$\xrightarrow{\circ}$
DISTRIBUTION TRANSFORMERS

Oregon State College
Professor: Louis N. Stone
Course: E E 403 - Thesis
Submitted: Spring, 1954

> Presented to:
> Oregon State College
> Portland General Electric Company
> American Institute of Electrical Engineers
> Pacific Telephone and Telegraph Company
:

By

Thomas N. Chaney

ACKNOWLEDGEMENTS

The author extends his gratitude to:
Professor Louis Stone for his timely advice and laboratory assistance. The Portland Ceneral Electric Company, which provided suitable test transformers.

The Pacific Telephone and Telegraph Company, which provided special instruments.

Mr. Marvin B. Crouch, who assisted in making laboratory measurements.
Introduction. Page 1
Preliminary Considerations 2
No Load Saturation Characteristics... 5
Telephone Interference. 7
Power Losses. 21
Load Loss 15
Power Factor 16
Core Heating 17
Noise 19
Sumenary. 22
Conclusion. 23
Appendix.

INTRODUCTION

This paper is the result of extensive experiments, investigating the effect on typical distribution transformers when operated overexcited as much as 117% of their rated voltage. Inasmuch as transformers are designed to provide the customer with $120 / 240$ volts, or perhaps $240 / 480$ volts, the question immediately arises as to the reason for 17% overexcitation; the answer follows:

The Portland General Electric Company employs, along with several three-phase primary systems, a 12,000 volt "wye" feeder network, which utilizes 12 KV transformers possessing four $2 \frac{2}{2} \%$ taps below 12 KV and 7,200 volt transformers that have their taps set corresponding to the line-to-neutral 6,930 volts (taps set to 6,840 volts). This Company has found, for various and sundry reasons, it economically advantageous to increase its line voltage up to 12,900 volts which results in a line-to-neutral voltage slightly less than $3 \frac{1}{2} \%$ above 7,200 volts. The problem, is what shall be done with the 12 KV transformers? These machines could still be used in three-jhase banks by wye connecting their secondaries, setting taps to $92 \frac{2}{2 \%}$, and impressing 12.9 KV upon them which results in $242 / 484$ volts line to line -- an ideal power voltage, but requiring 16.2% overexcitation. ${ }^{1}$

1. In the event that the line voltage is raised to 12.6 KV , the taps may be set to 90% and the same power voltage obtained with 16.7% overexcitation.

Three typical distribution transformers were loaned to Oregon State College, for the purpose of investigating overexcitation characteristics, by The Portland General Electric Company. These machines were made by three different manufacturers and all have the same ratings: 10 KVA , 12 KV with $4-2 \frac{1}{2} \%$ taps below 12 KV . Nameplate data appears in the Appendix. The manufacturers are General Electric (abbreviated G.E.), Westinghouse Electric (W.E.), and Allis-Chalmers (A.C.). This study was not conducted on a comparative basis, but instead to obtain an overall picture of the situation.

These transformers are modern; they possess grain-oriented siliconsteel cores; the G.E. machine is a "spirakore" speciman, the W.E. machine a "hypersil" make, and the A.C. transformer has a "curvacore" core. The "per unit" or "percentage" method of presenting test information is used freely in this paper, thus giving a more or less representative picture of a conglomeration of various transformers operating simultaneously on the three-phase system. The base volt-amperes (one per unit or 100%) is 10 KVA and one per unit voltage is that voltage corresponding to the specific tap setting. Precise instruments were utilized throughout all tests made and, where feasible, the same instruments were used in making identical tests on each transformer. Instruments and instrument corrections have been applied and appear in the Appendix.

Manufacturers of these machines were reluctant to divulge certain so-called confidential information regarding their transformer's construction and operation. Therefore, in the interest of curiosity and future
reference, the following data was obtained by simple tests:
Polarity: These transformers exhibit standard subtractive polarity as stated on their nameplates and checked by the "inductive kick" method of test using a three volt battery and a d-c voltmeter.

Turns Ratio: A check was made against the turns ratios specified by the nameplates at individual tap settings, and the results (see Appendix) show that these ratios are exact to within the 0.5% guaranteed accuracy of the voltmeters and laboratory potential transformer used.

D-C Resistance: The resistancesof the 12 KV coils in each transformer were measured by the ordinary Wheatstone bridge method, and the resistances of the 240 volt coils were obtained by use of the Kelvin bridge. All measurements have been corrected in the Appendix for 100% tap settings and $75^{\circ} \mathrm{C}$. obtaining the following values:
A. C. Transformer: $\begin{aligned} & (12 \mathrm{KV} \text { coil resistance equals } \\ & (240 \mathrm{volt} \text { coil resistance equals }\end{aligned}$
G. E. Transformer: (12 KV coil resistance equals G. E. Transformer: $\begin{aligned}(12 \mathrm{KV} \text { coil resistance equals } \\ (240 \mathrm{volt} \text { coil resistance equals }\end{aligned}$
137.21 ohms 0.04637 ohm
133.81 ohms 0.05854 ohm
W. E. Transformer: (12 KV coil resistance equals (240 volt coil resistance equals

147.34 ohms 0.04742 ohm

Weights: A platform scale, having a $0-500$ pound range and estimated accuracy of 2%, was used in weighing each transformer complete with oil.
A. C. Iransformer weight complete, is 272.0 pounds.
W. E. Transformer weight complete, is 262.4 pounds.
G. E. Transformer weight complete, is 268.0 pounds.

It is well to note that these weights are gross contradictions to the same quantities given by Portland General Electric Company on their transformer slip, which appears in the Appendix.

During the course of the experiments, the G.E. machine was dismantled and the core and coil assembly weighed at 138 pounds. With the core extracted, the ofl depth was measured at $I / 3 / 8^{\prime \prime}$ and the inside diameter of the circular case is $14 . \mathrm{O}^{\prime \prime}$; thus, the volume of oil was calculated: 9.6 gallons. With the aid of two graduated 1,000 milliliter cylinders and a balance obtained from the Chemistry department, the specific gravity of the transformer ofl in the G. E. machine was measured by comparing it to tap water; specific gravity equals 0.864 . The weight of oil can then be calculated to be 69.0 pounds. This leaves 61.0 pounds for the weight of the case, cover and bushings.

Actual Number of Turns on the G.E. Transformer:
A forty-turn winding of \#26 wire was wound directly on the core of the G. E. transformer for the purpose of obtaining the actual number of turns in the primary and secondary windings. With approximately 900 volts impressed on the 12 KV coil and held constant, a vacuum-tube voltmeter having a $0-10$ volt range was used to measure 4.10 volts on the forty-turn coil, 8.90 volts and 9.00 volts respectively, on each of the 120 volt coils. Since a vacuum-tube voltmeter does not impose a load on the small \#26 wire coil, the actual number of turns on the secondary, 240 volt coil can be determined to be 175 turns. The 12 KV coil mast then be composed of at least 8,750 turns, and perhaps a few less to account for resistance and leakage-reactance voltage drops. In general, we may assume that there are approximately 0.73 turns per volt for transformers of this type.

There are 186 laminations of continuous spiral core 4.00^{11} wide and $0.015^{\prime \prime}$. thick comprising this core of the G. E. machine. From the previous data, the rated maximum flux density in the core of the trans-
former might be approximated by using the familiar equation,

$$
\begin{align*}
E_{r m s} & =4.44 \mathrm{fNAB}_{\max } \tag{1}\\
240 & =(4.44)(60)(175)\left(7.2 \times 10^{-3} \text { meter }{ }^{2}\right)^{\left.\mathrm{B}_{\max }\right)} \\
\text { Rated } \quad \mathrm{B}_{\max } & =0.715 \text { weber/square meter } \\
& =46,200 \text { lines/square inch } \\
& =7.15 \text { kilogauss. }
\end{align*}
$$

This calculated amplitude of the rated flux density appears much too low to this author; a $B_{\max }$ ranging somewhere between 11 and 14 kilogauss would be more reasonable. Two reasons may be given for the discrepancy: 1. In any continuous spiral core, each single line of flux must necessarily cross an air gap between the laminations. This fact would necessitate the flux to crowd into that portion of the core having the largest stacking factor which, incidentally, for a spirakore make, is inherently small. 2. Upon examining the core, it was noticed that the somcalled continuous spiral was not continuous but possessed many (20 or 30) breaks, as if it were wound from 20 or 30 separate sheets of metal. This fact, coupled with the previous one, would obviously require the effective area of the core to be much less than that which was measured, resulting in a more reasonable maximum flux densityo NO-LOAD SATURATION CHARACTERISTICS

Perhaps the most important and prominent change incurred when operating a distribution transformer overexcited is the increase in exciting current. Graph I, page 6, illustrates the magnetization current for all three transformers taken as a function of terminal voltage up to 125% excitation. This data was obtained by exciting the machines from the 240 volt coils and leaving the 12 KV coils opencircuited with one bushing, the case, and the center tap solidly grounded.

From Graph I, Table 1 was prepared showing the percentage increase in rms exciting current with 116.7% vol.tage applied. Later in this

Table I

Transformer	Percent Exciting Current		Percent Increase of Exciting Current
A. C.	0.99%	3.56%	260%
G. E.	1.85%	6.10%	230%
W. E.	2.08%	9.90%	376%

paper, it will be shown that the change in phase angles of each machine between rated and overexcited voltage is such that the data of Table 1 cannot be averaged--directly. Taking phase angles into account, the actual average increase in exciting current is 300%. Five points are given on Graph I illustrating the excitation current of the AC transformer operating at $75^{\circ} \mathrm{C}$. These points show the temperature effect on magnetizing current to be negligible.

TELEPHONE INTERFERENCE

The curves of Graph I illustrate a typical characteristic of grain-oriented silicon steel; they exhibit sharp "knees", and since each transformer's core is shown to operate on the knee of the saturation curve, then overexcitation is bound to result in extremely non-sinusoidal exciting current giving rise to inductive interference on comraunication circuits that parallel the 12 KV feeder lines.

Current telephone influence factor (TIF) is a measure of the tendency of a current wave to produce interference or "noise" in a paralleled telephone line; TIF of a current wave is defined as the ratio of the
square root of the sum of the squares of the weighted effective values of each sine wave component (including both fundamental and harmonic) to the effective value of the wave. The TIF of a single harmonic depends upon its frequency and is "weighted" accordingly, a harmonic whose frequency is in the middle of the voice range being given a much heavier weighting than a 60 cycle or 180 cycle harmonic. Thus, while TIF is a function of frequency only, the actual interference is prom portional to the product of TIF and the rms magnitude of each harmonic current in amperes comprising a current wave. Suffice it to say here that the prime interest in this study is the actual relative amounts of interference, between 100% voltage excitation and 116.7% excitation, due to the non-sinusoidal current flowing in a primary line feeding a single transformer, while the telephone influence factor itself is of secondary importance.

The overall interference of a current wave is proportional to the product of rms current (measured with a simple ammeter) and the effective TIF of the whole wave. In other words,

$$
\begin{equation*}
\text { Interference } \sim(I)(T I F) \tag{2}
\end{equation*}
$$

The Pacific Telephone and Telegraph Company loaned to O. S. C. a 2 $2-B$ Noise Measuring Set equipped with a Current Coupler which they use to measure TIF or interference directly. This set is equipped with two frequency-weighting networks, one which corresponds to the 1935 TIFfrequency curve which is available in the Westinghouse Transmission and Distribution Reference Book, page 757. The other weighting network corresponds to the 1941 weighting curve which is applicable to more modern telephone equipment. This curve is available from P.T. and T.

From the operating instructions provided with the instrument, the following two equations are applicable to the tests made.
 where $\quad I=r m s$ exciting current in amperes.
$\mathrm{TIF}_{35}=$ telephone influence factor corresponding to the
R_{35} instrument reading in decibels with the 1935 weighting
TIF41 - telephone influence factor corresponding to the 1941 frequency-weighting curve.
R_{41}. instrument reading in decibels with the 1941 weighting network in use。

Tests were conducted using the noise-measuring set and current coupler connected in series with an ammeter located in the lines feeding the low side of each transformer with the high-voltage coil open circuited. The excitation voltage was taken from a variable autotransformer fed by Mountain States Power Company. Thus, the voltage wave form used should be identical to that of Portland General Electric Company's. Results of these tests, corrected by equations 3 and 4, are illustrated on Graph II, page 10, and tabulated in Table 2.

Table 2

(Current)(TIF) Products

GRAPH II

TELEPHONE INTERFERENCE of 10 KIA TRANSFORMERS 12 KV to $120 \% 240$ Volt Allis-Chalmers \quad No. 2656374 General Electric

No. 8555543 Westinghouse Electric

No. 5399469
No Load
Excited from 240 Volt Coil

The percent increase in interference as given by Table 2 appears very serious. However, one should consider the multitude of factors that affect the interference produced by a system. For instance, the data taken was conducted on a single-phase basis, and these transformers must be installed in closed delta banks in order to achieve the proper secondary voltage. Thus the balanced third, ninth, fifteenth, etc. harmonics could not flow in the feeder lines. Residual currents will, unfortunately, be present. Other major considerations are, of course, the geometrical configuration of the distribution system, the specific location of the transformers, the relative number of overexcited machines compared with the 7,200 volt transformer, the KVA rating of each bank, etc, and the possibility that even if the interference increased five times, the resultant effect may still be insignificant. Apparently, the only practical method of determining the extent of telephone interference is to install the transformers and hope that there will be no objections.

POWER LOSSES

Obviously, a major consequence of overexciting transformers will be a boost in energy consumption and, owing to a transformer's inherent non-linearity, this power loss can be obtained accurately by direct measurement only. Graph III, page 12, illustrates this loss for each transformer, and comparisons are tabulated in Table 3. Notice the individual points given on the AC machine with its temperature raised to $75^{\circ} \mathrm{C}$ and the resulting small reduction in power loss. This effect is attributed to an increase in the resistance to the flow of eddy currents; it is considered insignificant in this paper.

Table 3
Magnetization Power Loss ${ }^{1}$
In Percent of Rated KVA

Iransformer	100\% Voltage	116.7\% Voltage	Percent Increase in Power Loss
W. E.	0.577	0.930	61.2%
A. C.	0.623	0.975	56.5%
G. E.	0.735	1.150	56.5%

Copper loss was also measured on all three transformers at $20.5^{\circ} \mathrm{C}$ and is illustrated on Graph IV, page 14. The curve of copper losses for the $A C$ machine at $75^{\circ} \mathrm{C}$ shows the anticipated increase with higher temperature. These curves were obtained by short-circuiting the transformer secondary and measuring input, primary quantities. The data taken during the open and short-circuit tests reveal that the effective impedance presented to the primary winding is about 2,000 times greater on open circuit than it is on short circuit. Therefore, it is permissible to stipulate that all data taken on open circuit are characteristics of the core only and all data obtained under short circuit are characteristics of the windings only. For instance, at $I_{1}, 000$ volts, the Westinghouse transformer, with taps set to 100%, draws 83.3 milliamperes of exciting current which causes a primary winding loss of $(0.0833)^{2}\left(\mu_{4} 7.34\right)$ or 1.02 watts; the actual loss measured under open circuit is 93.0 watts. It is, therefore, concluded that overexcitation will have no effect on copper or winding loss.

[^0]

Transformers that will be operated according to the manufacturer's KVA rating but in excess of the KV rating must necessarily pass less than rated current. The more or less indirect effect of overexcitation then will be a reduction in copper losses that will tend to counteract the increase in core loss. For this particular study, the copper loss will decrease 23% providing the transformers maintain the same 10KVA load (calculated in Appendix). Table 4 was compiled from Graphs III and IV, taking into consideration $75^{\circ} \mathrm{C}$ resistance, the decrease of load current, and the change of tap settings.

Table 4
10 KVA Load Loss at $75^{\circ} \mathrm{C}$
in Percent of Rated KVA。

Transformer	Taps set 100% 100\% Voltage			Taps set 92.5% 116.7% Voltage			\% DECREASE in Load Loss
	Core Loss	Copper	Total	Core Loss	Copper	Total	
W. E.	0.577	1.91	2.49	0.930	1.47	2.40	3.61,
A. C.	0.623	1.83	2.45	0.975	1.41	2.39	2.45\%
G. E.	0.735	2.00	2.74	1.150	1.54	2.69	1.82\%

The ratio of copper to core loss is about $3 / 1$, and since copper losses decrease substantially, the resultant rise in load losses was not a rise at all; it actually decreased! Consider the increase in the daily energy loss, assuming 8 hours of operation at full load and 16 hours no load. (These transformers must be power installations.) The average load loss at 100% voltage for the three machines tested will be 2.05 KWH . No load loss will be 1.03 KWH . At 117.6\% excitation,
load loss would drop to only 1.99 KWH and no-load energy consumption to 1.63 KWH per day's time. The final result is that the increase in the daily energy consumption between 100% excitation and 116.7% excitation will be 17.5 for the transformers alone. The actual 12 KV system may hardly be affected.

POWER FACTOR

Using the data of Table 3 and Table 1 , the no-load power factors of each machine were computed, and with these values, given by Table 5,

> Table 5
> No-Load Power Factor (Lagging)

Transformer
100\% Voltage
116.7% Voltage

W. E.	27.7%	8.1%
A. C.	63.0%	23.5%
G. E.	39.7%	16.2%

the effective, average increase in exciting current for the three machines was computed (see page 7). At rated voltage, the average exciting current for these transformers is 13.6 milliamperes at a power factor of 0.396 . At 116.7% voltage, the average exciting current is 54.2 milliamperes at 0.134 power factor. Under this basis, it would take 1,850 KVA of overexcited transformers to draw 10 amperes of exciting current.

The power factor of a machine under load, of course, depends upon the load power factor and the machine's impedance which does not undergo any appreciable change with excitation. The impedances as measured under short-circuit test are listed in Table 6 and are in approximate agreement with those given by the manufacturers.

Table 6

Transformer $\quad 75^{\circ} \mathrm{C}$ Impedance: Taps set 100%
A. C.
$2.68 \% / 47.3^{\circ}$
G.E.
$2.91 \% / 46.5^{\circ}$
W. E.
$2.58 \% / 42.3^{\circ}$

CORE HEATING

Up to this point, the transformers have been given an examination from a more or less external standpoint. A major effect of overexcited operation will be, perhaps, a substantial if not serious increase in the operating temperature. A study was conducted on the General Electric machine only (assuming the other transformers to perform reasonably the same) in an effort to make accurate measurements of ultimate core temperatures as a function of loading at various excitations.

The G. E. machine was dismantled, its core extracted, and five copper-constantan thermocouples were inserted between the laminations at various locations illustrated in Figure 1. The winding encloses the center legs. After doing this, the transformer was reassembled, positioned on four-inch wooden blocks and located in a closed room where

Figure 1

G. E. Transformer Core
ambient temperature did not undergo wide fluxuations. In measuring the minute potentials developed across the thermocouples, the most accurate apparatus available was utilized: a Leeds and Northrup Student Potentiometer, a Weston Standard Cell, a Rubicon Galvanometer, and L. and N. Standard Conversion Tables for copper-constantan thermocouples; reference junction was $0^{\circ} \mathrm{C}$ (ice-water mixture). The "pump-back" method of loading was chosen, using the Allis-Chalmers transformer. Results of this test are tabulated in Table 7.

Table 7
Ultimate Core Temperature of G.E. Transformer

Excitation	Loading	Average Temperature of 5 Positions (Figure 1)	Hot-Spot Temperature Location C (Figure 1)	Ambient Temperature
100\% Voltage (Taps set 12 KV)	No Load	$38.5^{\circ} \mathrm{C}$	$39.0{ }^{\circ} \mathrm{C}$	$21.0^{\circ} \mathrm{C}$
125\% Voltage (Taps set 12 KV)	No Load	$51.2{ }^{\circ} \mathrm{C}$	$52.8{ }^{\circ} \mathrm{C}$	$19.8{ }^{\circ} \mathrm{C}$
100\% Voltage (Taps set 12 KV)	10 KVA Load (Rated)	$63.9{ }^{\circ} \mathrm{C}$	$65.8{ }^{\circ} \mathrm{C}$	$20.0{ }^{\circ} \mathrm{C}$
125\% Voltage (Taps set 12 KV)	12.5 KVA Load (100\% Current)	$78.4{ }^{\circ} \mathrm{C}$	$81.4{ }^{\circ} \mathrm{C}$	$23.0^{\circ} \mathrm{C}$
116.2\% Voltage (Taps set 11.1 KV)	10.45 KVA Load (90% Current)	$67.4{ }^{\circ} \mathrm{C}$	$69.6{ }^{\circ} \mathrm{C}$	$22.0{ }^{\circ} \mathrm{C}$

Nameplate data for this machine states a $55^{\circ} \mathrm{C}$ rise in a $20^{\circ} \mathrm{C}$ ambient, and Table 7 proves that this transformer, operating with slightly more than rated load at 116.2% excitation, is still more than
$5^{\circ} \mathrm{C}$ under the rating with even a $22^{\circ} \mathrm{C}$ ambient. of course, ambient temperatures may approach $32^{\circ} \mathrm{C}\left(90^{\circ} \mathrm{F}\right)$, but this will be infrequent in the Portland area. The conclusion drawn from analysis at Table 7 is that these transformers will not suffer serious overheating, and therefore, oil sludging, insulation damage, and core aging have not been investigated in this study. Incidentally, core aging has been almost eliminated by the addition of silicon to transformer metal.

NOISE

All transformers have some degree of 120 cycle hum, or noise associated with them. Inasmuch as the vibration causing this hum is primarily due to magnetostriction which in turn, is affected by flux density or impressed voltage, it was thought appropriate to investigate these 10 KVA transformers to determine whether or not the increase in noise might incite objections.

A General Radio Type 759-A sound-level meter (Standards approved) was used in measuring the noise emanating from each transformer as a function of impressed voltage. The microphone of the instrument was located midway between the top and bottom of the transformers, one foot away, and eight readings were taken at each voltage setting around the transformer. These readings were averaged and plotted as illustrated by Graph ∇, page 20. More specific details of the testing method are available in the Appendix. The ambient noise level was constant in the closed, sound-absorbent room used, because the tests were made from $2: 00$ to $5: 00 \mathrm{~A} . \mathrm{M}$. when the building was not normally in use.
The following noise levels, reprinted from the Allis-Chalmers Transformer Reference Book, are listed so as to obtain a comparison with Graph V:

MEASUREMENTS AT THREE FEET

Threshold of Hearing......................	0 db
Whisper.	14 db
Country Roadside...........................	28 db
Average Dwelling.	35 db
Vacuum Cleaner.	49 db
Average Office.............................	50 db
Ordinary Conversation.....................	56 db
Average Automobile........................	60 db
Motor Truck..................................	70 db
Typewriter..................................	71 db
Heavy Street Traffic.......................	90 db
Riveting Machine.	96 db
Automobile Horn. .	100 db
Airplane Engine............................	110 db
Threshold of Feeling.	120 db

Fortunately, at 100% vol.tage, the transformers' vibrations are already appreciable according to Graph V so that overexcitation does not cause as much increase. Between 100% and 116.7% voltage, the G. E. machine increased 2.5 decibels; the W. E. machine, 6.5 decibels, and the A. C. transformer, 5.5 decibels. The average increase is 4.8 decibels and with a 35 decibel ambient, amounts to 39.8 decibels of noise. The same instrument used to make the test was taken to an average Corvallis neighborhood and a 42 decibel reading was recorded
at 1:00 P.M. If two identical noise-producing devices can be considered point sources, then their combined noise will be 3 decibels higher than one device by itself. Considering this, and the fact that all measurements were taken at only one foot from the transformer, add the probability that since these transformers must be power banks and therefore generally installed in noisier neighborhoods, then the only conclusion to draw from this study is that there will likely be few if any complaints against overexcited transformers making more noise than is normal.

SUMMARY

It was convenient and effective to summarize the foregoing study In tabulated form as is shown on page 23. This tabulation is applicable to the average of the three transformers tested and gives all important factors or changes in operation when the machines ${ }^{\text {i }}$ taps were reduced from 100% to 92.5% and the impressed voltage increased from 12,000 vol.ts to 12,900 volts. The rated, 10 KVA (not rated current) load remains constant.

Bransformer:Average of three Unidentical 10 KVA, 12,000 Volt Machines	
Load	10 KVA
Taps	Changed from 100\% to 92.5
Voltage	Changed from 12,000 to 12,900 Volts
Exciting Current	Increased 300\%
Telephone Interference	Difficult to Estimate (See Page 7)
Magnetization loss	Increased 58\%
Copper Ioss	Decreased Approximately 23\%
Load loss	Decreased Approximately 2.6\%
Daily Energy loss	Increased Approximately 17.5\%
Power Factor	(No-load) Decreased from 0.396 to 0.134
Core Temperature	Increased Approximately 6\% (See Page 18)
Noise	Increased 1.2\% (In a very quiet Ambient)

CONCLUSION:

Inasmuch as core temperature will not be serious according to this study, the transformer itself will not suffer appreciable damage. In view of the Summary, and providing the actual ratio of overexcited transformers to normally excited transformers is reasonably small, this author believes there will be no appreciable effect on the 12 KV system. Therefore, it would be permissible to operate these machines as anticipated if one may assume that this study is applicable to a multitude of various make-and-rating machines and providing these transformers shall not be overloaded.

A P PENDIX

(Indluding Separation of Core Losses)

NAME PLATE DATA
Portland General Electric Co. No. 4958-10
General E1ectric Co.
Sing1e-Phase; Type HS, Form W2, Frequency, 60 ops Sub. Pol. No. 8555543 , KVA10, Continuous $55^{\circ} \mathrm{C}$ rise Voltage Rating 12000 volts-120/240 v
Taps: 100% rated, $97 \frac{1}{2} \%, 95 \%, 92 \frac{1}{2} \%, 90 \%$
Approximate Impedance at Rated Volts, $75^{\circ} \mathrm{C} \quad 2.9 \%$
SPIRAKORE TRANSFORIER

Portland General Electric Co. No. 10800-10
Allis Cha1mers
KVA $10,55^{\circ} \mathrm{C}$ Rise, Serial No. 2656374
Type CBS, $60 \mathrm{cps}, 11 \mathrm{gal}$ oil, 2.7% Impedance at $75^{\circ} \mathrm{C}$
Single-Phase, Subtractive Polarity, DBPC, Total Vt. Lbs
Voltage 12,000 volts-120/240 volts
Taps; 100%, $975 \%, 92.5 \%, 95 \%, 90 \%$
CURVACORE TRANSFORIER

Portland General Electric Co. No. 7590-10
10KVA, $55^{\circ} \mathrm{C}$ Rise, Serial 5399469 , 12000 Volts-120/240 Volts
Taps: $100 \%, 97.5 \%, 95 \%, 92.5 \%, 90 \%$
Westinghouse Electric Corp.
$75^{\circ} \mathrm{C}$ Impedance 2.4% Single Phase, 60 cps
Cat. No. 5000-001 Style 1191184-C
S-HYPERSIL TRANSFORIER, Subtractive Polarity

VOLTAGE RATIO TESTS AT VARIOUS TAP SETTINGS
Impressed voltage on high side of transformers at all tap settings is constant at 2600 volts; measured with B and C where B reads 130.0 volts and C set $20 / 1$. Instrument D used to hold high side voltage constant thereafter.

TEASUREMENTS
TRANSFORMER
TAP SETTINGS

	100\%	$97 \frac{1}{2 \%}$	95\%	92 $\frac{1}{2} \%$	90\%
	Vo1ts	measured	h in	ment	(240
G.E.	51.2	52.4	53.9	55.5	57.0
A.C.	51.1	52.4	54.0	55.4	57.0
W.E.	51.1	52.5	54.0	55.4	57.0

DIRECT-CURRENT RESISTANCE MEASUREMENTS
Low side measured by Kelvin Bridge; high side by Wheatstone Bridge.
A.C. Low side; (0.07590) (0.5) ohms

High side; 101.05 ohms
Temperature, $18.8^{\circ} \mathrm{C}$
G.E. Low side; (0.09557) (0.5) ohms

High side; 98.31 ohms
Taps set 90%
Temperature, $18.2^{\circ} \mathrm{C}$
W.E. Low side; (0.07740) (0.5) ohms

High side; 108.25 ohms
Taps set 90%
Temperature, $18.2^{\circ} \mathrm{C}$
To correct for $75^{\circ} \mathrm{C}$ rultiply by $\left(\frac{234.5+75}{234.5+\text { Temp. }}\right)$
To correct high side for 100% tap setting multiply by ($\frac{100}{90}$).

CALCULATION OF 23\% DECREASE IN COPPER LOSS WHEN 10 KVA, 12000 VOLT TRANSFORMER WITH TAPS SET TO 12000 VOLTS IS CHANGED FROM 10 KVA LOAD AT 12000 VOLTS TO 10 KVA LOAD AT 12900 VOLTS WITH TAPS SET TO 11100 V0LTS.

Assume that resistance seen by primary is equal to primary resistance with taps set to 100% ($\mathrm{a}-\mathrm{c}$ resistance).

If "I" is prinary current and "R" is primary resistance, then the loss before the change is...
(A.) $I^{2} R$ loss equals $\left(\frac{10000^{2}}{12000}\right)(2 R)$.

After the change,
(B.)

$$
\text { loss equals }\left(\frac{10000}{12900}\right)^{2}\left(0.925 \mathrm{R}+0.925^{2} \mathrm{R}\right)
$$

(C.)
equa1s $\left(\frac{10000}{12900}\right)^{2}(0.925)(1.925 \mathrm{R})$

$$
\frac{\mathrm{A}}{\mathrm{C}} \quad \text { equa1s }\left(\frac{12.9}{12.0}\right)^{2}\left(\frac{2}{0.025+1.925}\right)
$$

equa1s 1.3
or,
4

$$
\frac{\mathrm{C}}{\mathrm{~A}} \quad \text { equa1s } \quad \frac{77 \%}{100 \%}
$$

In other words, the loss has decreased 23%.

NOISE TESTS ON TRANSFORMERS

Location: Illumination laboratory. Dearborn Ha11.
This room has a sound absorbent ceiling, concrete floor, and plaster walls. It is approxinately 34 ft . long and 32 ft . wide.
The transformer was located at position $\%$ on a thick rug, with the
secondary side facing the upper right-hand cornor of the roon.
Measuremonts vere taken at positions 1, 2, 3, 4, 5, 6, 7, 8, for
each voltage setting. 240 volt coil used.
This room is on first floor and shop generators were operating
in basement which kept ambient sound relatively high, but constant.
Time: early morning.

NOISE-continued						
	$\begin{gathered} \text { A.C. } \\ \text { Vo1ts, } 150 \end{gathered}$		G.E. Volts,	240		298
1	35.2 db	1		51.0 db	1	48.0 db
2	35.5	2		44.5	2	47.9
3	35.3	3		46.8	3	50.5
4	35.8	4		48.3	4	47.0
5	35.0	5		51.8	5	49.0
6	34.8	6		52.7	6	47.5
7	34.5	7		53.8	7	49.0
8	35.0	8		53.0	8	52.2
	Vo1ts, 200		Volts,	275		
1	35.3	1		50.2		
2	36.5	2		47.5		
3	35.3	3		43.0		
4	35.0	4		49.9		
5	36.5	5		54.0		
6	35.0	6		53.0		
7	34.8	7		53.6		
8	35.0	8		52.5		
	Volts, 240		Volts,	300		
1	38.8	1		54.2		
2	40.5	2		49.9		
3	40.8	3		48.5		
4	40.2	4		48.8		
5	39.7	5		56.4		
6	39.4	6		53.4		
7	37.0	7		53.0		
8	38.0	8		54.5		
	Volts, 275					
1	40.5					
2	42.0					
3	43.5					
4	42.5					
5	41.5					
6	41.0					
7	39.0					
8	- 40.3					
	Volts, 300					
1	49.0					
2	49.2					
3	47.2					
4	48.5					
5	52.0					
6	49.0					
7	47.0					
8	48.3					

Location: Ifigh Vo1tage Laboratory, Dearborn Ha11. Location of thermocouples: See text.

MEASUREMENTS

(excited with 125% voltage $3:$ PM 1-16-54)
1-18-54
9:30 AM
CIECK: Thermometer, $26.4^{\circ} \mathrm{C}$
Potentiometer, $1.025 \mathrm{mv}, 26^{\circ} \mathrm{C}$

A	1.944	$47.8^{\circ} \mathrm{C}$	
B	2.000	49.2	
C	2.075	51.0	Ambient
D	1.972	48.5	$19.4^{\circ} \mathrm{C}$
E	1.923	47.3	

9:50 AM

A		2.022	$49.8^{\circ} \mathrm{C}$	
B		2.067	50.7	
C		2.128	52.1	Ambient
D		2.059	50.5	$20.0^{\circ} \mathrm{C}$
E		2.006	49.5	

9:30 AM

A	
B	
C	
D	
E	
(excited with	
125\% volts	
1-21.	

$2.039 \quad 50.2^{\circ} \mathrm{C}$
$2.113 \quad 51.8$
$2.147 \quad 52.8$ Ambient
$\begin{array}{lll}2.092 & 51.2 & 19.8^{\circ} \mathrm{C}\end{array}$
$2.018 \quad 49.5$
(excited with 125% volts and 1 oaded with 100% current)
3:30 PM

A		3.112	$74.6^{\circ} \mathrm{C}$
B	3.270	78.0	
C		3.341	79.6
D Ambient			
E		3.138	75.1
		3.124	74.9
	$1-22-54$		

$5: P M$

A	3.227	$77.0^{\circ} \mathrm{C}$	
B	3.334	79.4	
C	3.418	81.4	Ambient
D	3.299	75.8	$23.0^{\circ} \mathrm{C}$
E	ted		

TEMPERATURE TEST - continued

1-25-54
9:30 AM

A	2.537 mV	$61.6^{\circ} \mathrm{C}$	
B	2.653	64.2	
C	2.724	65.8	Ambient
D	2.627	63.8	$20.0^{\circ} \mathrm{C}$
E	2.474	60.0	

(transformer taps changed from 12000 volts to 11100 volts; impressed voltage on secondary set to 279 volts which corresponds to 12900 volts on primary (116.2% rated). Primary current set to 90% (810 ma) which means the transformer has a 10450 volt-anpere load, and should give approxinately the same loss as operating at rated with taps set to 100%.)

11:PM
1-27-54

A	2.734 mv	$66.1^{\circ} \mathrm{C}$	
B-	2.815	67.9	
C	2.887	69.6	Ambient
D	2.772	66.8	$22.5^{\circ} \mathrm{C}$
E	2.680	64.8	

OPEN (HIGH SIDE OPEN) AND SHORT (LOW SIDE SHORTED) CIRCUITED TESTS

General Circuit

In the columns of data appearing on the next two pages there are instrument letters given with subscrips which denote changes of potential $00 i 1 \mathrm{~s}$.

For making corrections, the following equations were used:

$$
\text { True Power, } P=W \frac{E^{2}}{R_{W}}-\frac{E^{2}}{R_{v}}
$$

SHORT-CIRCUIT VEASUREMENTS

OPEN-CIRCUIT DATA (measurements)

OPEN-CIRCUIT DATA ON A.C. TRANSFORUER AT $75^{\circ} \mathrm{C}$ AND SHORT-CIRCUIT DATA
D-C Resistance:
High Side, 138.73 ohms Taps set 100%
Low side, (0.5)(0.09377) ohms

OPEN-CIRCUIT

E, volts B_{2}

200
220
240
$260 \quad 0.753 \quad 105.6$
$278 \quad 1.425 \quad 126.0$
$297.5 \quad 3.000 \quad 153.0$

A, anaps W , watts

F_{1}	G_{2}
0.314	58.2
0.372	71.6
0.490	86.4
0.753	105.6
1.425	126.0
3.000	153.0
$\mathrm{~F}_{2}$	

SHORT-CIRCUIT

E, volts	A, amps	H, watts
H_{2}	$\mathrm{~F}_{1}$	G_{2}
386	1.068	300.0
375	1.038	242.0
350	0.963	245.0
325	0.890	205.6
300	0.825	180.2
$\mathrm{~B}_{2}$		
275	0.795	166.4
250	0.722	166.4
225	0.650	112.0
200	0.580	89.2

TRANSFORMER TELEPHONE INTERFERENCE DATA

240 volt coil used; instrument B used to measure impressed voltage with high side open circuited.

Db Noise Measuring Set No. 2-B Serial 88788 connected in shunt with Current Coupler 101863 C.0.E. connected in series with 240 volt winding. These instruments loaned by Pacific Telephone and Telegraph Co., Portland, Oregon.
K_{1} and K_{3} switches set to normal. "Plug" in "line" jack.
Instrument calibrated beginning of each test.
Column 144 refers 1935 response curve weighting network.
Column FIA refers to 1941 response curve weighting network.
Applicable equations (see text).

$$
\begin{aligned}
& R_{35}-13.3=20 \log (I)\left(T F_{35}\right) d b \\
& R_{41}-6.6=20 \log (I)\left(T_{41}\right) d b
\end{aligned}
$$

MEASURMENTS

	G.E.	N.E.				A.C.			
Volts	db	db	Volts	db	db	Vo1ts	db	db	
100	24.5	21.2	100	25.6	22.0	100	20.6	19.8	
125	26.6	25.2	125	27.7	24.0	125	21.7	19.8	
150	28.7	25.6	150	30.4	26.8	150	23.4	21.6	
175	32.0	29.3	175	33.4	29.7	375	26.2	24.3	
200	36.0	35.2	200	37.3	34.3	200	30.9	28.9	
225	39.7	37.9	225	43.2	40.3	225	37.3	35.4	
230	41.0	39.5	230	44.7	41.7	230	39.5	37.0	
240	43.6	42.0	240	48.0	45.4	240	42.7	39.9	
250	46.0	44.6	250	51.7	48.5	250	47.3	44.4	
260	48.8	47.6	260	54.5	52.6	260	52.0	49.2	
270	52.8	51.7	270	59.1	57.4	270	55.4	52.8	
280	55.2	54.0	278	62.1	60.0	280	58.4	55.0	
288	57.2	55.8	280	63.0	60.7	290	62.4	59.7	
290	58.5	56.7	290	66.8	64.2	296	63.8	61.0	
300	61.4	59.5	300	64.1	60.1		(144)	(FIA)	
	(144)	(FTA)		(144)	(FIA)				

[^1]26.5 Inches

FREQUENCY TEST DATA

```
Wattmeter:GoE.No. 579561,0-150 watts, 150 volts.
Potential coil resistance is }3301\mathrm{ ohms.
    Used with potential Transformer No. A=136891
Voltmeter: G.E.No. 598915, 0~300-750 volts.
    300 volt coll resistance is 7614.2 ohms.(Eq)
    750 voit coil resistance is 19040.0 ohms. (E2)
```

DATA

	G.E.			A.C.			
freq.	volts	watts	$P \propto T$	freq。	volts	watts	P ¢T
90	56 360	41.9	$4-1$	90	368	32.3	$4-1$
85	340	34.3	$4-1$	85	340	29.5	$4-1$
80	320	68.0	2-1	80	320	59.0	$2-1$
	Ei_{2}				Es		
	300	66.2	2-1		300	58.1	$2-1$
70	280	59.4	2-1	70	280	52.1	$2-1$
65	260	52.4	2-1	65	260	46.1	$2-1$
60	240	46.9	2-1	60	240	41.0	2-1
55	220	42.0	2-1	55	220	35.8	$2-1$
50	200	35.2	2×1	50	200	31.0	2-1
45	180	30.1	2-1	45	180	26.0	2-1
40	260	53.3	out	40	160	46.8	out
35	140	43.0	out	35	240	37.4	out
30	120	34.0	out	30	120	29.2	out

freq.	wolts	watts
90	360	30.0
85	340	27.1
80	320	24.8
	E_{2}	
75	300	5409
?	280	49.1
65	260	43.7
60	240	39.0
55	220	3400
50	20	29.6
45	180	25.1
40	160	45.2
35	140	36.8
30	120	28.9

Frequency was messured with an oscilloscope used in conjunction with a HewlettmPaokard Oscillator.

SEPERATION of CORE LOSSES

Core loss equals Hysteresis loss plus Eddy－Current loss．

$$
P_{C}=P_{h}+P_{0}
$$

$$
P_{0} \text { m } K_{1} B_{\max }^{n}+K_{2} B_{\operatorname{mex}}^{2} r^{2}
$$

where the Ks are constonte，f is frequenoy，$B_{\max }$ is max－ imum flux density，and n is the Steinmetz exponent．

The goal of this study is to empirically determine the corecloss equation as a function of frequency and improssed voltage，E，using the data on the next page。 Itis oasily shown that．

$$
30
$$

whioh when substituted in equation 2，combiaimg conc atants，shows that．

$$
P_{c}=K_{h} E^{n} \rho^{2 \sim n}+K_{e} E^{2}
$$

40
Dursing the tost the flux donsity was maintainodet its rated value so that E divided by f was hold constant at 40

$$
P_{Q}=K_{2} 4^{n}+K_{8} 4 E
$$

Equation $5 i s$ a straight line．It is plotted on Graph Aol which shows this foregoing theory is applioable to tho $200-280$ voit range only。

The slope of the straight lines is K o．

$$
60
$$

The intercept，at E equals zoro，is $K_{h} 4^{2}$ ；this point is essily determined from the graph to be：

From equation 42

$$
P_{0}=K_{0}^{4} E^{2}=K_{h} E^{n} P^{l-n}
$$

The left side of equation 8 plotted on $\log -20 \mathrm{~g}$ ooordine ates as a function or E is a straight line whoso slopo 13 R．This curve is shown on Graph $A-2$ ；thgatas takon from equation 6 and the curves on page i2．

Measur tifeg the slope of the stralght line on Graph A－2 gives n equal to 2.54 for all three transformers． From equation 7．（continued on 2ast prge）$\ldots \ldots$

$$
\begin{aligned}
& \text { GoE。 } K_{h}=214 \times 10^{-4} \\
& \text { AoC. } K_{h} \approx 181 \times 10^{-4} \\
& \text { WoE. } K_{h}=184 \times 10^{-4}
\end{aligned}
$$

Inasmuch as test ourves do not obey the aoadomic thoory too closely all constants have been averaged below and a general core-loss oquation obtained for modern distribution transformers operating at 60 cycles. (10 KVA transformers)

$$
\begin{aligned}
& P_{0}=\left(0.351 \mathrm{E}^{2} \cdot 54+4091 \mathrm{E}^{2}\right) \times 10^{0.4} \\
& \text { where } P_{0} \text { is core loss in watts and } \\
& \mathrm{E} \text { is the number of voits measured } \\
& \text { on the } 240 \text { volt coil of the seoondary } \\
& \text { winding. }
\end{aligned}
$$

A check will show that this equation approximates the curves on page 12 very olosely in the $2000280-v o l$ it range. At rated volts, the ratio of hysterests loss to eddyocurrent $108 s$ is about 1.4 to 1

This equation of core loss can be appiled to various KVA and KV rating machínes by employing the "percentage" system $-\infty-\infty$ vith, due caution.

[^0]: The amount of losses due to hysteresis and eddy currents, respectively, have been given thorough investigation for all three transformers. See Appendix.

[^1]: ESTMMATED MEAN LENGTH OF ONE THG TWO "D" CORES IN G.E. TRANSFOPMER

