
)

· I

r

i • i

, I
i

CO-EXISTING DATA BASE MANAGEMENT SYSTEMS

(CODASYL DBTG and System R Approaches)

Hamid H. Mirza

30 November 1979

OREGON STATE UNIVERSITY

Department of Computer Science

)

ABSTRACT

The paper addresses the problem of communication between co-existing

DBMSs. Specifically, two data models--that is, the Network and Rela

tionals models--have been analyzed using their respective implementa

tions CODASYL DBTG and System R.

Feasibility of communication is discussed and mapping mechanisms are

suggested between the two DBMSs at the following levels:

- Data Model

- Data Definition Language

- Data Manipulation Language

- Access method

Restrictions arising from the individual data models in the mapping

process have been outlined, in particular the levels at which communi

cation takes place between the two systems: from Network to Relational

at the query language level and the converse at the access method level.

)

J

TABLE OF CONTENTS

I. INTRODUCTION
The Multi-model Environment. .
The ANSI/X3/SPARC/SGDBMS Architecture. .
Some Basic Concepts Underlying Data Models
The Network and Relational Data Models

II. MODEL DEFINITION AND TRANSLATION.
DBMS Specifications:

CODASYL DBTG. . .
System R.

Implementational Aspects:.
CODASYL DBTG.
System R ..

Database Transformation versus Simulation.
Model Equivalency: .

Model View ..
Implementation View .

Model Translation:
Relational (System R) database with a

Network (CODASYL) sub-schema.
Network (CODASYL) database with a

Relational sub-schema .
III. LANGUAGE DEFINITION AND TRANSLATION

Definition Languages:.
CODASYL DBTG (DDL).
System R (SEQUEL)

Manipulation Languages:.
CODASYL DBTG.
System R. . .

Query Equivalence.
Translation Strategy:.

CODASYL DBTG to System R.
System R to CODASYL DBTG.

Limitations.

IV. CONCLUSION.

l

l
3
7
8

13
13
13
18

23
24
28

30
31
31
33
40

41

45

48

49
49
57

62
62
68

73
81
81
86

93

95

'
I . INTRO DUCT! ON

The Multi-model Environment

Rapid advances in the infonnation-processing technology, both in tenns of

cost and speed, have made accessible to organizations vast quantities of

data to be used as information. This development has its negative aspects,

however, since the users are not insulated from the vagaries of a changing

technology. Providing a logical data-view independent of much of its im

plementational details has been a solution to the enormous expenditure in

volved in modifications to existent software.

Data Base Management has come to be recognized as a comprehensive disci

pline for providing the medium by which information processing may de-

) velop with minimal cost and disruption inherent in such a process.

In the recent past data models or the logical views of data have been the

subject of considerable research effort. Many data models have been pro

posed and implemented, each having its own concepts and terminology. Even

though the underlying objective has been the same, each data model ap

proach differs substantially from the others in:

their definition of the logical data base structure,

what constitutes a data.,..i ndependent query language,

access paths provided,

encoding the information,

storing the information physically.

As long as different application needs exist and different commerci~ally

)

available DBMSs are to be found, the proliferation of Data Base Systems

shall continue. In fact, it has been suggested as a healthy trend in de

veloping an optimal canonical/meta-model towards which these varying ap

proaches may eventually converge.

In this paper the problem of cooperation between two heterogenous DBMSs

is addressed--specifically two of the more accepted approaches, that is,

the Relational and Network views of modelling data. Typically, such an

exchange would take place with two local implementations communicating

via a computer network or users of one of the data models interfacing to

an implementation of the other model. In any case, such intercommunica

tion requires an analysis of the ramifications of translation and mapping

of the model and its associated data sublanguage.

In general, communication between DBMS's may be established at a number

of levels:

Interactive query level.

Host language level.

Access method level.

Microscopic (data storage level).

Communication at one level does not exclude communication at another

level, e.g., since queries are compiled into access requests, communi..,.

eating at the access method level may be an indirect way of query- level

communication.

The last choice, of course, would burden the user with a mass of details

relating to the actual data storage and bypassing the system security

controls as well as the facility of any optimized access paths. The

2

cost effectiveness in terms of both system resources and user time would

dictate eventually the level of communication chosen without affecting

the semantics of the DBMS model addressed.

In the modelling approach of two systems, such as the Relational and Net

work, the underlying philosophy and implementational aspects (e.g., on the

network model and its implementation DBTG the DDL and DML are designed for

a logical structure that closely corresponds directly to the storage

structure and its related access paths) are diametrically opposed to each

other. Which brings us to finding a more general method of characterizing

a DBMS such that it lends itself to coexistence in a multi-model environ

ment.

The ANSI/X3/SPARC/SG DBMS Architecture

) The American National Standards Committee on Computers and Information Pro

cessing (ANSI/X3) established a Study Group of its Standards Planning and

Requirements Committee (SPARC) charged with investigating the subject of

Data Base Management Systems with the objective of determining which, if

any, aspects of such systems are suitable candidates for the development

of American National Standards. To provide a context for the investiga

tion, a working definition of the discipline of Data Base Management was

viewed as 11records, fields, files, sets, and the descriptions of all

these, and all the indices, mapping techniques, access methods, file or

ganizations and end user languages. 11

The architecture of DBMS'· s recommended is partly based on the concept of

'nested machines.' The outermost machine is most closely related to the

3

)

)

real world view of and most closely aligned to the functionality and sup

port of the data base. As we descend inwards through successive machines,

we pass the various logical views of the data base on to its physical at

tributes until ultimately we arrive at the actual secondary storage de

vices. The need for data manipulation interfaces for multiple classes of

users and multiple data declaration interfaces for achieving data inde

pendence has been recognized and defined in the proposed architecture.

A three-schema approach has been suggested:

Conceptual Schema: embodies the 'real world' view of the enterprise

being modelled in the data base. The enterprise is described in

terms of the entities with which the enterprise is concerned, the

attributes by which they are described and the relationships existing

between them. It also provides the basis for integrity and security

declarations imposed by the enterprise on the various users and a

data description basis for restructuring.

The objects utilized are:

attributes (conceptual fields)

conceptual groups

conceptual r~cords

conceptual plexes

conceptual record set

conceptual data base

External Schema: Various users of the data, base operate on subsets

of the total enterprise model relevant to their particular needs.

These subsets contain the name.s and characteristics of th.e objects

4

)

visible to a family of applications as well as the associations and

structures in which they are related and the operations permitted on

them.

The objects defined are:

external fields

external groups

external record

external plex

external record-set

Internal Schema: describes the 'machine view' of the data specifying

the stored representation of the enterprises information.

The
I

objects defined are:

internal model space

internal field data (element)

internal field aggregates

internal record (stored record)

internal record aggregate

space extent

form extent

internal record-set (data set}

internal data base

data bank

These objects provide a precise definition of how the internal data

base is represented, organized, stored and accessed.

The external and internal schemas must be consistent with and derjvable

5

_).

from the conceptual schema. This is accomplished by specifying mappings

between the conceptual and the external, internal schemas. Each schema is

specified by its related administrator and the mapping functions main

tained and executed by the related schema processor. Figure l i 11 ustrates

this architecture.

DBTG

B
'-

" "

./
I

EXTERNAL
SCHEYJ.A
PROCESSOR

11.
I
I
~

CONCEPTUAL
SCHEMA
PROCESSOR

l

*
INTERNAL
SCHEMA
PROCESSOR

I \
I

' I \,

' ~

User 2

,,

B
DBMS 1
(NETWORK)

EXTERNAL
INTERFACE

CONCEPTUAL
IHTERFACE

INTERNAL
INTERFACE

DATA BASE

User 3

- --

FIGURE l

6

EXTERNAL
SCHEMA
PROCESSOR

~

I

CONCEPTUAL
SCH&TA
PROCESSOR

I

r
¥

INTERNAL
SCHEfV"lA
PROCESSOR

I ' I ' I '\
I '

DBMS 2

S:i!JQUEL

User 4

')l

(RELATIONAL)

)

Some Basic Concepts Underlying Data Models

In viewing data, people logically organize their view of the real world

at various levels. At one level they perceive the real world; at another

they interpret (or give meaning to) the real world. Finally, they record

and describe their ideas of the real world on some physical medium, such

as data in computers.

When giving meaning or in order to understand independent objects of the

real world, we interpret them as sets of entities or entity sets. Entity

sets correspond to objects that have an independent existence and can be

meaningfully considered by themselves.

An entity set can be meaningfully described in terms of its attributes.

Although there may be a real distinction between an object and its charac

teristics in the real world, this distinction becomes a bit vague when

representing ideas about the real world by attributes and entity sets.

For each entity set, its attributes can assume certain values. Data

values by themselves say nothing meaningful; it is only when a relation-

ship is established between members of value sets that some information

is derivable, e.g., sets of street name values and city name values do

not really communicate anything until one can relate the street name to

a city name. A relationship then is a correspondence or mapping between

members of two sets. Relationships may be l :1, l :Nor N:M correspondence

between the members of the two sets. It is useful to distinguish between

two types of relationships:

In one case when we are considering characteristics of an object, these

7

)

)

)

characteristics remain of interest as long as the object exists. The re

lationship that exists between these characteristics is called an 'attri

bute relationship,' that is, a relationship between attributes of an entity

set.

In the other case, a relationship may be considered between two objects,

each of whom has an independent existence without regard to the other.

In such an instance, the relationship defined between the two entity sets

is termed as 'association.' Such relationships may be l :1, l :N or N :M.

When storing data in computers, we usually organize the data according to

some pattern that represents entity sets and the relationships between

them. This we term as the 'data model.' Data models used by different

DBMS's can be distinguished mainly by how they represent data relation

ships.

The Network and Relational Data Models

The Network model: is a formal model for representing attribute relation

ships of an entity set and the associations between the entity sets. The

data model consists of record types and connections among them which are

represented as links. 'Record types' are used to represent the relation

ships among the attributes of an entity set and 'links' to specify the

associations between entity sets.

A record type is defined as a collection of data items, the data item be

ing the smallest unit of logical data and the record type being the

generic description representing a set of tecord occurrences consi~ting

of the defined data item values.

8

)

Associations are usually effected by explicit mappings between different

record types, a link being defined as the representation of an association.

Thus, while an association is an abstract perception of the real world, a

link is a concrete object representing the association in a network data

model.

Links, since they represent relationships, may be 1 :1, 1 :N, N :M. Two

kinds of links may be distinguished 'information carrying' and 1 non

i n format ion carrying 1 :

An information-carrying link represents an association that cannot be

expressed as a closed form property between two sets, i.e . , non

presence of any items in the data sets that could express a relation

ship between objects of the sets.

Non-information carrying links do not carry any extra information re

garding a relationship that could not be constructed by the data

items available, they are for convenience.

Information carrying links are usually constructed manually by selecting

records and explicitly connecting them. Non-information-carrying links

can be constructed algorithmically once the property of the data items

defining the link is specified. Such links can be constructed and main~

tained automatically.

In a general network data model, there are no restrictions on the rela

tionships represented by the links. They can be l :l, l :Nor N:M; a link

can also connect a record type with itself sometimes called 'recursive

links.' Specific implementations may, however, place some limitations

9

)

on the use of links, such as the DBTG proposal, which we shall discuss in

some depth later.

In a data base organized according to the network data model, consisting

of record types and links, a user traverses the data base according to -

the connections defined by the links between the records. A record is

selected using some qualifications, then another occurrence following a

connection according to a link, and so on, The system keeps track of the

record occurrences the user visits by maintaining pointers called 'cur-

rency indicators' to the record occurrences. The user can also manipu

late these currency indicators.

Most languages for network systems implement some sort of navigation with

either explicit or implicit currency indicators.

The Relational Model: is a formal model for representing relationships

among attributes of an entity set and the associations between entity

sets. Given a set of domains s1, s2 , ... , Sn, R is a relation defined

over these domains, such that it is a set of tuples, each of which

has its first element from s1, its second element from s2 , and so on. In

other words, R is a subset of the Cartesian product s1 X s2 ... X Sn.

The set SJ is referred to as the Jth domain of R. As defined, R is said

to have degree n.

A relation represents an entity set both in terms of its intentions, that

is, the entity set name, its attributes and their properties, and in its

valid extension, that is, the possible values the attributes may have.

A data base relation is also time-varying since the entity set which the

10

)

relation represents changes over time as entities are inserted, deleted,

and modified; this is one important aspect in which they differ from math

ematical relations.

An n-ary relation can be represented as a table, each column of the table

called an attribute corresponds to a domain of the relation and each row

to an n-tuple. The ordering of rows is immaterial and all rows are dis

tinct, i.e., an entity's representation as a tupl~ cannot appear more

than once in the table. If each column is labelled with the name of its

corresponding domain, then the ordering of the columns is also insignifi

cant.

To ensure unique identification of an attribute (column), attribute names

within relations must be unique. When more than one attribute of a rela

tion take their values from the same underlying domain, the distinct roles

played by each attribute are distinguished by prefixing each appearance

of the attribute name by a role-name,

Normally subsets of the values of some attributes of a relation uniquely

identify each tuple of the relation. This 'key' of the relation has the

following time-independent characteristics:

Unique identification: in each tuple of the relation the key uniquely

identifies the tuple.

Non-redundancy: no attribute in the key can be discarded without de

stroying its property of unique identification.

All attribute relations~psand all associations are viewed as relations

at the data model level. However, additional semanttc information may

11

)

be introduced to distinguish the semantic properties of different rela

tions.

Relations may already exist in the data base or may be generated from

existing relations using relational operators. Both the operand(s) and

the result of a relational operator are a relation.

Relational operators may be described using relational calculus, relation

al algebra or set-oriented expressions. Any of these approaches are valid

in that they are 'complete' in their ability to provide data manipulation

facilities on base relations .

12

)

)

)

I I. MODEL DEFINITION AND TRANSLATION

In order to facilitate our analysis of the Network and Relational data

models and establish a framework in which the model definition and trans

lation capabilities can be assessed, we shall consider the following im- ·

plementational specifications for these data models:

CODASYL DBTG (Network).

System R (Relational).

DBMS Specifications

CODASYL DBTG: The Data Base Management System developed by CODASYL

(conference on DAta SYstems Languages) DBTG (Data Base Task Group) is

a host language-oriented system whose data base capabilities are pro

vided by enhancing the data description and data manipulation facili

ties of a programming language. The outline of the DBMS is versa

tile and based on modular constructs.

The data base has associated with it:

A schema: This represents the community view of the data base

and is variously called data schema, conceptual schema.

A storage schema: to describe the physical aspects of the data

base or internal schema.

Sub-schemas: representing the user view which is a subset of the

corresponding schema.

The overall architecture of the CODASYL DBMS (Fig , 2) has four major

13

)

sets of modular constructs.

User working area (LMA): being the loading and unloading zone

between the DBMS and an application.

System Buffers: being the loading and unloading zone between

the DBMS and the operating system.

Data base: itself.

DBMS, Object Schema and Sub ... Schemas: containing the descriptions

of the data base (storage and data structures) and the user's

view of the schema.

RUN-UNIT
1

RUN-UNIT
2

. RUN-UNIT
n

UWA 1
...

UWA 2

.,,. -,.,. ,.,.
--

UWA n
,.,. ,.,.

I

OBJECT
SCHEMA

DBMS ----➔ &

SYSTEM
BUFFERS

0 S
...

BASE

FIGURE 2

14

SUB
SCHWJAS ._

)

_)

Since the general functions and objectives of the User Working Area and

the System Buffers are self-evident, we shall concentrate on the salient

features of the DBMS, Object Schemas and Sub-schemas.

The characteristics of the DBMS are declared in the schema specifications

using the DDL. This set of declarations encompasses with a few limitations

the object schema and the sub-schemas and includes all logical units of

data.

The schema declarations closely follow COBOL syntax and being a host-

1 anguage-ori ented system, we s ha 11 try to describe the DBMS using the DDL

constructs as a guideline.

Data item: is the smallest named logical unit of data.

Record type: is a named collection of data items. Data items within

a record may be represented as:

data aggregate: being a named collection of data items, which

may again take the form of;

vector: a collection of data items with the same character~

is ti cs.

repeating group: a collection of data items, vectors or re

peating groups occurring an arbitrary number of times.

Set: represents a named l :N link among record types. It consists of

one owner record and one or more member record types; the owner must

be of a different type than its members. Here it would be appropri -

ate to point out the major departure between the DBTG implementation

and the standard network model definition.

15

)

_)

All links are l :N, that is, no record occurrence can participate

in more than one set occurrence of the same type.

No recursive links are allowed, that is, an owner and member re

cords of a set have to be of different types.

The set concept is the single most important concept of the DBTG model

"the (CODASYL) set mechanism is a basic building block which can be

used to construct complicated data structures."

One variation in the set construct is a 'singular set' for which the

owner declared in the schema is the system. Any number of singular

sets may be declared, each has precisely one occurrence.

An example of two record types DEPT and EMPLOYEE linked through a set

STAFF which connects employees working for a specific department

would be a simple illustration:

DEPT

STAFF

I EMPLOYEE I
Data base key: this is a unique identifier of a record within the

data base distinguishing it from all other record occurrences during

the time the record exists within the data base. This does not imply

that the data-base key is a physical address; it is generally a sym

bolic value from which the physical address can be derived.

16

)

)

Area (Realm): is a named logical subdivision of the addressable stor

age space in the data base. For each type of record the schema speci

fies the area or areas into which occurrences of that record are to

be placed when they are entered into the data base. An area-id is a

data base parameter containing the area name in which the record is

to be located. The Area concept is used for:

On/off line problem in large data bases.

Exclusive access mechanism in concurrency.

Aid in recovery.

As a protection mechanism for security.

Currency indicators: are conceptual entities that are maintained by

the DBMS to keep track of record retrieval and storage. The content

of a currency consists of a data-base key value for the record

occurrence most recently accessed for the following:

Each area.

Each type of set.

Each type of record.

Run-unit, i.e., any type of record for the current execution of

the program.

We will end this general overview of the CODASYL DBMS with a note on the

Sub-schemas and Object or Storage Schemas:

Sub-schemas: are a definition (or redefinition) of a portion of the

logical data (schema) in the data base of interest to an application

program in a form suitable for its intended use. Any number of sub

schemas may be defined on a given schema and any number of programs

17

)

may share a given schema.

Although a sub-schema must be self-consistent within its operating

environment, it may differ from the schema in:

declaration of one or more areas.

declaration of one or more sets.

declaration of one or more records.

declaration of one or more data-items.

These are some other points where it may differ which we shall exclude

for lack of relevance.

Storage (Internal) schemas: provide the physical mapping model between

the schema· and the physical storage as well as the run-time facilities

for navigating the data base (access paths).

Most of the physical mappings are declared statically as part of the

schema and only limited modifications are permitted in the sub-schema.

System R: is a relational Data Base Management System providing a high

level data interface using the set-oriented sublanguage (SEQUEL) approach.

The system permits a variety of relational views on common underlying

data, at the same time providing data independence by isolating the

end user as much as possible from underlying storage structures and

data access paths.

The overall architecture of the system will be discussed in this section

leaving the detailed analysis of individual components and their func

tions to later review .

The system provides multi-user support for a variety of host and query

languages which may themselves be employing differing data model views

(Fig. 4).

18

)

INTERFACE
1

Relational Storage
Interface-RSI

,,.. .,.,. .,,., .,, .,,.,

Data

.,..

INTERFACE
2

--
Relational
Data System

RDS

'1'
I
I
I
'¥

Relational
Stora ge System

RSS

,, -.,,,., ... -
•

Figure 4.

.

--- -

- -
Base

18a

IliJ"TERFACE
n

-- - --

...

Relation al Data
Interface-RDI

Monitor

--;

User support
In±erfaces

)

System Architecture

Relational Data Interface (ROI): is the external interface called

directly from a programming language, or used to support various

emulators and other interfaces. The high-level SEQUEL language

is embedded within the ROI and is used as the basis for all data

definition and manipulation.

The Relational Data System (RDS): is the sub-system that imple

ments the ROI. It provides authorization, integrity enforcement

and support for alternative views of data. The RDS maintains

the catalog of external names and contains an optimizer which

plans the execution of each ROI command choosing a low-cost access

path to data from among those provided by the Relational Storage .

System.

Relational Storage Interface (RSI): is an internal interface which

handles access to single tuples of base relations, Calls to

the RSI require explicit references to the location of data

(segments) and the access paths (images, links, identifiers).

The Relational Storage System (RSS): is a complete storage sub

system in that it manages devices, space allocation, storage

buffers, transaction consistency and locking, deadlock detec

tion, backout, transaction recovery and system recovery. rt

also maintains indexes on selected fields of base relation and

pointer chains across relations.

19

)

Finally, the RSS provides support for the RSI.

The Monitor: contains the system administrator facilities which con

trols logon authorization and initializing the data base for each user.

It also schedules periodic checkpoints and maintains usage and per

formance statistics for reorganization and accounting purposes.

System Constructs

Relations: the main data object of the RSS is the n-ary relation con

sisting of a time varying number of tuples each containing n-fields.

A new relation can be defined at any time; an existing relation with

its associated access paths dropped and extensions to tuples of a re

lation can be made without a data-base reload. Two field types are

supported: fixed and variable length. Using a special RSI protocol

fields can be generated with an undefined value. Tuples are stored

as a contiguous sequence of fields.

Tuple Identifiers (TIO): associated with every tuple of a relation is

a tuple-identifier. This is generated by the RSS and is available to

the RDS as a concise and efficient means of addressing tuples. TIDs

are also used by the RSS to refer to tuples from index structures and

pointer chains. However, they are not intended for the user above the

RDS level. They are essentially pointers to the physical location of

the tuple in internal storage.

Views: are dynamic windows on the data base providing a view on a re

lation derived from one or more relations as a result of a query

20

)

J

operation. This view may then be used as a base relation for further

update operations so long as the tuples of the view are associated

one-to-one with the underlying base relation. Views may be made per

manent or dropped, in which case all further views defined in terms of

it are also dropped.

Images: are a logical reordering of an n-ary relation with respect to

values in one or more fields. They provide associative access capa

bilities and low-level support of simple views.

A new image may be defined or an existing one dropped at any time. In

order to conduct a scan on a given image the parameters passed should

include the sort field values and the TIO of the given tuple. Once

defined, an Image is automatically maintained by RSS during all in

sert, delete and update operations on it.

Links: are an access path in the RSS which are used to connect tuples

in one or two relations. The RDS determines which tuples will be on

a link and their relative position through explicit connect, discon

nect operations. Links may be of two types:

Unary links: involve a single relation and provide a partially

defined ordering of tuples. They can be used to maintain order

ing specifications not value ordered and an efficient access path.

Binary links: provide a path from single tuples (_parents) in one

relation to sequences of tuples (_children) in another relation ,

A given tuple can appear only once within a given link. They are

used to connect child tuples to parents based on value matches

21

)

j

thus providing past associative access to a relation without the

use of an extra index.

Links are maintained by storing TIDs in prefix of linked tuples.

Segments: are a collection of logical address spaces employed to con

trol physical clustering. They are used to store data, access path

structures, internal catalog information and intermediate results

generated by the RDS. All tuples of any relation must reside within

a single segment, however a given segment may contain several rela

tions.

Several types of segments are supported with its own function and over

heads. A user-specified maximum length is associated with each set

ment. Segments consist of a sequence of equal-sized pages with

the RSS maintaining a page map for mapping to physical storage.

Cursors: are a means by which the RDI interfaces SEQUEL to a host

programming language. A cursor is a name used at the RDS to

identify a set of tuples called its 'active set,' and further-

more to maintain a position on one tuple of the set. The cursor is

activated by means of the RDI operator SEQUEL; the call has the

effect of associating the cursor with the set ot tuples that

satisfy the query and positioning it before the first such tuple,

e.g., CALL SEQUEL (Cl ,'SELECT NAME, SAL FROM EMP WHERE JOB=

I PROGRAMMER I I);

Optimizer: the objective of the optimizer is to find a low-cost

means of executing a SEQUEL statement given the data structures

22

)

)

_)

and access paths available. The cost measure of the optimizer is

based on storage page accesses. The physical clustering option of

tuples in the data base is a major consideration. The optimizer be

gins by classifying the statements into groups according to the pre

sence of various language features. Next it examines the system

catalogs to find the set of images and links pertinent to the given

statements and applies a decision procedure to find a reasonable

method of execution.

After analysis of the SEQUEL statements the optimizer produces an

Optimized Package (OP) containing the parse tree and execution plan.

If the statements require fetching tuples, the OP is used to materi

alize tuples. If the statement is a view definition the OP is stored

in the form of a Pre-Optimized Package which can be utilized whenever

an access is made via the specified view. If any change is made to

the structure of a base relation or to the access paths maintained

on it the POP1 s of all views defined on it are invalidated.

Clustering: is the property of physically storing tuples- near each

other according to some criterion. The system accepts clustering

specifications for:

Relations; in the form of its TID1 s associated with a storage page.

Images: at most one image per relation may be clustered.

Links: may be declared to have the clustering property.

Implementational Aspects of Major Constructs

Before we can proceed with establishing an equivalence between the model

23

constructs that have been discussed so far, we shall try to analyze the

) suggested implementationa1 techniques in order to show the viability of

mapping the constructs between models.

)

_J

CODASYL DBTG:

the User Work Area (UWA): In principle two approaches may be es

tablished to define this area: The static approach where the lay

out of this area is completely determined at sub-schema compile

time and the dynamic approach where the layout is determined at

run-time.

In the static approach it is assumed that the displacements of

items within record type are fixed and that the position of record

areas within the UWA are also fixed. The current COBOL DML and

sub-schema DDL offer no facilities to distinguish between differ

ent record-areas for the same record type or to specify any ex

plicit overlay requirement for record areas of different record

type. The advantage of the static approach is that at run-time

no allocation and interpretation is required.

In the dynamic approach the position of the record~area within

the UWA is part of the interface, so the address where a record,

or part of it, has to be delivered or obtained by the DBMS is one

of the parameters passed to the DBMS.

Areas (Realms): should be logical as well as physical non-overlap

ping storage units. Since, in general, an afea will be too large

to read in or to store as whole, it has to be divided into physical

24

)

_J

blocks (or pages). A simple and efficient manner of organiz- .

ing these pages would be by using the direct organization (re

lative recording mode) with fixed length pages. The tech

niques of mapping the data-base information into these areas

we will discuss in the Record and Set sections.

Records: The physical description of the record is clear in

the DDL specifications. There are, however, a few issues

associated with the maintenance of the record in the data

base.

Data base keys. Since the key is a unique identifier of

the record within the data base which will remain unchanged

during the record's existence, it is not practical to

utilize a physical address; a symbolic value must be used

from which the physical address can be derived.

This symbolic address must consist of two parts: one being

the identification of the record type of the record, and

the other a sequentially assigned number by the DBMS per

record type. The DBMS maintains a table per record type,

which contains an entry for each of the record type

occurrences.

Physical placement. This takes two forms; one being with

in a specified area and the other at a specific place with

in an area (clustering). The first situation requires a

standard page access optimization algorithm.

25

)

The second form can again be split into two cases: one where

the specific place is determined by hashing a user-key

(CALC-KEY) and the other where the place is determined by

the placement of associated records. The first option re

quires a solution to the situation of duplicate hashed

keys, therefore an adequate page overflow mechanism. The

second option we shall discuss under set-traversal facili

ties.

Record retrieval is accomplished either sequentially using the

set concept or directly using primary and secondary keys. In

all these cases use is made of the internal referencing

scheme in which the data base key is used for identification

purposes through indirect I transformation tables. 1

Sets: This concept is one of the cornerstones of the CODASYL

DBTG proposal. In its current context a set is defined as

'the definition of an access path through a number of related

records. 1

Basically sets can be implemented in two ways:

pointer sequential (chaining).

physical sequential (lists) ~

These two categories vary i n their level of indirection . Each

of the methods can be further subdivided into a further level

of indirection;

R
p DATA P R

p DATA P (PSDD)

Pointer Seq. Data stored at Ref. pt. (RP).

26

)

j

(PSDI)

Pointer Seq. Data not stored at Ref. pt.

[~ I DAT A I ~ [DAT A I (FS DD)

Physical Sequential Data at Ref. pt.

R
p

p

(FS DI)

DATA

Physical Seq. Data not at Ref. pt.

These four basic methods may be refined further through

bidirectional chains,

linked to owner options,

attached to owner for lists and pointer arrays.

What becomes apparent is that for maintenance of sets, besides

records,tables would also have to be stored in the data base,

for example:

pointer arrays,

index-tables for search keys,

record lists.

0,eadvantage to the implementator is that since the type of

the tables is identical a uniform table-handling concept is

applicable.

27

)

)

System R:

Relations: consist of a time varying number of tuples each contain

ing n fields. These fields may be fixed or varying length and may

contain a value or be undefined. Associated with every tuple of a

relation is a tuple identifier or TIO. Each TIO is generated by

the RSS and is available to the RDS as a means of addressing

tuples. The RSS may also use these TID1 s to refer to tuples from

index structures and to maintain pointer chains.

Tuples are stored as a contiguous sequence of fields within a

single page of a segment. Field lengths are also provided for

variable length fields. Tuples are only stored on 'data' pages.

Tuples from different relations may be stored on a single page

according to clustering specifications.

A prefix is stored with each tuple for use by the RSS containing:

the relation identifier

pointer fields (TIO's) for link structures

number of stored data fields

number of pointer fields.

Each tuple identifier consists of:

a page number within the segment

a byte offset from the bottom of the page.

This indirection allocates a slot to the tuple in a page with the

facility of moving the tuple by merely changing the pointer value

in the page TIO. If a tuple overflows the page it is moved to a

nearby page and its overflow position is kept in a tagged over-

28

)

)

flow record to which the TIO points. In subsequent overflow the

tagged overflow record pointer is again modified.

Images: are logical reordering facility of a relation with respect

to one or more value fields. The RSS maintains each image through

the use of a multi-page index structure. An internal interface is

needed for associative or sequential access along an image and

also for insertion, deletion or updating of index entries. The

parameters passed across this interface include the ~ort field

values along with the TIO.

Each index is composed of one or more pages within the relation

segment. The pages of an index are organized into balanced

hierarchic trees (B-trees). Each page is a node within the hier

archy and contains an ordered sequence of entries. Non-leaf nodes

contain entries consisting of a <sort value, pointer> pair, the

pointer addresses another page in the structure and the value in

dicates sort value entries less than or equal to the given one.

Leaf nodes contain entries having the sort value and an ascending

list of TID's for tuples having those values. Leaf pages are

chained in a doubly linked list for sequential access support.

Links: are access paths used to connect tuples in one or more re

lations. The RDS determines which tuples will be linked and their

position through explicit operations. The RSS maintains internal

pointers for insertion and deletion in linked structures. The

RSS maintains links by storing TIDs in the prefix of tuples. When

a new link is defined a portion of the prefix is assigned to hold

29

)

)

the entry if necessary by enlarging the prefix. No tuples are

accessed until the tuples are connected to the link when the

assigned space is formatted.

Views: are dynamic windows on the underlying data base tables.

Their impact on the implementation is as a mechanism for authoriza

tion to read or access base tuples.

Data Base Transformation versus Simulation

Before we proceed to establishing an equivalence between the two models'

constructs that we have reviewed so far, the topic of ~pplication migra

tion' should be introduced.

The first aspect of this problem is the total conversion of one DBMS to

the data representation of the other. This one-time conversion is known

as data-base transformation. In a sense it accomplishes the purpose of

preserving the original information such that the entire data base is

made available to the new model both in its

physical data structure, and

its logical data structure.

However, this is an enormous task for a data base of any reasonable size,

and is not feasible as a solution for coexisting data-base systems.

What becomes a viable proposition is the task of query translation in a

suitable fashion such that the sub-schema of either model is maintained

and the sub-schema definitions and operations are translated in order

to simulate the model that is being addressed. This simulation process,

however, must make use of concepts that can be equated, both logically

30

/

)

)

and in terms of physical implementation in order to avoid extreme ineffi

ciency. In the remainder of this chapter this is the subject that we shall

address.

Model Equivalencing

In this section we shall try to compare the main data structuring elements

of the Relational and DBTG models, and then in the context of their imple

mentation establish an equation between these structural constructs.

The term 'equivalent' is used in the sense that whenever one collection of

data is mapped into a subset of the other collection there will be some

facts omitted or constraints placed on the expressive powers of the source

data after the mapping. In general, however, we can state that the collec

tions are equivalent in the sense that every fact that can be deduced from

the sub-collection can also be deduced from the main collection.

In the process of establishing equivalent mappings, the subject of affected

data structures becomes integral to the discussion. A 'data structure

class' is the class of data structures which can be constructed from a

given set of primitives using a given set of operators in a system.

Model views:

From a general model standpoint we shall discuss four elements of the

data structure aspect;

entity

attribute

function

access path,

31

)

)

Defined again are the terms used above (ref. ch. I) to emphasize their

role in providing an effective comparison:

MODEL

Network

attribute: is a single valued characteristic of someone or some

thing.

entity: is a collection of one or more attribute values such that

at least one subset of the collection called identifier, identi

fies the entry within the set, while all other attribute values

in the collection are functionally dependent on the identifier.

An entity set is a collection of entities with the same attributes.

function: is a rule which assigns to each entity of a given entity

set exactly one entity of some other entity set.

access path: for one or more attributes of an entity set given

the constituent attribute values an access path provides a mechan

ism for accessing the entity other than scanning all the entities

in the set.

Comparison Table (Model View}

DATA STRUCTURE ELEMENT

attribute entity fwzction access path

yes yes yes yes

Relational yes yes yes/no no

The attribute concept is known in the DDL as a data item; its

equivalent concept in the Relational model is the domain~role.

The entity concept in the DDL is a record occurrence and a tuple

32

)

in the Relational model.

The function concept in the DDL is a record-owned set-type. The

set-type, however, entails two aspects:

- establishment of navigational routes:

from owner record to associated member record occurrences.

from member records to other member record occurrences be

longing to the same owner record.

from member record occurrences to associated owner record

occurrences.

- As a semantic rule indicating that an element in the domain

(member record) cannot exist without the corresponding element

in the range (owner record).

In the Relational model an equivalent of the semantic rule is an

integrity constaint. The concept of predefined navigational

routes are not integral to the model so that one may either say

that there exist no predefined navigational routes or that all

possible routes are dynamically materialized.

The access path concept corresponds to the ownerless or system

owned 'singular set' in CODASYL. The Relational model definition

ally does not support the concept of an access path.

Implementation View~

From the above discussion, we see there is a close correspondence

in the data structuring views of the Network and Relational models.

The points of divergence are at the conceptual level, however both

33

)

J

models in their implementation utilize approaches that allow us

to bridge this gap without too much difficulty. The language

features which we shall discuss in Chapter 3 because of their

fundamental differences in approach may further emphasize these

conceptual divergences but adopting a simulative approach again

allows us to resolve the difference and achieve model communica

tion.

To establish this correspondence we shall set up a table of equiva

lent constructs which would enable us to further analyze the differ

ent viewpoints.

Comparison Table (Implementation Vie\1/)

SYSTEM R CODASYL

field (domain) data item
tuple record occurrence

. relation record type

tuple identifier data base key

integrity assertions/ sets binary links

images/unary 1 inks singular sets

cursors currency

view sub-schema

segments areas (realms)

clustering area-id

transaction run-unit

Field/data item: the concept of the attribute in the respec

tive models is field and data item. The data types supported

34

)

.J

in both are varied enough to support any requirements. The

major difference arises in the CODASYL facility of the presence

of repeating groups of data items within records. Since the

relational model expects the relations to be normalized,

that is, sepiration of any subset of the domain elements that

in themselves constitute a relation. We will treat for purposes

of comparison the existence of repeating groups as a relation

with the special facility of clustering with the main record.

Tuple/record occutrence: the main entity of data objects is

the tuple or record occurrence . All accesses to the data base

are made in terms of this entity. Both constructs can contain

any number of occurrences of fields or data items respectively.

The storage characteristics of both follow more or less the

same pattern, consisting preferably of a contiquous sequence

of fields/data items, the exception being the repeating group

mentioned above.

Relatio~/Record type; The entity set is manifested through these

two constructs. In the relational system operations are de

fined in terms of one ~elation or more, however in the CODASYL

system a record type is addressed in terms of its set with

the exception of the singular set. The record type serves

therefore as a generic identifier activated in terms of the

set. The objective served is the same,

Tuple identifier/Data-ba~e key: Every entity of the respective

entity sets Relation or Record type is uniquely identified

35

)

through its identifier. So long as the record/tuple remains

in existence within the data base the associated identifier

remains with it. In the CODASYL implementation the data-base

key is required to be additionally abstract, that is, it should

be (pointer indexes) disassociated from the physical address

as far as possible to allow mobility in physical record place

ment. System R tends to achieve a practical mobility through

pointer TID1 s, if necessary maintaining pointer chains.

(Binary links/integrity assertion~~ets: The function concept of

establishing navigational routes between two entity sets and

maintaining a semantic rule on this relationship is the basic

role of the Set concept in CODASYL DBTG. Building on this

basic concept sets develop as a powerful data structuring

facility. Sets fall into two categories:

Information bearing: where a set carries its own relation

ship information, a distinction is made between the

existence of a relationship and values used to determine

the relationship, There is the presence of path depen

dency; a record 1s uniqueness is contextually derived from

a series of owners togethef providing uniqueness of keys.

Non-information bearing: where matching values in owners

and members of sets carry the relationship information.

No distinction is made between the existence of a relation

ship and the values used to determine it. There is no

path dependency since the owner record contains a primary

36

)

key that uniquely identifies it, all members of that

owner occurrence being related through value matches.

Although a Relational model does not support predefined navi

gational paths, binary links in System R provide an access

path from single tuples of one relation (parent) to sequences

of tuples (children) in another relation. The connection of

these)inks is, however, value-dependent, in order to trans

late information bearing sets--unique sets of keys must be

generated between each level of owner and member records.

The supporting 'optimizer' provides an OP (optimized package)

access path to the defined tuple of the owner base relation

and subsequently follows the established access path to the

physically linked members. The semantic rules are applied

through integrity assert ion a 11 owing the system to automatic

ally maintain the relationship.

(Images/Unary links)/Singular Sets: Access paths in a single

entity set are accomplished in CODASYL through ownerless or

system-owned sets. Since a Relation in general has no order~

ing sequence and, hence, no access path, an Image which is a

logical reordering of a relation on one or more fields, or a

Unary link which encompasses only one relation .. linktng single

tuples into chains provides an equivalent mechanism.

Cursors/currencies: for purposes of accomplishing navigation

the system must indicate the currently accessed or accessible

37

)

.J

entity in the entity set being operated upon. The CODASYL

system provides a set of currency indicators for each of the

fo 11 owing:

area

record type

set

current run unit.

System R provides an equivalent concept to manipulate a tuple

or set of tuples at a time through the cursor concept. Any

number of cursors may be active for a given transaction which

can conveniently be translated and maintained for a (segment,

relation or a transaction).

Vi ev1s/Sub-schemas: A sub-schema represents a subset of the

schema. It must be consistent with the schema declaration but

may omit or modify many of the schema specifications. In a

sense it represents the user's view of the schema.

In System R the view mechanism becomes the users prime access

ability. The query power of SEQUEL allows a view to be de

fined as a relation derived from one or more relations. This

derived relation may then be used as a base relation for opera

tion or definition of subsequent views.

Segments/(Areas/Realms): In order to make the data base more

manageable both for purposes of operational efficiency and to

assist the task of the data base administration, the total

address space is divided into logical sections called Segments

38

)

in System Rand Areas or Realms in CODASYL. In physical

terms these sections would be environment dependent. Segments

and Areas are subdivided into pages for physical access conven

ience.

In System R,since all data, including the system data such as

indexes, etc., are also stored in segments, various categories

of segments are specified. Although CODASYL specifications do

not comment on this aspect, it would seem a rational implemen

tational criterion.

Clustering/Area-ids: Physical placement of entities or entity

sets present divergent philosophies in principle. The Relation

al model minimizes physical storage considerations from the

user. CODASYL,on the other hand,expects explicit specification

of its entities and entity sets.

In the CODASYL system, the user specifies the area or areas

into which occurrences of a given record are to be placed.

Before an access can be made to an area it must be opened and

before a record can be stored its associated area must be

specified.

System R does not allow such explicit storage manipulation

strategies, however the system accepts clustering specifica

tions for images and links. A relation is placed within a

given segment thereby allowing a tentative, if not explicit,

control over the physical storage of data.

39

)

)

Transaction/Run .. unit: Activation of system resources for a user

entails considerable system activity, In the CODASYL system

the run-unit provides a system basis for maintaining integrity

and recovery, it is al so necessary for updating currency in- .

dicators a necessary mechanism for DBTG DML,

In System Ra transaction constitutes a series of RSI calls

on behalf of one user involving making available requisite

system resources and providing a unit for recovery and con~

sistency support.

Model Translation

This section will investigate the strategy and mechanics of accessing:

CODASYL DBTG data base described by a DDL schema, by a sub-schema pre

senting the user with a relational (System R) view of the data base.

Relational data base having the architecture described by the System

R DBMS presenting the user with a CODASYL DBTG Network view of the

data base.

The suggested strategy assumes the presence of an interface program which

allows the mapping to be accomplished between the external schema view

and the underlying conceptual schema. The mapping is essentially simula

tive in nature and equivalent model constructs are utilized to provide

the facilities expected of the model being simulated.

We have shown that although the views of data held by the Network and Re

lation are quite different, the implementation techniques utilize mechan-

_) isms that are similar. It is, therefore, possible to establish a mapping

40

)

)

from one to the other without loss of information.

Relational (S stem R data base with a
Network CODASYL sub-schema:

The general strategy adopted would be to represent the network con

structs by their closest constructs in the Relational model. The inter

face program would map the DBTG DDL declarations on to these constructs

and maintain a 'data-dictionary' of the correspondence between the two

DDL's. At query execution time the translated DML query would be

passed to the System R ROI in its equivalent SEQUEL terms a 11 owing

accesses to individual tuples and a simulated navigation of the under

lying data base.

Record representation: A CODASYL record type is transformed into

a TABLE declaration, the details of each record being converted

into a field definition list, that is, tuple definition accord

ing to the following schema. Consider a record type with the

following structural definition:

RECORD NAME IS R

-02 A
-03 B
-04 C
-04 D

-03 E
-02 C

PIC 9(2)
PIC 9(2)
PIC x(5)
PIC x(5)

For each record occurrence of this type the corresponding System

R tuple includes the following fields:

<B.C. , INTEGER>

<D INTEGER>

41

)

)

J

<E , CHAR (5) >

<R.C, CHAR(5) >

each elementary data item being selected as a field, the names of

the data items being qualified by names at higher levels to create

uniqueness.

Where a record type has present within it a repeating group (gen

erally a form of DDL to be discouraged) the repeating group would

constitute a separate relation containing the key fields of the

record type itself and the fields constituting the repeating

group. In order to maintain the clustering property between two

such relations and a rapid access path, a 'binary link' would

be declared on the record key value having a clustering speci

fication.

Set representation : A CODASYL set allows a functional mapping be

tween an owner record type occurrence and occurrences of its

members. Schema declarations for each set whether information

bearing or non-information bearing would generate the creation of a

binary link between the corresponding record types. In the case

of information bearing sets an additional indicator would be set

up for the two concerned relations requiring generation of addi

tional fields in the member records corresponding to the key

field of the owner record, thus, removing any path dependencies.

System-owned sets involving only one record type would simply

generate an image specification on the target relation.

Any orderings specified on the record types would be included in

42

)

)

the links or images created.

Area specifications: Allows users to have explicit control over

data base storage areas as to record pl a cement strategies and

processing control through opening and closing them. System R

manages such tasks itself and maintains a subsystem, the RSS, to

accomplish this. All DBTG commands relating to specific areas

would therefore be redundant and consequently ignored in the map

ping process.

Access paths: DBTG allows two levels of access to its data base,

which usually operate in conjunction:

LOCATION MODE: specifies the access strategy to an occurrence

of the record type.

SET OCCURRENCE SELECTION: specifies the access stragegy to an

occurrence of the specified set,

Since the occurrence of a set requires first locating the corres~

ponding owner record, the LOCATION MODE of the owner record is

the most usual manner of specifying SET OCCURRENCE SELECTION.

System R allows an analogous prespecification of an access strate

gy to a given relatiorls tuple occurrence. This is accomplished

by entering a view definition into the system, which represents

the 'currently visible tuples' of each relation whenever the view

is opened. At definition time the requisite access path in the

view is generated by the 'optimjzer' utilizing any links or images

available in the RSS system catalog in the form of a POP (Pre-

43

)

Optimized Package). Thereafter, whenever a view is utilized the

POP provides an optimal access path to the selected tuple(s).

Currency indicators~ Navigation through the data base in the DBTG

systems requires a heavy dependence on currency indicators which

tell the user the current position in the data base for:

Record type.

Set.

Area.

Run unit.

System R utilizes an equivalent concept called 'cursor' which is

used to identify the position on the current set of tuples (active

set). Since multiple cursors may be declared during the course of

a single transaction, the translator program could maintain and up

date a set of cursors for each of the following:

Relation.

View.

Transaction.

Since a mapping to System R would not give a user explicit con-.

_ trol over area (segment) an area cursor becomes redundant.

UWA (User Work Area); The user work area where the DBTG user has

available to him, data to or from the ~ata base is created using

a set of BIND commands for each field of each 'record type declared

in the sub-schema. These variables are where data are delivered

as the result of a query or in which data are stored for utiliza-

tion as arguments of a query ,

44

)

)

Further detailed treatment of variant constructs for each major con

struct discussed here is given in language translation and mapping.

Network (CODASYL DDL) data base
with a Relational sub-schema:

The CODASYL DBTG report defined a schema Data Description Language

(DDL) which was intended to be independent of but common to many other

high-level programming languages. In this section we consider the case

of interfacing it to SEQUEL as implemented in System R.

The power of SEQUEL lies in expressing its definitions and operations

in a set-oriented form. Since the user is not supposed to procedur

ally navigate through the data base system, support facilities must

be provided which evaluate the SEQUEL DML and DDL statements and con

vert them into appropriate low-level access primitives (RSI opera~

tors). The sub-schema control environment is established through ad

ditional operators (ROI) of which SEQUEL itself is but one.

In our mapping strategy we would therefore essentially take into con

sideration the ROI and RSI constructs rather than the SEQUEL query

which would essentially be converted or presented as one of them

to the translator program prior to being interfaced to the DBTG system.

Program variables: Each variable that is declared through the BIND

statement constitutes essentially the user work area and repre

sents the sub-schema declaration to be derived from the declared

schema.

Cursors: Each cursor to be utilized by the user is declared to

gether with its associated relation or view name. The translator

45

)

j

would keep a record of such declarations for later correspondence

between the 'current of' and the specific cursor names.

Relations: Each declared table utilized by the user would be mapped

as a specified record type and the field definition list be con

verted into definitions of the corresponding data item.

Since relations do not contain any prespecified ordering and access

to tuples is obtained through the TIO, the LOCATION MODE specified

would be using DATA BASE-KEY item into which the system would

place the TIO for access.

Access paths; Availability of system utilized physical access

paths is stored in the RSS in the form of images and links. The

user would declare a binary link for each set declaration avail

able in the DBTG schema which would be utilized by him.

SET OCCURRENCE SELECTIONS would be through LOCATION MODE OF OWNER

since System R's optimizer would most closely follow such a path.

Maintenance of the set,in this instance a binary link, is done by

System R through explicit CONNECT, DISCONNECT operators. There

fore, membership would either have to be MANUAL for such sets or

the RSI operators CONNECT+DISCONNECT would be ignored for AUTOMATIC

sets by the translator program.

Query (SEQUEL): A SEQUEL query is parsed and the execution strate-

gy for physical data-base access derived by the optimizer. In this

process the optimizer would make use of physical access paths and or

dering available in the data base. Since the corresponding

46

)

j

structures stored in the RSS for a DBTG data base would consist

of mainly binary links and member record orderings, the optimizer

would generate an execution strategy simulative of a network tra

versal.

Tq additionally aid the optimizer in deriving an execution strate

gy the user would declare VIEWs which correspond to the set de

clarations available in the DBTG schema and utilize the POP's in

an inverse fashion to the mappings suggested in the last section.

l'-bst of the SEQUEL operators are available under the DBTG schema.

The one major exception is the dynamic generation of new relations

using the assignment operation (4--). Since the DBTG sub-schema

assumes a static schema new relations may not be added without

prior modifications to the schema.

Segment; System R maintains explicit control over its segments

through specifications in its RSI operators. The translator pro

gram would maintain references to such segments and pass them on

to the DBTG system as references to AREAS.

Details of both DDL and DML operators in System Rat RDI, SEQUEL and

RSI level \vill be further discussed in the next chapter on language

translation and mapping.

47

III. LANGUAGE DEFINITION AND TRANSLATION

Until now the discussion has addressed the possibilities and facilities

available in the Relational and Network systems for mapping the model con

structs onto each other. In this process, the discussion has not limited

itself to the classical features of the two models, but has taken into

account implementational facilities of System Rand DBTG in order to make

the mapping feasible wherever a one-to-one correspondence between the

models was not available.

In order to fully evaluate the feasibility of such mappings being imple

mented in the framework of two heterogenous DBMS's coexisting and having

access to a common underlying data base organized according to one of the

) data models, we must consider the problem of language definition and

translation. The scope of the discussion shall be limited, however, to

the data definition and manipulation languages in the System Rand DBTG

systems, particularly in the context of their providing the facilities

required to accomplish the mappings already discussed.

j

Given the characteristics of the Network and Relational models as to the

degree of system support required for implementing their DDL and DML, the

point at which the two systems interface with each other shall vary. In

other words, whereas the DBTG language can be directly translated into

equivalent System R commands, the System R sub-language SEQUEL must be

reprocessed into actual access requests prior to being interfaced with the

DBTG system.

48

With this consideration in mind certain extensions of the basic language

) features will be taken into account in order to accomplish an effective

translation scheme.

)

j

Definition Languages

CODASYL DBTG: The logical view of the data base is established using

the Data Description Language (DDL). This is implemented at two

stages:

Schema level: is a logical description of all the data stored in

the data base. The schema DDL is considered to be a language in

dependent of any host language and at a higher level than the

Device and Media Control Languages (DMCL) and the Storage Struc

ture Definition Languages.

Sub-schema level: to provide the applicaton programmer view nor

mally using COBOL as the host language a sub-schema DDL is used.

The user of the schema DDL can:

name a SCHEMA.

describe the records and their constituent items or aggregates

in the data base.

describe the AREA's of the data base.

describe the SET's of the data base.

The types of declarations allowed are:

Naming a SCHEMA:

SCHEMA r~AME
PRI V/l,CY LOCK

The SCHEMA NAME assigns a name to the schema.

49

)

)

The PRIVACY LOCK's declared control access to the schema, that is,

to the data base's description.

Declaring an AREA:

AREA NAME

TEMPORARY

PRIVACY LOCK

ON

The concept of an AREA is singular--thus only one occurrence of a

named AREA exists in the data base. It provides the OBA control

over physical storage maintenance.

A TEMPORARY AREA is a 'scratch-file' within the data base and exists

only during the life of a run~unit.

PRIVACY LOCKS declared control users from retrieving or updating

data in an exclusive, protected or unrestricted mode.

Procedures may be invoked, via ON when an area is opened or closed.

These procedures may be used to gather statistics about the use

of the areas.

Declaring Records:

When writing a schema a OBA completes a record entry for each type

of record to be stored in the data base--thus a record-entry de

scribes a 'type' of record and many occurrences (that is records)

of each record type may occur in the data base~

RECORD NAME

LOCATION MODE

~JITHIN (area)

50

)

J

PRIVACY LOCK

ON

at the item or group level:

LEVEL NUMBER (as punctuation only)

ITEM NAME (Data-base-data-name)

PICTURE

TYPE

OCCURS

ACTUAL/VIRTUAL RESULT

ACTUAL/VIRTUAL SOURCE

ON

PRIVACY LOCK

CHECK

ENCODE/ DECODE

The LOCATION MODE defines precisely how the programmer is to go

about storing new occurrences of the record and affects their

placement when they are so stored; there are 3 modes:

DIRECT data-item: the data item is initialized with a data-base

key value in order to place it at the data-base-key position

or near it. The item may not be part of a record but must

be explicitly declared as type DATABASE-KEY,

CALC procedure

USING data item, ...

DUPLICAT_ES ARE [N_OT] ALLOWED: the data items comprising the

CALC-key must be initialized, the new occurrence being placed

at the data-base-key position specified as a result of the

procedure.
51

)

J

VIA set SET: the data-items required for the SET OCCURRENCE

SELECTION clause are initialized, a data-base key is assigned

to the record which is 'as close as possible to the actual or

probable logical insert point in the selected set occurrence. 1

The WITHIN tells the DBMS where to store the record.

The PRIVACY LOCKS at record level allow control of the storing,

deletion, updating, retrieval of records; at the item level they

only control fetching, modifying and storing; the ability to modi

fy the sets in which the record participates is also controlled by

PRIVACY LOCKS. The ON function allows procedures to be invoked at

these control points.

The ACTUAL/VIRTUAL RESULT allows an item to be specified as a re

sult of a procedure or actually stored.

The ACTUAL/VIRTUAL SOURCE allows a record to actually or apparent

ly contain a data item stored elsewhere,

The CHECK clause permits data validation procedures to be declared.

The ENCODE/DECODE clause allows the specification of additional

data conversion routines.

Deelaririg SETS:

When writing a schema a OBA completes a set entry for each set

type to be maintained in the data base--rnany occurrences (that is

sets) of each set type may occur in the data base. A DBTG set

is a particular kind of relationship among records characterized

by one or no (system-owned) owner record and several member record(s)

52

)

)

or none occurrences and/or types.

SET NAME

MODE

ORDER

PRIVACY LOCK

ON

mJNER

MEMBER

ASCENDING/DESCENDING KEY

SEARCH

SET OCCURRENCE SELECTION

The MODE clause allows the OBA to choose between certain speci

fied mechanisms for maintaining the set-relationship between mem

ber records.

The ORDER clause specifies the ordering of the member records de

clared in ASCENDING/DESCENDING KEYS.

PRIVACY LOCK allows control of the reordering insertion and remov

al of record instances in a set occurrence and also of its use for

retrieval. The ON clause allows procedures to be invoked at the

same control points except for when the SET occurrence is used

for data retrieval.

A 11 sets must have an mm ER record except sys tern-owned sets.

A set may contain several MEMBER record types. The membership of

the type(s) are a combination of the following two categories:

MANDATORY/OPTIONAL~ A MANDATORY membership specifies that the

53

)

)

j

record type once entered in the set can never have an exist

ence in the data base not as member of that set. The only way

to destroy the membership is by deleting the occurrence from

the data base. An OPTIONAL membership allows removal of a

record type occurrence from a given set without affecting its

presence in other portions of the data base.

AUTOMATIC/MANUAL: An AUTOMATIC membership specifies that when

ever an occurrence of a record type is created and placed in

the data base (using STORE) the DBMS will automatically insert

it into the appropriate set occurrence. A MANUAL membership

requires the program to explicitly store the record type occur

rence (using INSERT) into the appropriate set occurrence.

The spetified membership class is concerned with set maintenance.

The sort keys for ordering the set occurrence are specified by

using the ASCENDING/DESCE~DING clause provided, of course, that

the set's order has been declared to be sorted.

Keys and indexes to be used to search the set are specified in the

SEARCH declaration.

The SET OCCURRENCE SELECTION allows the specification of an access

strategy \'lhich the DBMS will use to isolate the unique set occur

rence which a user wishes to process. This clause may not be

specified for a system-o~med set. The processing involved does not

affect currency indicators of the run-unit. There are 3 forms of

SELECTION:

THRU CURRENT OF SET: the current occurrence of the set is to be

54

)

used, which has presumably been procedurally selected by the

program.

THRU LOCATION MODE OF OWNER USING data-item: the implication of

this form is that the owner must have a location mode declared

as VIA set SET of which it is a member. The initialized data

item is used to search for the owner in its location mode

specified set. This set may in turn have the same SET OCCUR

RENCE SELECTION to an arbitrary number of levels.

THRU LOCATION MODE OF OWNER: the set occurrence is ~elected by

locating the corresponding occurrence of its owner recording

using its declared LOCATION MODE, which must be of the types

CALC or DIRECT.

The user .of the Sub-schema DDL can:

name a SUBSCHEMA and its 'parent' schema.

declare alternative names for data-entities named in parent

schema.

selectively copy with a few minor changes the descriptions of

areas, records, sets included in the parent schema.

describe the data-items in a form compatible with COBOL.

The declared sub-schema describes only a subset of the data in

the corresponding data base. The rules governing derivation of

this subset are~

PRIVACY LOCKS: in all sections except the Renaming Section new

privacy locks may be declared which override any privacy lock

55

)

declared in the schema for that entity. The user-program must

satisfy the privacy locks declared for the schema in order to

gain access to it.

No equivalent to the ON clause is available in the sub-schema

DDL.

All names must be unique within the sub-schema. The Renames

Sections allows for declaration of synonyms for names speci

fied in the schema, the uniqueness rules still hold.

The AREAs as described in the schema may be selected; the only

attribute which may be redefined are their PRIVACY LOCKS.

The SETS declared in the schema may be selected apart from the

PRIVACY LOCKS; the only set attributes which may be redefined

are the SET OCCURRENCE SELECTION criteria. This may be neces

sary \.<Jhen the criteria depend upon schema sets which have been

excluded.

RECORD's declared in the schema may be selected and redefined

in a COBOL compatible fashion. Apart from redeclaration of

PRIVACY LOCKS the only attributes of records which may be al

tered is the WITHIN clause. This may be necessary because the

sub-schema may exclude certain AREAS of the data base. The

rules governing redefinition of records are:

Although SOURCE and RESULT data-items cannot be redefined

they may be referred to in the sub-schema.

The correspondence between the items/data aggregates de

clared in the parent schema and the sub-schema is established

56

in the Renaming Section, The user selects which items

are to be copied by naming them and excluding the rest

by non-declaration.

The DBMS includes appropriate data conversion routines by

comparison of format description in the schema and sub

schema.

System R (SEQUEL)

SEQUEL (Structured English Query Language) has been used by System R

as the language for expressing the Data Definition facilities which

are supported by the Relational Data Interface (ROI). However, the

ROI can support other non-relational interface programs written on top

of it, which·would simulate the other language/model requirements.

Regardless of the model or language that is being interfaced to the

ROI, the following Data Definition facilities expressed in SEQUEL syn

tax will be supported. The sub-schema or user view of the data to

gether with any associated redefinition facilities are explicitly

made available through the SEQUEL statement GRANT, which in turn can

be applied recursively to other users .

The following types of ddl-statements are supported:

create a TABLE.

expand a TABLE.

keep a TABLE,

create an IMAGE,

create a LINK.

57

)

J

define a VIEW.

DROP a system-entity.

Creating a TABLE:

CREATE

[PERMANENT I TEMPORARY]

[SHARED I PRIVATE]

TABLE <table-name>:

<field-name > (type[,NONULL])

creates a new base (physically stored) relation:

a PERMANENT table is retained by the system beyond the current

transaction sequence until explicitly destroyed. A TEMPORARY table

. is automatically destroyed when the user who created it logs off.

a SHARED table is publicly accessible to other users. A PRIVATE

table is only accessible to users who have been granted specific

access authority.

a table-name is associated with each created table, the system

uses this as the reference for all further commands made against

the table.

each field/domain of the table is given a field-name and a data

type is specified for it. The data types INTEGER, SMALL INTEGER,

DECIMAL, FLOAT and CHARACTER (both fixed and varying lengths) are

supported. The fields may be specified to not utilize the unde

fined field feature of the RSI,

Expanding a TABLE:

58

)

_)

the user may add new fields to an existing TABLE, specifying

the name and data types of these fields in much the same

fashion as a new table creation. All views, images and links

defined on the original table are retained. All existing

tuples are interpreted as having null values in the expanded

fields until theyareexplicitly updated.

Keeping a TABLE:

KEEP

TABLE< table-name>

causes a TEMPORARY table to become PERMANENT.

Creating an IMAGE:

CREATE

[UNIQUE and/or CLUSTERING]

IMAGE <image-name>

ON <table-name>

(ord-spec-list)

an image which is a logical reordering of a base relation may

be declared with respect to values in one or more sort fields.

Once defined an image is maintained automatically by the RSS

during all INSERT, DELETE and UPDATE operations. It may also

be dropped at any time.

an image may be declared to be UNIQUE which forces each com

bination of sort field values to be unique in the relation.

At most, one image per relation may have CLUSTERING which causes

tuples whose sort field values are close to be physically stored

59

)

j

near each other.

specifies the base relation ON which the image has been de

clared.

any combination of fields can be specified as the image key;

furthermore, each of the fields may be specified as ascending

or descending.

Creating a LINK:

CREATE

[CLUSTERING]

LINK< link-name>

FROM <table-name> (field-name-list)

TO <table-name> (field-name-list)

[ORDER BY (ord-spec-list)J

a link is an access path which is used to connect tuples in one

or two relations. The RDS determines which tuples will be on

a link and determines their position through explicit opera

tions.

a link may be declared to have the CLUSTERING property which

causes each tuple to be physically stored near its neighbour

in the link.

the link has a declared name associated with it.

the user specifies the field names upon whom the links would

be established on matching values between the fields in a value

dependent way.

60

)

j

the tuples in the link may be ORDERED on some fields in a

value-dependent manner.

De fi n in g a VI rn :

DEFINE

[PERMANENT I TEMPORARY]

VIEW <table-name >

[(field-name-list)]

AS <query >

a view may be defined as a relation derived from one or more

other relations, arid then may be used as a base relation .

When an update or modification to a view is issued, updates

to the underlying base relations will be effected so long as

the tuples of the view are associated one-to-one with tuples of

the underlying relation .

a view may be PERMANENT or TEMPORARY to the transaction se

quence.

each view has a name associated with it .

the field/domain names of the derived relation which the view

defines.

the derivation of the view is done based on a SEQUEL DML query

expression which is prespecified.

DROPping a system-entity:

DROP <system-entity>

an authorized user may issue a DROP command against the follow

ing system entities: TABLE, IMAGE, LINK, VIEW, ASSERTION,

61

)

)

)

TRIGGER, causing them and any dependent system entities to

disappear from the system. The last two entities are system

control facilities which we have not discussed,

Manipulation Languages

CODASYL DBTG: The DBTG Data sublanguage is a COBOL host language

oriented Data Manipulation Lanugage (DML). The operators are acti

vated using COBOL-like statements and excepting for the STORE command

are implicitly dependent on the values of 'currency-indicators' main

tained by the system.

The reason for this dependence is the procedural navigation expected

of the programmer in manipulating the data base. Considerable assist

ance is provided by the system through the predefined access paths

available through the LOCATION MODE and SET OCCURRENCE SELECTION

clauses. However, apart from these, the programmer must procedurally

assess the position at which he is in the data base and the logic to be

determined for his next action.

The following major DML statements are provided:

FIND locates an existing record occurrence establishing it as

current of run-unit and updating other appropriate cur

rencies.

GET

MODIFY

INSERT

retrieves current of run-unit.

updates the current of run-unit.

inserts the current of run-unit into one or more set

occurrences.

62

)

J

REMOVE

DELETE

STORE

FIND:

removes the current of run-unit from one or more set

occurrences.

deletes the current of run-unit.

creates a new record occurrence and establishes it as

the current of run-unit also updating other appropriate

currencies.

The function of the FIND statement is to locate a record occur

rence in tha data base and make it current of the -run-unit, area,

record type and of all appropriate sets. There are seven formats

associated with the FIND statement:

format l :

FIND< record-name>

US ING < data base-key>

the initialized data-base key which must be local to the

run-unit.

format 2:

FIND

[OWNER IN <set-name> OF]

CURRENT OF

(< area > AREA I <record> RECORD I< set> SET I RUN-UNIT)

utilizes the current of AREA, RECORD, SET or RUN-UNIT to

locate the appropriate owner occurrence in set-name, or

merely updates appropriate currencies from specified cur

rency.

63

)

)

format 3:

FIND

(NEXT I PRIOR I FIRST I LAST I integer-value)

< record-name > RECORD

OF< set-name > SET

depending on the position specified the record name is

located in the named set.

format 4:

FIND

mlNER RECORD

OF< set-name> SET

locates the owner record of the current member record in

a specified set.

format 5:

FIND

NEXT DUPLICATE

lHTHIN <record-name> RECORD

utilized wheh LOCATION MODE is CALC and DUPLICATES ARE

ALLOWED to find a 11 record occurrences having the same

hash value derived by the CALC procedure.

format 6:

FIND

< record-name >

VIA [CURRENT OF] <set-name>

USING <data-item> , ••• IN <record-name>

If CURRENT OF is omitted, SET OCCURRENCE SELECTION is

64

)

)

used for the value initialized in the data items in the

lJWA.

format 7:

GET:

FIND

< record-name >

VIA [CURRENT OF] <set-name >

USING <data - item >, .. . IN <record-name >

essentially the same as format 6, except the match is not

with values in the UWA but a sequential scan to match

values with those of the current set occurrence.

GET

[<record-name >]

[;<data-item >,<data-item >, . .. J

brings the current of run-unit into the appropriate location

in UWA. If record-name is specified the system will verify

that the current of run-unit is the correct record type. If

the data-items are specified values for only those data-items

are accessed.

MODIFY:

MODI FY

<record-name >

[; <data-item >,<data-item >, .. .]

[USING <data-item > J

65

)

j

replace (portions of) the current of run-unit with values taken

from UWA. If the list of data-items is included only those are

replaced otherwise the entire record. The using clause causes

automatic SET OCCURRENCE SELECTION for the modified record.

INSERT:

INSERT

< record-name >

INTO < set-name >,<set-name>, ...

inserts the current of run-unit into the current occurrence(s)

of the specified set(s).

REMOVE:

REMOVE

<record-name >

FROM <set-name>, ...

removes the current of run-unit from the occurrence(s) of the

specified set(s) containing it only.

DELETE:

DELETE

<record-name>

[ONLY I SELE CTI VE I ALL]

NO qualification: the current of the run-unit is deleted if it

is n6t the owner of a non-empty set occurrence.

ONLY: the current of the run-unit is deleted, together with

MANDATORY member occurrences of which it is the owner (OPTION

AL member occurrences being merely removed).

66

)

)

J

SELECTIVE: same as ONLY excepting that OPTIONAL member occur

rences not participating as members in any other set are de

leted.

ALL: current of run-unit is deleted together with all members

of any set occurrences of which it is the owner.

STORE:

STORE

<record-name >

The record is stored with its values available in the ll\.1A. Data

item for its LOCATIONS MODE and the SET OCCURRENCE SELECTIONS

of sets in which it participates must be initialized if mem

bership has been declared as AUTOMATIC.

MISCELLANEOUS:

SUPPRESS

(<record-name >~set-name > l<a re a-name>)

CURRENCY UPDATES

currency updates for specified system entities are suppressed.

OPEN

AREA -<area-name> , ...

USAGE MODE IS

(UPDATE I RETRIEVAL)

[PROTECTED I EXCLUSIVE]

makes available for access the specified areas and their mode

of access.

CLOSE

AREA-<area-name > ~···

67

)

)

J

System R

user must close areas on end of session.

MOVE

CURRENCY STATUS

FOR< currency-name>

TO <data-item >

allows user to access and save currency status, that is, the

data-base key currently associated with that currency.

The Relational Data Interface (ROI) which is the principal external in

terface of System R consists of a set of operators which may be called

from an interface program. The operator SEQUEL makes available to the

external program the facilities of the data sublanguage SEQUEL which

is the Data Manipulatfon Language used by the system. The ROI inter

faces SEQUEL to a host programming language through a 'cursor' ~✓hich

is a name used to identify a set of tuples called the 'active set.'

The tuples may then be retrieved one at a time.

Actual materialization of tuples is done one at a time, using the

FETCH operator and specifying the cursor.

The following ROI operators are provided:

OPEN

(<cursor-name > , < name-of relation or view>)

associates the cursor-name with the specified relation or defined

view.

68

)

J

CLOSE

<cursor-name>

deactivates the cursor during transaction execution.

KEEP

(< cursor-name> ,<relation-name >,< list-of - field-names >)

causes the tuples identified by the cursor to be copied to form a

new relation in the data base, having some specified relation name

and field names.

DESCRIBE

(<cursor-name>, < degree >, < pointers-to-IO-locations >)

when a program does not know in advance the degree and data-types

of tuples associated with a cursor, the DESCRIBE operator returns

the degree and the data-types of the fields in the locations

pointed by the set of pointers.

BIND

< prog-var-name >

< prog-var-address >

defines to the system the program varia&les and their addresses

into which the query will return the results.

FETCH

<cursor-name >

[<pointers-to-IQ-locations >]

each call to this operator delivers the next tuple of the active

set; if the pointers are specified individual components of the

tuple are delivered to the locations specified.

69

)

.J

. FETCH-HOLD

<cursor-name >

[<pointers-to-I 0-1 ocati ons> J

works in the same fashion as FETCH except that an exclusive lock

is placed on the tuple delivered until an explicit RELEASE is given.

SEQUEL

[<cursor-name > J

<sequel-statement >

the following SEQUEL DML statements are support ed:

Assignment:

rel at ion-name

[(field-name - list)]

+-<query-expr >

creates a new table with the specified relation name as a

result of the query expression . If the field name list is

prpvided the new relation will contain only those fields.

Insertion!

INSERT INTO

relation-name

[(field-name-list)]

(<query-expr > I <lit era 1 > I< constant>)

inserts a new tuple into the specified relation. If the

field name list is provided values for only the field names

will be active all other fields being set t o null. The

values of the new tuple may be derived as the result of a

' query expression, literal values or the values in the pro-

gram variable names.
70

)

)

Deletion:

DELETE

<relation-name>

[WHERE boolean

~JHERE CURRENT

[TUPLE] OF

[CURSOR] <cursor-name>]

deletes tuples either in a set-oriented manner based on

evaluation of the boolean expression or an individual

tuple depending on the specified cursor position.

Update:

UPDATE

<relation-name>

(SET <field-name>= <expr > I

SET <field-name> = < query-expr >)

nm ERE boolean

WHERE CURRENT

[TUPLE] OF

[CURSOR] cursor-name]

updates relations by either value of an expression or re

sults of a query expression and updating the field names

specified in the SET list. Tuples can be selectively up

dated through appending the WHERE clause,

Query:

SELECT [UNIQUE]

((expr [:<host-location> JI

71

)

)

<var-name> * I

< rel at ion-name> *) I
*)

FROM < from-l is t >

[WHERE boolean]

[GROUP BY (field-spec-list)

[HAVING boolean]]

[ORDER BY (ord-spec-list)J

a query expression in SEQUEL provides a query facility

in a simple block-structured English keyword syntax with

simple operations on tables . The relevant data to be

accessed is described by set operations, although the

ROI operators allow tuple-wise access. For purposes

of this discussion some of the more detailed syntactical

constructs of a SEQUEL query have been omitted, suffice

it to say that they provide substantial flexibility and

power of expression.

The Relational Storage Interface provides simple tuple at

a time operators on base relations. Since evaluation of

a feasible interface with the DBTG system must take into

account actual storage manipulation and access requests,

the major RSI operators into which all RDI's operators

are eventually converted will be considered.

Calls to the RSI require explicit use of data ar_ea (seg

ments) along with access paths (images and links) through

RSS generated numeric identifiers for data segments,

72

'

)

relations, access paths and tuples. The selection of ef

ficient access paths is handled by the RDS in its optimiz

er function.

Most of the operators have self-evident meanings corres

ponding to the initial ROI commands the only difference

being that the RSI operators are directed towards the for

matted (storage) control blocks.

Operators on segments:

OPEN-SEGMENT (< segi d >)

CLOSE-SEGMENT (< segi d >)

SAVE-SEGMENT (< segi d >)

RESTORE-SEGMENT (< segi d >)

All segments must be explicitly opened prior to data access

and closed at the end of a transaction session. The SAVE

and RESTORE operato~ allow for convenient backup and re

covery.

Query Equivalence

Before proceeding to the general strategy for mapping queries from one

system to the other in this section, a brief review is made of the ability

of both languages to view a data base in an equivalent logical fasion.

The equivalence is in terms of both data definition as well as manipula

tion statements.

The suppliers-and-parts data model which Codd and Date have used for ex

pounding their views on the Relational model will be used for purposes of

illustration.

73

)

)

Data Model:

Rel at ion al :

Relation

SUPPLIER

PART

SUPPLY

Nebmrk:

SUPP LI ER

S-SP

SUPPLY

data fields

SNO, SNAME, STATUS, CITY

PNO, PNAME, COLOR, vJE I GHT

SNO, PNO, QTY

PART

P-S

CJ
System R (DDL) :

Table definition:

CREATE

PERMANENT SHARED

TABLE SUPPLIER

SNO CHAR(5)

SNAME CHAR(2O)

STATUS DECIMAL(3 ,3)

CITY CHAR(l5)

CREATE

PERMANENT SHARED

TABLE PART

74

)

_)

PNO CHAR(6)

PNAME CHAR(2O)

COLOR CHAR(6)

WEIGHT DECIMAL(4,4)

CREATE

PERMANENT SHARED

TABLE SUPPLY

SNO CHAR(5)

PNO CHAR(6)

QTY DECIMAL(5 ,5)

J\ccess paths:

CREATE

CLUSTERING LINK

FROM SUPPLIER (SNO)

TO SUPPLY (SNO)

ORDER BY SUPPLY.PNO

CREATE

CLUSTERING LINK

FROM PART (PNO)

TO SUPPLY (PNO)

ORDER BY SUPPLY.PNO

CREATE

UNIQUE CLUSTERING

IMAGE s

ASC

ASC

ON SUPPLIER SUPPLIER.SNO ASC

75

)

)

CREATE

UNIQUE CLUSTERING

IMAGE P

ON PART PART.PNO ASC

CODASYL DBTG

Schema Definition:

SCHEMA NAME IS SUPPLIERS-AND-PARTS

AREA NAME IS DATA-AREA

RECORD NAME IS SUPPLIER;

LOCATION MODE IS CALC HASH-SNO

USING SNO IN SUPPLIER

DUPLICATES ARE NOT ALLOWED,

WITHIN DATA-AREA.

02 SNO

02 SNAME

02 STATUS

02 CITY

TYPE IS CHARACTER 5.

TYPE IS CHARACTER 20.

TYPE IS FIXED DECIMAL 3.

TYPE rs CHARACTER 15.

RECORD NAME rs PART;

LOCATION MODE IS CALC HASH-PNO

USING PNO IN PART

DUPLICATES ARE NOT ALLOWED;

WITHIN DATA-AREA.

02 PNO

02 PNAME

02 COLOR

02 WEIGHT

TYPE IS CHARACTER 6 ,

TYPE IS CHARACTER 20.

TYPE IS CHARACTER 6.

TYPE IS FIXED DECIMAL 4.

76

)

J

RECORD NAME IS SUPPLY;

WITHIN DATA-AREA.

02 SNO

02 PNO

02 QTY

TYPE IS CHARACTER 5.

TYPE IS CHARACTER 6.

TYPE IS FIXED DECIMAL 5.

Access paths:

SET NAME IS S-SP.

MODE IS CHAIN;

ORDER IS SORTED;

OWNER IS SUPPLIER;

MEMBER IS SUPPLY;

MANDATORY AUTOMATIC;

ASCENDING KEY IS PNO IN SUPPLY

DUPLICATES ARE NOT ALLOWED;

SET OCCURRENCE SELECTION IS THRU

LOCATION MODE OF OWNER.

SET NAME ISP-SP;

MODE IS CHAIN;

ORDER IS SORTED;

OWNER IS PART;

MEMBER IS SUPPLY;

MANDATORY AUTOMATIC;

ASCENDING KEY IS SNO IN SUPPLY

DUPLICATES ARE NOT ALLOWED;

SET OCCURRENCE SELECTION IS THRU

LOCATION MODE OF OWNER;

77

)

J

The data definitions of the two systems provide us access facilities

to the data model example which are equivalent in their scope if not

identical in the implementational details.

System R:

Three relations have been created as permanent tables.

Facilities for traversal between the relations (SUPPLIER and SUP

PLY) and (PARTS and SUPPLY) have been set up through binary links.

Functional mapping for the SUPPLY relation on its connection with

the SUPPLIER and PART relation is established in the binary link.

CODASYL DBTG:

The three record types are defined together with keys for the access

paths utilized by SUPPLIER and PART record types.

Two set types S-SP and P-SP have been created. Both having SUPPLY

as the member record and SUPPLIER and PART respectively as the

owner.

Ordering on the member records has been established, with mem

bership being declared as MANDATORY AUTOMATIC and SET OCCURRENCE

SELECTION through the location mode of the owner.

The scope of :these data definitional facilities are apparent in the

examples given below which express equivalent queries on the two data

bases.

DML;

#1. Get supplier name and city for supplier 'S4'.

78

)

DBTG:

MOVE 'S4' TO SNO IN SUPPLIER

FIND SUPPLIER RECORD

GET SUPPLIER; SNAME, SCITY.

System R:

CALL BIND ('X', ADDR(X));

CALL BIND ('Y', ADDR(Y));

CALL SEQUEL (Cl, 'SELECT SNAME:X, SCITY:Y FROM SUPPLY WHERE

SNO = "S411 I);

#2. Add 10 to the status value for supplier S4.

DBTG:

MOVE 'S4' TO SNO IN SUPPLIER

FIND SUPPLIER RECORD

GET SUPPLIER; STATUS

ADD 10 TO STATUS IN SUPPLIER

MODIFY SUPPLIER; STATUS

System R;

CALL SEQUEL ('UPDATE SUPPLIER

SET STATUS= STATUS+ 10

WHERE SNO =

SELECT SNO

FROM SUPPLIER

WHERE SNO = "S4111)

#3. Create a new supply occurrence for 'S5/P6/7'.

79

)

_)

DBTG:

MOVE 1S51 TO SNO IN SP

MOVE 1 P61 TO PNO IN SP

MOVE 7 to QTY IN SP

MOVE 'S5' TO SNO IN SUPPLIER

MOVE 1 P61 TO PNO IN PART

STORE SP

System R:

CALL SEQUEL ('INSERT INTO SUPPLY:

<S5,P6,7> ');

#4. Find the corresponding owner in another set of current run

unit member.

DBTG:

FIND OWNER IN P-SP OF CURRENT OF S-SP SET.

System R:

CALL SEQUEL ('SELECT*

FROM PART

WHERE PNO = PNO OF CURSOR Cl ON SUPPLY');

#5. Find the qty. of part P5 supplied by supplier S4,

DBTG:

MOVE 'S4' TO SNO IN SUPPLIER

FIND SUPPLIER RECORD

MOVE 'P5' TO PNO IN SUPPLIER

FIND SUPPLIER VIA CURRENT OF S-SP USING PNO IN SUPPLIER

IF ERROR-STATUS= 0326 GO TO NON-SUPPLIED

GET SUPPLIER
80

)

)

System R:

CALL BIND (1 X1 , ADDR(X))

CALL SEQUEL (Cl, 'SELECT QTY:X

FROM SUPPLY

Translation Strategy

WHERE SNO = 1 S41

AND P NO = 1 P 5 1 1) ;

The general translation strategy will consist of:

l) making available to each of the systems which is effecting a data

access to an object system, equivalent system facilities of the

object system to provide a simulated data-base transformation.

This should be done with the goal of preserving original informa

tion such that all operations previously possible may still be per

formed.

2) providing run time query translation which converts the data manage

ment calls into the object systems operators.

CODASYL DBTG to System R:

Schema Declaration: Since most of the schema declaration constructs

have been previously analyzed and their equivalent facilities in

System R have been identified, the translation mechanism suggested

here shall concentrate on the SET construct and its suggested map

pings only.

Representation of set types: A set type as has been observed

consists of one owner record type and one or more members re

cord types.

)

J

Set membership: Since access paths in System Rare made

available to the ROI as static references, these paths

can be declared by setting up binary links between the

relations. However, since a binary link can only be es

tablished between two relations, multiple binary links

would have to be declared if there were more than one

member record types in a declared set. In general the

facility of multi-membership in sets is not recommended

[Nijssen] .

OBTG specifies membership in sets through the membership

class. Since relations by definition and System R (SEQUEL}

operate on set-oriented definitions, the MANUAL class of

membership may not be supported in the DDL. Record-type

membership in sets is thus restricted to < MANDATORY I OPTIONAL>

< AUTOMATIC> eliminating arbitrary user placement strategy.

Ordering: In the CODASYL system the logical position of a mem

ber record within a set occurrence may also be considered

to be of significance ~ the ordering being established in

two ways.

On the order of insert ion of a new entry into the set type

(such as when order is declared to be NEXT, PRIOR, FIRST,

LAST). Since relation and System R in particular does not

contain any access paths containing any logical information

other than that derivable from the data values themselves, such

an order cannot be supported (see Set Membership MANUAL class).

82

)

)

MANUAL insertion may be simulated, however, by placing the

partial burden of set maintenance on the interface program.

Records which participate as members of information bearing

sets would include the keys of their owner record as one of

their data items. The order of insertion for the record in

the set occurrence would be maintained by generating sequence

numbers as one of the data items in the record.

This technique would maintain the value dependent link require

ments of System Rand accomplish the DBTG facility for:

manual INSERTS.

allow for Information-bearing sets.

Ordering based on certain sort keys of the member records are

declared as the order specifications in the binary links.

Set Occurrence Selection: Access strategies provided by DBTG

for selecting a given set occurrence are utilized by the system

under the following circumstances.

when a member record of a given set has been declared as

an AUTOMATIC member of a specified set, the system uses

the selection strategy for its proper placement in the

data base. Such a situation is easily handled in System

R since all links are automatically maintained by the sys

tem and placement of the new tuple is effected in its pre

specified ordering.

when a modification to the record key accomplishes an auto

matic deletion and insertion into the respectively new

set occurrence . This is a mere programming trick and is

83

)

_)

not supported by System R since it violates the value de

pendent ordering rule of links. What should be done is

to delete the record and insert it afresh after key modi

fication to maintain system consistency,

The last application of SET OCCURRENCE SELECTION is as an

access strategy in a FIND statement which we describe as

follows:

For each DBTG set declared in the schema, a VIEW defini

tion is entered in System R, the linkage between the rela

tions being established through the use of cursors.

Using the SUPPLIER and PART example SETS-SP would be de

clared as:

DEFINE VI EW S AS

SELECT*

FROM SUPPLIER

·. DEFINE VIEWS-SP AS

SELECT *

FROM SUPPLY

WHERE SNO = SNO OF CURSOR Cl ON SUPPLIER

ORDER BY SUPPLY.PNO ASC

The definitions of Sand S-SP call for tuples of SUPPLIER

and SUPPLY which have the same SNO as cursor Cl; further

more, they specify that when these views are used~ the

cursor Cl will be active on SUPPLIER,

84

)

j

These VIEW definitions are parsed and optimized and re

tained by the system in the form of POP's. During the

optimization presence of the physical support (defined

binary link) will be utilized for fast access. Thus, pro

viding a direct analogy for a SET traversal mechanism.

Data Manipulation

Retrieving Set Occurrences: If an entire set occurrence is needed,

the query is translated into a two-stage retrieval.

Accessing the owner type: The owner view is opened and the cursor

positioned on the specific owner record/tuple. Locating the owner

record may be:

CALC or DIRECT: in which case the normal System R accessing is

done.

VIA set SET: in which case the translator must declare addi

tional views of the records on which the current view would be

dependent and the translated query allow for mapping the cursor

position to the current view.

The key of the link between the records is expressed as a query.

Traversing Set Types: A set type is traversed by executing a se

quence of DML statements of the form:

FIND NEXT (or PRIOR, or LAST, etc.) RECORD OF SET set-name.

The first implication of such traversal statements is that the in

terface program has generated requisite owner and sequence

number keys.

85

)

J

FIND [OWNER I MEMBER] OF CURRENT SET set-name.

Standard traversal involving the current of owner and member

records.

The following procedure accomplishes a simulation of such

traversals.

the cursor is positioned on the owner record VIEW.

the subordinate VIEW is then opened and either the member

record is selected using a key value match or the trans

lator provides the specific sequence number of the record

using the current value to accomplish (NEXT, PRIOR, etc.).

GET, MODIFY, REMOVE, INSERT, DELETE, STORE.

The above commands are directly translatable into SEQUEL equiv

alents and as can be observed in their details , have approxi

mately the same implications in System Ras in DBTG. The dif

ferences can be easily compensated by a translator program.

System R to CODASYL DBTG

As has been mentioned earlier any strategy for translating queries from

System R to CODASYL DBTG must take into account the underlying system sup

port facilities which convert high-level set-oriented SEQUEL statements

into lower-level access primitives.

The translation mechanism which interfaces System R to a DBTG system shall

make use of these low-level access primitives rather than translating the

SEQUEL query itself. The reasons for this become self-evident when we

review the query execution process under System R.

86

)

System R comRonents: The system comprises tvm interfaces and their sup

porting sub-systems respectively:

Relational Data Interface (ROI) is the external interface, providing

high-level data independent facilities for data retrieval, manipu

lation, definition and control. It consists of a set of operators

including SEQUEL which allows all facilities of the SEQUEL sub

language.

Relational Data System (RDS) is the sub-system which supports the

ROI. It contains an 1 optimizer 1 which plans the execution of each

ROI command, this is done by choosing a low-cost access path to

date from among those provided by the RSS.

Relational Storage Interface (RSI) provides simple tuple at a time

operators on base relations. Calls made to the RSI require expli

cit use of segments (data areas) and access paths called images and

links identified appropriately for the RSS.

Relational Storage System (RSS) has functions which can be found

in many other systems (relational and non-relational) such as the

use of indexes and pointer chain structures appropriately identi

fied and maintained for use by the RDS in choosing an access

path and generating its RSI calls.

The flow of a System R query is thus:

)

dependent on the interrelated system components before being effec

tively translated by an interface program.

Data Definition facilities.

Most of the system facilities for defining data have been discussed

previously and their counterparts in the DBTG system have also been

identified. Here the specific clauses will be analyzed together with

any limitations arising therefrom.

Representation of Relations: Each relation utilized by the system

is specified by the 'create-table' ddl command; this is converted

and maintained by the RSS. These relational declarations will

correspond to the record types declared in the DBTG schema.

In the DBTG schema the table will generate the following addition

al features:

LOCATiON mode is DIRECT: Relational systems depend on the

tuple-id rather than a user defined physical location (CALC)

or arbitrary placement (CURRENT OF SET).

WITHIN area: the segment-id associated and maintained by the

RSS would be converted to the more descriptive AREA names used

by the DBTG system through a conversion scheme.

PRIVACY LOCK: any ASSERT statements declared on the relation

would be converted to PRIVACY LOCK statements with ON condi

tions.

Representation of Access paths: Since the major access path utilized

in the DBTG system is the SET declaration. Any translation scheme

must be heavily dependent on utilizing this particular system

88

)

.)

facility.

Binary links: are used to connect tuples in two relations.

Such links can be directly expressed in terms of sets under

the DBTG system with the following qualifications.

MODE IS CHAIN: which is the norma 1 implementation mechan

ism under System R and is efficient in access terms.

ORDER: would be declared if the ORDER BY ord-spec-list

has been specified in the LINK.

OHNER/MEMBER: are correspondent to the FROM table-name TO

table-name clauses in System R.

SET OCCURRENCE SELECTION: in keeping with the relational

viewpoint would be the LOCATION MODE OF OWNER.

MEMBERSHIP: as has been discussed earlier would be OPTIONAL/

MANDATORY AUTOMATIC which is the system requirements for

· links.

Images: are logical reordering of relations providing associ

ative paths in the relation itself. Since the only system
I

path supported under DBTG involving a single record type

is a singular or system-owned set, an image would be trans

lated to a system-owned set together with the ordering speci

fications declared.

The sequential nature of such sets together with their or

dering would provide the associative access facility of an

image.

The RSS would store these access paths and allow the optim

izer to select its access path generating tuple-wise RSI

89

)

calls identifying the particular access path being utilized

which would correspond to the path available under the DBTG

system.

Before the conversion of a SEQUEL query into RSI calls is

made. The optimizer function should be briefly reviewed.

Optimizer: attempts to minimize the expected number of pages

to be fetched from secondary storage into buffers during execu

tion of a statement. It accomplishes this by classifying the

SEQUEL statement into one of several statement types accord

ing to the presence of various language features such as JOIN

and GROUP BY. Next the optimizer examines the system catalogs

to find the set of images and links 1t1hich are pertinent to a

given statement. A rough decision procedure is then executed

to derive an expected cost formula for each 1reasonable' access

method available and an optimal path selected ..

In the translation strategy suggested it is the aim to bias

the optimizer towards using access paths which are more natur

ally available under the DBTG system. This is readily accom

plished by heavy utilization of binary links, which would

orient the access path decision toward a simulation of net

work type traversal and retain system efficiency after the

access ca 11 s are converted into DBTG commands.

Query Trans 1 at ion process~ In order to evaluate the feasibility

of effectively translating a query we will follow the various

constructs utilized by the System R in DBTG terms·,

9.0

)

)

BIND: establishes the variable names into which tuple

values are delivered. This would correspond to the UWA

of DBTG which is utilized by the sub-schema user.

SEQUEL: expresses the query content itself involving one or

more relations. As discussed earlier a SEQUEL query is

parsed, analyzed and an optimized access path for it gen

erated by the 'optimizer'. The RDS would utilize this

access strategy which is a combination of the DBTG system

supported access paths of LOCATION MODE and SET OCCURRENCE

SELECTION clauses to position the defined cursors which

are essentially the RECORD, set and run-unit currency indi

cators at the tuple or record-type occurrence.

FETCH: materializes the desired tuple into the variable

names specified in the BIND statement which is the l.Jl,/A, GET.

Any of the SEQUEL dml statements with the exception of those

dynamically generating new relations (assignment) have appro

priate DBTG commands into which they can be adequately trans

lated (INSERT, DELETE, UPDATE-System R) into (INSERT, STORE,

REMOVE, DELETE, MODIFY~DBTG).

Since the interface program which would handle actual transla

tion of System R access primitives expects tuple commands to

gether with support information to navigate in a DBTG environ

ment, the level of interface is logically the RSI operators.

The following RSI operators together with the supporting en

vironment information are available for querying:

91

)

FETCH(-< segid >, -<relid >, <identifier: tid or link id or

image id, key values), -< field list> ., < pointers to IO loca

tions > [,HOLD].

fetches the specified tuple based on identifier values into

the variables (work area) and places a lock if option speci

fied; equivalent to a GET.

OPEN-SCAN (-<segid >., -< path :relid or image id or link id >,

-<start -point= key values for image, or tid for link, or scanid

for link >) RETURNS(< scanid >)

utilizes information of access path and tuple identifier to

retrieve the position of required tuple or set of tuples;

DBTG FIND.

NEXT{-< segid > ,-< scanid > ,<field list > , < pointers to TO

locations > [,-< search argument > [,HOLD])

sequential scan of the link members and retrieval into work

area, together with optional search arguments and locks--ana

logous to sequential navigation facilities of DBTG FIND.

INSERT

DELETE

UPDATE

together with requisite segment (AREA) and path (SET), informa

tion allow effective data manipulation facil i ties on tuples

,fiiich can be translated into DBTG terms without much. difficulty.

Set maintenance by the system would be managed by explicit op

erators for links ,

92

)

)

Limitations

CONNECT

DISCONNECT

which though value-dependent would serve adequately in AUTO

MATIC category of sets.

From the foregoing it is apparent that translation of SEQUEL

(System R) queries into analogous DBTG commands is feasible

and can be accomplished with minimal loss of system facili

ties.

In deriving any translation strategy some restrictions must be placed on

individual system facilities to allow for an effective mapping of the

language constructs to be accomplished. So long as these restrictions do

not cause any excessive loss of information, they are acceptable.

Given below are the major limitations which would have to be taken into

account in the translation process:

DBTG to System R;

Repeating groups: within records to be discouraged, since it conflicts

with basic normalization of data (a conceptual viewpoint of organizing

data). Although a translator could split these repeating groups into

separate relations, generating owner tuple keys and linking them with

binary links to the owner record with clustering specification. Thus

accomplishing ready access.

VIRTUAL SOURCE/RESULT: this clause allows data items to be virtually

existent, that is, either actually available _ in some other record type

93

)

or the result of a procedure. The underlying concept being saving of

storage space, such a mechanism has many system maintenance implica

tions and is not supported under System R.

MANUAL membership: which depends on the physical insertion of records

into sets allowing users arbitrary control over placement stretegy is

not permitted in a data value dependent relational system.

LOCATION MODE IS CALC: is another instance of utilizing user defined

storage address computational procedures which i~ not permitted under

System R. All tuple placement is controlled through the TIO which is

under system control, any other strategy conflicting with this would

create considerable complications in system efficiency,

System R to OBTG:

The major restraint on any translation process in this direction is

the lack of support for dynamic generation of new relations. In other

words, the system allows sub-schema users to operate on a static data

base,any major modifications to the schema being under the control of

the OBA.

94

)

J

IV. CONCLUSION

In this paper a mechanism has been presented for interfacing the Rela

tional model to the Network model and vice versa. Throughout the discus

sion an effort has been made to allow a feasible interface preserving as

far as possible the intactness of the model implementations, that is,

System Rand CODASYL DBTG,respectively.

Since the context of this discussion is within the framework of the above

mentioned implementations certain limitations come to light:

l. Whereas in the DBTG DML direct use of the schema facilities is made

in specifying the access paths the user utilizes to navigate ~'lithin

the data base, no such facility is made available to the higher

level SEQUEL user. In order to accomplish effective interfacing

the level at which the two implementations communicate are there

fore di spa rate:

DBTG to System Rat the host language level (DML).

System R to DBTG at the access method level (RSI operators).

This point has been discussed by (Nijssen) when he remarks that the

relational language although simpler and more powerful than the

Network DDL and DML does not provide any facility for defining an

access path. Thus,whereas in the 'relational+ access path' a dis

tinct separation between the logical aspects of information and

access function is implied,in 'DDL + discipline ' there is no possi

bility of separating the two aspects.

95

)

)

2. The dynamic nature of the relational model which allows users under

System R to generate new relations as the result of a query gets re

stricted under the DBTG model. Users under DBTG cannot make major

changes to the schema during a dynamic interchange with the data

base, that is, in a query session.

3. The control over the physical storage which DBTG allows its users falls

into the following three statement clauses:

AREA and WITHIN: which specifies setting up storage areas and al

location record types to be stored in them. Subsequent DML state

ments require explicit opening of the required areas and associat

ing any data base activity with an area.

LOCATION MODE: user can have his own predefined hashing procedure

which maps a record to its physical storage location.

MANUAL SETS: which allow user discretion/strategy in including a

record type within an entity set relationship (set).

Under System R users have no control over the data base physical

storage. The system decides over the size of segments and the

placement strategy of tuples and relations.

The logical and physical addresses of tuples are controlled by the

system through the generation of TID's. Any optimization to be

accomplished is done through user-defined clustering specifications.

Apart from this the user has no control over the physical address

of the tuples.

Any relationships between entity sets, such as binary links, is

value-dependent and, thereafter, automatically maintained by the

96

)

)

)

system. A user may not arbitrarily include or exclude individual

tuples from a physical link once defined and created,

4. The duplication of logical facilities caused by the provision of

both sets and repeating groups under DBTG causes unnecessary compli

cations when interfacing with System R. As mentioned earlier, al

though repeating groups may be simulated under System R by locating

them as separate relations they burden the translator with unneces

sary maintenance work and may conveniently be excluded.

5. The VIRTUAL/SOURCE clauses available under the DBTG schema perform

two functions:

firstly they provide the data base administrator control over the

storage of different data items in different records.

secondly they provide a certain amount of data independence in the

COBOL sub-schema.

However, the first function should be handled much more comprehen

sively in the suggested DMCL and the second under the COBOL sue

schema DDL.

Under a relational system such facilities become redundant because

of the dynamic nature of the DDL, although a distant analogy may

be suggested between the view facility of System Rand the VIRTUAL/

SOURCE clauses.

Although the contents of the foregoing paper place certain limitations on

the process of communication between the subject DBMS' s, it demonstrates

the feasibility of both logical and physical mapping on both sides. Until

such time as a more standard Data Base Model is accepted as the medium of

97

implementing large data stores, this non-optimal but practical approach

) to communicating between different data models remains a necessary if cum

bersome reality.

)

98

)

)

)

REFERENCES

Astrahan, M.M., et al. (1976) "System R: Relational Approach to Data-
base Management, 11 ACM T0DS June 1976, 97-137.

Adi ba, M., and C. Delobel. (1977) "The Problem of Cooperation between
different D.B.M.S." Proc. IFIP TC2 Jan. 1977, 165-186.

Banerjee, J., and D.K. Hsiao. (1978) 11The Use of a Database Machine for
supporting Relational Databases , 11 Proc. 5th t~kshp. on Computer Archi
tecture, Aug. 1978.

Banerjee, J., and D.K. Hsiao. (1978) 11A methodology for Supporting
Existing C0DASYL Databases with New Database Machines, 11 Proc. ACM '78
Con f. , Dec . 1 9 7 8 .

Bracchi, G., P. Paolini, and G. Pelagatti. (1975) "Data independent de-
scriptions and the DDL specifications," Proc. IFIP TC2 Jan. 1975, 259-
267.

Codd, E.F. (1970) "A Relational Model of Data for Large Shared Data
Banks, 11 CACM June 1970, 377-387.

Codd, E.F. (1974) "Normalised Data Base Structure: A Brief Tutorial, 11

Proc. ACM SIGFIDET Wkshp. on Data Description Access & Control, 1-17.

Codd, E.F. (1974) "A Data Base Sublanguage Founded on the Relational
Calculus," Proc. ACM SIGFIDET t~kshp. on Data Description Access &
Cont ro 1 , 35-68.

Codd, E.F., and C.J. Date. (1974). "The Relational and Network Approach-
es: Comparison of the Application Programming Interfaces." Proc. ACM
SIGM0D (R. Rustin, ed.), 83-113.

Codd, E.F., and C.J. Date. (1974) "Interactive Support for Non-Program-
mers: The Relational and Network Approaches," Proc. ACM SIGM0D (R.
Rustin, ed.), 11-41.

Chamberlin, D.D., and R.F. Boyce. (1974) "SEQUEL: A Structured English
Query Language, 11 Proc. ACM SI GM0D Hkshp. on Data Description, Access
& Control, 249-264.

Date, C.J. (1975) An Introduction to Database Systems, Addison Wesley,
Reading, Massachusetts.

Engles, R.W. (1971) 11An Analysis of the April 1971 Data Base Task Group
Report, 11 Proc. ACM SIGFIDET Wkshp. on Data Description, Access &
Control, 69-91.

99

)

Nijssen, G.M. (1975) 11Set and CODASYL Set or Coset, 11 Proc. IFIP TC2
Jan. 1975, 1070.

Nijssen, G.M. (1974) "Data Structuring in the DOI and Relational Model , 11
Prox. IFIP Working Conf. on Data Base Mgt., Apr. 1974, 363-379.

Kershberg, L., A. Klug, and D.C. Tsichritzis. (1976) 11A Taxonomy of Data
Models , 11 Systems for Large Data Bases, 43-64.

Kay, M.H. (1975) 11As Assessment of the CODASYL DDL for use with a Re-
lational Subschema," Proc. IFIP TC2 Jan. 1975, 199- 212.

Martin, J.T. (1975) Computer Data-Base Organization, Prentice Hall,
Englewood Cliffs, New Jersey.

Metaxides, A. (1975) "'Information bearing' and 'non-information bear-
ing' sets." Proc. IFIP TC2 Jan. 1975, 363- 368.

Schenk, H. (1974) 11Implementational Aspects of the CODASYL DBTG Proposal,"
Data Base Management (Klimbie & Koffeman, eds .), 399-412.

Sibley, E.H. (1974) "On the Equivalence of Data-Based Systems," Proc.
ACM SIGMOD (R. Rustin, ed.), 43-76.

Su, S.Y.W. (1976) "Application Program Conversion due to Data Base
Changes," Systems for Large Data Bases, 143-157.

Tsichritzis, D.C. (1975) 11A Network Framework for Relational Implemen-
tation,11 Proc. IFIP TC2 Jan. 1975, 269-282.

Tsichri-tzis, D.C., and F. Lochovsky. (1976) ''Views on Data," SHARE XLIV,
Chicago, Illinois, 51-65.

Whitney, V.K. (1974) "Relational Data Management Implementation Tech-
niques,11 Proc. ACM SIGFIDET May 1974, 321-345.

Yormark, B. { 1976). · 11The ANSI/X3/SPARC/SGDBMS Architecture, 11 SHARE XLIV,
Chicago, Illinois, 1-21.

	Mirza_Hamid_W_1979_11_30_A
	Mirza_Hamid_W_1979_11_30_B

