developed various prototype SAOS programs and realized the following benefits

of the SAOS approach.

1. Structural and hierarchical composition allows us to construct complex software compo

nents from their basic building blocks as though they were indeed hardware components.

The resultant system descriptions, especially in SAGS description language (SAOSDL),

closely reflect the circuits simulated and are very concise.

2. SAOS programs can be written either in SAOSDL or in C++. In defining classes for

new SAOs, these languages allow us to use such features of object-oriented languages

as inheritance and virtual functions. These features are not available in other hardware

description languages such as VHDL.

3. It is easy to provide animated graphical representations of the systems simulated by using

the SAOS-based graphical user interface management system called AOUIMS [CHOI92].

The implementation of AOUIMS itself follows the SAOS approach, and even components

23

such as recorders can be implemented as SAOs. Although we have merged the graph

ical representation and behavior of a component in its class definition, it is possible to

implement them separately .

4. A SAOS graphical editor allows us to construct a graphical representation of a SAOS

program, from which the textual SAOS program can be generated. Furthermore, since

SAOs are modularized well, it is possible to create a SAOS that allows reconfiguration

while it is operating.

We consider that the SAOS approach is a new paradigm for programming object-oriented

concurrent systems. It is especially useful for simulation systems.

24

L

References

[AGHA86) Agha, G. A. Actors: A model of concurrent computation in distributed systems.
MIT Press, 1986.

[BIRT73) Birtwistle, G., Dahl, 0. J., Byhrhang, B., and Nygard, K. SIMULA BEGIN,
Auerbach, 1973.

[BLAC86) Black, A., Hutchinson, N., Jul, E., and Levy, H. Object structure in the Emerald
system. Proc. Conf. on Object-Oriented Programming, 1986, pp. 78-86.

[BLOO87) Bloom, M. Mixed-mode simulators bridge the gap between analog and digital
design, Computer Design, v26, January 15, 1987, pp51-63

[BOGA83) Bogard, T.F. Computer Simulation of Linear Circuits and Systems, John Wiley
and Sons, 1983

[BOOC91) Booch. Object Oriented Software Design, Benjamin/Cummings, 1991

[CHOI92) Choi, S. and Minoura, T. User interface system based on active objects. Proc. 2nd
Symp. on Environments and Tools for Ada, Jan. 1992.

[DAVE86) Dave, M. Mixed-mode Simulation on a PC-based workstation, Electronics and
Power, v32, July 1986, pp523-526

[GOER88) Goering, R. A full range of solutions emerge to handle mixed-mode simulation,
Computer Design, v27, February 1, 1988, pp 57-65

[GOLD80) Goldberg, A., Robson, D. Smalltalk-BO: The language and its implementation,
Addision-Wesley, 1983

[KOHA88] Kohavi, Z. Switching and Automata Theory, McGraw-Hill, 1988

[LIPS90) Lipsett, R., Schaefer C., Ussery, C. VHDL: Hardware Description and Design,
Kluwer Academic Publisher, 1990

[MEYE88] Meyer, B. Object-Oriented Software Construction, Prentice-Hall, 1988

[RUMB91] Rumbaugh, J., et al. Object-oriented modeling and design, Prentice-Hall, 1991

[STRO86) Stroustrup, B. The C++ Programming Language, Addison-Wesley, 1986.

[TAUB81] Taub, H., Schilling, D. Digital Integrated Electronics, McGraw-Hill, 1981

[YONE87] Yonezawa, A., Shibayama, E., Takada, T., and Honda, Y. Modeling and pro-
gramming in an object oriented concurrent language ABCL/I. In Object-Oriented
Concurrent Programming, Yonezawa, A. and Tokoro, M. (Eds), MIT press, 1987,
pp. 55-90.

[ZISM78] Zisman, M. D. Use of production systems for modeling asynchronous, concurrent
processes. In Pattern-Directed Inference Systems, Waterman, D.A. and Hayes
Roth, F. (Eds), Academic Press, 1978, pp. 53-69.

